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The user costs of air travel delay variability  

BY PAUL KOSTER*, ERIC PELS AND ERIK VERHOEF 

DEPARTMENT OF SPATIAL ECONOMICS VU UNIVERSITY  

TINBERGEN INSTITUTE  

 

SUMMARY ― We derive the expected user costs of US domestic air travel 

delay variability taking into account scheduling behavior of travelers. 

Travelers do not only consider mean arrival delays, but also face scheduling 

costs because they arrive too early or too late at their destination. The model 

allows travelers to anticipate arrival delay variability by choosing an earlier 

flight. We show that the expected user costs of US air traffic delays are 

underestimated by 16% if arrival delay variability is ignored. 

 

Keywords ― air traffic delay, travel time variability, scheduling, value of 

reliability. 
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1.0  Introduction 

Unreliability of public and private transport systems can lead to high social costs. The 

valuation of reliability is therefore one of the four key topics included in the Second 

Strategic Highway Research Program (SHRP2) of the US government.1 Also in Europe 

reliability of transport systems has gained increasingly attention after preliminary research 

has suggested that user costs of travel time variability may be substantial (OECD/ITF, 

2010). This paper is an empirical contribution to the research on the valuation of reliable 

transport systems. It studies the impact of US air arrival delay variability on the expected 

user costs of air travelers. Up to now, little attention has been paid to the large scale 

empirical analysis of air travel delay variability. Earlier studies have considered travel 

delay variability for travelers going to the airport (Koster et al. 2011, Tam et al. 2008), but 

as far as we know no large scale empirical studies on arrival delay variability at the 

destination are available in the literature.  

Travelers are not only concerned with mean arrival delay costs and prefer to arrive at their 

destination airport on time. Air travel delays potentially result in a costly disruption of 

travelers’ activity schedules. Previous studies on US air travel delays included the user 

costs of mean arrival delay but neglected the costs of arrival delay variability. Our study is a 

first attempt to quantify these user costs.  

Because airlines determine the scheduled arrival times of the flights, travelers need to 

account for the timetable when choosing a flight. Therefore, they face timetable constraints 

and cannot freely choose their arrival time, leading to scheduling costs.2 Scheduling costs 

are considered as important and many studies have found significant effects for increases 

in flight frequency. For example, Douglas and Miller (1974) assume that the cost of arriving 

are symmetric around the preferred arrival time, and study the relationship between 

schedule delay costs and ticket prices. Anderson and Kraus (1981) analyze the relationship 

between schedule delay and demand empirically. They show that schedule delay has a 

                                                           
1
 The details of the program can be found on the website of the Transportation Research Part Board 

(www.trb.org). 
2 See for example Bates et al. (2001) for a discussion and Noland and Polak (2002) 
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significant impact on travel demand. Also Lijesen (2006) and Hess et al.  (2007) find 

significant effects of schedule delay on travel demand using stated preference data.  

In order to capture the dynamic behavioural response to arrival time variability, an explicit 

treatment of trip timing needs to be included in the model. This is done using the concept 

of schedule delay which was introduced by Vickrey (1969) and Small (1982) and later 

extended by Noland and Small (1995) to account for travel time variability. We refer to 

these scheduling preferences as  -  -   scheduling preferences, where   is the value of 

travel time,   the value of arriving earlier than the preferred arrival time, and   is the value 

of arriving later than the preferred arrival time. 3 

The main goal of this paper is to quantify the user costs of air travel delay variability. We 

use data on US domestic air traffic delays for the top 500 busiest origin-destination pairs. 

This dataset is unique since it provides very detailed information on scheduled arrival 

times and realized arrival times of US airlines. We find that, for reasonable parameter 

values, the costs of air traffic delays are underestimated by 16% if arrival delay variability 

is ignored. Section 2 introduces the stylized scheduling model that is suited for empirical 

application. Section 3 discusses the data, section 4 the results, and section 5 concludes. 

2.0 The scheduling model 

We extend earlier models of Fosgerau (2009) and Tseng et al. (2012) to make them more 

suitable for empirical analysis by taking into account that arrival times of flights are not 

equally spaced over the time of the day. This is important when arrival times are variable, 

since anticipating behaviour to earlier connections depends on how connections are spaced 

over the time of the day. If a connection is nearby the preferred arrival time, the probability 

                                                           
3Fosgerau and Engelson (2011) and Engelson and Fosgerau (2011) use other scheduling preferences 
proposed by Vickrey (1973) and Tseng and Verhoef (2008). They develop reduced form cost functions that 
take into account the restricted departure time decision when traveling with a scheduled service. They show 
that these scheduling preferences may lead to expected user costs that are linear in the variance of the delay 
distribution. This is a useful theoretical result because the variance is additive over links. Engelson and 
Fosgerau (2011) generalize this model. Which scheduling preferences are most appropriate for air travelers 
is an empirical question that will not be addressed in this paper. 
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that a traveler will choose this connection will be higher, meaning that there is an 

interaction between frequency and the expected costs of arrival time variability.      

Consider the following set-up. For a given OD-pair, on a given day      , travelers 

choose between      connections labelled by        . It is assumed that    ≥ 2, in 

order to have a possible trade-off between connections on day v. The headway     is the 

difference in the scheduled arrival times of connections    and     . On day  , there are 

   connections and therefore there are      values for the headway. We therefore define 

the variable         , as the index for the headway. This setup therefore accounts for 

unequally spaced flights over the time of the day, since              are not necessarily 

equal.  

The scheduled arrival time is defined by      
, and the scheduled arrival time of the first 

connection (sat1) is normalized to 0. It is assumed that all travelers have an exogenous 

preferred arrival time (pat) at their destination airport, which is somewhere in between 

the scheduled arrival times of connections 1 and   , meaning that            
. One 

might argue that from a system equilibrium perspective, locating the arrival time at the 

beginning or endpoint of the market is not optimal from an airline profit perspective. For 

simplicity this is ignored because analyzing a full equilibrium model is highly complicated 

in the current setting because one needs a multi-firm, multi-product formulation of the 

Hotelling model. Furthermore, one needs to account for the connectivity of the flights in the 

network. The pat is distributed over the time of day with a probability density function 

  
      .  

Furthermore we assume that travelers have what we may call  - -  preferences 

(Vickrey, 1969; Small, 1982).4 The shadow costs of mean arrival delay are given by  , the 

shadow costs of arriving earlier than the preferred arrival time are given by β, and the 

shadow costs of arriving later than the preferred arrival time are given by  . Empirical 

research for other travel modes usually finds that arriving late is more costly than arriving 

                                                           
4 Other scheduling preferences can be used (Vickrey, 1973; Tseng and Verhoef, 2008; Fosgerau and Engelson, 
2011), but no empirical evidence for such preferences is available in the context of aviation. The model 
developed in this paper can easily be extended by using other scheduling preferences in equation (1). Tseng 
et al. (2012) and Börjesson and Eliasson (2011) also use these scheduling preferences. 
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early, meaning that    , although we may add that the evidence for air travelers is mixed 

(Warburg et al., 2006; Lijesen, 2006; Hess et al. 2007).  

The arrival delay D is distributed with a cumulative distribution function F[D], and 

corresponding probability density function F’[D]. D can be negative, meaning that 

passengers may arrive earlier at their destination than the scheduled arrival time. Here it is 

assumed that the delays D come from the same underlying distribution, meaning that we 

do not account for seasonal changes in the arrival delay distribution. We standardize the 

delay to make the mean delay (μ) and the standard deviation of delay (σ) explicit. To that 

end, define x=(D-μ)/σ, as the standardized delay, where x is distributed with a standardized 

distribution G[x] and corresponding probability density function G’[x]. Throughout our 

analysis it is assumed that the distribution of arrival delay does not vary over the day, 

meaning that μ and σ are independent of the time of the day. This will lead to an 

underestimate of the expected user costs for certain times of the day, where μ and σ are 

larger and an overestimate for times that μ and σ are lower. However, these effects to some 

extent average out because travelers are by assumption distributed over the day.5 A 

traveler choosing connection   , having a delay D, and a scheduled arrival time      
, has a 

generalized travel cost            :6 

(1) 
               

                       
    

 
   

             
          

The first part of this equation    
, is the cost for using the connection other than delay and 

scheduling costs. This includes the ticket price, the (monetized) costs of scheduled travel 

time, the service quality and frequent flyer miles. For the remainder of our analysis    
 is 

assumed to be constant over the day and therefore we normalize    
 to 0. Therefore, on a 

given day v, travelers base their choice of connection only on the delay and scheduling 

costs.  

                                                           
5 Note that we use ‘to some extent’ for two reasons. First, the mean and the standard deviation may have a 
nonlinear effect on the user costs and second:  the mean and standard deviation could be related to the 
number of travelers. 
6 Our analysis thus focuses on direct connections and does not take into account transfers. 
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The second part of equation (1) is the additional arrival time delay costs, which are the 

value of mean arrival delay savings multiplied by the delay. The third and the fourth part of 

equation (1) are the costs of not arriving at the pat multiplied with the corresponding 

shadow cost. The parameter λ captures possible non-linear effects in the schedule delay 

costs. For the main part of our analysis we assume λ=1, but in our sensitivity analysis we 

will consider a case where λ > 1, meaning that large delays are relatively more costly and 

small delays relatively less costly, compared to linear schedule delay cost. It may well be 

that a delay decreases the scheduling costs for some travelers that arrive early if D would 

be equal to 0, because they arrive closer to their pat. However, because   is in general 

found to be higher than  , individual trip cost will always increase if D increases. If 

scheduling costs are linear (   ), and    , travelers prefer a longer flight over landing 

too early.7  

Following Noland and Small (1995), the expected user costs are then given by equation 

(2), where we substitute the standardized delay         into equation (1) and 

integrate over all possible standardized delays:  

(2)                                          

We assume that travelers know the travel time distribution F’[D]. This is a strong 

assumption for air travelers since the knowledge of F’[D] is mainly driven by experience 

and flight trips are made less regularly than car commuting trips. However, this analysis 

serves as a good benchmark because travelers that misperceive the probability 

distribution, will always have higher (or equal) expected user costs compared to the user 

equilibrium cost that will be derived from equation (2), since the choice of connection is 

not optimal anymore.8 This assumption secures that we make a conservative estimate of 

                                                           
7 For λ > 1, this may be the case for very early arrivals. With non-linear scheduling costs the units are 
important. For the mean delay and the schedule delay these are in hours. 
8 Koster and Verhoef (2012) use a model for car travelers. However the argument also holds for travel with a 
scheduled service. In the absence of externalities, trip timing models based on expected utility theory, will 
give the lower bound of the user equilibrium expected cost. Any deviations because of (structural) 
misperceptions or probability weighting therefore result in non-optimal departure times and result in higher 
(or equal) expected user equilibrium costs. Other behavioural profiles might be considered, for example that 
travelers ignore delays completely in their trade-offs. The specification of the expected user costs function 
then will not change, but the solution for the optimal connection will change and expected user equilibrium 
costs will always be higher than in our analysis.  
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the costs of arrival delay variability. Travelers then choose the connection with the lowest 

expected cost from the set of    available connections on that day. This optimal connection 

is given by equation (3): 9 

(3)                                             

This optimal connection is a function of the pat, because travelers with a later pat are likely 

to prefer travelling with a later connection. More precisely, equation (3) is the solution to 

an integer optimization problem, and is a non-decreasing stepwise function in pat. Since we 

are not able to find an analytical solution without specifying the distribution of delays, we 

use numerical optimization to find             , and use shorthand notation      
  to 

denote the optimal connection.10 The corresponding equilibrium expected cost for a given 

pat is then given by                 
   , where    in (2) is replaced by      

 . The average 

(over individuals) total expected user equilibrium costs for day   are then given by the 

integral over the user equilibrium cost, multiplied by the probability density function of the 

preferred arrival times   
      , and a scale factor    that represents total demand over 

the day: 

(4)                                
      

          
     

 

  

For simplicity we assume    is equal to 1. This means that  (4) is the average expected user 

equilibrium cost over all preferred arrival times for day  .  

To determine the costs of travel time variability, and to be able to compose it into 

various meaningful concepts, we define a number of benchmarks. The first benchmark we 

analyse concerns the cost level           , where it is assumed that μ=σ=0 and there are 

no delays at all. This means that there are only deterministic scheduling costs. We make 

simplifying assumptions about the distribution of pat in order to keep the model tractable, 

and assume that the pat is uniformly distributed over the day, meaning that 

                                                           
9 The solution is unique except for the traveler who is indifferent between two connections. Assuming λ=1, 

the second derivative of (2) is given by: 
                

    
 

   

 
    

         

 
   . 

10 For some specific distributions (binary/exponential) closed-form solutions are available (see for example 
Fosgerau and Karlström (2010) and Börjesson and Eliasson (2011)). But given the fact that delay 
distributions in our dataset do not have this particular shape, we estimate nonparametric distributions and 
use a numerical grid search to determine the optimal connection for each pat. 
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      =1/     

. In the sensitivity analysis we test several other distributions. A closed-

form solution for the deterministic scheduling costs is derived in Appendix A for the non-

linear scheduling cost function of (1), assuming      . For the linear case (   ), the 

resulting average deterministic scheduling costs for day   is given by the following 

equation:11 

(5)             
 

 
 
   

 

     

 
   

   

    

   

  

These deterministic scheduling costs increase quadratically in the headways Hvz and 

increase if the schedule becomes more binding (increasing   and  ). If      
 is fixed, for 

example due to governmental  flight time restrictions, adding flights will decrease 

scheduling costs, as long as the scheduled arrival time of these new flights are not identical 

to that of existing flights (with available seats). Therefore, the value of increases in 

frequency also depends on the scheduled arrival times of other flights.12 

As a second benchmark we analyse the cost under the assumption that there is no arrival 

time variability, meaning that we compare           , with           . In this case, 

travelers only consider the costs of an expected arrival time satnv + μ, where μ is a 

deterministic constant. Some travelers then choose a different optimal connection, 

meaning that              is different from             . Average total cost without arrival 

time variability can be found by integrating over all possible preferred arrival times in a 

way similar to (4). Previous studies assumed a uniform distribution of pat,  

  
      =1/satNv. In Appendix A we show that for a uniform distribution of preferred arrival 

times,            is given by: 

(6)                 
 

 
 
   

 

     

 
   

   

    

   

  

                                                           
11 This corresponds to the results of De Palma and Lindsey (2001),  Fosgerau (2009) and Tseng et al. (2012). 
In their analysis, they assume Nv =2,        and       . 
12 Because (6) increases quadratically in the headways, it is more beneficial to add a flight where     is larger, 
as long as preferred arrival times are distributed uniformly. For      

 and the other scheduled flight arrival 

times fixed, the maximum possible reduction in scheduling costs is: 
    

 

       

 
 

 
 
    

 

     

 
   

   
   where      is the 

maximum headway on day v. 
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showing that with a uniform distribution of preferred arrival times the mean delay does 

not affect the average scheduling costs and therefore the average total expected cost 

increase linearly in the mean delay.  

For every OD-pair we derive an aggregate measure of expected user costs including 

scheduling costs. To that end, we average (4)-(6) over all days of the year, where days with 

more flights are weighted heavier because it is likely that more travelers travelled on these 

days (we do not have passenger numbers per day). This average is given by 

                             
 

   
 
   

               
 
   . We then define the average total costs of 

arrival time variability as                                                          , and the average total costs of mean 

arrival delays as                                                          . 

 

3.0 Data 

We use the “On-Time Performance” database of the year 2010, which includes scheduled 

and realized arrival times of domestic flights in the United States operated by airlines that 

carry at least 1% of the domestic flights in the US.13 The data is highly disaggregated and an 

individual observation corresponds to a single flight. Because there are systematic 

differences in the distributions of arrival delays between origins with the same destination, 

the analysis is performed separately for every OD-pair. The reason for these systematic 

differences in mean and standard deviation of arrival delays is that both at the origin and 

the destination delays occur. For example, adverse weather conditions or lack of airport 

capacity may occur both at the origin and the destination. Another important aspect of 

using OD-pairs is that this more closer matches the appropriate perspective for an air 

traveler. Travelers are not so much concerned with the aggregate arrival delay distribution 

at the destination airport, but rather face the delay distribution when travelling from their 

origin to their destination. We take the choice of origin and destination as given, meaning 

that we ignore the fact that in a multi-airport region travelers may choose between flights 

departing from multiple airports, or may change destination due to differences in arrival 

time delay costs. We include the top 500 OD-pairs, with the highest number of flights in 

                                                           
13 The dataset and the corresponding documentation can be downloaded at http://www.transtats.bts.gov/. 
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2010.14 These OD-pairs account for 37% of the total number of domestic flights in our 

dataset. The mean arrival delay (µ) and the standard deviation of arrival delay (σ) for the 

OD-pairs are given in Figure 1. The standard deviation of delays is increasing in the mean 

delay but the relation is less pronounced than for car travel (Peer et al. 2012). Some OD-

pairs have negative mean delays while the mean arrival delay reaches a maximum at 0.26 

hours. The standard deviation reaches values from 0.24 to 0.98 hours. There is a large 

dispersion of delays since |μ/ σ| is smaller than one for all OD-pairs.  

 

 

Figure 1 ― Standard deviation of arrival delays (σ) as a function of mean arrival delay (µ). 

Note: every dot in the figure  corresponds to an OD-pair. 

 

 

 

                                                           
14

 3 OD pairs of the top 500 are omitted because these have a day with only one flight. 

σ = 0.8056µ + 0.4909 
R² = 0.1691 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 

St
an

d
ar

d
 d

e
vi

at
io

n
 o

f 
ar

ri
va

l d
e

la
y 

in
 h

o
u

rs
 (
σ

) 

Mean  arrival delay in hours (µ) 



11 

 

4.0 Results 

4.1 Analysis for one OD-pair 

We use a disaggregated level and perform the analysis for every OD-pair for every day v. In 

order to illustrate the steps of the model we show for one OD-pair the intermediate steps to 

obtain the results of equations (2)-(6). For this purpose we use the a flight from George 

Bush Intercontinental Airport (IAH) to Newark Liberty International Airport (EWR) as a 

representative OD-pair. This OD-pair is typical in terms of mean arrival delay (0.08 hours), 

and standard deviation of arrival delay (0.55 hours). Figure 2 shows the histogram of 

arrival delays. From the data the daily headways and scheduled arrival times are obtained 

and for each OD-pair a nonparametric density function of the delays is estimated using 

kernel smoothing.15 This avoids misspecification of the distribution which can result in an 

over or under estimation of expected user costs. It is assumed that the arrival delay 

distribution does not change over daytime and over the days of the year, so seasonal 

influences are ignored.  

The next step is to calculate the total expected cost for one day. Therefore we need to 

assume values of schedule delay. We assume values of   = $45 per hour,   =$15 per hour  

and γ=$30 per hour. If flight arrivals are deterministic, and have a headway of 1 hour, our 

assumed values result in a value of headway of $5 per/hour. As Lijesen (2006) shows, 

these values are in line with the existing literature on the valuation of frequency and 

schedule delay. Compared with estimations of Lijesen (2006, Table 5) our assumptions on 

the values of schedule delay can be regarded as conservative. In section 4.3, we show how 

the results depend on the assumed values of   and γ. 

 

                                                           
15 Estimation is done in Matlab using the ksdensity function using 500 equally spaced points. Bandwidths are 
optimal for a normal density (see Bowman and Azzilini, 1997). Results are available upon request.  
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Figure 2 ― Histogram of arrival delays(in hours) for OD-pair IAH-EWR. 

 

 

Figure 3 ―              for a single day for OD-pair IAH-EWR. 
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Figure 3 shows the solution for the optimal connection as a function of the pat which was 

introduced in (3). On this day there are 10 flights scheduled, implying that Nv=10. The 

figure starts at the first connection and increases with 10 steps. The irregular pattern is 

caused by the fact that flights are not equally spaced over time-of-day, leading to unequal 

headways over the time of the day. 

Figure 4 shows the expected user costs as a function of the preferred arrival time. The 

scheduled arrival times of the connections are indicated with vertical lines, where 0 

indicates the scheduled arrival time of the first connection. The expected user cost 

functions for each connection as a function of the preferred arrival time are convex, and are 

given by the dashed lines.16 The traveler with pat=0 has the lowest expected cost for 

travelling with the first connection, and highest expected user costs for travelling with the 

last connection. The black line is the lower envelope of all the expected cost curves and 

gives the equilibrium expected cost                 
    when travelers have chosen the 

optimal connection. 

Figure 5 zooms in on this equilibrium cost in more detail. For this day, ATECv[μ,σ] equals 

$14.65, ATECv[μ,0] equals $11.74 and ATECv[0,0] equals $8.02. This means that the costs of 

arrival time variability are equal to $2.92 ($14.65-$11.74 ), and the total costs of delays are 

equal to $6.63 ($14.65-$8.02), which is 78% higher than what is found using the 

deterministic measure     ($3.72). Figure 5 also shows that the minimal user equilibrium 

costs are independent of Hvz. These costs are equal to the case where travelers could freely 

choose a departure time, and connections arrive continuously (see Fosgerau and 

Karlström, 2010). The optimal decision for this traveler then corresponds to the scheduled 

arrival time of the connection offered by the timetable.  

The analysis per day enables us to show how the costs of arrival time variability change 

over the year. There may be fluctuations in scheduling costs, for example because airlines 

may schedule more flights during some days in the year and due to day of the week 

variations in the schedule. Figure 6 shows that there is some variation in ATECv[μ,σ] due to 

differences in the deterministic scheduling costs. That is, the difference between actual 

                                                           
16

 Assuming λ=1, the second partial derivative of (2) is given by: 
                

        
 

   

 
    

         

 
   . 
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expected cost and cost that would be incurred if σ=0 is nearly constant, so that fluctuations 

over time must be due to fluctuations in deterministic cost components. The costs of arrival 

time variability                                                           have a mean of $2.93, with a low standard 

deviation of $0.04. A similar pattern arises for other OD pairs. Therefore it seems 

appropriate to report the results on a more aggregate level where we take the average over 

all the days of the year. 

 

Figure 4 ― Expected user costs functions (dashed lines) and equilibrium cost (black line) as a 

function of pat. 

 

 

 



15 

 

 

Figure 5 ― User equilibrium cost (black line) and minimal equilibrium cost (dashed line) as a 

function of pat. 
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4.2 Analysis of the top 500 OD-pairs 

We proceed with the full results of the top 500 OD-pairs. Therefore the analysis of section 

4.1 is repeated, and we calculate the costs of arrival time variability for each OD-pair. 

Figure 7 shows the averaged values                                                            as a function of σ. The 

expected user costs of arrival time variability increase more than proportionally in the 

standard deviation of arrival delays and are in the range of 0.7-7.5 euro’s per traveler.  

 

Figure 7 ― Costs of arrival delay variability as a function of σ. Note: no constant is included 

because if σ=0, the costs of arrival time variability are 0.  

 

Next, figure 8 shows the total expected user costs because of arrival delays as a function of 

the mean arrival delay µ. The first observation is that the expected user costs can be 

approximated well by a linear function of µ for a broad range of OD-pairs. This is good 

news for policy makers and airport congestion modellers, since the mean delay is then a 

good proxy for the total expected user costs because of delays and the complex dynamic 

choice problem of the travelers can be written in an empirically justifiable linear reduced 

form. Of course, this can only be used for the evaluation of policy measures that would not 
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disrupt this relationship. The lower linear line represents the equation     and we thus 

see that the additional expected scheduling costs due to arrival time variability are 

substantial. The slope of the lower line is by assumption $45. If we include expected 

scheduling costs, we find a slope of $52, meaning that the expected user costs of arrival 

delays are underestimated by 16% if variable arrival times are ignored.  

 

Figure 8― Average expected user costs because of arrival delays as a function of mean arrival 

delay. Note: the slope of the  lower line is given by 45µ.  

 

The linearity result is persistent for different distributions of preferred arrival times and 

values of λ.17  This means that for small changes of the mean delay the slope of the trend 

line can be interpreted as the ‘implied’ value of mean delay savings, meaning that it also 

includes the expected schedule delay cost. The lower line indicates the cost when only the 

mean delay is included in the user cost function. For small changes of the mean delay, the 

reduced form may be used as an approximation.  

Therefore, the effects of air travel delays increase expected user costs more than previously 

thought, and as a consequence the potential welfare gains obtained from congestion pricing 

schemes as proposed by Brueckner (2002), Mayer and Sinai (2003) and calculated by 

                                                           
17 See appendix B and the discussion in section 4.3. 
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Morrison and Winston (2007) may be larger if arrival time variability is included in the 

user cost function, and variability would be decreasing if mean delays are reduced. Still, if 

the estimate of the value of travel delay savings ( ) is based on revealed preference (RP) 

data, it will likely pick up the expected scheduling costs as well, meaning that the current 

estimates of congestion cost may already incorporate expected scheduling costs if   is 

based on RP analysis.  

 

4.3 Discussion of the assumptions18 

4.3.1 Assumption on equality of prices over time of the day 

Throughout our analysis we assumed that the monetary cost    
 for other components 

than delays is constant over time-of-day for a given day v. If airlines do not differentiate 

their ticket prices over the time of the day, absolute fare levels do not have an effect on our 

estimate. This is probably not a realistic assumption since airlines may differentiate their 

prices over time-of-day in order to maximize their profits, or travelers may have a 

preference for a certain airline because of frequent flyer miles or other quality differences. 

If    
 is not constant over time of day, the choice of the optimal connection, as given by (3), 

will also depend on the other cost components         
. Given the assumption that    

 is 

constant over the time of the day, the decision to choose the optimal connection      
  is 

solely based on delay cost. Any other connection that is chosen will therefore by definition 

raise the expected user costs because of delays; otherwise      
  is not optimal. If    

 is not 

equal over time of the day, travelers choose      
  or a different connection. If they choose 

     
 , the expected costs of delays is equal to what we found. If they choose another 

connection the expected costs of delays are higher. This means our estimate of the costs of 

delays is conservative since including the    
 in the cost function, would certainly increase 

equilibrium (expected) cost of delays, since the decision of the travelers is no longer 

optimal in terms of average and schedule delay cost.   

 

 

                                                           
18 Detailed numerical results of this section are available upon request. 
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4.3.2 Non-linear scheduling cost function 

For non-linear schedule delay functions it is a-priori unknown if the equilibrium cost will 

increase or decrease for other values of  . For given values of   and  , if    , the 

scheduling costs will be lower than in the linear case for arrivals closer to pat. More 

precisely: if the arrival is less than an hour from pat, the scheduling costs will be lower. For 

arrivals further away (more than an hour from pat), the scheduling costs will be higher. 

Therefore, the effect of non-linear scheduling preferences depends on the timetable and the 

distribution of delays. For example, Li et al. (2012) study departure time choices of car 

drivers with non linear utility functions. 

To show the numerical effect of non-linear scheduling preferences on the results, we re-

estimated the user costs assuming a convex scheduling cost function, with a value of 

      in equation (1) Compared to the model with linear scheduling costs, the costs of 

arrival time variability are on average 24% higher implying that assuming     results in 

a conservative estimate of the average user costs. Even when the scheduling cost function 

is nonlinear, the expected user costs because of arrival delays can still well be 

approximated by a linear function of mean arrival delay. This is shown in figure 12 in 

Appendix B. 

 

4.3.3 Distribution of preferred arrival times 

Third, we test how the results depend on the assumed probability density function of the 

preferred arrival times. A priori there is no clear cut theoretical answer how a different 

distribution of pat affects our results. Some recent empirical evidence of Brey and Walker 

(2011) for domestic air travelers suggests that the distribution of preferred arrival times is 

not uniform and may follow a bimodal pattern over the time of the day. Therefore we 

perform some numerical sensitivity checks to see how the results are affected.  

To keep the analysis tractable, we consider three other non-uniform distributions of pat. 

First, we assume that the probability is linearly decreasing over time-of-day, meaning that a 

larger share of travelers prefers to arrive in the morning. This may be typical for business 

travelers who usually prefer to arrive in the morning (Warburg et al., 2006). Second, it is 

assumed that the probability is increasing in time-of-day, meaning that a larger proportion 



20 

 

of travelers prefer to arrive in the evening. Third, it is assumed that the probability is 

symmetrically U-shaped, meaning that more travelers prefer to arrive in the morning and 

evening than near noon. The results of Figure 8 hardly change, and therefore the calculated 

average expected user costs due to delays are rather independent of the assumptions on 

the distribution of preferred arrival times. The corresponding figures can be found in 

Appendix B. 

 

4.3.4 Values of schedule delays and proportional heterogeneity of preferences  

The costs of arrival time variability depend on the assumed values of schedule delay. Of 

course one can run the same model again for different assumptions on  ,   and   . But if 

 ,   and    change in the same proportion, the results derived in this paper only change in 

an absolute sense, while the relative contribution of arrival time variability to total costs 

remains the same. This type of heterogeneity is elsewhere referred to as “proportional 

heterogeneity”, and may be caused by the fact that there is heterogeneity in the marginal 

utility of income, causing α, β and γ to vary in fixed proportions (van den Berg and Verhoef, 

2011). This can be seen from the cost function of equation 1. Suppose that we have 

different groups in the population. If we multiply the assumed willingness to pay values α, β 

and γ for group i with a corresponding constant ki > 0, the expected user costs are given by 

equation 7: 

(7)                                             

This shows that the expected user costs are homogeneous of degree 1, and therefore the 

user equilibrium cost will shift with a fixed constant and the relative contribution of the 

costs of arrival time variability remains constant for all ki > 0. 

Suppose that we keep   constant and that we multiply   and   by ki. Because it is 

assumed that μ is equal over the time of the day, the choice of the optimal connection only 

depends on the ratio of  /  . Therefore the solution of the choice of the optimal connection 

will not change. If the base values we chose for   and   are multiplied by ki, the costs of 

arrival time variability will be ki times higher. Following the result of figure 8, this means 
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that the expected user costs for group i with corresponding ki can be written in reduced 

form as:                    , where ki =1 corresponds to the result of figure 8.  

 

5.0 Final comments and discussion 

This paper showed that air travel delay variability for US domestic air travel, may raise the 

expected user costs of delays of air travelers with 16%, given our central assumptions on 

the value of delay savings and scheduling preferences. We view this as a conservative 

estimate, and we found for a broad range of origin-destination pairs that expected user 

costs because of air travel delays can be well approximated by a linear function of the mean 

delay. The fact that the mean delay is a very good proxy for the expected costs because of 

delays has been found by other research on car travel as well (Koster et al. 2011; Koster 

and Verhoef, 2012). Without repeating the arguments of the airport congestion pricing 

debate, our result strengthens the argument for introducing airport congestion pricing if 

delays entail externalities, since the welfare losses due to delays are higher than when only 

mean delay is taken into account in the user cost function, depending on whether the 

applied value of time already implicitly reflects the costs of arrival time variability in so far 

as correlated with expected travel time. 

However it is not clear if current revealed preference studies into the value of time in 

aviation already implicitly include the expected costs of schedule delay in their estimation, 

because expected scheduling costs are so closely related to the mean delay cost. Our model 

might then explain the high values of times that are sometimes found in RP studies. If this is 

the case, current estimates of delay cost are more likely to be appropriate. Therefore there 

is a need for good estimates of the values of schedule delay and mean delay savings for air 

travelers, using revealed and stated preference data, in order to better disentangle the 

different cost components, which in turn may help to better prioritize policies that affect 

mean delays and variability in different ways. 

Future studies may investigate in more detail how the mean delay and standard 

deviation of delays are related to congestion on the origin and the destination airport and 

the rest of the network, to gain more insights in the empirical relation between airport 
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congestion and arrival time variability. For example, Peer et al. (2012) investigate such 

relationships for car travelers.  

We did not study the prediction of air travel delays in a larger equilibrium model. It 

would be interesting to study how ticket prices are related to headways and arrival time 

variability. In our analysis we assumed that the price of the connections is constant over 

time of day. As argued before, this is not a problem for the purpose of this paper, since it 

results in a lower bound estimate of the expected user costs because of arrival delays.  
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Appendix A Derivation of deterministic scheduling costs  

A.1 Uniform pat distribution 

We assume that the pat distribution is uniform and assume that    
   and μ=0. In the 

deterministic case, travelers then always choose between two connections. Connection z 

has a normalized scheduled arrival time 0, and connection z+1 has a scheduled arrival time 

Hvz. The pats are distributed between 0 and Hvz with probability 1/satNv  The cost functions 

are: 

(A.1)            

(A.2)                    

The next step is to determine for which values of pat travelers switch from connection   to 

   . Solving for the switching pat gives: 

(A.3)          
 

 
 

 
 
   

 
 

  

This means that all travelers on the interval [0;pat*] choose to travel with connection  . All 

travelers on the interval [pat*;Hvz] travel with connection    . As long as     , an 

increase in   will lead to a decrease in pat* meaning that more travelers use connection  .19 

The average (over preferred arrival times) deterministic scheduling costs are then given by 

the integral over all preferred arrival time in between 0 and    : 

(A.4)           
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De Palma and Lindsey (2001), Fosgerau (2009) and Tseng et al. (2012) assume     and 
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19 Note that 
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(A.6) 
      

   
     
   

 
 

       
 

   
     
   

 
 

       
 

   
 

       
 
   

   
  

For a uniform distribution of preferred arrival times the mean delay does not affect the 

scheduling costs and the average costs of mean delay are then given by equation (A.7): 

(A.7)                      

    

   

  

The main body of the analysis assumes that schedule delay costs are linear, so    . We 

illustrate the calculation of scheduling costs for other pat distributions for the case that 

    and    . The switching pat does not change, but the average costs of mean delay 

will change. If we assume a linearly decreasing probability for the preferred arrival times, 

         
             

     
 . The deterministic scheduling costs are then given by equation 

(A.8): 

(A.8)       
   

             

       
        

  

If we assume a linearly increasing probability for the preferred arrival times,          

     

     
 . The deterministic scheduling costs are then given by the following equation: 

(A.9)       
   

             

       
        

  

If we assume a U-shaped probability for the preferred arrival times, with a minimum 

probability at 
     

 
, the distribution of preferred arrival times is given by:            

  

     
       

     

 
 
 

. The deterministic scheduling costs are then more cumbersome and 

are given by the following equation: 

(A.10) 
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The results of this appendix show that the marginal social costs of headway depends both 

on the curvature of the scheduling function (captured by  ) and the distribution of 

preferred arrival times. 
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Appendix B Results for different preferred arrival time distributions and non-linear 

schedule delay 

 

Figure 9― Average expected user costs because of arrival delays as a function of mean arrival 

delay for a decreasing pat distribution. 

 

Figure 10― Average expected user costs because of arrival delays as a function of mean 

arrival delay for an increasing pat distribution. 
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Figure 11― Average expected user costs because of arrival delays as a function of mean 

arrival delay for a U-shaped pat distribution. 

 

Figure 12― Average expected user costs because of arrival delays as a function of mean 

arrival delay for a λ=1.3 and a uniform distribution of preferred arrival times. 
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