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Abstract

When the yield curve is modelled using an affine factor model, residuals may still

contain relevant information and do not adhere to the familiar white noise assumption.

This paper proposes a pragmatic way to improve out of sample performance for yield

curve forecasting. The proposed adjustment is illustrated via a pseudo out-of-sample

forecasting exercise implementing the widely used Dynamic Nelson Siegel model. Large

improvement in forecasting performance is achieved throughout the curve for different

forecasting horizons. Results are robust to different time periods, as well as to different

model specifications.
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1 Introduction

The yield curve is key statistic for the state of the economy, widely tracked by both policy

makers and market participants. Accurate prediction of the curve is of great use for invest-

ment decision, risk management, derivative pricing and inflation targeting. It is therefore no

surprise to witness the vast literature related to the modelling and forecasting of the term

structure. Notable landmarks are the early work of Vasicek (1977) and Cox, Ingersoll, and

Ross (1985), through Duffie and Kan (1996) and Dai and Singleton (2000), all of which focus

on the class of affine term structure models, and Hull and White (1990) and Heath, Jarrow,

and Morton (1992), who focus on fitting the term structure under no arbitrage restrictions.

The value of no arbitrage restrictions is that, given the factors, we need only a small

number of parameters to determine the shape of the curve. The number of cross-sectional

free parameters is substantially larger without forcing no-arbitrage. So, if data agree with

no-arbitrage restrictions, intuition tells us that imposing these restrictions will render better

out-of-sample results.

Despite these important advances, Duffee (2002) documents that in the context of fore-

casting, good out-of-sample performance remains a challenge. More recently, Duffee (2011)

finds that imposing no-arbitrage restrictions does not improve forecasting performance.

Mönch (2008), De Pooter et al. (2010) and Exterkate et al. (2012) add macro variables

and document that they contain predictive information for the curve.

A popular choice for a prediction model is the one put forward by Diebold and Li (2006,

henceforth DL). They successfully demonstrate how a variant of the Nelson-Siegel model

(Nelson and Siegel, 1987) can be used for prediction. The model itself is essentially a

common parametric function, which is flexible enough to describe the many shapes assumed

by the yield curve. An extension offered by Svensson (1994) renders more flexibility. In

their seminal paper from 2006, DL build a dynamic framework for the entire yield curve,

a dynamic Nelson-Siegel model (henceforth NS). Factors are estimated recursively using

standard cross-sectional OLS, and evolve according to an AR(1) process. This approach

has at least two appealing aspects. First, time-varying parameters can be easily interpreted

as the well-known triplet level, slope and curvature. These three latent factors have been
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shown to be the driving force behind the yields co-movement (Litterman and Scheinkman,

1991). Second, estimation is easy and robust, analytical solution is at the ready, which

makes recursive estimation simple and fast. Those reasons, combined with the empirical

evidence for good in and out-of-sample forecasting performance promoted the acceptance of

this model.

At the very heart of affine term structure models, lies the decomposition of the yield

curve into the common part and the idiosyncratic part. When the yield curve is properly

spanned by a small set of common factors, the idiosyncratic part can be treated as white

noise. Specifically, there should be no autocorrelation or bias once underlying factors are

accounted for. However, in practice, it might not be the case. Model errors may exhibit

clear deviations from those assumptions. This issue has recently gained increased attention.

Hamilton and Wu (2011) and Duffee (2011) document term structure model errors that

exhibit high serial correlation. In terms of forecasting, Bauer et al. (2012) claim that

parameters of a dynamic term structure model incur small-sample bias. They implement a

bootstrap-based bias correction procedure and document that correcting the bias improves

out-of-sample performance. Their approach focus on the bias of the factor persistence, not

on bias in the intercept.

Usually, we target the yields themselves, factor modelling is a means to an end. Here I

suggest a pragmatic way to correct for the effect brought about by this bias, working directly

with out-of-sample model errors. Once errors deviate from the white noise assumption, a

simple correction can be applied to directly extract potential remains of information. As

recently been suggested, conditional on the existence of such bias, this has the potential to

improve forecasting performance.

I empirically illustrate this point using the NS model. The NS model is compared

favourably in terms of forecasting performance to other less parsimonious models (e.g.

Mönch, 2008). The model fits the curve well, however, the residuals from the fit over

time exhibit (1) strong autocorrelation and (2) mean which significantly deviates from zero.

These stylized facts can be exploited to improve prediction. One fairly standard way to do

that is by adding a lagged residual to the model. While doing so might improve prediction,

we lose the pleasant feature of factor interpretation, as the lagged residual will extract ex-
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planatory power from the factors. At the same time, it is unattractive to squander potential

information that can be used to improve forecast accuracy. Possible pragmatic and intuitive

solution is to model the out-of-sample errors as an AR(1) process and forecast the error

term. The resulting forecast is the original NS forecast with an added forecast of the error

term. This extension preserves the attractive feature of the NS factors interpretation while

significantly improves the quality of prediction throughout the curve. Taieb and Hyndman

(2012) perform a similar two-stage procedure in a different context. A recursive multi-step

ahead forecast is known to be biased even if the base model is correctly specified. They

correct this bias in a similar fashion. They model the forecast errors and rectify the original

biased forecast subsequently.

The rest of the paper is organised as follows. The next section motivates the adjustment,

Section 3 presents the empirical results. Significance and robustness are discussed in section

4 where different term structure model specifications are considered. Section 5 concludes.

2 The model

We start with a general framework and notation, a general factor models, then move on to

the more specific NS model which is used in the empirical exercise, ending the section with

the outlined procedure for bias correction.

2.1 General factor model

A general dynamic factor model can be written as:

yt = B(θ)Ft + εt (1)

Ft = µ+Φ(L)Ft−1 + ηt (2)

with yt vector of M yields at time t. B(θ) is an M × r matrix of r factors loadings, possibly

dependent on θ parameters. Φ(L) denotes (r×r)×(r×r) matrix of order p lag polynomials.

µ is r×1 vector of constants. Finally, εt and ηt are M×1 and r×1 vectors of residuals that

are assumed to be uncorrelated. The time series aspect of the model in (2) describes the

dynamics of the low dimensional vector of factors. It is common practice to use three factors

for the yield curve (DL, 2006, Mönch, 2008, Tobias et al., 2012 for a recent counter example).
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The cross sectional aspect, the mapping between factors and yields in (1), is quite flexible.

We can reduce the number of free parameters by imposing structure on B(θ). Examples are

Duffie-Kan restrictions (Duffie and Kan, 1996), smoothing restrictions (Koopman and Van

der Wel, 2010) and the NS model.

A standard assumption underlying this class of factor models is the orthogonality of Ft

and εt. This means that the yield curve is decomposed into a common component and an

idiosyncratic component. When the factors are extracted using principal component method

the loadings can be determined using least squares regression in (1). Another option is to

estimate the model in a state-space framework using the Kalman Filter algorithm, maximiz-

ing the likelihood function with respect to the parameters. A recent example in our context

is Koopman et al. (2010). This approach is more efficient under correct specification of

the maximum likelihood function. However, the likelihood surface is highly non-linear with

many local optima which complicates this undertaking. Numerical search can be sensitive

to different search algorithms as well as starting values. In a simple simulation exercise,

Hamilton and Wu (2012) illustrate the difficulty. Out of 100 different starting values pro-

vided, only one established global MLE, 18 did not progress from the initial starting values

provided and the remaining 81 that satisfied convergence criterion ended up at a large range

of local optima. In addition, Yu and Zivot (2010) find that using the state-space estimation

method results in poor out-of-sample performance compared with the two-step procedure.

Thus, the projection approach suggested by DL (2006) seems like a reasonable choice.

2.2 Dynamic Nelson-Siegel model

For the yield curve of interest rates, using the well known latent factor model suggested

by Nelson and Siegel (1987), the loadings are predetermined functions of maturity τ . The

representation given by DL (2006) to this model is given by:

yt(τ) = β1,t + β2,t

(
1− exp(−λtτ)

λtτ

)
+ β3,t

(
1− exp(−λtτ)

λtτ
− exp(−λtτ)

)
+ εt, (3)

where available maturities at time t, τ = {τ1, ..., τM}.

The parameter β1 can be interpreted as the long-term interest rate, or a ”level” factor.

The parameter β2 determines how fast we the yield approaches its long term value, and
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is known as the ”slope” factor. The parameter β3 determines the size and shape of the

hump, and is known as the ”curvature” factor. Lastly, the parameter λt determines the

decay rate for the loadings on the second factor, and the maturity at which loading on the

third factor is maximized. In the special case where λt = λ ∀t, the factors βt are obtained

using a simple cross sectional regression across available maturities at time t. The residuals

εt = {εt,1, ..., εt,M} are assumed independent, to have mean zero and constant variance σ2
t

at any time point t. Note that these assumptions concern the cross sectional aspect of the

model, and do not necessarily hold over time. To be more specific, the model does not

assume residuals that are independent over time.

The model is widely used by central banks (BIS 2005), and is a natural candidate for

forecasting since the factors are strongly correlated over time. A strategy which has been

shown empirically to perform very well, is to extract the factors using a cross sectional

regression, forecast the future factors using (2) and use the relation in (1) to obtain the yield

curve forecast. The factors βt are interpreted as the level, slope and curvature with the

corresponding loadings.

The h-step-ahead prediction is given by:

ŷt+h(τ) = β̂1,t+h + β̂2,t+h

(
1− exp(−λtτ)

λtτ

)
+ β̂3,t+h

(
1− exp(−λtτ)

λtτ
− exp(−λtτ)

)
(4)

with

β̂t+h = α̂+ Γ̂ β̂t, (5)

where β̂t is a 3× 1 vector, as is α̂. Γ̂ is a 3× 3 coefficient matrix which may or may not be

diagonal. Arguments can be raised in favour and against a diagonal restricted Γ̂ matrix. di-

agonal restricted Γ̂ has less parameters so less estimation uncertainty, more parameters may

result in a noisier forecast. However, unrestricted Γ̂ allows for conditional cross-correlation

between factors which may be important. In the forecasting exercise we use a diagonal re-

stricted Γ as advocated in DL (2006). Results from the fully parametrised Γ are presented

in subsequent section for completeness.

More detailed description and factor intuition can be found in DL 2006 and Koopman et al.,2010.
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2.3 Bias correction procedure

Define the out-of-sample forecasting errors from the chosen forecasting model as:

et+h(τ) = yt+h(τ)− ŷt+h(τ).

The mapping between the factors and the yields is done using cross sectional projection.

Therefore there is a possibility that the residuals over time, still contain information to be

exploited. The information can be in the form of errors which have non-zero mean or strong

autocorrelation, features that can be observed even for the in-sample residuals.

A pragmatic way to extract potential remains of information is by using an AR model,

so that the forecast for the out-of-sample error is obtained by:

êt+h(τ) = δ(τ, h) + ρ(τ, h)et(τ) (6)

In this equation δ is interpreted as the bias of the forecast, and ρ is the autocorrelation

coefficient. Keeping our focus on prediction, the adjusted forecast is given by:

ŷadjt+h(τ) = ŷt+h(τ) + êt+h(τ) = ŷt+h(τ) + δ̂(τ, h) + ρ̂(τ, h)êt(τ) (7)

The parameters δ and ρ are estimated using a direct projection of the out-of-sample errors on

their past, in the same manner that we determine the AR coefficients for factors dynamics. In

essence, we extract potential information in model errors and use it to adjust our prediction

for the next period. Note that ”model errors” refers to the out-of-sample errors, to stress the

fact the coefficients are trained towards their direct use in forecasting. This is useful since

the prediction bias can assume different structure for different forecasting horizons, which is

directly accounted for.

A wrinkle in the proposal is that when there is no information to be extracted, i.e. the

errors are in fact white noise, the extension is redundant and will result in a more noisy

forecast caused by the added estimation uncertainty. In general, unnecessary additional

estimation uncertainty diminishes forecast accuracy. In the next section empirical results
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alleviate this concern.

3 Empirical results

In this section I describe the data, followed by estimation methods and forecasting results

using our proposed adjustment.

3.1 Data description

We use the same data as in DL (2006), a balanced panel data of 17 maturities.. The last data

point in their dataset is 12/2000. The data is therefore complement with subsequent months

until 12/2009. The additional 108 monthly observations are taken from CRSP unsmoothed

Fama and Bliss (1987) forward rates and were converted into unsmoothed Fama-Bliss zero

yields in the same way as in DL (2006). Same data was also used in Jungbacker et al. (2012)

and Koopman and van der wel (2011). Table 3.1 presents selected summary statistics of the

data.

The data can be downloaded from http://www.ssc.upenn.edu/~fdiebold/papers/paper49/FBFITTED

.txt
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Maturity Mean Sd Skewness Kurtosis Min Max ρ̂(1) ρ̂(12)

3 4.465 2.208 -0.224 2.349 0.041 9.131 0.982 0.644

6 4.610 2.211 -0.225 2.343 0.150 9.324 0.981 0.643

9 4.717 2.217 -0.202 2.339 0.193 9.343 0.980 0.648

12 4.840 2.250 -0.187 2.326 0.245 9.683 0.979 0.656

15 4.957 2.285 -0.176 2.322 0.377 9.988 0.979 0.662

18 5.036 2.276 -0.150 2.343 0.438 10.188 0.979 0.664

21 5.107 2.256 -0.126 2.349 0.532 10.274 0.978 0.666

24 5.146 2.223 -0.103 2.371 0.532 10.413 0.977 0.664

30 5.290 2.214 -0.055 2.400 0.819 10.748 0.976 0.670

36 5.401 2.172 -0.014 2.408 0.978 10.787 0.975 0.673

48 5.615 2.130 0.083 2.484 1.019 11.269 0.974 0.676

60 5.750 2.058 0.186 2.464 1.556 11.313 0.973 0.682

72 5.905 2.060 0.272 2.571 1.525 11.653 0.973 0.682

84 6.011 1.985 0.343 2.577 2.179 11.841 0.971 0.684

96 6.110 1.954 0.334 2.462 2.105 11.512 0.973 0.696

108 6.172 1.936 0.376 2.482 2.152 11.664 0.973 0.698

120 6.192 1.892 0.442 2.494 2.679 11.663 0.972 0.694

Table 1: The table reports summary statistics for U.S. treasury yields over the period
1985:01 to 2009:12. Monthly frequency data, constructed using the unsmoothed Fama-Bliss
method. For each maturity (measured in months) we observe the mean, standard deviation
(Sd), Minimum (Min), Maximum (Max) and sample autocorrelation for one and twelve lags
(ρ̂(·)).

3.2 Residuals from a Nelson-Siegel model

In order to make the case for the correction procedure, we examine the in-sample residuals

Nelson-Siegel fit, as in DL (2006). Table 2 presents the descriptives statistics and shows that

there is considerable autocorrelation for all maturities. This might be a result from illiquidity

in the traded bonds. Such persistence in the residuals is also documented by de Jong (2000)

and Bliss (1997b). In addition, we can see that the mean, which under the factor modelling

framework is assumed to be zero, is higher for some maturities while lower for others. This

has been tested formally using the standard t-test. The correction proposed in (6) uses δ to

capture mean deviation and ρ to capture error persistence. The decomposition of the yield

curve into its common part and residual part implies that null forecasting power remains

in the residuals. In such a case the departure from the white noise assumption observed

in table 2, namely the rejection of the mean zero assumption and the high autocorrelation,
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Maturity Mean Sd Min Max ρ̂(1) ρ̂(12)

3 -0.018 0.080 -0.332 0.156 0.776 0.157

6 -0.013 0.042 -0.141 0.218 0.290 0.257

9 -0.026 0.062 -0.201 0.218 0.699 0.218

12 0.013 0.080 -0.160 0.267 0.568 0.323

15 0.063 0.050 -0.063 0.242 0.657 0.139

18 0.048 0.035 -0.048 0.165 0.495 0.183

21 0.026 0.030 -0.091 0.126 0.356 -0.062

24 -0.028 0.045 -0.190 0.082 0.657 0.214

30 -0.017 0.036 -0.200 0.098 0.377 0.072

36 -0.037 0.046 -0.203 0.128 0.598 0.052

48 -0.019 0.065 -0.204 0.230 0.731 0.229

60 -0.052 0.058 -0.199 0.186 0.756 -0.013

72 0.010 0.080 -0.134 0.399 0.903 0.289

84 0.003 0.066 -0.259 0.337 0.616 -0.033

96 0.032 0.045 -0.202 0.111 0.727 0.165

108 0.033 0.046 -0.161 0.132 0.667 0.072

120 -0.017 0.072 -0.256 0.164 0.625 0.232

Table 2: The table reports summary statistics for yield curve residuals from the Nelson
Siegel model fit for the period 1985:1 to 2000:12. For each maturity (measured in months)
we observe mean, standard deviation (Sd), Minimum (Min), Maximum (Max) and sample
autocorrelation for one and twelve lags (ρ̂(·)). Bold numbers represent a rejection of the
residual mean being equal to zero, at 5% level using a t-test. Ljung Box test for the NULL
of no autocorrelation is firmly rejected for all yields.

can be reconciled by the relatively short time span considered. Yields are very persistent

so the data contains only a handful of business cycles. Furthermore, incorporating residuals

into a forecasting model should not result in any forecast accuracy gains. In contrast, if the

underlying model assumptions about the nature of the residuals being white noise is only an

approximation or altogether false, we might be able to extract remaining prediction power

from the errors to improve our out-of-sample performance, while at the same time preserving

the natural factor model structure and interpretation. Table 2 is useful to communicate the

motivation for the adjustment. Note that I do not model the in-sample residuals, but the

out-of-sample forecasting error. I train the estimators towards their direct target and so for

example, if the bias in mean of the forecast errors for long forecasting horizon is larger than

that of short forecasting horizon, this will be reflected in the corresponding estimates.
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3.3 Estimation

In the estimation procedure, I follow closely DL (2006), so as to provide consistent com-

parison and in order to avoid any ad-hoc choices which are not properly backed by existing

economic theory, e.g. rolling versus expanding window. The in-sample period starts at

01/1985 and the first forecast is made for 01/1994. Parameters are estimated recursively

with additional observation added each month. Factors are modelled as an AR(1) process,

i.e. Γ̂ in (5) is restricted to be diagonal, λt is not treated as time varying but is set to

λ = 0.0609, the value that maximizes the third factor loading at maturity of 30 months. In

a subsequent section, we relax these constraints and examine other specifications.

First we create the forecasts for the yields using the NS model as described above. We

use the first 30 forecast errors (prior to 01/1994), to obtain initial estimates for δ and ρ

parameters in (6), after which estimation proceeds in a recursive manner. Once the forecast

for the out-of-sample error is made, the original NS forecast is adjusted according to (7).

3.4 Out-of-sample forecasting performance

The evaluation metric is root mean squared prediction error (RMSPE) as it is widely used

in forecasting practice. Table 3 presents the results from the pseudo out-of-sample forecast

exercise and compare the NS model with the Bias Corrected NS (BCNS).

Maturity One month ahead Six month ahead Twelve month ahead

NS BCNS NS BCNS NS BCNS

3 Months 0.283 0.242 1.002 0.776 1.642 1.501

6 Months 0.251 0.223 1.005 0.806 1.629 1.472

12 Months 0.269 0.246 1.003 0.848 1.594 1.396

36 Months 0.316 0.296 0.950 0.850 1.440 1.147

60 Months 0.315 0.295 0.879 0.782 1.316 0.981

120 Months 0.289 0.287 0.713 0.636 1.120 0.777

Table 3: Out-of-sample root mean squared prediction error (in percentage points) without
(NS) and with (BCNS) our proposed adjustment. The forecast period is 1994:01 - 2009:12,
for one, six and twelve month ahead forecasts. NS stands for the Nelson-Siegel model. BCNS
stands for bias-corrected Nelson-Siegel model.

We observe that by utilizing the proposed correction, we achieve better results throughout

the curve. This is to be expected from analysis presented in the earlier section and in line with

11



recent literature. The improvement in performance stems from the fact that the NS model

has substantial forecast errors autocorrelation and mean which is different from zero, these

facts are utilized in the proposed adjustment. The improvement suggests that the bias is

strong enough to compensate for added the estimation noise from the extra parameters δ and

ρ. Also, note that the adjustment uniformly does not impair accuracy which is comforting in

the minmax sense. When the adjustment does not improve out-of-sample performance, on

average, performance is not diminished either. It is a further indication that the proposed

adjustment is indeed agreeable.

4 Significance testing and robustness checks

This section examines whether improvement presented in the earlier section is large. In

addition, we perform the analysis for different time periods and investigate the effectiveness

of the proposed adjustment using different model specifications. Specifically, (1) we allow for

conditional correlated factors (CFNS), (2) we allow for time varying loadings (TVL) using

a cross sectional non-linear least squares as was proposed by DL, and (3) we add a second

hump term to the NS model resulting in the time varying loading Neslon-Siegel-Svensson

model (NSS).

Allowing for cross sectional relation between factors was done by Mönch (2008) and is

added here for completeness. Time varying loadings specification was recently investigated

in Koopman et al. (2010), although not in the context of forecasting which is of particular

interest here. The time varying loading Neslon-Siegel-Svensson extension is brought here for

the first time. The goal is to illustrate that the proposal put forward here is effective regard-

less of model specification. Notwithstanding, an examination of the forecasting performance

from the latter two specifications, which are more flexible and complex, may be interesting

to look at in their own right.

4.1 Clark-West test

The proposed extension is nested in original model, i.e. when δ = ρ = 0 the model boils

down to the original one. In case these parameter are redundant, the adjustment is not

needed and essentially adds estimation noise to the model. A natural result of such added
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estimation noise is worse out-of-sample forecasting performance. While our results are actu-

ally an improvement in out-of-sample performance, we now check whether this improvement

is indeed large. To this end we use the Clark-West test (2007) for nested models. Results are

statistically significant for all three forecasting horizon considered. This result supports the

hypothesis that for prediction purposes, the correction procedure proposed here is a useful

addition which leads to superior forecasting performance.

Maturity One month ahead Six month ahead Twelve months ahead

3 Months 3.75 3.14 2.02

6 Months 4.18 3.32 2.00

12 Months 3.82 3.22 2.10

36 Months 3.72 3.28 3.19

60 Months 4.15 3.59 4.29

120 Months 2.13 3.47 5.31

Table 4: Clark-West test statistics for selected maturities for the three forecasting hori-
zons considered. It is a one-sided test with critical value of 1.65 for 5% significance level.
Test-statistics for forecasting horizon longer than one were computed using the Newey-West
correction.

4.2 Different subperiods analysis

In order to verify that the results are not driven by any particular period, I divide the

dataset into three non over-lapping subperiods and carry out the same experiment. Table 5

summarizes the results which match previous argumentation.

In some periods forecasting gains are higher than others. That said, there is little to no

evidence of worse performance due to estimation of redundant parameters, as is expected

in the case where the errors are, in fact, white noise processes. The results are as expected

from the significance testing performed in the previous subsection.

4.3 Different model specifications

Analysis presented previously followed specifications as they appear in DL (2006). I turn to

examine the proposed correction under different specifications. This is done to confirm that

We also performed the Giacomini-White test (2006) which does not presume under the NULL worse
out-of-sample performance of the nesting model, but merely compares the difference using a t-test approach.
Results tell the same story.
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Forecasting Performance Subperiod 1994 - 1998

Maturity One month ahead Six month ahead Twelve month ahead

NS BCNS NS BCNS NS BCNS

3 Months 0.174 0.159 0.545 0.601 0.861 1.061

6 Months 0.200 0.174 0.617 0.686 0.834 0.970

12 Months 0.244 0.222 0.684 0.801 0.849 0.918

36 Months 0.291 0.272 0.824 0.845 1.118 0.899

60 Months 0.305 0.273 0.880 0.790 1.277 0.871

120 Months 0.268 0.259 0.846 0.707 1.355 0.820

Forecasting Performance Subperiod 1999 - 2003

Maturity One month ahead Six month ahead Twelve month ahead

NS BCNS NS BCNS NS BCNS

3 Months 0.247 0.216 1.163 0.865 1.964 1.635

6 Months 0.273 0.224 1.211 0.861 2.015 1.651

12 Months 0.298 0.252 1.222 0.847 2.021 1.599

36 Months 0.324 0.315 1.077 0.871 1.738 1.320

60 Months 0.324 0.318 0.965 0.832 1.509 1.134

120 Months 0.306 0.293 0.763 0.662 1.206 0.846

Forecasting Performance Subperiod 2004 - 2009

Maturity One month ahead Six month ahead Twelve month ahead

NS BCNS NS BCNS NS BCNS

3 Months 0.367 0.306 1.106 0.801 1.775 1.607

6 Months 0.266 0.252 1.040 0.830 1.681 1.564

12 Months 0.260 0.257 0.993 0.875 1.568 1.455

36 Months 0.327 0.295 0.919 0.831 1.314 1.123

60 Months 0.313 0.289 0.795 0.726 1.088 0.899

120 Months 0.286 0.299 0.546 0.555 0.738 0.682

Table 5: Out-of-sample root mean squared prediction error (in percentage points) without
(NS) and with (BCNS) our proposed adjustment. The three sub-periods: 1994:01 - 1998:12,
1999:01 - 2003:12, 2004:01 - 2009:12. One, six and twelve month ahead forecasts.

our proposal is not performing well only under a specific configuration but breaks down when

we allow more flexibility in the factor modelling stage. I conduct the empirical experiment

using different additional adaptations. First, relax the diagonal restriction on Γ̂ in (5) to

allow conditional cross-factor interaction. Differently put, factors follow a VAR process as

oppose to a univariate AR’s. Second, allow λ to vary over time. The parameter λ sets the

shape of the curve. In related literature, it is customary to fix λ at some constant throughout
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the analysis. In the analysis performed earlier in the paper λ was set to 0.0609 as in DL

(2006). Other examples for fixing λ include Diebold, Rudebusch, and Aruoba (2006), Mönch

(2008) and more recently, Van Dijk et al. (2012). In 2010, Koopman et al. find evidence

for time variation in λ. They propose to integrate λ as a fourth factor into the VAR process

in (5). This will allow for a more flexible dynamics in the factor dependency structure. In

the same vein, we can achieve even more flexibility by adding a fourth term in (3), a second

hump-shape (U shape). This will undoubtedly improve in-sample fit and perhaps provide

better out-of-sample results. I assess these suggestions in the context of forecasting, which

is an analysis of independent interest.

4.3.1 Correlated factors NS (CFNS)

The difference between the NS and the CFNS is that for the CFNS, the Γ matrix in (5)

is fully parametrized, as oppose to diagonal as was advocated by DL (2006). This allows

possible conditional interaction between factors. Put another way, factors follow a VAR(1)

process instead of an three AR(1) processes. As can be seen from Table 6, the reduction

in RMSPE from the bias correction step outlined is maintained. Note that at times where

the CFNS model is more accurate, the gain from the bias correction step is not as large

compared with the original NS (using AR dynamics for the factors). For example, for a

one moth ahead prediction of the yield with three months to maturity, the CFNS performs

much better than the NS. In this case, the gain from out-of-sample error forecasting, and

the adjustment stage is not as large as for the original NS specification.

Maturity One month ahead Six month ahead Twelve month ahead

CFNS BCCFNS CFNS BCCFNS CFNS BCCFNS

3 Months 0.245 0.226 0.872 0.777 1.642 1.465

6 Months 0.222 0.212 0.924 0.837 1.701 1.538

12 Months 0.255 0.246 0.98 0.905 1.75 1.57

36 Months 0.314 0.299 1.014 0.897 1.715 1.41

60 Months 0.316 0.297 0.959 0.831 1.587 1.237

120 Months 0.292 0.289 0.79 0.692 1.341 1.008

Table 6: Out-of-sample root mean squared prediction error (in percentage points) without
(CFNS) and with (BCCFNS) our proposed bias-correction procedure. The forecast period is
1994:01 - 2009:12, for one, six and twelve month ahead forecasts. CFNS stands for correlated
factors NS model. BCCFNS stands for bias-corrected correlated NS model.
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4.3.2 Time varying loadings (TVL)

Given λ, factor estimation is a simple cross sectional least-squares as described in (3). How-

ever, in 2010, Koopman et al. find evidence for time variation in λ. This can be accounted

for, as was proposed by DL (2006). The cross sectional factor estimation procedure becomes

non-linear least squares. The estimation is slightly complicated by the fact that at each

point in time we have relatively few observations. Too few degrees of freedom can cause

instability in estimation. To show how to mitigate the problem, denote:

Xt =


1 (1−e

−λtτ1
λtτ1

) (1−e
−λtτ1
λtτ1

− e−λtτ1)
...

...
...

1 (1−e
−λtτM
λtτM

) (1−e
−λtτM
λtτM

− e−λtτM )

 , and yt =


yt,1(τ1)

...

yt,M(τM)

 .

Given λt, the best fit for the curve in the mean squared error sense is given by the three

factors

βt(λt) = (X ′tXt)
−1X ′tyt,

In each period, I grid search over λt for the vector βt(λt) that minimizes the sum of squared

errors in (3). The result from the coarse grid search is then provided as starting value for

the search algorithm.

The four factors:

θt = {βt,1, βt,2, βt,3, λt} (8)

follow an unrestricted VAR,

θt = κ+∆θt−1 + υt. (9)

The dimensions of κ, ∆, and υt are 4 × 1, 4 × 4, and 4 × 1, respectively. As before, the

estimation is performed recursively with each additional time point. The yield forecast is

given by its mapping from (4) using the additional forecast term λ̂t together with β̂t.

Results shown in table 7 accord with the pattern previously observed. The bias correction

improves accuracy. At times less, but overall across the board. Importantly, accuracy never

decreases as a result of the proposed adjustment.

I use ”Brent” algorithm in the open source R system for statistical computing
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Maturity One month ahead Six month ahead Twelve month ahead

TVL BCTVL TVL BCTVL TVL BCTVL

3 Months 0.324 0.280 0.976 0.870 1.742 1.624

6 Months 0.249 0.232 0.996 0.894 1.781 1.623

12 Months 0.287 0.258 1.038 0.940 1.806 1.593

36 Months 0.361 0.312 1.024 0.923 1.670 1.394

60 Months 0.344 0.325 0.938 0.865 1.483 1.221

120 Months 0.438 0.398 0.814 0.799 1.251 1.062

Table 7: Out-of-sample root mean squared prediction error (in percentage points) with-
out (TVL) and with (BCTVL) our proposed adjustment. The forecast period is 1994:01
- 2009:12, for one, six and twelve month ahead forecasts. TVL stands for time varying
loadings. BCTVL stands for bias-corrected time varying loadings.

4.3.3 Dynamic Nelson-Siegel-Svensson model (NSS)

On average, we expect a simple relation between yields and maturities. Namely, the longer

the buyer of the bond is willing to wait, the higher the compensation. When this is the case,

the Nelson-Siegel model is adequate and provides satisfactory results. However, in some

periods, data show more complex yield-maturity relation and the curve assumes irregular

shapes. When those occur, a more flexible model is needed. Svensson (1994) suggested

adding an extra term to improve flexibility. The cross sectional mapping is now given by:

yt(τ) = β1,t + β2,t

(
1− exp(−λ1,tτ)

λ1,tτ

)
+ β3,t

(
1− exp(−λ1,tτ)

λ1,tτ
− exp(−λ1,tτ)

)
+

β4,t

(
1− exp(−λ2,tτ)

λ2,tτ
− exp(−λ2,tτ)

)
+ εt. (10)

Svensson (1994) shows that this additional hump-shape factor improves the fit of the curve.

Analogously to the parameters β3 and λ1, the parameters β4 and λ2 determine the size and

location of the second hump respectively. Calibration of the model was done in a similar

fashion to the TVL model described above. Dynamics in the time series aspect is now more

complex. The parameter vector θt in (8) now contains two extra terms, βt,4 and λt,2. Hence

a system of six equations as oppose to the three we have in the NS model and four in the

time varying loadings case. When we allow cross relation between the six components in θ,

we need to estimate 36 + 6 parameters for factors point forecasts, which will substantially
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increase estimation uncertainty. This model balances between the number of periods for

which the extra term is beneficial and the added estimation noise which potentially decrease

forecast accuracy. If only few periods benefit from this extra hump-shape factor, we can

expect an overall worse out-of-sample results compared with the more parsimonious NS

model.

Maturity One month ahead Six month ahead Twelve month ahead

NSS BCNSS NSS BCNSS NSS BCNSS

3 Months 0.352 0.318 0.976 0.87 1.665 1.68

6 Months 0.394 0.309 1.057 0.941 1.71 1.683

12 Months 0.414 0.334 1.103 0.989 1.726 1.618

36 Months 0.401 0.368 1.004 0.926 1.522 1.241

60 Months 0.443 0.392 0.918 0.891 1.326 1.037

120 Months 0.503 0.412 0.843 0.829 1.081 0.897

Table 8: The table presents the out-of-sample root mean squared prediction error (in
percentage points) without (NSS) and with (BCNSS) our proposed adjustment. The forecast
period is 1994:01 - 2009:12, for one, six and twelve month ahead forecasts. The model
is estimated using time varying loadings. NSS stands fro Nelson-Siegel-Svensson model.
BCNSS stands for bias-corrected Nelson-Siegel-Svensson model.

The table 8 bears resemblance to previous results presented, which reinforces the main

point of the paper. Interestingly, the added flexibility, which was shown to provide much

better in-sample fit by Svensson (1994), produces much worse out-of-sample performance

for the short horizon and slightly worse for longer forecasting horizons, compared with the

simple DL (2006) specification.

Overall, results described in this section support the line of reasoning presented ear-

lier. The correction step generally improves, and rarely harms prediction accuracy. We

also observe the more flexible model configurations, such as the time varying loadings and

the dynamic NSS model which provides better fit in-sample, performs badly out-of-sample

compared with the more parsimonious alternatives. Yu and Zivot (2010) corroborate this

result using corporate bonds data. A conclusion from this analysis is that allowing for time

varying loadings, in terms of forecasting, can be labelled as excessive.

We also performed the exercise using AR dynamics, results are less competitive and so are omitted.
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5 Concluding remarks

I propose a way to improve out of sample forecasting performance for the yield curve. With

a focus set on out-of-sample performance I show that when the yield curve is modelled

using a factor model, the residuals may still contain relevant information. This information

can be exploited in favour of a more accurate prediction. That is, the factor model can be

augmented with an additional step to extracts remains of information from the model errors.

I empirically illustrate this point using the NS model of DL (2006). Large improvement in

forecasting performance is achieved across the curve and for different forecasting horizons.

Results are significant and robust to three sub-samples for different time periods as well

as for different model specifications. Although exemplified here using the NS model, the

approach is general and can be applied whenever a factor model is used for yields modelling

and forecasting. The correction step does not vary with model choice, thus for any specific

model configuration, the procedure can be back-tested for possible future implementation.

The bias correction step does not involve time-consuming optimization scheme, thereby

making it well suited for practical applications.
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