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Abstract.  Combinatorial Clock Auctions (CCAs) have recently been used around the world to 

allocate spectrum for mobile telecom licenses.  CCAs are claimed to significantly reduce the 

scope for gaming or strategic bidding.  This paper shows, however, that CCAs facilitate 

strategic bidding.  Real bidders in telecom markets are not only interested in the spectrum they 

win themselves and the price they pay for that, but also in raising rivals’ cost.  CCAs provide 

bidders with excellent opportunities to do so.  High auction prices in recent auctions in the 

Netherlands and Austria are probably to a large extent due to the CCA format.  Bidding under a 

budget constraint is also a highly complicated gaming exercise in a CCA. 
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1. Introduction 

Combinatorial clock auctions (CCAs) are used around the globe to allocate mobile telecom 

licenses among interested bidders.  The CCA has a first clock phase where bidders can 

express demand at increasing prices, and a second supplementary round, which is sealed-bid.  

The CCA approach has recently been (or will soon be) used in Australia, Canada, and in 

many European countries (such as Switzerland, Ireland, The Netherlands, Austria, and the 

United Kingdom).  Thus, CCA seems to have superseded the more traditional simultaneous 

ascending auction (SAA) that until recently was the predominant auction form in telecom 

auctions.  The advantage of the CCA is that it takes package bidding seriously.  The CCA is 

presented to national authorities as a relatively complicated auction model that, if well 

understood, simplifies bidding as the scope for strategic bidding or “gaming”, in the sense of 

taking risks to manipulate outcomes, is rather limited (see, e.g., Cramton, 2012).1

This article shows, however, that the CCA induces bidders to bid strategically and put 

them in a position where risky choices have to be made, where the risk is endogenous to the 

auction.  This may harm not only bidders, who may win undesirable outcomes, but also social 

welfare if the spectrum is allocated in such a way that unusable packages are allocated. 

  The 

possibility of strategic bidding is considered to be one of the main deficiencies of a SAA (see, 

e.g., Grim et al., 2003). 

CCA is developed for markets where bidders only attach a value to their own package 

and the price they pay (see, e.g., Ausubel, Cramton, and Milgrom, 2006).  In that case, 

bidding truthfully constitutes one of the possible equilibrium behaviors (Levin and Skrzypacz, 

2013).  However, in many auctions (such as those for telecom spectrum) companies are likely 

                                                                        
1  For example, in the abstract of his paper, Cramton (2012) says, “the pricing rule and information policy [of a 
CCA auction, MJ and VK] are carefully tailored to mitigate gaming behavior”.  The Irish regulator Regcom 
(2012, p. 70) states that their consultancy firm DotEcon notes, “the second price rule is utilized to disincentivize 
gaming behavior and encourage straightforward bidding”. 
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to be also interested in how much competitors pay for their spectrum.2,3  After acquiring 

spectrum, winners have to invest large sums of money in developing or upgrading a network.  

Given imperfect capital markets, it is likely that the more bidders pay for their licenses, the 

more expensive it becomes to finance their future investments.  This means that firms are 

interested in raising rivals’ costs by increasing the price others pay for their licenses.  Another 

reason why firms’ behavior is affected by raising rivals’ cost motives relates to governance 

issues within a firm.  The information released during and at the end of the auction is such 

that the only way senior management (or shareholders and/or market analysts) can evaluate 

the success of a firm’s bid strategy is to compare the packages different firms obtain and the 

prices they pay.  A bid strategy is easily considered as unsuccessful if another firm paid much 

less for objectively better spectrum.  Therefore, it is important to raise rivals’ cost.4

We introduce the preference for raising rivals’ cost in a lexicographic way, i.e., this 

preference only affects bidders’ decisions in case the surplus for their winning package 

remains the same.

 

5

                                                                        
2  That firms are likely interested in other winners paying more for their licenses is confirmed in recent 
policy discussions (for instance OFCOM, 2012, page 122, point 7.9, for the United Kingdom). 

  Thus, our treatment of raising rivals’ cost can be regarded as a robustness 

check on the standard results regarding CCAs.  One implication of modeling raising rivals’ 

cost in this way is that bidders will never let the raising rivals’ cost motive prevail over the 

primary objective of winning a package at a price below value.  In VCG auctions where given 

the behavior of others, a bidder is indifferent between many possible strategies under the 

3  As the value of spectrum also depends on how many winners the auction has, their identity (whether 
they are incumbents or entrants), and on the quality of the package of licenses the competitors get, 
bidders valuation may actually be endogenous to the auction outcome.  The literature on this issue 
(see, e.g., Goeree, 2003; Jehiel and Moldovanu, 2000, 2003; Jehiel, Moldovanu, and Stacchetti, 1996; 
Janssen and Karamychev, 2007, 2010; Klemperer, 2002a, 2002b) does not consider CCAs, and we do 
not consider this issue in much detail (apart from a short discussion in the concluding section). 
4  The Swiss auction outcome shows that payments for similar spectrum can be quite unequal.  See 
BAKOM (2010) for the Swiss auction design, and BAKOM (2012) for the outcome. 
5  There is a reasonably large literature on auctions with financial externalities, or auctions with a 
“spite motive” (see, e.g., Cooper and Fang, 2008; Morgan et al., 2003; Maasland and Onderstal, 2007; 
Shandra and Sandholm, 2010; and recently Fiat et al., 2012; and Lu, 2012).  This literature typically 
deals with the standard single object auction, and asks the question how bidding behavior is affected if 
bidders also care about what the winner pays (even if they are not winners themselves).  Our paper 
differs from this literature in that in a multi-object auction, bidders can be winners and still raise 
rivals’ cost of other winners by placing bids on packages they themselves are not winning.  This 
complicated gaming aspect is not present in single object auctions. 
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standard objective function (as they all result in the same allocation and the same price they 

pay), lexicographic preferences solve the indifference in favor of strategies raising rivals’ cost 

(and improving relative performance). 

We show that if firms have a lexicographic preference for raising rivals’ cost, the 

Vickrey-Clark-Groves (VCG) mechanism underlying the CCA does not have a (weakly) 

dominant strategy.  Nevertheless, under additional conditions, the CCA, unlike the VCG 

mechanism, can be solved using iterative elimination of (weakly) dominated strategies.  In the 

resulting equilibrium, bidders express aggressive bids above value on some packages, and 

they may even bid on packages without intrinsic value.  Bidding truthfully is an iteratively 

dominated strategy.  How much to bid above value is the first gaming aspect in CCAs. 

In October 2013 after raising a very high revenue of 2 billion euro’s for a country of 8 

million inhabitants, the Austrian regulator RTR felt compelled to reveal an overview of the 

bidding behavior of the three participating bidders.  The behavior is fully in line what this 

paper predicts (see, https://www.rtr.at/en/pr/PI28102013TK): 

“The three bidders actually submitted a total of more than 4,000 supplementary 

bids.  More than 65% of these supplementary bids were submitted for the largest 

permissible combinations of frequency blocks, with a share of some 50% of 

available frequencies.  In addition, the bidders utilised almost to the full the price 

limits that had applied to these large packages during the sealed-bid stage. … 

These supplementary bids submitted on large frequency packages had a 

significant effect on the prices offered by the other bidders.  At the same time, 

such bids generally only have a marginal likelihood of winning out in the end.  If 

these bids for very large numbers of frequencies had been ignored when 

determining the winners and prices, the revenue from the auction would have 

settled at a level of about EUR 1 billion”. 

Another important aspect of real-world telecom auctions is that bidders have limited budgets.  

In regular second-price auctions for one unit, budget constraints do not impose serious 

challenges as bidders can simply bid up to the minimum of their budget and their valuation.  

In case of multiple objects, such a strategy can lead, however, to extreme inequality in 
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payments, as a budget constraint bidder cannot express higher bids for larger packages (which 

is an important component in the determination of what other bidders have to pay). 

When bidders have a preference for raising rivals’ cost, budget constraints impose severe 

challenges for determining optimal bid strategies in a multi-unit context.  First, it is not 

obvious what the notion of bidding under a budget constraint means.  There are at least three 

interpretations that are possible: (i) do not place any bid above budget, (ii) only place bids 

above budget on packages that – given the development of the auction so far – cannot be 

winning, and (iii) place bids (above budget) such that equilibrium payments are not above 

budget.  Second, bidders that stick to the first and second interpretation of a budget constraint 

run the risk of having to pay more for identical packages than competitors adhering to the 

third interpretation of a budget constraint.  Bidding under a budget constraint can then lead to 

multiple equilibria with a Hawk-Dove type flavor: more aggressive bidders perform well if 

they play against less aggressive bidders, but their bidding can also lead to payments above 

budget.  Bidding under a budget constraint is the second gaming aspect discussed in this 

paper. 

A recent working paper by Levin and Skrzypacz (2013) is close in spirit to our paper.6

3

  

Using the fact that with intrinsic preferences only, a VCG mechanism has multiple equilibria, 

they show that the interaction between early phases of the CCA and the final sealed-bid 

round, which essentially is a VCG auction, depends on how people resolve indifferences.  

Final allocations and prices in a CCA may then be quite different from the VCG prices.  In a 

two-bidder model with one divisible commodity, they show that a lexicographic preference 

for raising rivals’ cost may result in demand reduction strategies in early phases of the CCA.  

Our main focus is on bidder behavior in the final sealed-bid round with multiple units of 

different commodities.  A more detailed discussion of this and some other differences is 

contained in Sections  and 4. 

                                                                        
6  A first draft of Levin and Skrzypacz (2013) has become available in September 2013.  A first 
working paper version of this paper (Janssen and Karamychev, 2013) has been publicly available in 
February 2013. 
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There are some other recent papers also shedding some critical light on CCAs.  Goeree 

and Lien (2012) show that the core selection principle introduced in the pricing rule used in 

CCAs implies that bidding valuation is no longer an optimal bidding strategy.  Beck and Ott 

(2011) show that this principle may imply that bidding both above and below valuations can 

be optimal in CCAs.  Knapek and Wambach (2012) show that bidding in a CCA may be 

strategically complicated.  Bichler et al. (2013) present some experimental results on CCA 

and show that CCA’s may lead to inefficient outcomes.  They attribute the inefficiency 

relative to SAA to the so-called missing bids problem.  In the Appendix, they also provide an 

example of spiteful bidding in a CCA.7

The rest of the paper is organized as follows.  Section 

  None of these papers provide, however, a general 

analysis of how bidders can game in the auction to strategically raise rivals’ cost.  Moreover, 

they also do not analyze the implications of budget constraints on bidding behavior. 

2 provides a more detailed 

description of the different stages of the CCA.  Section 3 discusses how rational bidders will 

bid in a CCA if the only deviation from the traditional auction set-up is that bidders have a 

preference for raising rivals’ cost.  Section 4 presents an extensive example illustrating how a 

CCA works and showing how large the deviation from truthful bidding can be if bidders have 

only a tiny preference to raise rivals’ cost.  Section 5 introduces budget constraints, in 

addition to bidders’ preference for raising rivals’ cost.  Section 6 concludes with a discussion.  

The appendix contains all proofs and additional information on CCAs. 

2. Combinatorial Clock Auctions 

Most recent spectrum auctions allocate spectrum in different frequency bands.  In each 

frequency band, the spectrum is divided in a certain number of blocks.  Let there be 𝐾 

different frequency bands with 𝑛𝑘 blocks in band 𝑘.  Spectrum in different frequency bands 

has different properties in terms of geographic (or indoor) coverage and capacity.  Mobile 

                                                                        
7  Salant (2013) provides an informed overview of some recently used auction design and a discussion 
on some outcomes of CCAs that have been held recently. 
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telecom companies, therefore, want to acquire a mix of spectrum in different frequency bands.  

The set of all possible (and feasible) packages is denoted by Π, and the aggregate supply is 

denoted by 𝜋�, 𝜋� ≡ (𝑛1, … , 𝑛𝐾). 

A combinatorial clock auction allocates the available spectrum using two integrated 

phases.8

At the end of a round, bidders are typically only informed about the total demand in each 

band.

  The first phase is a clock phase, which is divided into several clock rounds.  In each 

round 𝑡, the auctioneer announces clock prices 𝑝𝑡 = (𝑝1𝑡, … ,𝑝𝐾𝑡 ), one price for each frequency 

band.  The (reserve) prices in the first round 𝑝1 are set in advance of the auction.  At these 

given prices, bidders express how many blocks they would like to acquire in each band.  The 

number of blocks in band 𝑘 demanded by player 𝑖 in round t is denoted by 𝑑𝑖,𝑘𝑡 , and the whole 

package that player 𝑖 demands in round t is denoted by 𝑑𝑖𝑡 = �𝑑𝑖,1𝑡 , … ,𝑑𝑖,𝐾𝑡 � ∈ Π. 

9  If, in round 𝑡, there is excess demand in band 𝑘, clock prices for that band will 

increase in clock round (𝑡 + 1) by a predetermined price increment 𝛿𝑘 > 0: 𝑝𝑘𝑡+1 = 𝑝𝑘𝑡 + 𝛿𝑘.  

The clock phase of the auction stops when there is no excess demand in any band.  The 

intention of the clock phase is to assist bidders in discovering what the prices of the different 

frequency bands could be (Ausubel, Cramton and Milgrom, 2006).  The clock phase also 

serves to impose restrictions on what bidders can bid in the second phase, the supplementary 

round.  At the end of the clock phase, no allocation of spectrum takes place yet.10

Each block in a spectrum band is given a certain number of so-called eligibility points.  

These points are used to provide a one-dimensional measurement of a player’s demand.  If a 

block in band 𝑘 requires 𝑒𝑘 eligibility points, 𝑒 = (𝑒1, … , 𝑒𝐾), then the total eligibility points 

of player 𝑖’s demand in a round is given by 𝐸𝑖𝑡 = 𝑒 ∙ 𝑑𝑖𝑡 = ∑ �𝑒𝑘𝑑𝑖,𝑘𝑡 �𝐾
𝑘=1 .  In any clock round, 

a bidder cannot express a demand that requires a larger number of eligibility points than the 

 

                                                                        
8  Spectrum auctions typically have a third (assignment) phase where specific location in a spectrum 
band is allocated.  As this is of no concern for our paper, we will not discuss this assignment phase. 
9  In the CCA that was held in Austria in 2010, even that information was not available to bidders.  
Bidders only knew that there was excess demand in a certain band, as the clock prices in these bands 
(and only in these bands) increased from this clock round to the next round. 
10  The Romanian auction in 2012 had some features of a CCA.  However, in that auction, frequencies 
were already allocated to bidders at the end of the clock phase (at the then prevailing clock prices). 
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bid expressed in the previous round, i.e., 𝐸𝑖𝑡 ≤ 𝐸𝑖𝑡−1.11

The supplementary round is a simultaneous bid round, where in one round bidders can 

express a bid for all possible packages, subject to some constraints.  The most commonly used 

constraint is the so-called relative cap,

  If bidder 𝑖 expresses a demand for a 

package in round 𝑡 that requires a strictly smaller number of eligibility points than the bid in 

the previous round, i.e., if 𝐸𝑖𝑡 < 𝐸𝑖𝑡−1, then that round is called an anchor round.  Anchor 

rounds, the band prices in these anchor rounds, and anchor bids play an important role in 

determining which bids a bidder can express in the supplementary round. 

12 which works as follows.13

We use the Greek letter 𝜋 to denote generic packages, 𝜋 = (𝜋1, … ,𝜋𝐾) ∈ Π.  On the 

package 𝜋𝑓 = 𝑑𝑖𝑇 that bidder 𝑖 was bidding for in the final clock round 𝑇 (and only on this 

package), this bidder is unconstrained in the supplementary round.  Let us denote the bid 

expressed for this package in the supplementary round by 𝑏𝑓.  For all other packages, a bidder 

is constrained, and the constraints are calculated relative to 𝑏𝑓 as follows.  For all packages 

that require a number of eligibility points 𝐸 that is smaller than or equal to the number of 

points 𝐸𝑖𝑇, the final clock round 𝑇 is the anchor round.  Denoting the final clock round prices 

by 𝑝𝑇 = (𝑝1𝑇 , … , 𝑝𝐾𝑇), the maximum bid 𝐵𝛼 in the supplementary round that can be expressed 

on package 𝜋𝛼 = (𝜋1𝛼 , … ,𝜋𝐾𝛼) is 

 

𝐵𝛼 = 𝑏𝑓 + 𝑝𝑇 ∙ (𝜋𝛼 − 𝜋𝑓) = 𝑏𝑓 + ∑ �𝑝𝑘𝑇�𝜋𝑘𝛼 − 𝜋𝑘
𝑓��𝐾

𝑘=1 . 

In order to compute the cap for a package 𝜋𝛽, which requires the number of eligibility 

points 𝑒 ∙ 𝜋𝛽, and for which 𝑒 ∙ 𝜋𝛽 > 𝐸𝑖𝑇, one first has to track the last round 𝑟 in the clock 

phase when bidder 𝑖 had enough eligibility points to bid for package 𝜋𝛽.  This 𝑟 is uniquely 

determined by: 

𝐸𝑟 < 𝑒 ∙ 𝜋𝛽 ≤ 𝐸𝑟−1. 

                                                                        
11  In certain proposals, this constraint is relaxed into a Simplified Revealed preference with an 
Eligibility-Point Safe Harbor, see Ausubel and Cramton (2011). 
12  An alternative, the final cap rule is described in the Appendix, part II. 
13  This constraint is used in auctions in Austria (2010), Switzerland (2012), Ireland (2012), The 
Netherlands (2012), and United Kingdom (2013), among others. 
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Round 𝑟 is the anchor round for package 𝜋𝛽.  The maximum price bidder 𝑖 can then bid for 

package 𝜋𝛽 can be computed iteratively as follows, starting from the final clock round 𝑟 = 𝑇.  

Let 𝜋(𝑟) be the package bidder 𝑖 has bid for in clock round 𝑟, 𝜋(𝑟) = 𝑑𝑖𝑟, and let 𝑏(𝑟) be the 

highest actual bid in the clock or supplementary round expressed for package  𝜋(𝑟).  Then, 

the maximum bid 𝐵𝛽 that can be expressed on package 𝜋𝛽 is 

𝐵𝛽 = 𝑏(𝑟) + 𝑝𝑟 ∙ �𝜋𝛽 − 𝜋(𝑟)� = 𝑏(𝑟) + ∑ �𝑝𝑘𝑟 �𝜋𝑘
𝛽 − 𝜋𝑘(𝑟)��𝐾

𝑘=1 . 

Thus, the relative cap expresses upper bounds on what bidders can bid for certain packages 

relative to their bid for the package they were bidding for in the final clock round.  The 

relative cap has a clear economic interpretation in terms of revealed preference (see, e.g., 

Ausubel, Cramton, and Milgrom, 2006). 

Finally, we explain how the winners of the auction and the final auction prices are 

determined.  The winners are determined in the same way as in the VCG mechanism.  Of all 

feasible combinations of bids, one per bidder, a combination is selected that maximizes the 

total sum of the bids.  Bids that are parts of this combination, are winning bids, and bidders 

who have submitted these bids win their winning bids’ packages.  The CCA prices are equal 

to the VCG prices, if the VCG prices are in the core.  If the VCG prices are not in the core, 

CCA typically uses some adjustment such that the CCA prices are in the core (see, e.g., Day 

and Raghavan, 2007, Day and Milgrom, 2008, and Erdil and Klemperer, 2010).  As we do not 

want our arguments to depend on the specific core selection principle that is used (as Goeree 

and Lien, 2012, have already shown that core-selecting pricing rules imply that it is not 

optimal to bid straightforwardly), we assume that CCA bids are such that the CCA prices are 

in the core.  In this case, CCA prices coincide with VCG prices. 

The VCG price a winner has to pay for the package he wins equals the opportunity cost 

he imposes on others.  Thus, a winner pays the maximum price the other bidders are willing 

to pay additionally for the spectrum he won.  All elements of the description of the CCA are 

illustrated in the example in Section 4. 
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3. Preference for Raising Rivals’ Cost 

We augment an otherwise standard auction model with bidders’ preferences for raising rivals’ 

cost.  Thus, apart from their own private values drawn from an arbitrary joint distribution, 

bidders are also interested in driving up prices their competitors have to pay.  The joint 

distribution will not play an important role in our analysis, and we do not model it explicitly.  

The intrinsic valuation of bidder 𝑖 for a package 𝜋𝛼 is denoted by 𝑣𝑖𝛼, and when no confusion 

is possible we drop subscript 𝑖. 

We model the preference for raising rivals’ cost as a lexicographic preference.  By the 

end of the supplementary round, any bidder has expressed a set of bids Φ = {(𝑏𝛼,𝜋𝛼):𝜋𝛼 ∈

Ψ} on a subset of packages Ψ ⊂ Π, where 𝑏𝛼 is the bid that the bidder exerts on package 𝜋𝛼.  

A bidder either wins one of these packages 𝜋𝛼 and has to pay 𝑝𝛼 (which does not depend on 

own bids, but only on other bidders’ bids) or he does not win anything.  His intrinsic pay-off 

of bidding Φ is thus equal (𝑣𝛼 − 𝑝𝛼) or 0.  If, for a fixed strategy profile of other bidders, the 

intrinsic pay-offs of two strategies are identical, then bidders prefer the strategy that raises the 

sum of rivals’ payments most.  A strategy Φ (weakly) dominates another strategy Φ′ if, for 

any combination of bids of the other bidders: 

1. Φ never results in a lower intrinsic pay-off, or in the same intrinsic pay-off and a lower 

sum of rivals’ payments than Φ′; and 

2. For some combination of bid of the other bidders, either Φ results in a larger intrinsic 

pay-off, or it results in the same intrinsic pay-off and raises the sum of rivals’ payments 

compared to Φ′. 

To start the analysis, we first analyze bidding in the supplementary round in case bidders have 

bid straightforwardly in the clock phase.  We show that the supplementary stage does not 

have a (weakly) dominant strategy, and under certain conditions, an equilibrium in the 

supplementary round of the CCA can be found using two rounds of iterative elimination of 

weakly dominated strategies, resulting in bids that differ from the intrinsic valuations.  As the 

elimination procedure uses information concerning maximal bid increments from the clock 
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phase, and the VCG mechanism does not have bidding caps, the latter mechanism is not 

dominance solvable anymore.  Going back to the clock phase, bidders find it optimal not to 

bid according to their intrinsic preferences in the clock phase of the CCA, resulting in higher 

auction prices. 

3.1 The Supplementary Phase 

For simplicity, we first assume that the development of the clock phase is public information.  

Then, we show that the qualitative analysis continues to hold, if bidders are only informed 

about total demand in every clock round, like in most real-world auctions. 

The first Proposition states that for any development of the clock phase, each bidder can 

calculate a so-called “knock out” bid 𝑏𝑓�, KO-bid hereinafter, that is such that if the bidder 

makes this bid on his final clock round package 𝜋𝑓 then he guarantees himself to win.14

Proposition 1.  Let all individual clock round bids be public information, and let package 𝜋𝑓 

be the final clock round package of bidder 𝑖.  Then, there exist an amount 𝑏𝑓� such that if 

bidder 𝑖 bids 𝑏𝑓 > 𝑏𝑓� in the supplementary round on package 𝜋𝑓, he surely wins some 

package.  Moreover, if he wins package 𝜋𝑓, he pays not more than 𝑏𝑓� . 

 

As is explained in Section 2, the bidding behavior of the clock phase imposes restrictions on 

the bids that are allowed in the supplementary round.  If a bidder knows the bidding behavior 

of the other bidders in the clock phase, he can compute the maximal amount they can bid on 

any package in addition to the unrestricted supplementary round bid on the final clock round 

package.  This is important information as it imposes an upper bound on what other bidders 

are allowed to bid more on a combination of packages resulting in the bidder not being part of 

the winning combination.  The “knock out” bid 𝑏𝑓�, is essentially the maximum bid difference 

the other bidders can generate, given the development of the clock phase, to delete the bidder 

                                                                        
14  Previous results for the existence of a knock-out bid have been derived under the much simpler 
final cap rule (see, e.g., Bichler et al., 2013, and independent work by Ausubel and Cramton, 2011). 
Most CCA auctions that have been implemented use a relative cap rule as explained before. 
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from the winning coalition of bidders.  Whether the bidder wins his final clock round package 

𝜋𝑓 or some other package depends on the bids the bidder makes on other packages, in 

combination with other bids of the other bidders.  It is interesting to note the difference with 

the VCG mechanism.  In the VCG mechanism, no finite bid guarantees winning any package 

as bidders in the VCG mechanism are unrestricted in their bids. 

The calculations determining the KO-bid make use of the assumption that bidders know 

the demand of individual bidders in each clock round.  However, even if only total demands 

over all bidders in each clock round are known, a KO-bid can be calculated by considering all 

possible combinations of individual demands that are consistent with the information 

concerning total demand and own bidding behavior, and calculating the maximal KO-bid over 

all those possible combinations.  Computationally, this is a much harder problem to solve but, 

in principle, there is no fundamental difference between the two cases.  In Section 4, we 

present an example showing, among other things, how KO-bids can be calculated. 

Suppose now that bidder 𝑖 has bid sincerely in the clock phase, 𝜋𝑓 is his final clock 

round package, and 𝑣𝑓 is his valuation.  Using Proposition 1, this bidder can compute his KO-

bid 𝑏𝑓�.  The next proposition shows that in a first round of elimination of weakly dominated 

strategies, a bidder can eliminate all strategies Φ in which 𝑏𝑓 < min�𝑏𝑓� , 𝑣𝑓�. 

Proposition 2.  Let bidder 𝑖 bid truthfully in the clock phase.  In the supplementary round, all 

package bids with 𝑏𝑓 < min�𝑏𝑓� ,𝑣𝑓� are weakly dominated. 

According to Proposition 2, in the first round of elimination of weakly dominated strategies, 

all package bids with 𝑏𝑓 < min�𝑏𝑓� ,𝑣𝑓� are eliminated.  If 𝑣𝑓 ≤ 𝑏𝑓�, the bidder bids his entire 

value 𝑣𝑓 on the package 𝜋𝑓 to increase his chance of winning.  If 𝑣𝑓 > 𝑏𝑓�, by bidding 

𝑏𝑓 = 𝑏𝑓�, the bidder guarantees himself that he is winning some package, and which package 

he wins depends on the relative bids in combination with bids of other bidders, but not on the 

absolute amount of the bids.  Thus, there is no need to bid more than 𝑏𝑓� on the final clock 

round package.  The main idea behind Proposition 2 is that if the bidder keeps the same bid 



 13 

increments on all packages compared to the package he was bidding for in the final clock 

round, but increases his bid on the final clock round package, then he will increase his 

chances of winning.  It neither changes the package he wins nor affects the price he pays.  As 

long as the KO-bid is below the value, it always results in a positive pay-off. 

We again note the difference with the VCG mechanism.  In the VCG mechanism, where 

bids are not capped and 𝑏𝑓� is unbounded the bidder should bid his entire value 𝑣𝑓 on the 

package 𝜋𝑓.  In a CCA, to the contrary, the bidder does not need to bid above 𝑏𝑓� in case 

𝑣𝑓 > 𝑏𝑓�: all such strategies with 𝑏𝑓 ≥ 𝑏𝑓� remain undominated. 

In the following proposition, we state conditions under which the supplementary round 

of a CCA is dominance solvable, and show the equilibrium outcome. 

Proposition 3.  Let the following conditions hold as public knowledge in the supplementary 

round: 

1. All bidders have bid truthfully in the clock phase; 

2. All bidders have been active in the final clock round, where aggregate demand equals 

supply, i.e., ∑ �𝜋𝑖
𝑓�𝑖 = 𝜋�; 

3. For each bidder 𝑖, the value 𝑣𝑖
𝑓 for the final clock round package exceeds the KO-bid 𝑏𝚤

𝑓�, 

i.e., 𝑣𝑖
𝑓 > 𝑏𝚤

𝑓�; 

4. Each bidder 𝑖 bids only for the final clock round package 𝜋𝑖
𝑓 and for packages that require 

strictly more eligibility points than 𝜋𝑖
𝑓, i.e., 𝑒 ∙ 𝜋𝑖𝛼 > 𝑒 ∙ 𝜋𝑖

𝑓 for any 𝜋𝑖𝛼 ∈ Ψ𝑖\�𝜋𝑖
𝑓�. 

Then, the outcome of the supplementary round is uniquely determined by iterative elimination 

of weakly dominated strategies.  In equilibrium, each bidder bids 𝑏𝑖
𝑓 ≥ 𝑏𝚤

𝑓� on package 𝜋𝑖
𝑓, 

and bids the maximum (cap) bids 𝐵𝑖𝛼 for (some) other packages 𝜋𝑖𝛼.  In equilibrium, each 

bidder gets package 𝜋𝑖
𝑓, and pays his KO-bid 𝑏𝚤

𝑓�. 

The term ‘some’ in Proposition 3 needs a further explanation.  In computing the VCG price 

that bidder 𝑗 pays for package 𝜋𝑗
𝑓, some bids 𝑏𝑖𝛼 for some packages 𝜋𝑖𝛼 may be redundant.  In 
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such a case, iterative elimination of weakly dominated strategies does not specify how high 

these bids should be; these bids are not actively used in the determination of the winning 

allocation (i.e., they are not allocation relevant), nor are they used in the VCG pricing (i.e., 

they are not price relevant either). 

There are two important conditions in Proposition 3, conditions 3 and 4.  In quite a few 

auctions in Europe (such as Switzerland and The Netherlands in 2012, Ireland and Austria in 

2013), where the main spectrum holdings of incumbent operators were resold in the auction, 

bidders need to obtain a minimum package size to be able to serve their existing clients.  For 

smaller packages, bidders may have an intrinsic valuation that is relatively low.  Moreover, 

depending on the specific rules related to spectrum caps, it may be unlikely that allocation 

relevant or price relevant bids on packages that are smaller15 than the final clock round 

package are raising rivals’ cost.  In these circumstances, it may not be unreasonable to assume 

bidders do not bid on such smaller packages.16

4

  In the next Section, we present an example 

where allocation relevant or price relevant bids in the supplementary round on packages that 

are smaller than the last clock round package are dominated so that bidders can predict that 

other rational bidders will not bid on these strategies.  As it is difficult to specify general 

conditions when relevant bids on smaller packages are dominated, we have formulated 

condition  in the way it is formulated in Proposition 3. 

In auctions where all current spectrum holdings are for sale, the value 𝑣𝑓 equals the 

company value for incumbents (as without the licenses an incumbent could not continue to 

operate), which typically is a (very) large number.  Depending on the development of the 

clock phase, it is not unreasonable to assume (condition 3) that in fact 𝑏𝑓� < 𝑣𝑓.  We have 

assumed that the values are privately known.  The common knowledge of 𝑏𝑓� < 𝑣𝑓 implies 

then that all bidders know that the lower bound on a company’s valuation is larger than the 

KO-bid. 

                                                                        
15  We refer to the “size” of a package as the number of eligibility points it requires. 
16  The Austrian regulator RTR confirms that relatively few bids on smaller packages were made and 
that the price limits for smaller packages were at times only utilized to the extent of between 60% and 
70%; see https://www.rtr.at/en/pr/PI28102013TK. 
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When bidders also bid on packages that are smaller than their final clock round package 

(note that because of the auction rules, they could never have bid on such packages in the 

clock phase), the supplementary round is not dominance solvable.  Thus, it is not necessarily 

true that in equilibrium, bidders bid the maximum caps.  The danger of doing so is that such 

bids may become winning bids in combination with bids of others on smaller packages.  In 

that case bidders may be reluctant to express high bids on larger packages with the sole 

purpose of raising rivals’ cost and lower auction prices result.17

Again, it is important to point at the crucial difference between a CCA and a VCG 

mechanism in the presence of preferences for raising rivals’ cost: the VCG mechanism is 

never dominance solvable.  It is still true that bidding below value is dominated.  However, 

bidding above value is not dominated under VCG.  Bidding above value may result in 

negative surplus, but it may also result in positive surplus with competitors paying more.  The 

restrictions imposed by the CCA give certainty that bidding above marginal value on larger 

packages than the final clock round package is without risk of winning these packages if 

bidders do not choose weakly dominated strategies, and bidders know that others do not bid 

on smaller packages.  Thus, under some conditions, information from the clock phase can be 

used to raise rivals’ cost.  This makes the CCA quite different from the VCG mechanism, 

where raising rivals’ cost is much more risky as bids are unconstrained. 

 

3.2 The Clock Phase 

We now consider whether it is optimal to bid truthfully in the clock round.  To see the 

consequences of the behavior in the supplementary round for bidding behavior in the clock 

phase, let us consider the final clock round in which one bidder 𝑖 has switched from package 

                                                                        
17  This discussion may point at an explanation for why auction price in the 2013 UK auction were 
considered to be on the low side, whereas prices in the 2012 Irish and Dutch auctions were much 
higher than expected.  In Ireland and the Netherlands, incumbents needed to obtain a minimum 
amount of spectrum to guarantee service to their current customers.  Bidding on (very) small packages 
was not really an option.  Moreover, values were close to the overall value of the company.  In the 
UK, on the contrary, only “new” spectrum was auctioned, and there was much less of a need to obtain 
at least a minimal amount of spectrum.  Nevertheless, even in the UK, only 30 bids (out of 277 
supplementary round bids) were for smaller packages. 
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𝜋𝛼 = 𝑑𝑖𝑇−1 to his final package 𝜋𝑓 = 𝑑𝑖𝑇  thereby ending the auction.  In the following 

proposition, we show that if the KO-bids remain constant and are below values, such behavior 

of bidder 𝑖 is strictly suboptimal, and he has an incentive to keep bidding for 𝜋𝛼 and not to 

switch to 𝜋𝑓 in round 𝑇. 

Proposition 4.  Let conditions 2 - 4 of Proposition 3 hold.  Suppose that in the final clock 

round 𝑇, bidder 𝑖 has switched from package 𝜋𝑖𝛼 = 𝑑𝑖𝑇−1 to his final package 𝜋𝑖
𝑓 = 𝑑𝑖𝑇, 

𝜋𝑖
𝑓 ≠ 𝜋𝑖𝛼 .  Then, this switching from 𝜋𝑖𝛼 to 𝜋𝑖

𝑓 in round 𝑇 is dominated by continuing bidding 

for package 𝜋𝑖𝛼 in round 𝑇 and switching to 𝜋𝑖
𝑓 in round (𝑇 + 1) ending the clock phase if the 

following two conditions are met: 

1. All other bidders keep bidding for the same packages in rounds 𝑇 and (𝑇 + 1), i.e., 

𝑑𝑗𝑇+1 = 𝑑𝑗𝑇 = 𝜋𝑗
𝑓 for all 𝑗 ≠ 𝑖. 

2. The KO-bid of each bidder 𝑖 is only determined by bids of other bidders in the 

supplementary round for packages that require more eligibility points than 𝜋𝑗
𝑓. 

Proposition 4 basically says that if other bidders do not change their bids if the clock phase 

lasts one more round, then the bidder under consideration prefers to prolong the clock phase 

by one round.  In doing so, he relaxes the caps on bid increments on his own non-winning 

bids, without affecting the final allocation of packages.  In this way, he can increase the 

payment of others without affecting his own payments.  At the same time, the caps of the 

other bidders for packages that are larger than the last clock round packages (these are the 

packages determining his KO-bid) remain intact, and so does the auction price he pays. 

Proposition 4 points out that truthful (or sincere) bidding, i.e., bidding according to value 

is not a dominant strategy in the clock phase.  Optimal behavior in the clock phase depends on 

the behavior of others, and there is a serious motive to prolong the clock phase in order to be 

able to raise rivals’ cost to the maximum extent.  If all bidders behave this way, final 

payments may be considerably larger than when all bidders would bid straightforwardly. 
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Section 6 in Levin and Skrzypacz (2013) indicates that when both bidders have 

lexicographic preferences and unrestricted strategies, they engage in demand reduction in the 

clock phase.  Our Proposition 4 suggests that players engage in demand expansion even in the 

clock phase.  Their analysis rests on the assumption that the there are no strong 

complementarities and that the value of a small (demand reduction) package is relatively high.  

In that case, condition 1 may be violated as bidders will respond to the others’ intension to 

expand demand.  In the next Section, we show in an example with a multi-commodity CCA 

that condition 1 may well hold when bidders do not value small packages.  In that case, 

bidders engage in demand expansion. 

Together, propositions 1-4 show the potential for the first gaming aspect alluded to in the 

Introduction: it is optimal not to bid value in a CCA, and bidders are able to raise rivals’ cost.  

The propositions do not intend to claim it is easy to bid in a CCA; they are true under 

restrictive assumptions, and the question is whether bidders are willing to make these same 

assumptions.  That requires both judgment and gaming, issues we further discuss in Section 6. 

4. An Example 

In this section, we present an example illustrating the mechanism of the CCA and the 

propositions we have stated in Section 3.  In general terms, it is difficult to state how large 

some of the effects of gaming on the auction outcome can be.  This section shows, by means 

of an example, that the effects can be very substantial.  We also show what can happen if 

some of the assumptions of the Propositions do not hold. 

Our example has three (ex ante identical) bidders, two bands, and three blocks that are 

available in each of the bands.  The reserve prices are 1 for blocks in band 1, and 4 for blocks 

in band 2.  We assume throughout that the auction rules restrict individual bidders to bid for 

no more than tree licenses in total.  Intrinsic values and eligibility points are given in Table 
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1.18

We first illustrate bidding in the supplementary round in case bidders have bid 

straightforwardly in the clock phase.  The bid behavior of all three bidders in the clock phase 

is then as represented in Table 2.  Bidders start bidding on package (1,2) as this is the most 

profitable package: with a value of 50 and a cost of 9 at the reserve prices, the net surplus is 

41.  As there is excess demand in band 2 (total demand is 6 as all bidders demand 2 blocks), 

the band 2 price increases.  This is not the case in band 1 as total demand (of 3 as each bidder 

demands 1 block) is smaller than or equal to supply (3 blocks).  In round 2, they switch to 

package (2,1) and then prices increase for block 1 only.  When prices reach (7,5) in round 

11, bidders reduce demand to package (1,1) and the clock phase is over. 

  Bidders are intrinsically interested in three packages (𝑥, 𝑦), where 𝑥 and 𝑦 stand for the 

numbers of blocks in bands 1 and 2 correspondingly.  Blocks in band 1 and 2 “cost” 5 and 8 

eligibility points, respectively.  As before, bidders have lexicographic preferences for raising 

competitors’ payments. 

The highest total bids the players made for the three respective packages are 9, 17, and 

12.  The relative cap, as explained in Section 2, now works as follows.  For package (1,1) 

bidders are unconstrained.  Suppose they bid 𝑏(1,1) for (1,1).  For their supplementary bid on 

package (2,1), the final round is the anchor round, and at these prices package (2,1) costs 

7 ∙ (2 − 1) + 5 ∙ (1 − 1) = 7 more than package (1,1).  Therefore, bidders can bid for 

package (2,1) up to 𝐵(2,1) = 𝑏(1,1) + 7.  For package (1,2), round 2 is the anchor round, and 

at these prices package (1,2) costs 1 ∙ (1 − 2) + 5 ∙ (2 − 1) = 4 more than package (2,1).  

                                                                        
18  The example captures important elements of telecom auctions.  The number of bidders is limited 
(usually, only incumbents, but sometimes there is a limited number of entrants as well).  Incumbents 
(especially if they have similar market shares) often have similar values, and they expect others to 
make similar calculations.  Finally, the set of spectrum bands available is also very limited. 

Package no. Package  Package eligibility Package value 
1 (1,2) 21   50 
2 (2,1) 18   46.5 
3 (1,1) 13   40 

Table 1.  Values and eligibility points for the three packages. 
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Therefore, bidders can bid for package (1,2) up to 𝐵(1,2) = 𝑏(2,1) + 4, where 𝑏(2,1) ≤ 𝐵(2,1) is 

the actual highest bid for package (2,1) in the clock phase or the supplementary round. 

In addition, bidders could also make bids on packages (3,0) and (0,3) in the 

supplementary round, and on smaller packages than (1,1).  Bidders do not have an intrinsic 

value for these packages, but if bidding on these packages increases the prices to be paid by 

competitors (without obtaining them), then it may be optimal to also express bids for these 

packages.  For package (3,0), the anchor round is the final clock round, and at these prices 

package (3,0) costs 7 ∙ (3 − 1) + 5 ∙ (0 − 1) = 9 more than package (1,1).  Therefore, 

bidders can bid for package (3,0) up to 𝐵(3,0) = 𝑏(1,1) + 9. 

For package (0,3), the anchor round is the first clock round, and at these prices package 

(0,3) costs 1 ∙ (0 − 1) + 4 ∙ (3 − 2) = 3 more than package (1,2).  Therefore, bidders can 

bid for package (0,3) up to 𝐵(0,3) = 𝑏(1,2) + 3, where 𝑏(1,2) ≤ 𝐵(1,2) is the actual bid for 

Round 
no. Prices 

Package costs, values, and surplus Optimal 
package Eligibility 

Package Cost Value Surplus 

1 (1,4) 
(1,2)  9  50  41 

(1,2) 21 (2,1)  6  46.5  40.5 
(1,1)  5  40  35 

2 (1,5) 
(1,2)  11  50  39 

(2,1) 18 (2,1)  7  46.5  39.5 
(1,1)  6  40  34 

3 (2,5) 
(2,1)  9  46.5  37.5 

(2,1) 18 
(1,1)  7  40  33 

4 (3,5) 
(2,1)  11  46.5  35.5 

(2,1) 18 (1,1)  8  40  32 

5 (4,5) 
(2,1)  13  46.5  33.5 

(2,1) 18 (1,1)  9  40  31 

6 (5,5) 
(2,1)  15  46.5  31.5 

(2,1) 18 (1,1)  10  40  30 

7 (6,5) 
(2,1)  17  46.5  29.5 

(2,1) 18 (1,1)  11  40  29 

8 (7,5) 
(2,1)  19  46.5  27.5 

(1,1) 13 (1,1)  12  40  28 
Table 2.  Clock phase development. 
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package (1,2) in the clock phase or in the supplementary round.  The impact of bidding on 

smaller packages will be discussed at a later point in this section.19

As a reference point on auction prices, we provide two benchmarks.  The first is the 

prices that would result if all bidders bid their intrinsic values.  It is easy to see that each 

bidder imposes an opportunity cost of 16.5 on the two competitors.  These opportunity costs 

imposed upon others could be considered as a kind of natural market price for obtaining the 

package (1,1).  As a second benchmark, if bidders do not make additional bids in the 

supplementary phase, each of them obtains package (1,1) and pays (17 + 12) −

(12 + 12) = 5.  Here, (12 + 12) is the sum of bidder 𝑖’s competitors’ winning bids, and 

(17 + 12) is the total sum of winning bids if bidder 𝑖 were not present (two remaining 

bidders would have obtained packages (2,1) and (1,1)).  It is easy to see that VCG prices in 

this example are in the core, so that the core selection requirements that CCA imposes on 

prices are not binding. 

 

4.1 The Supplementary Phase 

Now that we have illustrated how the relative cap works in our example and how the price 

determination rule works, we want to illustrate our Propositions and to show how large the 

effect due to the lexicographic preference for raising rivals’ cost can be in a CCA.  In the 

supplementary round, players’ bids can be expressed as �𝑏(1,1), 𝑏(2,1), 𝑏(1,2), 𝑏(3,0), 𝑏(0,3)� =

(𝑏, 𝑏 + 𝑥, 𝑏 + 𝑥 + 𝑦, 𝑏 + 𝑧, 𝑏 + 𝑥 + 𝑦 + 𝑡).  As argued above, the relative cap implies that 

given the behavior in the clock phase reported in Table 2, 𝑥 ≤ 7, 𝑦 ≤ 4, 𝑧 ≤ 9, and 𝑡 ≤ 3.  

This implies that the maximal sum of bids of a two-winner combination is 2𝑏 + 23, which is 

a combination of 𝑏(3,0) and 𝑏(0,3): 𝑏(3,0) + 𝑏(0,3) = 2𝑏 + 𝑧 + 𝑥 + 𝑦 + 𝑡 ≤ 2𝑏 + 23. 

In order to guarantee that the bid on the final clock round package (1,1) is the winning 

bid, a bidder should bid at least 𝑏 = 23, which is the KO-bid.  If others truly believe that 

                                                                        
19 Although the package (0,2) is not smaller than (1,1), it does not play much of a role in a full 
analysis of the example.  For didactical purposes, we do not take bids on this package into account in 
our discussion. 
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competitors are bidding 𝑏 ≥ 23 on package (1,1), they find it optimal to bid 

�23,  34,  30,  32,  37� on the five possible packages in order to win (1,1) themselves, and to 

make sure that competitors are paying the maximal amounts for their winning bid. 

The statement below captures this reasoning.  This statement illustrates Propositions 1-3 

and follows from iterative elimination of weakly dominated strategies.  In a first elimination 

round, bidders bid 𝑏 ≥ 23 on (1,1) to guarantee they are among the winners and bid their 

marginal valuations in addition to 𝑏 on packages (2,1) and (1,2).  It is clear that this KO-bid 

𝑏𝑓� = 23 is smaller than valuation 𝑣 = 40.  In the second elimination round, when bidders bid 

at least 𝑏𝑓� = 23 on package (1,1), the preference for raising rivals’ cost ranks all the 

undominated strategies with respect to the price that others pay.  Thus, the only strategies 

surviving the second round of elimination are such that bidders bid the largest amounts that 

are consistent with the relative cap on all packages that have an influence on competitor’s 

prices. 

Statement 1.  Let bidders bid truthfully in the clock phase.  Then, if it is publicly known that 

bidders only bid for packages (1,1), (2,1), (1,2), (3,0), (0,3), then only strategies of the 

form (𝑏, 𝑏 + 7, 𝑏 + 11, 𝑏 + 9, 𝑏 + 14) with 𝑏 ≥ 23 survive iterative elimination of weakly 

dominated strategies.  In the resulting equilibrium, each bidder gets package (1,1) and pays 

auction price of 23. 

One may wonder whether it is risky to bid (so high) on packages that do not have intrinsic 

value, such as (3,0) and (0,3).  The answer depends on whether bidders are reasonably 

certain about the competitors’ values and their rationality, and on whether bidders are ready to 

assume that others do not bid on smaller packages.  If rivals expect others may place a (high) 

bid on packages (3,0) and (0,3), then they want to protect themselves against not winning, 

calculate the KO-bid, and bid this amount.  In this case, there is no risk for rivals to place 

(high) bids on (3,0) and (0,3),  but this uncertainty is endogenous to the auction in that 

others’ bids depend on their expectations of what others’ bid.  Of course, if one of the bidders 
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does not understand the iterative dominance logic, there may be two bidders winning a 

package they do not value. 

When clock phase bids of individual bidders are not public information, bidders cannot 

compute others’ relative caps and, therefore, their own KO-bids.  As explained in the previous 

section, when only total demands in each clock round are announced, each bidder can 

calculate for any possible development of the clock phase the corresponding KO-bid.  The 

maximum of all such bids is the true KO-bid which guarantees the bidder winning his final 

clock round package irrespective of the clock phase development.  Given that bidders cannot 

bid for more than 3 licenses, there are 14 generically different scenarios that generate the 

same joint demand of bidders 2 and 3.  Computing KO-bids for each scenario yields a 

maximum KO-bid of 29.  This implies that in order to win, bidder 1 has to bid 𝑏 ≥ 29.20

The example illustrates that the lexicographic preference for raising rivals’ cost can have 

devastating effects for the bidders.  Instead of paying the VCG prices of 16.5 for package 

(1,1), which would have resulted had they bid values on all packages, they are now ending up 

with the same winning allocation, but having to pay 23! 

 

What happens if bidders also consider making supplementary bids on smaller packages?  

The final clock round is the anchor round for these smaller packages and it is easy to see that 

bidders can maximally make the following bids: 

𝑏(1,0) ≤ (𝑏 − 5), 𝑏(0,1) ≤ (𝑏 − 7), and 𝑏(2,0) ≤ (𝑏 + 2). 

If every bidder bids maximally on all eight possible packages, including these tree smaller 

ones, then the winning allocation will be (0,3), (1,0), and (2,0) as the total bid on this 

combination is (3𝑏 + 11) and prices will be 26, 7 and 14 correspondingly.  Bidding high on 

packages that are larger than the final clock round package may seem to be risky then. 

We will argue now, however, that if bidders have sufficiently low intrinsic value for 

packages smaller than (1,1), any combination of bids that survives iterative elimination of 

                                                                        
20  The details of these derivations are in Appendix III. 
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dominated strategies, does not have bids on packages (1,0) and (2,0) that are either pay-off 

or allocation relevant.21

In order to see this we first consider the question whether bids on packages (1,0) and 

(2,0) that are allocation irrelevant could potentially be price relevant, and whether bidders 

would like to make such bids as a part of a combination of bids in the supplementary round.  

If this were so, bidders could safely bid on these packages without winning them.  The answer 

to this question is negative.  Indeed, these bids can only be price relevant if they form the 

highest total value in conjunction with a bid of one other player.  Given that players can only 

bid for three licenses at most (and that there are three units of each license), it must be that the 

best combination of bids is with the other bidder’s bid for (0,3).  As the other bidder can bid 

at most 𝐵(0,3) = 𝑏(1,2) + 3, the total bid on the two packages cannot be larger than 𝑏(1,2) +

3 + (𝑏 − 5) if in combination with the bid for (1,0), or 𝑏(1,2) + 3 + (𝑏 + 2 ) if in 

combination with the bid for (2,0). 

 

However, instead of (or, in addition to) making a price relevant bid on either (1,0) or 

(2,0) the bidder can also make a combination of bids that includes a bid of (𝑏 + 6 ) on 

package (2,1).22  Such a bid can be combined with the rival bid on (1,2) to make a possible 

joint bid of 𝑏(1,2) + (𝑏 + 6 ).  As this is larger than both expressions given before, 

combination of bids that includes price relevant bids on (1,0) and (2,0) are dominated by 

other bids.23

                                                                        
21  We are not concerned with bids on some packages that are neither allocation nor price relevant.  It 
is clear that there will be many bids that are equivalent in terms of allocation and prices.  For example, 
a low bid on (1,0) may not be dominated, but is also completely irrelevant. 

  Moreover, it is clear that if the intrinsic valuations are low enough, bids on 

packages (1,0) and (2,0) that are allocation relevant are weakly dominated as the minimum 

price for each unit is the (positive) reserve price.  A similar argument holds true for packages 

(0,1) and (0,2). 

22  As the bidder bids less than his marginal valuation on (2,1) compared to the bid on (1,1), he will 
not regret if he wins that package instead of (1,1). 
23  Note also that if a bid on a package is allocation or price irrelevant given a larger set of possible 
strategies opponents choose, these bids are also irrelevant in a smaller set of possible strategies.  Thus, 
if these strategies are not considered relevant in an early stage of the iterative elimination process of 
dominated strategies, then they are also irrelevant at a later stage. 
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Thus, in this example there is a good reason why bidders do not consider bidding on 

smaller packages.  Bidders can safely bid on larger packages if they believe that other bidders 

will not make dominated supplementary bids. 

4.2 The Clock Phase 

We have argued in Section 3 that bidders may have an incentive to prolong the clock round of 

the auction to be more effective in raising rivals’ cost in the supplementary phase.  Here, we 

illustrate this effect and show that it may even hold if others’ bidding behavior is not kept 

constant.24

Statement 2.  Let bidders have bid truthfully in the clock phase until clock round 8.  Then: 

  To see this, suppose that all bidders continue bidding in the clock phase on (2,1) 

until the prices reach the amount (𝑥, 5), for some 𝑥 and then drop demands to (1,1), finishing 

off the clock phase.  This implies that on package (3,0), bidders can pay up to (2𝑥 − 5) more 

than they bid on (1,1) in the supplementary round.  The additional amount they can bid on 

(0,3) is (𝑥 + 7) so that the total amount they can bid more on the combination (3,0) and 

(0,3) is (3𝑥 + 2).  The next statement says that the clock phase cannot end with all bidders 

bidding for package (1,1) until the moment the continuation bids in the supplementary round 

are such that all surplus is dissipated. 

1. If there is an equilibrium of the continuation game in which all bidders switch from (2,1) 

to (1,1), and the clock phase ends with all bidders bidding for the package (1,1) in the 

last clock round 𝑇, then it must be that 𝑇 ≥ 14. 

2. If there is an equilibrium of the continuation game in which all bidders switch from (2,1) 

to (1,1) in the last clock round 𝑇 = 14, the supplementary round bids are 𝐵 =

�40,  53,  57, 𝑏(3,0), 𝑏(0,3)�, where 𝑏(3,0) ∈ [60,61] and 𝑏(0,3) ∈ [59,60].  Winners pay a 

price of at least 39. 

                                                                        
24  This requires, of course, that bidders have reasonably accurate expectations about the valuations of 
other bidders. 
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Note that the behavior in the clock phase has a Prisoners’ Dilemma aspect: it is individually 

rational to continue the clock phase when the others already have reduced demands to (1,1), 

but if everyone acts this way, the bidders collectively get a worse outcome.  Note also that the 

supplementary round strategy suggests bidders to bid in the range 59 – 60 on both packages 

(3,0) and (0,3), which bidders do not intrinsically value.  This implies there are multiple 

equilibria, and that if bidders do not coordinate on the same equilibrium, some bidders may 

win packages (3,0) and (0,3).25

Note also that there are strong strategic complementarities in this example as bidders do 

not value packages smaller than (1,1).  This implies that bidding on packages smaller than 

(1,1) is not gainful and bidders will not engage in strategic demand reduction (unlike Levin 

and Skrzypacz, 2013). 

  Strategic bidding results in the clock phase not providing 

useful information concerning the marginal valuations of bidders. 

5. Budget Constraint Bidders 

In Section 4, we have considered how bidders can raise rivals’ cost considerably, by including 

bids on packages they do not intrinsically value and/or by bidding strategically (above 

marginal value) in the clock phase.  This may require, however, that bidders have very large 

budgets, a condition that is usually not fulfilled.  In this section, we analyze some gaming 

aspects related to budget constraints. 

Under budget constraints, some fundamental questions arise as to what it means to have a 

budget constraint in a CCA, and how to bid with it.  To understand the issues involved, 

reconsider the example we analyzed in Section 4, where all bidders have been active in the 

clock phase until round 14, where prices reached (13,5) and then dropped demand from (2,1) 

to (1,1).  Suppose now, however, that bidders have a budget constraint of 35.  Note that the 

highest bid made in the clock phase is 29 (on package (2,1) at prices (12,5)), while the final 
                                                                        

25  The multiplicity of equilibria originates from the finite bid increment.  The smaller is the bid 
increment, the smaller the range of multiplicity is, and in the limit, when the clock prices increase 
continuously, there is a unique outcome, which survives iterative elimination of dominated strategies. 
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clock phase bid is 18 on package (1,1) so that the budget constraint was not binding in the 

clock phase. 

As bidders know the others could together bid up to (more than) 40 more on the 

combination of (3,0) and (0,3), they may actually bid in the supplementary round their entire 

budget of 35 on package (1,1) to maximizes their chances to win some package.  What could 

they bid on other packages without running the risk of having to pay more than 35?  The 

answer is that on both packages (2,1) and (1,2) they should not bid more than 40, otherwise 

they will have a chance to pay more than their budget. 

To see this, consider bids 𝐵 = �𝑏(1,1), 𝑏(2,1), 𝑏(1,2)� with 𝑏(1,1) = 35.  The relative cap 

restrictions are 𝑏(2,1) ≤ 𝑏(1,1) + 13 and 𝑏(1,2) ≤ 𝑏(1,1) + 17.  This implies bidders 2 and 3 can 

together maximally bid 30 more for the total spectrum than they can together bid for (2,2).  

Thus, if bidder 1 does not bid more than 5 more for a package (2,1) or (1,2) he does not risk 

paying above 35.  To see that a bid larger than 40 is risky, suppose that bidder 1 bids 𝐵1 =

�35,  40,  40 + 𝑥�, 𝑥 > 0.  It is easy to see that if bidder 2 bids 𝐵2 = �18 + 3
4
𝑥,  29,  35 + 1

2
𝑥� 

while bidder 3 bids 𝐵3 = �22,  35,  35�, bidder 1 wins (1,2) – together with bidder 3 winning 

(2,1) - and pays 𝑝(1,2) = 35 + 1
2
𝑥, i.e., above budget.  A similar argument holds true for 

bidder 1 bidding(35,40 + 𝑥, 40), 𝑥 > 0. 

Two things are worth noting about this conclusion.  First, if all bidders behave in this 

way and bid 𝐵 = �35,  40,  40�, the actual payments will be 10 (!) for the package (1,1), quite 

a bit lower than the reasonable market prices of 16.5, and much less than 40 (when bidders 

are not constrained by budgets).  Second, a budget constraint of 35 does not mean that a 

bidder will not express a bid that is larger than 35.  A bidder can calculate that bidding 40 on 

(2,1) and/or (1,2) will never be winning bids, if combined with a bid of 35 on (1,1).  Thus, 

even a hard budget constraint does not imply that you cannot (and should not) make a bid 

above the budget constraint! 

The problem with the behavior assumed above is that it is not an equilibrium.  In 

particular, assuming its rival bidders avoid any risk (of not winning (1,1) package) by bidding 
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𝐵 = �35,  40,  40�, a bidder may increase rivals’ prices.  The next proposition shows that this 

is a fairly general phenomenon. 

Proposition 5.  Let each bidder 𝑖 have a budget 𝐷𝑖 that is lower than his KO-bid 𝑏𝚤
𝑓� in the 

supplementary round, which is in turn lower than the value 𝑣𝑖
𝑓, i.e., 𝐷𝑖 < 𝑏𝚤

𝑓� < 𝑣𝑖
𝑓.  Let also 

all bidders be active in the final clock round.  Then, in any undominated equilibrium, at least 

one bidder bids above his budget. 

Thus, bidding under a budget constraint is fairly complicated in a CCA where bidders are 

interested in raising rivals’ cost.  It is not optimal to have all bids satisfy the budget constraint, 

and one can “safely”26

The next statement provides an example and shows that a CCA may well exhibit many 

asymmetric equilibria, which all have a Hawk-Dove nature, where the more aggressive, more 

risk-taking bidder does better than the less aggressive bidder.  The statement presents one 

such an equilibrium. 

 make some bids above this constraint.  Generally, it is not optimal, 

however, in a CCA to make only these “safe” bids; it can be optimal to take risks.  How far 

one should go, depends on the expectations of how far others are willing to go and in a one-

off round, this is very difficult to predict. 

                                                                        
26  Of course, what is important here is our assumption that players know the bidding behavior of 
individual bidders.  In real CCAs, bidders are only informed about the total demand per band in each 
clock round.  In that case, bidders can still make inferences about which bids they can safely make, but 
this requires more complicated combinatorial calculations. 
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Statement 3.  Let all bidders have dropped demand in clock round 14 at prices �13,  5� from 

(2,1) to (1,1), and let all bidders have a budget of 35.  The following is an equilibrium of the 

supplementary round: one “Hawk-like” bidder bids 𝐵H = �35,  48,  52,  56,  55�, while the 

other two “Dove-like” bidders bid 𝐵D = �35,  48,  52,  50,  49�.  All bidders win package 

(1,1), the “Hawk-like” bidder pays 𝑝H = 30, while the other two pay 𝑝D = 35. 

The equilibrium presented in Statement 3 satisfies the budget constraint “in equilibrium”, but 

all bidders run the risk of having to pay more than their budget if a non-equilibrium allocation 

results.27

The equilibrium in 

  This “equilibrium” interpretation of a budget constraint is the third interpretation of 

a budget constraint (apart from the “never make a bid above the budget constraint” – which is 

not optimal in a CCA, and “make only bids above the budget constraint that are never 

winning”). 

Statement 3 is only one of the equilibria of the budget-constrained 

game.  Multiple equilibria create endogenous uncertainty for bidders, as they have no way to 

coordinate on one of them.  If they fail to coordinate, they may have to pay above their budget 

and obtain (and pay for) a package they do not value.  Bidding under a budget constraint is, 

therefore, a risky endeavor, especially as the most careful bidder is likely to pay the most at 

the end of the auction. 

6. Discussion and Conclusion  

This paper has considered combinatorial clock auctions (CCAs) where bidders are not only 

interested in the package they acquire and the price they have to pay, but also care about the 

price competitors have to pay.  We have also analyzed some implications of budget 

constraints.  We have argued that these preferences and constraints are likely to be important 

in markets where CCAs are nowadays used. 

                                                                        
27  Salant (2013, p. 179) presents an example where a VCG with budget constraint bidders does not 
have an equilibrium in pure strategies. 
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We have shown that given these preferences, CCAs give rise to many strategic gaming 

possibilities.  First, by placing bids on non-winning packages (in the extreme, on packages 

bidders do not intrinsically value) a CCA gives players the possibility to raise rivals’ cost.  

Information provided in the clock phase, together with the rules capping the bids in the 

supplementary round, allows bidders to calculate a “knock-out” price, which is the bid that 

bidders minimally have to make to guarantee themselves winning some package.28

We have shown that in many circumstances, all undominated strategies for the 

supplementary round require bidders to bid at least this “knock-out” amount on the final clock 

round package.  Given this conclusion, it is without risk to bid above value on some other 

packages to raise rivals’ cost.  How much to bid above value depends, however, on 

expectations concerning rivals’ behavior.  If bidders know that “knock-out” bids of other 

bidders are within their budgets and below valuations, and if they know (or, can anticipate, as 

in the example in Section 

 

4) that other bidders are not making bids on smaller packages, then 

bidders will raise their bids on non-winning packages to the maximal extent possible.  This is 

the unique outcome that survives iterative elimination of dominated strategies. 

Second, gaming in the clock phase is possible to soften the constraints imposed by the 

relative cap for bidding in the supplementary phase.  In this way, the clock phase looses much 

of its appeal as a “price discovery vehicle”.  There is an important danger both for the bidders 

and for auctioneer interested in allocating packages efficiently that if one of the players does 

not fully understand the scope for gaming, the auction outcome can be very inefficient. 

We have also pointed out that it is not clear how to interpret “bidding under a budget 

constraint” in a CCA.  We have shown it is not optimal to place only bids that satisfy the 

budget constraint.  A bidder can calculate that certain bids above budget do not have a chance 

of winning if properly combined with other bids.  These bids may nevertheless be essential in 

raising rivals’ cost.  If other bidders are also constrained, a bidder may even make higher bids 

(much above budget) on certain packages he hopes not to win, as he knows that if others are 

                                                                        
28  In this paper, we have considered the relative cap rule that is often adopted in CCAs.  In Appendix 
II, we argue that similar considerations apply to the final cap rule. 
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constrained, he will not win these bids.  These bids are, however, risky (and can be winning 

bids) if others will also make these risky bids.  Not making these bids may result, however, in 

having to pay much more than competitors for similar packages.  With budget constraints, 

CCAs may place bidders in a situation where risky choices are unavoidable, similar to the 

choices players have to make in a Hawk-Dove game with multiple, asymmetric equilibria. 

One may argue that it is too much to require efficient outcomes of any auction format if 

bidders are budget constraint and spite is a motive for bidding.  Dobyinski et al. (2012), e.g., 

show that when bidders have a budget constraint, there is no deterministic multi-unit auction 

that (i) is individually rational and dominant-strategy incentive-compatible, (ii) makes no 

positive transfers, and (iii) always produces a Pareto optimal outcome.  It is thus not 

surprising that the CCA does not always yield efficient outcomes.  Our results, however, point 

in the direction that if bidders can use bids on non-winning packages to raise rivals’ cost, the 

one off supplementary round creates so much uncertainty for bidders (e.g., because of the 

multiplicity of equilibria) that auction outcomes may be far off from the Pareto frontier. 

One problem with CCAs is that given our current knowledge, it is far from clear what the 

optimal bidding strategy for bidders is.  Our results can only characterize the optimal 

strategies under restrictive assumptions and it is a matter of judgment whether bidders believe 

in these assumptions about rival bidders.  One of these assumptions relates to the motives of 

other bidders.  Another relates to the question whether or not demand equals supply in the 

final clock round.  To better understand the inefficiencies to which CCA potentially gives 

rise, one should better understand the bidding behavior when our assumptions do not hold. 

There are also some issues related to the auction design itself.  First, there is the issue of 

how much information bidders should get in the clock phase, and whether or not there should 

be a clock phase.  Without the clock phase, a CCA reduces to a VCG mechanism, with a 

different, core-selecting pricing rule.29

                                                                        
29  We did not consider core selecting pricing rules, and focused on cases where the CCA allocation 
and prices are in the core, as Goeree and Lien (2012) already point at the fact that bidding valuation is 
not optimal under alternative pricing rules. 

  If there is a clock phase, bidders could, in principle, at 

the end of each round of the clock phase get information on anonymous individual demands, 
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on total demand only, or only on the fact whether or not in a band demand is larger than 

supply.  In this paper, we have pointed at gaming possibilities that arise when bidders receive 

some information during the clock phase: either information about individual demands or 

total demand.  In the Austrian 2010 CCA auction, bidders did not get any information in the 

clock phase apart from the fact that in certain rounds the prices on certain bands increased, 

implying that demand was higher than supply in these bands.  The Austrian model has, 

however, an important drawback in case bidders have a preference ordering over the full 

auction outcome (as in the case where the auction outcome partially determines the market 

structure after the auction and thereby the profits firms make; see footnote 4).  It is important 

to understand the pros and cons of different information structures better.  This is an area 

where future research is necessary. 

A second issue relates to the pricing rule.  With auction prices that are determined by 

competitors’ bids, and with the possibility of making bids on many different packages, the 

CCA lends itself to bidders raising rivals’ cost.  In 2012, Romania had a package auction, but 

the second-price principle was replaced by a first price principle (see Ancom, 2012), and 

goods being allocated at the end of the clock phase (and only unsold goods being offered in 

the second round).  In a first-price auction, one can only raise rivals’ cost by also raising the 

cost for oneself.  To better understand the advantages and disadvantages of the second-price 

principle in package auctions is another area for more research. 

A third issue relates to the type of packages bidders may create.  It may be useful to see 

the advantages and drawbacks of allowing bidders to bid for the full spectrum of packages or 

whether it is better to restrict the number of packages in advance of the auction to make the 

set of possible outcomes more transparent. 
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Appendix I 

Proof of Proposition 1. 

For the final cap rule, the proof is in Ausubel and Cramton (2011), propositions 1 and 2.  We 

provide a proof for the relative cap rule used here.  Suppose bidder 𝑖 bids 𝑏𝑖
𝑓 on 𝜋𝑖

𝑓 and zero 

on all other packages.  We also assume for a moment that the clock round bids of bidder 𝑖 are 

not taking part in computing the optimal allocation.  We first show that there is an amount 𝑏𝚤
𝑓� 

such that if 𝑏𝑖
𝑓 > 𝑏𝚤

𝑓�, bidder 𝑖 necessarily wins 𝜋𝑖
𝑓 and pays at most 𝑏𝚤

𝑓�.  Then, we argue that 

if we take into account clock phase bids of bidder 𝑖, and allow him to bid on all packages in 

the supplementary round, he cannot become a losing bidder: either he is still a winner of 𝜋𝑖
𝑓 at 

the same price 𝑝𝑖
𝑓, or he wins another package, which finishes the proof of the proposition. 
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We use the following notation.  Let bidder 𝑖 win package 𝜋𝑖.  We denote the maximum 

of the sum of bids of all other bidders for an allocation {𝜋𝑖𝛼} of the remaining (𝜋� − 𝜋𝑖) blocks 

(objects) by 𝑉−𝑖(𝜋𝑖), i.e.,: 

𝑉−𝑖(𝜋𝑖) ≡ max
�𝜋𝑗

𝛼�:∑ 𝜋𝑗
𝛼

𝑗 ≤(𝜋�−𝜋𝑖)
∑ 𝑏𝑗𝛼𝑗 . 

If bidder 𝑖 does not win, we formally set 𝜋𝑖 = 0 in the above definition.  In other words, 

𝑉−𝑖(0) is the maximum sum of the bids of all other bidders for an allocation of the aggregate 

supply had bidder 𝑖 not been present.  Since, according to our assumption, bidder 𝑖 has only 

one bid 𝑏𝑖
𝑓 on package 𝜋𝑖

𝑓, he either wins 𝜋𝑖
𝑓 and pays the VCG price 

𝑝𝑖
𝑓 = 𝑉−𝑖(0) − 𝑉−𝑖�𝜋𝑖

𝑓�, 

or he does not win any package.  If he wins 𝜋𝑖
𝑓, it must be the case that 𝑏𝑖

𝑓 + 𝑉−𝑖�𝜋𝑖
𝑓� ≥

𝑉−𝑖(0), i.e., 𝑏𝑖
𝑓 ≥ 𝑝𝑖

𝑓.  What remains to be shown is that 𝑝𝑖
𝑓, which generally depends on all 

bids of all other bidders, but not on bids of bidder 𝑖, has an upper-bound which we denote by 

𝑏𝚤
𝑓�.  By construction, 𝑏𝚤

𝑓� is the highest price for the final clock round package 𝜋𝑖
𝑓 that might 

occur: 

𝑏𝚤
𝑓� = sup

�𝑏𝑗
𝛼�:𝜋𝑗

𝛼∈Π,𝑗≠𝑖
𝑝𝑖
𝑓 = sup

�𝑏𝑗
𝛼�:𝜋𝑗

𝛼∈Π,𝑗≠𝑖
�𝑉−𝑖(0) − 𝑉−𝑖�𝜋𝑖

𝑓��, 

where the maximum is taken over all feasible (satisfying the relative cap rule) bids 𝑏𝑖𝛼 for all 

feasible packages 𝜋𝑖𝛼 of all other bidders 𝑗 ≠ 𝑖.  We show now that 𝑏𝚤
𝑓� is finite. 

According to the relative cap rule, the bid for any package 𝜋𝑗𝛼 that bidder 𝑗 can make in 

the supplementary round is capped by a certain amount relative to the bid for package 𝜋𝑗
𝛽, 

where 𝛽 is the package that bidder 𝑗 bid for in the anchor (for package 𝜋𝑗𝛼) round, i.e., 

𝑏𝑗𝛼 ≤ 𝑏𝑗
𝛽 + 𝑐𝑗𝛼.  Continue this process recursively, we write 𝑏𝑗

𝛽 ≤ 𝑏𝑗
𝛾 + 𝑐𝑗

𝛽 and so on, until we 

reach the final clock round package 𝜋𝑗
𝑓.  Thus, the relative cap rule implies 𝑏𝑗𝛼 ≤ 𝑏𝑗

𝑓 + 𝑐𝑗̅ 𝛼, 

where the caps 𝑐𝑗̅ 𝛼 only depend on the clock phase development.  Now we can evaluate 𝑏𝚤
𝑓�. 
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First, as ∑ 𝜋𝑗
𝑓

𝑗 ≤ �𝜋� − 𝜋𝑖
𝑓�, i.e., the allocation of packages 𝜋𝑗

𝑓 to all other bidders, is 

always feasible in the computation of 𝑉−𝑖�𝜋𝑖
𝑓�, it follows that 

𝑉−𝑖�𝜋𝑖
𝑓� ≥ ∑ 𝑏𝑗

𝑓
𝑗≠𝑖 . 

Using 𝑏𝑗𝛼 ≤ 𝑏𝑗
𝑓 + 𝑐𝑗̅ 𝛼, it follows that 

𝑉−𝑖(0) ≤ max
�𝜋𝑗

𝛼�:∑ 𝜋𝑗
𝛼

𝑗 ≤𝜋�
∑ �𝑏𝑗

𝑓 + 𝑐𝑗̅ 𝛼�𝑗 ≤ ∑ 𝑏𝑗
𝑓

𝑗≠𝑖 + max
�𝜋𝑗

𝛼�:∑ 𝜋𝑗
𝛼

𝑗 ≤𝜋�
∑ �𝑐𝑗̅ 𝛼�𝑗 , 

𝑉−𝑖(0) ≤ 𝑉−𝑖�𝜋𝑖
𝑓� + max

�𝜋𝑗
𝛼�:∑ 𝜋𝑗

𝛼
𝑗 ≤𝜋�

∑ �𝑐𝑗̅ 𝛼�𝑗 . 

Hence, we can write: 

𝑏𝚤
𝑓� = sup

�𝑏𝑗
𝛼�:𝜋𝑗

𝛼∈Π,𝑗≠𝑖
�𝑉−𝑖(0) − 𝑉−𝑖�𝜋𝑖

𝑓�� ≤ max
�𝜋𝑗

𝛼�:∑ 𝜋𝑗
𝛼

𝑗 ≤𝜋�
∑ �𝑐𝑗̅ 𝛼�𝑗 . 

This implies that 𝑏𝚤
𝑓� is finite, which ends the proof. ■ 

Proof of Proposition 2. 

We omit the subscript 𝑖 in what follows.  Let Ψ ⊂ Π be a subset of packages on which bidder 

𝑖 bids in the supplementary round.  We represent the set of bids of bidder 𝑖 in the 

supplementary round by a disjoint union of monetary bids on all packages from the set Ψ, i.e., 

Φ = {(𝑏𝛼,𝜋𝛼):𝜋𝛼 ∈ Ψ}.  By our convention, Φ implicitly includes all bids from the clock 

phase for the packages that bidder 𝑖 does not explicitly bid for in the supplementary phase. 

Let Φ = {(𝑏𝛼,𝜋𝛼)} be such that 𝑏𝑓 < min�𝑏𝑓� ,𝑣𝑓�.  We define marginal bids and 

marginal valuations as follows.  Let the valuation of bidder 𝑖 for a package 𝜋𝛼 be 𝑣𝛼, and let 

his supplementary bid for this package be 𝑏𝛼.  The marginal value and marginal bid for 

package 𝜋𝛼 are Δ𝑣𝛼 = (𝑣𝛼 − 𝑣𝑓) and Δ𝑏𝛼 = (𝑏𝛼 − 𝑏𝑓) correspondingly.  The relative bid 

for package 𝜋𝛼 is defined as 𝜃𝛼 = (Δ𝑏𝛼 − Δ𝑣𝛼).  We say that a bidder bids below his 

(marginal) value for package 𝜋𝛼 if 𝜃𝛼 < 0. 

The relative cap rule, which restricts bids in the supplementary round, and which we 

have written as 𝑏𝛼 ≤ 𝑏𝑓 + 𝑐̅ 𝛼 in the proof of Proposition 1, can be written as 𝜃𝛼 ≤ 𝑐̅ 𝛼 −

Δ𝑣𝛼 ≡ 𝛾𝛼, where the caps 𝛾𝛼 are recursively determined by actual bids in Φ, i.e., 𝛾𝛼 =
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𝛾𝛼(Φ) depends on the given set of bids.  By definition, 𝜃𝑓 ≡ 0 and 𝛾𝑓 ≡ 0.  For a set of 

truthful bids, denoted by Φ0, where 𝑏𝛼 = 𝑣𝛼 for all packages, 𝜃𝛼 = 0 for all packages as 

well.  Since truthful bidding in the clock phase implies that truthful bidding in the 

supplementary round is always allowed, it follows that 𝛾𝛼(Φ0) ≥ 0 for all packages. 

First, we consider a set of bids Φ which only contains non-positive relative bids, i.e., 

𝜃𝛼 ≤ 0 for all 𝜋𝛼 ∈ Ψ𝑖, and for which 𝑏𝑓 < min�𝑏𝑓� ,𝑣𝑓�.  Let us consider a different set of 

bids Φ� = ��𝑏𝛼� ,𝜋𝛼��, where 𝑏𝛼� = 𝑏𝛼 + �min�𝑏𝑓� , 𝑣𝑓� − 𝑏𝑓� > 𝑏𝛼.  This set of bids is 

allowed in the supplementary round because it has the same relative bids: 𝜃𝜋� = 𝜃𝜋 ≤ 0.  We 

will show that Φ�  weakly dominates Φ. 

Similar to the analysis of VCG mechanisms, either set Φ�  yields the same allocation as set 

Φ does, or set Φ�  is winning, whereas set Φ is not: as the marginal bids are identical, it cannot 

be that a different package is winning under the two sets.  If sets Φ�  and Φ yield the same 

allocation, bidder 𝑖 pays the same price and gets the same surplus, whereas other bidders pay 

weakly higher price under Φ� .  If, on the other hand, Φ�  is winning and Φ is not, it suffices to 

show that if Φ�  is winning, the surplus is nonnegative.  Let Φ�  wins package 𝜋𝛼 at the auction 

price 𝑝𝛼� .  Since 𝑝𝛼� ≤ 𝑏𝛼� , the surplus 𝑠𝛼� of the bidder is 

𝑠𝛼�  = 𝑣𝛼 − 𝑝𝛼� ≥ 𝑣𝛼 − 𝑏𝛼 − �min�𝑏𝑓� ,𝑣𝑓� − 𝑏𝑓� ≥ 𝑣𝛼 − 𝑏𝛼 − (𝑣𝑓 − 𝑏𝑓) = −𝜃𝛼 ≥ 0. 

Thus, Φ�  weakly dominates Φ. 

Suppose now that some bids in the package Φ are relatively higher than values.  We 

denote the subset of packages with such bids by Α, Α ⊂ Ψ𝑖, i.e., 𝜃𝛼 > 0 for 𝜋𝛼 ∈ Α and 

𝜃𝛽 ≤ 0 for 𝜋𝛽 ∈ Ψ𝑖\Α.  Since Φ is allowed in the supplementary round, it must be that 

𝜃𝛼 ≤ 𝛾𝛼(Φ).  We denote 𝜃𝐴 = min𝛼∈Α 𝜃𝛼 > 0.  Let 

𝑧 = min��min�𝑏𝑓� ,𝑣𝑓� − 𝑏𝑓�,𝜃𝐴�. 

By our assumptions, 𝑧 > 0.  Let us consider a set of bids, Φ� = ��𝑏𝛼� ,𝜋𝛼�� where 

𝑏𝛼� = 𝑏𝛼 for 𝜋𝛼 ∈ Α, and 𝑏𝛽� = 𝑏𝛽 + 𝑧 for 𝜋𝛽 ∈ Ψ𝑖\Α. 
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In other words, in Φ� , the bid 𝑏𝑓 and all other bids 𝑏𝛽 that are not above (marginal) values, 

i.e., for which 𝜃𝛽 ≤ 0, are increased by 𝑧.  All the other bids 𝑏𝛼, that are above values, i.e., 

for which 𝜃𝛼 > 0, remain intact.  First, we show that Φ�  is allowed by the relative cap rule, 

i.e., 𝜃𝛼� ≤ 𝛾𝛼�Φ�� for all packages 𝜋𝛼 ⊂ Ψ.  Then, we show that Φ�  weakly dominates Φ. 

The bid 𝑏𝑓� = 𝑏𝑓 + 𝑧 is always allowed.  Let us take any other package 𝜋𝛼 ≠ 𝜋𝑓 and let 

𝑟(𝛼) be the anchor round for package 𝜋𝛼.  Let 𝜋𝛽 ≡ 𝜋�𝑟(𝛼)� be the package bidder 𝑖 has bid 

for in clock round 𝑟(𝛼), 𝜋𝛽 = 𝑑𝑖
𝑟(𝛼), and let 𝑏𝛽 be the actual bid in the supplementary round 

expressed for package  𝜋𝛽, i.e., �𝑏𝛽 ,𝜋𝛽� ∈ Φ.  According to the relative cap rule, 𝑏𝛼 ≤ 𝐵𝛼 =

𝑏𝛽 + 𝑝𝑟 ∙ �𝜋𝛼 − 𝜋𝛽�.  Depending on the signs of 𝜃𝛼 and 𝜃𝛽, four cases are possible. 

1. 𝜃𝛼 ≤ 0 and 𝜃𝛽 ≤ 0.  In this case, 𝑏𝛼� = 𝑏𝛼 + 𝑧 and 𝑏𝛽� = 𝑏𝛽 + 𝑧, so that 

𝑏𝛼� = 𝑏𝛼 + 𝑧 ≤ 𝐵𝛼 + 𝑧 = 𝑏𝛽 + z + 𝑝𝑟 ∙ �𝜋𝛼 − 𝜋𝛽� = 𝑏𝛽� + 𝑝𝑟 ∙ �𝜋𝛼 − 𝜋𝛽� = 𝐵𝛼� . 

Hence, bid 𝑏𝛼�  satisfies the relative cap rule and is allowed. 

2. 𝜃𝛼 > 0 and 𝜃𝛽 ≤ 0.  In this case, 𝑏𝛼� = 𝑏𝛼 and 𝑏𝛽� = 𝑏𝛽 + 𝑧, so that 𝑏𝛼� < 𝐵𝛼� , and bid 

𝑏𝛼�  is allowed. 

3. 𝜃𝛼 > 0 and 𝜃𝛽 > 0.  In this case, 𝑏𝛼� = 𝑏𝛼 and 𝑏𝛽� = 𝑏𝛽, so that again 𝑏𝛼� ≤ 𝐵𝛼� , and bid 

𝑏𝛼�  is allowed. 

4. 𝜃𝛼 ≤ 0 and 𝜃𝛽 > 0.  In this case, 𝜃𝛽 ≥ 𝜃𝐴, 𝑏𝛼� = 𝑏𝛼 + 𝑧 and 𝑏𝛽� = 𝑏𝛽.  Truthful 

bidding, i.e., switching from 𝜋𝛼 to 𝜋𝛽 in clock round 𝑟 at prices 𝑝𝑟 implies that 𝑣𝛼 −

𝑝𝑟 ∙ 𝜋𝛼 ≤ 𝑣𝛽 − 𝑝𝑟 ∙ 𝜋𝛽, and, therefore, 

Δ𝑣𝛼 − Δ𝑣𝛽 = 𝑣𝛼 − 𝑣𝛽 ≤ 𝑝𝑟 ∙ �𝜋𝛼 − 𝜋𝛽�. 

Hence, the relative price cap implies 

𝐵𝛼 = 𝑏𝛽 + 𝑝𝑟 ∙ �𝜋𝛼 − 𝜋𝛽� ≥ 𝑏𝛽 + Δ𝑣𝛼 − Δ𝑣𝛽. 

Thus, 𝐵𝛼� − 𝑏𝛼� = 𝐵𝛼 − 𝑏𝛼 − 𝑧 satisfies the following inequality: 

𝐵𝛼� − 𝑏𝛼� ≥ 𝑏𝛽 + Δ𝑣𝛼 − Δ𝑣𝛽 − 𝑏𝛼 − 𝑧 = 𝜃𝛽 − 𝑧 − 𝜃𝛼 ≥ 𝜃𝛽 − 𝑧 ≥ 𝜃𝐴 > 0, 

which implies that 𝑏𝛼�  is allowed. 
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It remains to show that Φ�  weakly dominates Φ.  Similar to the previous case (when Α = ∅), if 

Φ�  yields the same allocation as Φ does, it yields equal pay-off to bidder 𝑖 and (weakly) lower 

pay-offs to other bidders.  If Φ is not winning but Φ�  is winning, the very same arguments 

apply to show that Φ�  yields strictly positive pay-off.  The only difference here is that Φ�  can 

win a different package than Φ.  Since only bids 𝑏𝛽 for 𝜋𝛽 ∈ Ψ\Α have increased, the only 

possibility is when Φ wins package 𝜋𝛼 ∈ Α whereas Φ�  wins package 𝜋𝛽 ∈ Ψ\Α. 

We use the notation 𝑉−𝑖(𝜋) from the proof of Proposition 1, which stands for the 

maximum of the sum of bids of all other bidders for the remaining package (𝜋� − 𝜋).  When 

bidder 𝑖 wins package 𝜋𝛼, he pays auction price 𝑝𝛼 = 𝑉−𝑖(∅) − 𝑉−𝑖(𝜋𝛼), and gets the surplus 

of 

𝑠𝛼  = 𝑣𝛼 − 𝑝𝛼 = 𝑣𝛼 + 𝑉−𝑖(𝜋𝛼) − 𝑉−𝑖(∅). 

Similarly, when he wins package 𝜋𝛽, he pays auction price 𝑝𝛽� = 𝑉−𝑖(∅) − 𝑉−𝑖�𝜋𝛽�, and gets 

the surplus of 

𝑠𝛽�  = 𝑣𝛽 − 𝑝𝛽� = 𝑣𝛽 + 𝑉−𝑖�𝜋𝛽� − 𝑉−𝑖(∅). 

Moreover, it follows that 𝑏𝛽� + 𝑉−𝑖�𝜋𝛽� ≥ 𝑏𝛼� + 𝑉−𝑖(𝜋𝛼), since 𝑏𝛼�  is not winning anymore.  

Using this inequality, the difference 𝐷 = 𝑠𝛽� − 𝑠𝛼 can be written as follows: 

𝐷 = 𝑣𝛽 + 𝑉−𝑖�𝜋𝛽� − 𝑣𝛼 − 𝑉−𝑖(𝜋𝛼) ≥ 𝑣𝛽 − 𝑏𝛽� + 𝑏𝛼� − 𝑣𝛼. 

Finally, as 𝑏𝛽� = 𝑏𝛽 + 𝑧 and 𝑏𝛼� = 𝑏𝛼, we get: 

𝐷 ≥ 𝑣𝛽 − 𝑏𝛽 − 𝑧 + 𝑏𝛼 − 𝑣𝛼 = 𝜃𝛼 − 𝑧 − 𝜃𝛽 ≥ −𝜃𝛽 ≥ 0. 

Thus, Φ�  weakly dominates Φ. ■ 

Proof of Proposition 3. 

After all bids with 𝑏𝑓 < 𝑏𝑓� are eliminated for all bidders, each bidder 𝑖 bids 𝑏𝑖
𝑓 ≥ 𝑏𝚤

𝑓� and 

wins a package, let it be package 𝜋𝑖𝑊.  Under condition (4) of the proposition, only two cases 

are possible: either 𝑒 ∙ 𝜋𝑖𝑊 > 𝑒 ∙ 𝜋𝑖
𝑓 or 𝑒 ∙ 𝜋𝑖𝑊 = 𝑒 ∙ 𝜋𝑖

𝑓.  Since bidder 𝑖 has no bids for any 

package 𝜋𝑖
𝛽 for which 𝑒 ∙ 𝜋𝑖

𝛽 < 𝑒 ∙ 𝜋𝑖
𝑓, he cannot win such a package.  If 𝑒 ∙ 𝜋𝑖𝑊 > 𝑒 ∙ 𝜋𝑖

𝑓, i.e., 

bidder 𝑖 wins a package with more eligibility than the final package 𝜋𝑖
𝑓, there must be another 
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bidder 𝑗 who wins a package 𝜋𝑗𝑊 with less eligibility than 𝜋𝑗
𝑓, which is impossible since 𝑗 has 

never bid for such packages.  Therefore, it is necessarily that case that 𝑒 ∙ 𝜋𝑖𝑊 = 𝑒 ∙ 𝜋𝑖
𝑓, which 

implies that 𝜋𝑖𝑊 = 𝜋𝑖
𝑓, as, by condition (4), 𝜋𝑖

𝑓 is the only package that bidder 𝑖 bids for with 

this number of eligibility points. 

Summarizing, after all bids with 𝑏𝑖
𝑓 < 𝑏𝚤

𝑓�  are eliminated, each bidder wins a package 𝜋𝑖
𝑓 

irrespective of bids of the others.  The prices that competitors pay will necessarily depend on 

the bids that a bidder puts on other packages that require more eligibility.  Therefore, all bids 

𝑏𝑖𝛼 which are lower than the maximal caps 𝐵𝑖𝛼 and which are used in computing prices for at 

least one other bidder are dominated by 𝑏𝑖𝛼 = 𝐵𝑖𝛼. 

In the second round of elimination, we eliminate low bids 𝑏𝑖𝛼 for all such packages. ■ 

Proof of Proposition 4. 

Under the conditions of the proposition, the final clock round packages 𝜋𝑓 are the same 

independently of whether bidder 𝑖 ends the clock phase in round 𝑇 or (𝑇 + 1).  Because the 

bids of all other bidders 𝑗 ≠ 𝑖 are also assumed independent of that, the KO-bid 𝑏𝑓� of bidder 𝑖 

is also the same.  Finally, since continuing bidding for package 𝜋𝑖𝛼 in round 𝑇 relaxes the cap 

restrictions for bidder 𝑖, Proposition 3, which uses sincere previous bidding, still holds.  

According to Proposition 3, bidder 𝑖 wins his package 𝜋𝑓 and pays 𝑏𝑓� in any case.  What is 

different is the price the others pay. 

If bidder 𝑖 ends the clock phase one round later, in (𝑇 + 1), his relative cap will allow 

him to submit a higher relative bid on package 𝜋𝛼 and, consequently, on all other packages 

that require more eligibility points than this package does.  According to Proposition 3, this 

leads to higher prices that other bidders will pay.  Therefore, bidder 𝑖 strictly prefers not 

switching from 𝜋𝛼 to 𝜋𝑓 in round 𝑇. ■ 

Proof of Statement 2. 

Suppose bidders bid for 𝑑𝑖𝑇 = 𝜋𝑖𝐹 = (1,1) in round 𝑇 ≤ 13.  We will show that at least one 

bidder has a profitable deviation.  Let bidder 𝑖 = 1 switch from 𝑑1𝑇−1 = (2,1) to 𝑑1𝑇 = (1,1) 



 41 

in round 𝑇.  We consider a deviation, denoted by a ‘tilde’ on all its variables, in which bidder 

1 bids for 𝑑̃1𝑇 = (2,1) in round 𝑇 and then switches to 𝑑̃1𝑇+1 = (1,1). 

In general, the clock may either stop in round 𝑇 + 1, or it may continue.  Nevertheless, if 

bidder 1 wins package (1,1) in this deviation (and other bidders win (1,1) as well), he pays 

the same auction price.  The reason is that with lexicographic preferences for raising rivals’ 

cost, this price is determined by the caps of other bidders for packages (1,1), (3,0), and (0,3): 

any other combination of bids by other bidders, such as (2,1) together with (0,2) or (1,2) 

together with (2,0) will necessarily lead to a lower total bid than the combination (3,0) and 

(0,3).  Under our assumptions, the caps for the packages (3,0) and (0,3) do not change in 

relation to the bid on (1,1) in the supplementary round.  Thus, the KO-bid 𝑏1�  does not 

change, and bidders 2 and 3 make sure that bidder 1 does pay this price. 

Whether bidder 1 wins (1,1) or another package only depends on his relative bids for the 

other packages.  If the development of the clock phase after the deviation allows bidder 1 to 

get different package with higher surplus, he will do this, and the deviation is strictly 

profitable.  Otherwise, bidder 1 gets the same package (1,1) at the same auction price as 

before the deviation.  In the latter case, it is the surplus that other bidders get which will be 

different.  It remains to be shown that in the deviation, if bidder 1 wins (1,1), other bidders 

get strictly lower surplus. 

Suppose, first, that other bidders win (1,1).  In such a case, bids of bidder 1 for packages 

(3, 0) and (0,3) in the supplementary round determine the prices other bidders pay.  Since 

bidder 1 switches from (2,1) to (1,1) one round later in the deviation, his caps for (3, 0) and 

(0,3) become 2 and, respectively 1 higher than before the deviation.  Thus, the new KO-bids 

of bidders 2 and 3 get increased by 2 (this is true if bidders 2 and 3 bid for (1,1) in the last 

clock round, otherwise it is the highest price that bidders 2 and 3 may pay had they won (1,1) 

package).  Whether it results in an increase in prices they pay depends on whether the new 

KO-bids are below the values.  It is easy to compute that for 𝑇 = 13, the highest possible KO-

bids for bidders 2 and 3 are 𝑏2� = 𝑏3� = 38, when all three bidders switch from (2,1) to (1,1) 

in round 13.  Thus, for 𝑇 ≤ 13, the deviation results in higher prices that others pay for (1,1). 
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Suppose now that at least one other bidder, let it be bidder 2, does not win (1,1) after the 

deviation.  The following cases are possible. 

• If bidder 2 wins (2,1) (similar for (1,2) package), then the remaining bidder 3 wins 

nothing (no bidder ever wins (0,1) or (1,0) in equilibrium), and, therefore, bidder 1 

wins (1,2).  Therefore, the supplementary bids satisfy 𝑏1
(1,1) + 𝑏2

(1,1) + 𝑏3
(1,1) ≤

𝑏1
(1,2) + 𝑏2

(2,1).  By bidding 𝑏1
(1,2) = 𝑏1

(1,1), bidder 1 can ensure that (i) either he wins 

(1,2) at the price of (1,1) before deviation, or (ii) all bidders win (1,1).  In the 

former case, bidder 1 gets a higher surplus.  In the latter case, by the above 

argument, bidders 2 and 3 will pay more. 

• If bidder 2 wins nothing, then either bidder 3 wins (2,1) or (1,2), and the same 

argument applies, or bidder 1 is the only winning bidder, which cannot happen in 

equilibrium. 

Thus, the deviation is always profitable for 𝑇 ≤ 13, and such equilibria may only exists for 

𝑇 ≥ 14. 

Part (b) is proven by direct verification.  Let bidders keep bidding on (2,1) up to (and 

including) round 13 and drop to (1,1) in round 14.  The KO-bid is then 41, which is above the 

value.  Thus, bidding 𝑏 = 40 is dominant.  In the second elimination round, all bids are 

eliminated which are both (1) below caps, and (2) are never winning when 𝑏 = 40.  Since the 

caps allow bids with 𝑏(3,0) = 𝑏 + 21, and 𝑏(0,3) = 𝑏 + 20, all bids with 𝑏(3,0) ∈ [60,61] and 

𝑏(0,3) ∈ [59,60] remain undominated. ■ 

Proof of Proposition 5. 

Following the arguments from the proof of Proposition 2 we argue that all bids with 𝑏𝑖
𝑓 < 𝐷𝑖  

are dominated by 𝑏𝑖
𝑓 = 𝐷𝑖.  Thus, in any undominated equilibrium, each bidder bids at least 

𝑏𝑖
𝑓 = 𝐷𝑖.  Suppose that 𝑏𝑖𝛼 ≤ 𝐷𝑖 for all other packages 𝜋𝑖𝛼 ∈ Ψ𝑖, and consider a bidder 𝑗. 

If bidder 𝑗 bids 𝑏𝑗
𝑓 = 𝐷𝑗 , he wins 𝜋𝑗

𝑓 at zero price.  Indeed, all other bidders together do 

not bid more than 𝐷𝑖 on larger packages.  This implies that if bidder 𝑗 bids 𝑏𝑗𝛼 ≤ 𝐷𝑗 , all other 
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bidders win their final clock round packages at zero price.  By bidding just above the budget 

𝑏𝑗𝛼 = 𝐷𝑗 + 𝜀𝑗, where 𝜀𝑗 > 0 and 𝜀𝑗 < min𝑖≠𝑗 𝐷𝑖, on packages 𝜋𝑗𝛼 ≠ 𝜋𝑗
𝑓 bidder 𝑗 still wins 𝜋𝑗

𝑓 

at zero price.  However, the prices that all other bidders pay for their final clock round 

packages 𝜋𝑖
𝑓 equal to 𝜀𝑗, provided the set of packages Ψ𝑗 is exhaustive, Ψ𝑗 = Π.  Thus, there is 

no equilibrium where 𝑏𝑖𝛼 ≤ 𝐷𝑖 for all bidders 𝑖. ■ 

Proof of Statement 3. 

If the three bidders choose these strategies, 𝐵𝐻, 𝐵𝐷, and 𝐵𝐷, the total sum of winning bids is 

35 + 35 + 35 = 105.  The two “Dove-like” bidders are willing to pay 100 together for the 

full spectrum, while one “dove-like” bidder and one “hawk-like” bidder have together also 

expressed a willingness to pay of 105.  Each of the “dove-like” bidders pay 35 (as for each of 

them, the other two bidders are together willing to pay 105 for the total spectrum).  The 

“hawk-like” bidder pays 5 less (as others are together maximally willing to pay 100 for the 

full spectrum – the combination (2,1) and (1,2)). 

It is not difficult to see that no bidder individually has an incentive to deviate.  If by 

deviating, they change the final allocation, at least one bidder does not get any spectrum.  If 

this is the deviating bidder, he strictly gets a smaller pay-off than in the proposed equilibrium.  

If it is another bidder, who does not win spectrum after the deviation, then the deviating 

player has to pay the opportunity cost – which is what the losing bidder expressed to be 

willing to pay for a larger package – which is more than the budget constraint (and valuation).  

Finally, as bidders do not affect their own payment, if the final allocation is not affected and 

in the equilibrium they already bid so as to maximally increase others’ payments without 

affecting the allocation, deviating can only result in payments of other bidders that are not 

larger.  Thus, no deviation is profitable. 

Appendix II:  Final Cap Rule 

Ausubel and Cramton (2011) have proposed a new rule that imposes more constraints on bids 

in the supplementary rounds.  They require that all bids on packages that require more 



 44 

eligibility points than the bid in the final clock round package, satisfy a revealed preference 

constraints with respect to all rounds after the relevant anchor round where the bidders 

reduced eligibility points, including the final round as well.  They term this rule the 

Simplified Revealed Preference Cap.  In several recent CCA designs, for example in Australia 

and Canada, this Simplified Revealed Preference Cap, or final cap rule, has been adopted in 

practice.  Under this rule, all bids 𝑏𝛼 for packages 𝛼 in the supplementary round should 

satisfy the following condition: 

𝑏𝛼 ≤ 𝐵𝛼 = 𝑏𝑓 + 𝑝𝑇 ∙ (𝜋𝛼 − 𝜋𝑓). 

Ausubel and Cramton (2011) show that this rule implies that bidders win the package they 

were bidding for in the final clock round if the clock phase ends without excess supply (like 

in our example).  The rule implies that if bidders bid truthfully in the clock phase, bidders 

cannot bid more than respectively 𝑏 + 7, 𝑏 + 5, 𝑏 + 9, and 𝑏 + 3 on the packages (2,1), 

(1,2), (3,0), and (0,3).  As a result, no two bidders can outbid the other remaining bidder.  

For the total supply of (3,3), they together cannot bid more than 12 more than they jointly bid 

on the supply of (2,2).  Thus, the final clock bid of 𝑏 = 12 is sufficient to win (1,1), and the 

total payment is not more than 12, substantially reducing bidders’ possible payments. 

Knowing that bids 𝑏 + 7, 𝑏 + 5, 𝑏 + 9, and 𝑏 + 3 on the packages (2,1), (1,2), (3,0), 

and (0,3) cannot be winning, players can submit these higher bids without any risk and make 

sure that rivals pay 12 for their winning package (1,1).  Thus, under the final cap rule as well, 

bidders can game and bid without any risk on packages they do not value intrinsically.  This 

consideration has led the UK regulator OFCOM to withdraw the final cap rule from its 

auction design and to revert back to the relative cap rule.30

Our analysis shows few important differences between the relative and final cap rules.  

First, the equilibrium payments under the relative cap rule are, in our example, almost twice 

as high as under the final cap rule.  Second, it is true that by bidding on (3,0) and (0,3), the 

bidder runs a risk, under the relative cap rule, to obtain these packages that do not have an 

 

                                                                        
30  See, OFCOM (2012), Assessment of future mobile competition and award of800 MHz and 
2.6 GHz, 24 July 2012. 



 45 

intrinsic value.  This risk is absent under the final cap rule.  However, the above iterative 

dominance argument shows that also under the relative cap rule, this risk is minimal knowing 

that rational rivals will try to avoid any risk of not winning any package and, therefore, will 

bid higher on (1,1) than what others together can add to their total combined bid for (2,2). 

If bidders bid truthfully in the clock phase, the trade-off is then clear: under the final cap 

rule, the potential for gaming in the supplementary round is severely restricted, but gaming is 

without any risk.  Under the relative cap rule, the potential for gaming is very large, but 

carries some risk (that depends on whether other players protect themselves against this 

gaming by rivals).  There is, thus, no clear-cut case to be made for either one of these rules.  

In particular, it is not the case that under the relative cap rule, gaming will not arise, and if it 

arises, it can have a severe impact on auction prices. 

Finally, and related, the relative cap rule has the disadvantage that the outcome of the 

auction may be inefficient.  If two out of the three players follow the logic of iterative 

dominance and bid 𝐵 = �23,  30,  34,  32,  37� on the five possible packages, whereas the 

other bidder bids strictly less than 23 on (1,1), the outcome is that there are two winners who 

win packages (3,0) and (0,3) which they do not have any intrinsic value for. 

If bidders want to raise rivals’ cost in a CCA under the final cap rule further, they can 

behave strategically in the clock phase.  The reasons are the same as before (and potentially 

stronger) as to get around the severe restrictions of the supplementary round bids, bidders 

demand larger packages in the clock phase than they would normally do in truthful bidding. 

To see this, suppose that all bidders start the clock phase in the same way as before, but 

continue bidding on (2,1) until the prices reach the amount (𝑥, 5), for some 𝑥 and then drop 

demand to (1,1) finishing off the clock phase.  Knowing that the maximum bids on the 

packages (2,1), (1,2), (3,0), and (0,3) are then given by 𝑏 + 𝑥, 𝑏 + 5, 𝑏 + 2𝑥 − 5, and 

𝑏 + 10 − 𝑥, competitors can together bid maximally 2𝑏 + 𝑥 + 5 on the total supply, if they 

together bid 2𝑏 on two blocks in each band.  Thus, by choosing a large 𝑥, bidders can also 

raise rivals’ cost under the final cap rule. 
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Appendix III:  Computing KO-bid 

There are 14 different scenarios (up to the symmetry of bidders 2 and 3) of the clock phase 

development that generate the same aggregate demand as Table 2 presents, conditional on 

bidding behavior of bidder 1.  Table 3 presents all 14 different ways of individual bidding of 

bidders 2 and 3.  Scenario 14 is the actual clock phase development. 

For each scenario, we can compute KO-bid according to Proposition 1, these bids are 

shown in the last column.  As one can see, the maximal KO-bid is 29, and it occurs in 

scenarios 2, 8, and 12.  Thus, when the clock phase development is not public information, 

Proposition 1 remains valid, and the KO-bid must be calculated as a maximum KO-bid across 

all possible scenarios.  The same technique, although with a much larger set of scenarios, can 

be used to compute KO-bids if bidders only get information about clock prices, i.e., in which 

bands there is an excess demand. 

Scenario 
no. 

Round 1 Rounds 2-7 Round 8 KO-
bid Bidder 2 Bidder 3 Bidder 2 Bidder 3 Bidder 2 Bidder 3 

1 (2,1) (0,3) (3,0) (1,2) (1,0) (1,2) 28 
2 (1,2) (1,2) (3,0) (1,2) (1,0) (1,2) 29 
3 (2,1) (0,3) (3,0) (1,2) (0,1) (2,1) 28 
4 (1,2) (1,2) (3,0) (1,2) (0,1) (2,1) 28 
5 (2,1) (0,3) (2,1) (2,1) (0,1) (2,1) 24 
6 (1,2) (1,2) (2,1) (2,1) (0,1) (2,1) 23 
7 (2,1) (0,3) (3,0) (1,2) (2,0) (0,2) 28 
8 (1,2) (1,2) (3,0) (1,2) (2,0) (0,2) 29 
9 (2,1) (0,3) (2,1) (2,1) (2,0) (0,2) 24 
10 (1,2) (1,2) (2,1) (2,1) (2,0) (0,2) 23 
11 (2,1) (0,3) (3,0) (1,2) (1,1) (1,1) 28 
12 (1,2) (1,2) (3,0) (1,2) (1,1) (1,1) 29 
13 (2,1) (0,3) (2,1) (2,1) (1,1) (1,1) 24 
14 (1,2) (1,2) (2,1) (2,1) (1,1) (1,1) 23 

Table 3.  Clock phase scenarios. 
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