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Abstract

The majority of cities in our world is not only connected through conventional physical
infrastructure, but increasingly through modern digital infrastructure. This paper aims to test whether
digital connectivity leads to other linkage patterns among world cities than traditional infrastructure.
Using a generalized spatial interaction model, this paper shows that geography (and distance) still
matters for an extensive set of world cities analysed in the present study. With a view to the rapidly
rising urbanization in many regions of our world, the attention is next focused on the emerging large
cities in China in order to test the relevance of distance frictions — next to a broad set of other important
explanatory variables — for digital connectivity in this country. Various interesting results are found
regarding digital connectivity within the Chinese urban system, while also here geography appears to
play an important role.
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1. Prelude

Cities have over the past centuries become the cradle of political power and economic progress.
And their position has become increasingly stronger in the course of history. A highlight in the history of
urban systems in our world was formed by the year 2007. This year meant an important milestone in the
long record of urbanization: for the first time in human history, the city took over the ‘power’ from its
hinterland, since as of that year more than 50 percent of the world population was registered to live in
urban areas. The 21% century is by some people nowadays even called ‘the urban century’ (UN 2010).
Surprisingly — and in contrast to this recent development — only a few centuries ago less than 20 percent
of the population on our earth lived in cities. This structural urban development is still continuing, with
urbanization rates exceeding 70 percent in various European countries and elsewhere (see for details
e.g., Mega 2010). Although there are nowadays also signs of shrinking cities, these are rather an
exception. Mulligan and Crampton (2005) find that city size evolution is tied to overall national
population size, although the growth rate of any city depends on a complex myriad of private and public
forces (e.g., amenities, social capital, industrial diversity, connectivity).

It is also noteworthy that cities are becoming nodal points in complex, multi-layer and often
global networks. Traditionally, such nodal points were production and consumption centres that were
connected by means of physical infrastructures through which material flows of people and goods could
be transported. Infrastructure acted essentially as the backbone of an interconnected economy, with a
fractal representation at various geographical scale levels (see, e.g., Batty and Longley 1994).

The views on the position of global, international and connected (or network) cities have
significantly changed over the years. Cities increasingly act in a system of connected networks that serve
as strategic alliances for the development of our world (see for an extensive urban network analysis
Neal 2012). In this perspective, urban agglomerations are not necessarily a source of problems, but offer
the strategic economic platform for creative solutions and new opportunities on a world-wide scale.
Since the seminal work of Jane Jacobs (1961), we know that social capital (e.g., in the form of bonding
and networking) and human capital (e.g., in the form of creative entrepreneurship or self-employment)
are essential for smart and booming urban economies (see Nijkamp and Kourtit 2012).

In addition to a strategic re-profiling of urban areas into integrated network cities, we also
observe gradually a new transformation of urban agglomerations into (regional, national or even global)
spatial-economic network constellations. World-wide, urban areas are becoming centripetal and
centrifugal nodes in complex multi-layer networks (Taylor 2001; Taylor 2004; Taylor et al. 2002), in
which regional and national borders will play a less prominent role. This new development may turn into
an urban network revolution in the history of human settlements. This may lead to the emergence of
hierarchical networks or interconnected global networks of urban agglomerations. Such city networks
will definitely become a source of creative and strategic research and policy action on the future of
metropolitan areas.

It is thus plausible that cities in our age will likely turn into complex connected networks (‘network
cities in city networks’) and will accommodate a rising share of socio-economic activities of a nation as a
result of proximity and density externalities. These spatial urban constellations have been studied in the
urban science literature from a variety of different analytical perspectives (see Nijkamp 2008 for a



review). Urban agglomerations and networks will become the cornerstones of global interaction and
evolution.

In parallel with a rapid rise in urbanization rates, another megatrend has emerged, viz. the
transition to a ‘digital economy’, thanks to the introduction and large-scale penetration of Information
and Communication Technologies (ICT) in all sectors of the economy. This phenomenon has induced an
intense debate on the spatial consequences of these modern technologies, which has led to various
metaphors such as ‘tele-cities’ or ‘electronic cottages’. For a critical review, see, inter alia, Cohen and
Nijkamp (2006) and Cohen et al. (2002). In a more challenging way, the above-mentioned debate can be
summarized under the heading of the validity of the ‘death of distance’ hypothesis (see Cairncross
2001). Despite the fuss related with this hypothesis, it has also been increasingly questioned (see Wang
et al. 2003). A test of this hypothesis calls for solid empirical research (see also Gorman and Malecki
2002).

The debate on the impacts of ICT on cities has already a respectable history. It follows — from a
social-functional perspective — the Castells (1996) thesis on ‘space of flows’, while it has also strong
roots in the regional-economic analysis of ICT impacts (see e.g. Cohen et al. 2002). ICT, just like ordinary
infrastructure, provides the necessary spatial framework for the development and existence of urban
systems at various levels. A limited number of studies regarding the impact of traditional and digital
infrastructure in emerging economies — in particular China — can also be recorded. We refer here to
Démurger (2001), who offers an impact assessment of (general) infrastructure and regional growth in
China, to Ding and Haynes (2006), who study the leapfrogging implications of ICT in China, and to Ding et
al. (2008), who researched the relation between telecommunications infrastructure and income
convergence. Advanced infrastructure appears to be critical in all cases. An under-investigated issue
however, is the question how cities and urban networks are related to digital spatial connectivity. And
this will be the main research challenge in this paper. The central methodological task is to investigate
whether in a spatial interaction model, where the spatial interaction refer to the digital infrastructural
capacity (e.g. the digital links which form the Internet), the standard gravity model still holds. The main
aim of our study is now to test whether the empirical connectivity pattern reflected in Internet
infrastructural capacity leads to a statistically significant model based on standard gravitational forces in
relation to a spatial interaction model. A second aim of our study is to analyze whether the digital
connectivity in urban systems in rapidly emerging economies — in particular in China — can also be
appropriately mapped out by a spatial interaction representation of Internet linkages. Also, when
necessary, comparisons with other world regions (e.g. Europe) also take place. In summary, the purpose
of our article is to explore the symbiotic relation between urban systems and digital infrastructural
networks, both world-wide and within China.

China — as an important player in both Asia and world-wide —is an interesting case because of its
rapid economic and technological growth. Many Asian countries —including China- have in the past
decade exhibited a surprisingly high economic growth. At the same time, many of these countries have
shown very high urbanisation rates, to the extent that many large to very large cities can be found in
Asia nowadays. The unprecedented rise in megacities in Asia is partly caused by their indigenous growth
mechanisms and partly by their high-quality connectivity. A recent study of the UN (2010) demonstrated



that from the world’s largest cities (30 in total), 17 such megacities are located in Asia. Urban
agglomeration externalities are apparently so powerful in this region, that an unprecedentedly strong
urbanisation megatrend is emerging (see also Kusakabe 2012; Morichi and Raj Acharya 2013).

China has not only witnessed a formidable economic growth in the past decades, but also a
surprising rise in its urbanization degree, with many new megacities. For that reason, infrastructure
policy is of paramount importance in this country. But physical connectivity is not sufficient; digital
connectivity in an information society driven by digital infrastructure is equally important. And
therefore, a closer analysis of the geographical structure and intensity of the usage of digital
technologies in China (in particular, the Internet), is a challenging research task. In our empirical study
we will address in particular the digital connectivity among major urban agglomerations in China,
including not only the big megacities such as Shanghai or Beijing, but also many lower ranked — but
often still multi-million — cities.

Methodologically, apart from econometrics to understand the impact of gravitational forces in the
evolution of the digital infrastructure, concepts and techniques from the network analysis field are also
utilized. The latter has become a very advanced research area, starting form Euler’s well-known
Koéningsburg bridge system to small-world or scale-free networks. In the recent geography and regional
science literature much attention has been paid to spatial linkage analysis and spatial interaction
models, in which also the interwovenness of cities has been studied extensively (including hierarchical
organization of cities, e.g. in the context of central place theory or Zipf's law). With the introduction of
digital technology, new types of connected networks have emerged, often of a hub-and-spokes nature,
with various degrees of user intensity on different edges. Common characteristic of some these
networks is their spatial reflection. The methodological novelty of this paper is the utilization of network
analysis with econometrics to understand whether the gradually emerging global network connectivity
pattern is also replicated at the level of an upcoming economic region such as Asia, and in particular
whether such a pattern is showing up in a rapidly emerging country like China.

The present paper is organized as follows. After this introductory section, Section 2 will concisely
describe the database for the models to be used, while Section 3 will be devoted to a modelling
experiment on digital connectivity among world cities. China is a rising player in a global internet
connectivity system, and therefore, in Section 4, our study will zoom in on the Chinese urban network, in
comparison to Europe and the USA. An explanatory causal econometric model for digital connectivity in
China — and its results — will be presented in Section 5, while Section 6 offers concluding remarks.

2. Data for digital connectivity

The main database used for this paper has been derived from the DIMES project. This is “a
distributed scientific research project, aimed to study the structure and topology of the Internet”
(DIMES 2010). It is based on 3—6 million traceroute' measurements made daily by a global network of
more than 10,000 agents, who are voluntarily participating in this research project (see Carmi et al.

! Traceroutes are specific programs, which map the route that a data packet follows through different nodes in
order to reach its final destination (Dodge and Zook 2009).



2007; for a description of the DIMES project, see also Shavitt and Shir 2005). One of the outcomes of
the DIMES project is an extensive database with geo-located IP (Internet Protocol) links discovered by
the DIMES volunteers. It contains all the IP links between any two cities discovered by the agents.
Although overlapping connections between any two regions are included in the database, there is no
information on the bandwidth of these links. However, this is still an infrastructural measure, as the IP
links represent physical (overlapping) data links between cities, which follow the IP protocol®.

Some important notes should be made at this outset. Firstly, the DIMES project only includes IP
links which have been captured by its agents and thus, only a small fraction of the total Internet. By
sending data packets from the agents’ locations to known destinations, DIMES researchers record the
different IP links used by its agents, completing the largest available data set for geo-coded IP links.

Secondly, there is a common limitation faced by any study focusing on the Internet from a spatial
perspective: the Internet has been built as a logical network and its links are defined in topological and
not in geographic terms. Therefore, the architecture of Internet destinations (IP addresses) has little to
do with geographical locations (Dodge and Zook 2009). To geo-locate the above system, the DIMES
project geo-codes the different IP addresses using IP registration tables. A potential accuracy issue
needs to be highlighted here. It is not uncommon that IP addresses are owned by expert firms, which
lease these IP addresses to content providers (Dodge and Zook 2009). This might result in a possible
mismatch between some physical locations of IP addresses and the content location. However, this does
not create any bias here, as the focus of this paper is on the physical infrastructure of the Internet.

Different subsets of this global DIMES dataset are used for this paper. For the analysis in Section
3, which focuses on digital connectivity and world cities, the IP links among a sample of 34 world cities
are utilized for the year 2010. This analysis is limited to a cross section of these 34 cities for one year
because of the scarce data on world city characteristics. More details about this data are provided in the
next section. After the global analysis of linkages between cities world-wide, in Sections 4 and 5 the
analysis turns to the Chinese urban system, which includes IP links only between Chinese cities. This
analysis follows panel specifications and includes the period 2007-2011.

In a nutshell, the DIMES dataset is, at least to the best of our knowledge, the richest available
geographical data source for the Internet infrastructure. Despite the above limitations, the scattered
locations of the agents and the size of the DIMES experiment secure the robustness of this data set,
especially considering the general lack of geographic data on the Internet infrastructure.

3. Digital connectivity and global cities: a high-level analysis

Before focusing on the main object of our analysis, viz. the digital infrastructure of the Chinese
urban system, the global nature of our dataset is utilized in order to provide an overall, global context
for urban digital connectivity. As discussed in the previous section, ICT and the Internet support the
globalization process and global cities are increasingly reliant upon digital infrastructure. Nonetheless,

2 These links function at level 3 of the OSI model. As noted elsewhere (Tranos 2013), the first three layers of the
OSI model represent physical infrastructural capital, while the four highest layers reflect ‘infratechnologies’ (Tassey
1992; Tassey 2008).



there are hardly any studies at a global level linking the global city characteristics with the digital
infrastructure. The only exception at this scale is the work of Choi et al. (2006) who investigated the
network structure of the Internet backbone networks among the most well-connected world cities®. In
order to fill in this gap and to provide a broader understanding of the relation between world cities and
the underlying first layer of the space of flows, this section employs simple spatial interaction models
(SIMs) to investigate the pull factors for attracting such digital infrastructures in global cities. The
conceptual model of this analysis is formulated in the following generalized version of a SIM, according
to which the number of IP installed links between i and j (IP;) is affected by the characteristics of i (X))
and j (X;) as well as by bilateral characteristics between i and j (Xj).

IP;; = f(Xi, X, Xij) (1)

The main limitation for such an endeavor is data availability, as hardly any homogeneous urban
data is available at a global, cross-country level. In order to overcome this difficulty, a unique dataset
depicting urban characteristics of 34 world cities is utilized here produced by the Institute for Urban
Strategies (2010). This Global Power City Index (GPCI) offers a balanced picture of the socio-economic
performance and power of 34 world cities* from the perspective of attracting talent, business and
investment to cities, complemented with information on perceptions of various classes of stakeholders.
Based on 69 individual indicators compiled from secondary sources as well as from interviews with
stakeholders, two sets of indicators have been produced for the year 2010°: city function indicators,
which include a normalized score on variables focusing on urban accessibility, economy and the
environment; and city actors indicators including variables on how managers, researchers, artists and
residents perceive and score the performance of the city.

Apart from the variables derived from the actors and functions data, the impact of variables
related with the spatial organization of the world cities sample is also tested here. Firstly, physical
distance between cities is expected to have a negative impact on the pair-level IP connectivity. As
discussed elsewhere (Tranos and Nijkamp 2013), physical distance (distance) maintains its importance
even in the frame of the digital infrastructure. Similarly, the spatial continuity (continuity) between
countries which host the cities included in the analysis, is expected to have a positive impact on digital
connectivity. Moreover, we employee variables from the world trade literature (Mayer and Zignago
2005) and we expect variables such as common language (language) and past colonial (colonial) ties will
affect the digital connectivity (Tranos and Gillespie 2011).

In order to utilize these variables, model (1) is expanded in the following log-log form:

In (IP;j) = aglnk + a;In(X; * X;) + by ln(distanceij) + byrelational;j + €;; (2)

* For a US-centric study on similar issues see the work of Malecki (e.g. 2002) and the work of Tranos for a pan-
European perspective (e.g. 2011; Tranos and Gillespie 2009)

* Mumbai was also included in the GPCl, but it is excluded from our analysis as no IP data was available from the
DIMES project. The rest of the cities included in the GPCl are presented in Table 3.

> For a detailed review of the GPCl index see Institute for Urban Studies (2010).



X; and X; are the variables reflecting the city-level attributes discussed above. Because the
dependent variable reflects infrastructural capacity and not flows, there is no directionality involved and
therefore instead of estimating the effect of j and j separately, their combined impact is estimated using
the product of X; and X. Since the city-level attributes are only available for year 2010, equation (2) is
estimated cross-sectionally using ordinary least square (OLS). Table 1 presents the results of the actors
variables and Table 3 the results of the function variables.

Table 1: World city IP connectivity and actor-based city characteristics

Dep. Var. IP (In) (1) (2) (3) (4) (5)
distance(ln) -0.322 -0.349 -0.430 -0.410 -0.522
(0.087)*** (0.087)*** (0.091)*** (0.092)*** (0.102)***
manager 0.271 0.020 0.274 0.321 0.266
(0.117)** (0.170) (0.194) (0.196) (0.200)
researcher 0.197 0.317 0.237 0.178
(0.098)** (0.107)*** (0.119)** (0.120)
resident -0.561 -0.660 -0.597
(0.216)** (0.225)*** (0.228)***
artist 0.190 0.253
(0.124) (0.135)*
continuity -1.002
(0.402)**
language 0.276
(0.292)
colonial -0.202
(0.359)
constant 0.205 1.433 5.763 5.062 5.788
(1.808) (1.895) (2.505)** (2.538)** (2.566)**
R 0.09 0.11 0.14 0.15 0.18
N 194 194 194 194 194

* p<0.1; ** p<0.05; *** p<0.01; Standard Error in parentheses

The first observation is the consistent negative effect of distance on the formation of the digital
infrastructure at a global level. Put simply, the closer two world cities are in our sample, the more digital
infrastructure is installed between them. This distance decay effect remains significant and its
magnitude increases even after the inclusion of other bilateral variables including spatial continuity. The
researcher variable has a positive effect which appears to be significant throughout most of the
specifications. This is not surprising either, as digital infrastructure was always related with knowledge-
intensive urban environments (Malecki 2002). In addition, the managerial effect is also visible here,
although not always significant. Indeed, the higher the (product of two cities’) score on managerial
issues is, the higher the connectivity between these two cities is. However, this effect ceases to be
significant when more explanatory variables are introduced into the model. Moreover, a significant and
consistent negative effect is detected for the (product of the) score of cities on residential issues. This
effect can be interpreted as a city-size effect: the higher the size of a city and consequently the
diseconomies of scale (low score on residential issues), the higher the digital connectivity the city shares
with other cities. On the contrary, creativity appears to be a significant positive factor for attracting
digital infrastructure. The (product of the) score of two cities according to artists is a positive predictor
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of the digital connectivity between these two cities. Regarding the other bilateral variables, only spatial
continuity seems to have a significant impact. However, this is negative and may reflect a minimum
threshold level for distance.

Table 3 presents the estimation of (2) using the function variables. Again, interesting results can
be derived regarding the distribution of the digital infrastructure among our sample of world cities.
Firstly, spatial configuration appears to be important even at this scale, as apart from the distance decay
effect which is present here too, accessibility also has a significant positive effect: the more accessible
two cities are (in other words, the higher the product of the accessibility of two connected cities is) the
more digital infrastructure will be installed among them. On the contrary, although the variable
reflecting the score on the urban economy is positive, its effect is of low significance. This is in
accordance with previous research highlighting that such infrastructure is mostly attracted by
knowledge-economy related indicators instead of mere market size (Tranos and Gillespie 2009). Next,
the environment variable appears to confirm the above comments on the effect of the resident variable.
The city-size effect, as reflected in diseconomies of scale and related low urban environmental quality, is
a digital connectivity factor. Regarding the bilateral variables, the same effect as in Table 1 is observed
here.

Table 2: World city IP connectivity and function-based city characteristics

Dep. Var. IP (In) (1) (2) (3) (4) (5)
d_In -0.329 -0.275 -0.291 -0.335 -0.481
(0.088)*** (0.088)*** (0.088)*** (0.089)*** (0.102)***
accessibility 0.294 0.216 0.235 0.253
(0.098)*** (0.110)* (0.110)** (0.116)**
economy 0.142 0.155 0.109
(0.094) (0.093)* (0.097)
environment -0.184 -0.184
(0.082)** (0.082)**
continuity -1.093
(0.385)***
language 0.324
(0.280)
colonial -0.066
(0.350)
constant 4.061 -0.121 -0.870 2.052 3.633
(0.705)*** (1.561) (1.633) (2.071) (2.155)*
R 0.07 0.11 0.12 0.14 0.18
N 194 194 194 194 194

* p<0.1; ** p<0.05; *** p<0.01; Standard Error in parentheses

In total, the above analysis has revealed many interesting patterns at the global level of the world
city network. Digital infrastructure is clearly affected by spatial configuration — even at this scale. Thus, it
can be argued that also a digital system such as the Internet is ruled by strong spatial forces. In addition,
other factors related to the knowledge economy and city size appear to play also important roles in the



geography of this system. The next step in our analysis provides the link between the global digital
network and the Chinese urban system.

4. The Chinese digital urban network

Moving now from the global level of analysis to China, the first task is to understand the position
of Chinese cities in this global system of world cities and then to understand the structure of the Chinese
inter-urban network of the digital infrastructure. In order to do so, concepts and methods from complex
network analysis (CNA) field and the science of networks (Barabasi 2002; Buchanan 2002; Watts 2003;
Watts 2004) are utilized. This is a new analytical field which focuses on large-scale real-world networks
and their universal, structural, and statistical properties (Newman 2003). CNA is the tool which enables
us to explore connectivity patterns in the topological configuration of the Chinese digital infrastructure.
The latter is an essential step in order to move on to the next part of our analysis, where the structure of
the urban network in China is modeled.

Table 3 presents three different centralities for the sample of 34 world cities. Firstly, degree
centrality represents the accumulated IP links for each city for each year®. This is a digital infrastructural
capital measure, in which Beijing shows up as the third most connected city in our world city sample for
2010. Shanghai, the other Chinese city in our sample, is placed on the 15" position. Although this is an
important measure reflecting the accumulated IP connectivity, degree centrality does not provide any
insights into the functionality of these cities in the overall network. Following the work of Neal (2011),
two more centrality indicators will now be introduced here: recursive centrality (RC) and recursive
power (RP). The distinctive point of these indicators is the acknowledgement of the degree centrality of
the cities which are connected with the city of interest and are calculated as follows:

RC; = X;IP;; xDC; (3)

IP;j
RC;=Y,—2 4
i = Ljpe, (4)

DG;is the degree centrality of the city j, which shares an IP link with city i, and IP; is the number of
IP links between j and j. These metrics are useful in understanding the city functionalities in such a global
system, as high recursive centrality is related to hub urban roles while, high recursive power reflects
gateway roles (see the discussion in Neal 2011). Thus, Beijing’s high performance in both metrics
indicates the Chinese capital’s importance in the global digital network as Beijing performs both hub and
gateway roles. However, this is not the case for Shanghai, whose’ functionality is lower than the
expected one according to accumulated IP infrastructure, as is reflected in the degree centrality.

Table 3: World-cities centralities and power in 2010

6 This is a ‘weighted’ degree centrality measure in the sense that if two regions i and j are connected by

multiple links, all of these links will be added in the degree centrality of i and j. If it had been a ‘binary’ centrality
measure, then the multiplicity of the links between i and j would have been neglected.



Degree centrality Recursive centrality Recursive power
Cities

score rank score rank score rank

London 100.00 1 100.00 1 95.39 2

Seoul 94.22 2 20.57 6 25.36 13
Beijing 75.77 3 36.70 3 48.63 6

New York 47.19 4 66.52 2 21.84 16
Frankfurt 46.64 5 34.71 4 31.61 10
Tokyo 41.95 6 11.23 13 29.95 12
Amsterdam 33.72 7 14.80 10 76.68 3

Madrid 29.67 8 9.96 14 100.00 1

Moscow 26.83 9 12.64 12 54.97 5

Toronto 22.28 10 14.27 11 22.13 14
Paris 21.95 11 22.56 5 33.32 9

Singapore 19.57 12 6.74 16 6.37 23
Chicago 17.73 13 18.68 7 13.88 18
Los Angeles 13.91 14 17.36 8 6.33 24
Shanghai 13.23 15 2.92 21 7.87 22
Sydney 13.05 16 0.57 26 42.22 7

San Francisco 12.10 17 15.77 9 9.28 21
Vienna 11.10 18 0.60 25 38.25 8

Milan 11.07 19 7.84 15 30.38 11
Taipei 9.53 20 4.45 19 9.58 20
Zurich 5.93 21 0.44 27 21.89 15
Osaka 5.56 22 1.18 24 2.88 29
Cairo 5.32 23 0.42 28 4.98 25
Brussels 5.28 24 2.62 22 72.07 4

Sao Paulo 4.69 25 0.40 29 2.54 30
Kuala Lumpur 4.57 26 0.16 33 10.87 19
Bangkok 4.44 27 2.61 23 15.72 17
Vancouver 3.94 28 5.42 17 0.55 32
Boston 311 29 3.80 20 3.25 28
Copenhagen 2.94 30 4.67 18 3.77 27
Berlin 2.78 31 0.28 31 4.27 26
Geneva 1.70 32 0.18 32 2.05 31
Fukuoka 1.22 33 0.31 30 0.49 33
Hong Kong 0.02 34 0.05 34 0.00 34

Note: centrality measures are normalized with maximum value = 100

After highlighting Beijing’s role as the main anchor point of the Chinese IP network with the global
one, our focus will next turn to the Chinese intra-urban digital network. Table 4 presents some basic
network statistics for the Chinese digital infrastructure for the period 2007-2011. The size of the
network during the first two years of the study period is less than thirty percent of the network size
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during the last three years. Although this might reflect, to some extent, the Internet growth in China,
much of this is mostly related to the data collection process and the increase of the DIMES project
agents. Nonetheless, a change in the topology of the network can be observed. The first statistic under
study is again degree centrality’. The large difference between the average and maximum values reflect
the existence of some very well connected nodes, which perform hub roles in the network. Regarding
the change over time, while the average weighted degree centrality among the connected cities
increased almost four times during the study period, the maximum degree centrality increased more
than twenty times. This is a first indication of the existence of a cumulative causation process, according
to which the higher the degree of a node is, the higher the probability of a new link to be attached to
this node is. This rich get richer phenomenon results to high inequality in terms of connectivity among
the Chinese cities, which increases over time according to the Gini coefficient of the degree centrality. In
the network literature (Barabasi 2003), this cumulative process is identified as preferential attachment
(Batty 2012) and it will be further analyzed below.

Table 4: Network statistics for China's IP network

Net. Statistics 2007 2008 2009 2010 2011

Nodes 219 224 781 780 784
Links 420 432 1557 1606 1638
Av. degree centrality 56.555 90.951 144.095 257.805 249.704
Max. degree centrality 2830 4671 32660 57889 59490
Density 0.017 0.017 0.005 0.005 0.005
Av. network distance 2.515 2.71 2.944 2.884 2.825
RN av. network distance 4.078 4.082 4.801 4.821 4.818
Clustering coefficient 0.462 0.351 0.364 0.393 0.408
RN clustering coefficient 0.012 0.011 0.006 0.004 0.004
Gini coefficient 83.77 89.06 93.4 93.71 93.83

Note: RN is a random network with the same number of nodes and links

The outcome of the uneven distribution of the IP links among the Chinese cities is an efficient
digital network. Indeed, despite the very low density of the CP, which decreases over time, the average
network distance is exceptionally short. In the CNA framework, distance does not refer to Euclidean
distance, but to the number of nodes that separate any two nodes®. For the case of the Chinese digital
infrastructure, any two cities are separated on average by two intermediate nodes, which results in a

7 Just as before, this is a weighted degree centrality measure.
® Because there are usually numerous different ways to connect any two given nodes (known as walks), research
commonly focuses on the shortest path, known as distance (Nooy, Mrvar, and Batagelj 2005).
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network distance less than 3. The latter is an indication of efficiency, as it reflects the ability of the
network to transfer data flows with minimal routing.

The above qualities and the efficiency of the network can be attributed to the small world (SW)
characteristics of the CP. The latter refers to a widely used network model, whose main characteristic is
the existence of highly-connected cliques®, which gain global connectivity via a few links that span the
entire network, linking distant clusters (Watts and Strogatz 1998). This theoretical network model
became popular because of its many real-world applications. The digital infrastructure in China
resembles SW networks because of the short average distance — shorter than the ones observed in
same size random networks (RN)® — and the high clustering coefficient'’ — higher than the ones
discovered in same size RN.

Apart from the latter, an essential element of the SW networks is the distribution of nodes’
degree centrality, which distinguishes this network type from another well established network model
known as scale free (SF). SF networks share the above characteristics with SW networks, but the degree
distribution of their nodes follows a power law, contrary to the exponential functions which distinguish
SW networks. The different distributions reflect the difference between these two types of networks in
terms of the nodes’ heterogeneity: while the power-law degree distribution of the SF networks reflects
the existence of a very few super-connected hubs and a vast majority of less-connected vertices
(Barabasi and Albert 1999), the exponential-degree distribution of SW networks resembles highly-
connected cliques and less heterogeneous nodes. Following Newman (2005), the estimation of the
degree distribution curve is based on the cumulative degree function (CDF) derived from an inverse
rank-plot graph. The CDFs for the period 2007-2011 are presented in Figure 1.

° A clique is a “sub-set of a network in which the actors are more closely and intensely tied to one another than
they are to other members of the network” (Hanneman and Riddle 2005).

19 RN were introduced by two Hungarian mathematicians Paul Erdds and Alfréd Rényi and refer to large scale
networks with no obvious structure (Erdos and Rényi 1959). The distribution of vertices degree follows a Poisson
distribution, which means that the majority of the vertices on the network have the same number of links and they
are found nearby the average degree <k>; vertices that deviate from this are rare.

" The clustering coefficient C; of node i is the ratio between the number of edges E; that exist among its nearest
neighbours (nodes which are directly connected with node i) and the maximum number of these edges, where k; is
the number of nodes in clique: (Latora and Marchiori 2001).
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Figure 1: Cumulative degree distribution of Chinese cities based on IP links

The scatter plot reveals a common pattern throughout the study period: the degree distribution

for every year is governed by a power function as indicated by the straight lines. The above visual

observation is also supported statistically by curve estimations based on OLS and the relevant log-log
transformations (Faloutsos et al. 1999; Gorman and Kulkarni 2004; Tranos 2011). The results of the OLS
are presented in Table 5, where two different forms are tested: exponential and power specification,

respectively:

p(x) < e™%,

p(x) < x7%,
Table 5: Degree distribution fit
Year Exponential Power N
R-squared Coef. R-squared Coef.

2007 0.314 -0.003 0.956 -0.629 218
2008 0.328 -0.002 0.965 -0.531 220
2009 0.161 -0.0003 0.974 -0.520 781
2010 0.158 -0.0002 0.967 -0.504 780
2011 0.150 -0.0002 0.970 -0.500 783

Note: OLS and the relevant transformations have been used to explore the

fitness of different functions

(1)
(2)
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Indeed, the OLS results confirm the visual observation that power functions better fit the overall
distribution for the five year study period. In spatial terms, this can be interpreted as an agglomeration
effect of the digital connectivity in a limited number of cities which act as hubs for the Internet
infrastructure in China. Thus, the Chinese digital urban network is a highly hierarchical one and just like
any other SF network, is highly dependent on these hubs, which hold the network together by
performing vital routing functions.

Nonetheless, this is not the case with the European part of the digital infrastructure. As discussed
elsewhere (Tranos and Nijkamp 2013) the European subset of the global IP network, as captured by the
DIMES agents, fails to form a clear power law. On the contrary, CDF for Europe is ruled by a power law
with a cutoff, which means that the power function does not fit the overall distribution, but only the
most-connected nodes (Figure 2). In spatial terms, this reflects the existence of two parallel phenomena:
one the one hand, an agglomeration effect of IP connectivity in a limited number of regions which act as
hubs; on the other hand, the exponential tail reflects the existence of a cluster of less-connected
regions, which is more homogeneous in terms of IP connectivity than if a hierarchical and clear SF
topology were present.

10000 10000
r r
a 1000 4 a 1000 . 2
n n
k k
i 100 [ 100
n n
g g
S 10 s 10

] \
1 ] A ¢
1 100 10000 ! ' ' ' ' M
1 10 100 1000 10000 10000t
node degree node degree
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Figure 2: Cumulative degree distribution of NUTS-3 in Europe regions based on IP links
Source: (Tranos and Nijkamp 2013)

structural differences between the digital network in China and Europe reflect, to a certain extent,
spatial configuration differences. Various mechanisms, which may relate to national policies and
borders, prevent the formation of a network with a power law degree distribution in Europe. Owing to
these policies, the least connected European cities enjoy a level of connectivity higher than the
equivalent of a SF network. However, the absence of multiple national policies and the centralized
infrastructure planning and building in China resulted in a SF network, which is ruled from only a handful
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of hubs: almost 50 per cent of IP connectivity in China is accumulated in only three cities in 2011,
Beijing, Shanghai and Guangzhou. On the contrary, the three most connected cities in Europe are
responsible for only 8.5 per cent of European cities total connectivity.

Although the above analysis provides interesting insights into the nature of this infrastructural
system, it does not provide insight into the mechanisms behind the creation of these links. Moving a
step forward, the next section will explore the mechanisms behind the formation of this complex
network in China.

5. The determinants of digital connectivity within Chinese urban system

After gaining a structural understanding of the IP network in China, this section aims to shed more
light on spatial factors affecting the structure and the evolution of the Internet infrastructure in China.
Using model (1) as the starting point, the effect of a set of explanatory variables, which reflect space and
time dimensions of the digital infrastructure network, is tested in this section. Going a step further, the
modeling results are juxtaposed with corresponding results from Europe. This comparison will increase
the robustness of our analysis and enable potential comparisons.

More specifically, model (1) can be further expanded in the following log-log form:
In (IP;j;) = aolnk + a4In(distance;;) + azexternalj, + asregion;; + asperiods;; + &;j; (3)

The dependent variable (/P;) represents the connectivity between any two connected cities (i and
j) in China in year t. The temporal dimension represents the five years study period (2007-2011).
Building upon the results of the global analysis, we expect that physical distance (distance) between i
and j will have a negative impact on the installed infrastructure between i and j. Then, a number of other
structural explanatory variables is tested here. Based on the above discussion about the importance of
international digital connections, it is expected that the IP connectivity between two cities (i and j) will
be positively affected, if both i and j have international gateway roles. To test this effect we introduce
here a dummy variable (external) which is equal to 1 when both i and j have international IP links during
year t. Then, we test the impact of spatial structure and the importance of provinces in the formation of
the Chinese digital infrastructure. Thus, another variable is introduced to test the impact of intra-
province links: variable region is equal to 1 when both i and j are located in the same province in China.
Finally, the effect of the stability of the connectivity over time is also tested here. Although IP networks
are physical networks, re-wiring is a possible within such networks in order for the supply to meet
demand (Gorman and Kulkarni 2004). In order to test this attribute, the effect of variable periods, which
indicates the number of years that a link between cities i and j was present during the study period, is
tested.

In order to take advantage of the bi-dimensional data on digital connectivity (IP links between i
and j at year t) panel data specifications are adopted for the estimation of (3). Panel data models
improve the researchers’ ability to control for missing or unobserved variables (Hsiao 2003). Such an
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omitted-variable bias as a result of unobserved heterogeneity is a common problem in cross-section
models.

While panel data introduces considerable gains, there are also methodological limitations to be
addressed. For instance, two are the main options for estimating panel regressions: fixed effects (FE) and
random effects (RE) models (Wooldridge 2003). The RE model would have been the preferred choice
here because the first differentiation process of the within estimator (FE) would have resulted in the
elimination of the time-invariant variables (distance, region and periods) (e.g. Brun et al. 2005; Etzo
2011). However, the efficiency of the RE model goes hand in hand with other limitations: the
consistency of RE estimators depends on whether the unobserved random effects are uncorrelated with
the regressors. For instance, some of the explanatory variables might be endogenous by being
correlated with omitted variables which affect the installation of IP links between cities (Baier and
Bergstrand 2001). If this is the case, an instrumentation of the endogenous variables would be necessary
in order to obtain unbiased estimators. However, such an instrumentation is not an easy task given the
complexity of the CP and the lack of prior empirical research in this area. Therefore, a two-way fixed-
effects estimation is introduced here(Tranos and Nijkamp 2013). This specification is differentiated by
the usual FE because it addresses unobserved effects at two dimensions (Baltagi 1995). Thus, the error
term g;; from (3) can be analyzed as following: €;;; = w;; + {j¢ + v;j. In this case, w; and { are the i and
Jj as well as time-specific effects and v;; the remainder stochastic disturbance term. Thus, the two-way FE
will address potential i and j time-specific effects (i.e. the time variant city level effects which are not
observed and are not of our interest here) and enable the estimation of the structural effects (distance,

external, region, periods).

Table 6: Determinants of digital connectivity within Chinese urban system

Dep. Var. IP (In) (1) (2) (3) (4)
IP (In, 1 year lag) 0.373
(1.95)*
distance (In) -0.056 -0.208 -0.216 -10.075
(1.67)* (4.42)*** (3.39)*** (2.09)**
external 1.026 0.241 0.228 -4.021
(17.83)*** (2.91)*** (0.77) (1.61)
region 0.305 0.794 0.851 -40.843
(3.32)*** (5.83)*** (4.56)*** (1.99)**
periods 0.454 0.501 0.656 2.286
(19.12)*** (15.68)*** (13.72)*** (2.64)***
time effects yes yes yes
i,j effects yes
ij effects
it and jt effects yes
constant -0.324 1.752 1.844 70.298
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(1.28) (0.77) (0.43) (2.04)**

Hansen 2.15
Diff. Hansen 2.14
AR(2) -1.16
R’ 0.23 0.60 0.71

N 3,281 3,281 3,281 1,810

* p<0.1; ** p<0.05; *** p<0.01; Standard Error in parentheses

In columns (1)-(3) the results of OLS estimations with various effects are presented. Column (4) presents the two-step robust
system GMM estimation. Hansen is the Hansen test for overidentification restriction; Diff. Hansen is the Difference-in-hansen
test of exogeneity for the validity of additional moment conditions; and AR(2) is the Arellano-Bond test for serial correlation.

Columns 1-3 in Table 6 present the estimation of (3) using different effects. The results are
consistent and some interesting conclusions can be drawn. First of all, a distance decays effect is present
in the distribution of the Internet infrastructure across the Chinese urban system. The impact of distance
increases with the use of specific effects, and especially when the two-way effects are introduced. This is
important, as the latter specification appears to be the most robust due to the lack of unobserved
effects. Then, the importance of these Chinese cities, which act as gateways with the rest of the world,
in attracting intra-China connectivity is reflected in variable external. Indeed, when both connected
cities share IP links not only with cities in China, but also with cities abroad, then the installed digital
infrastructure between this pair of cities is expected to be higher. The positive sign of this variable
remains unchanged across different specifications. However, the effect of this variable stops being
significant when the two-way fixed effects are introduced. This is not surprising as the two-way effect
probably mask the impact of the links between gateway cities because the gateway roles vary both
among time and space. Another important structural factor for the development of the Chinese IP
network is regional connectivity as the location of two connected cities within the same province has a
positive impact on installed connectivity between them. Finally, an indirect assessment of the above
discussed cumulative causation process is achieved with the use of the variable periods. The consistent
positive effect indicates that the number of years a pair of cities remains connected during the study
period is positively related with the amount of installed infrastructure among these cities. In other
words, early, and consequently lengthier, participation of a city-pair in the Chinese IP network has a
positive impact on the connectivity between these two cities.

A more direct estimation of the cumulative causation process or, in network terms, of the
preferential attachment, can be made with the introduction of a dynamic framework. Therefore, model
(3) is expanded to the following form:

In (IP;j) = aglnk + y1In(IP;j;—1) + a4In(distance;;) + azexternal;j, + azregion;j + azperiods;j + & (4)

The main difference with (3) is the inclusion of the autoregressive term (/P;.;). This creates
estimation complications, as OLS and conventional fixed and random effects estimators result in biased
and inconsistent estimates because of the correlation between the autoregressive term and the error
term. To overcome this, the generalized method of moments (GMM) technique is introduced here. The
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latter approach refers to Arellano and Bond’s (1991) suggestion of using first differencing for eliminating
individual effects and then using all possible lags of dependent and independent variables as
instruments for the endogenous variables (in our case only the lags of the dependent variable). Later
on, Arellano and Bover (1995) and Blundell and Bond (1998) suggested first differencing not on the
regressors, but rather on the instruments, a choice which results in increased efficiency (Roodman
2006). The latter approach, known as system GMM, is used here.

Column (4) in Table 6 presents the estimation of model (4). The main finding is that there is
indeed a preferential attachment process in the evolution of the Chinese inter-city IP network, as the
lagged value of the IP connectivity between two cities has a positive impact on the installed IP
infrastructure between these two cities. Another important finding is that despite the inclusion of the
autoregressive term, the distance decay effect is still present. The same applies to the indirect measure
of the cumulative causation. The magnitude of these two effects is much higher than those in the static
models. Nevertheless, the consistency in qualitative terms signifies their importance as structural
elements of the Internet infrastructure across the Chinese cities. This is not the case for the effect of the
variables external and region. While the former stops being significant, the latter has a negative and

significant effect, which does not agree with the static models.

A crucial point in the above process is the validity of the instruments adopted for the GMM
estimations. Three test have been performed here (Jiwattanakulpaisarn et al. 2009). Firstly,
orthogonality conditions of the instruments are tested using the Hansen test for overidentifying
restrictions. Then, the validity of additional moment conditions in levels is tested with the Difference-in-
Hansen test of exogeneity. Finally, the Arellano-Bond test for serial correlation is reported, the null
hypothesis of which (no second-order autocorrelation in differenced residuals) verifies the validity of
two or more order lagged variables as instruments. All of the reported tests support the validity of the
instruments used in the system GMM estimation.

In total, spatial forces affect the structure of the digital infrastructure network. Physical distance
and localization effects are valid for the case of China. What is more, the dynamic panel analysis
confirms the preferential attachment or, in other words, the cumulative process in the IP distribution.
Finally, the effect for the links between gateway cities reflects the structure of the Chinese digital
network as only 10 per cent of the digitally connected cities (110 cities in 2011) share links with cities
outside China. Apparently, these cities act as the main hubs of the Chinese Internet and are responsible
for the SF nature of this network. The positive concentration of IP links between such nodal cities reflect
the importance of these in cities in holding the Chinese Internet together (see Doyle et al. 2005).

6. Conclusions

The combination of network analysis with econometrics resulted in some fruitful outcomes
regarding the understanding of the symbiotic relation between urban and digital networks both globally
and in China. In addition to persistent urbanization trends, the urbanized world will also be a connected
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world, in which next to physical infrastructure also the digital infrastructure (in particular, the Internet)
will play a central role.

Despite the scale of the analysis, similar spatial forces have been identified as drivers of the digital
infrastructural network. Physical distance, accessibility and localization effects are important factors
behind digital connectivity. Thus, it is fair to say that the ‘death of distance’ discussion is not valid in the
frame of the Internet infrastructure. Moreover, factors related with knowledge economy and city size
are also important factors behind the allocation of the Internet’s physical layer.

In addition, it became apparent that digital infrastructure reflects specific attributes of urban
systems. While the rather polycentric European urban system is facilitated by a digital network which
resembles small worlds, the Chinese digital network follows a heterogeneous scale free topology, with
only a handful of super-connected cities. Thus, it can be argued that the highly centralized digital
network, which underpins the Chinese Internet, reflects the centralized and regulative planning system
in China.

Clearly, the sample of world cities used in our investigation could be extended. And it would
certainly be relevant to test the robustness of our findings by examining other — and perhaps more
extensive — data bases. A potentially useful area for further research is the utilization of data regarding
digital flows instead of digital capacity. Online social media could be great candidates for data
extraction. However, such data is difficult to be extracted for issues related with privacy and business
strategies. Nonetheless, we would not expect that the results of such an analysis would be much
differentiated by our present results.

Finally, global connectivity among cities presupposes a world without strict borders. Open access
is an important condition for a globally linked world, and communication policies should do their utmost
to create effective legal frameworks for ensuring open access conditions in a digital world.
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