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Abstract

We explore the characteristics of a capacity-then-price game for a duopoly
market with product differentiation and stochastic demand. The analysis
shows that a minimum threshold value for the level of vertical product dif-
ferentiation exists, relative to horizontal product differentiation, for which
existence of a Nash equilibrium in pure strategies is guaranteed. We find
that when the quality and cost differences between the firms exactly offset
each other, demand uncertainty causes equilibrium outcomes in capacities to
become asymmetric. Without demand uncertainty, only a symmetric equilib-
rium can be established. This difference between stochastic and deterministic
demand is the main driver behind our finding that if the regulator ignores the
stochastic nature of demand, regulation lowers welfare for a large range of
parameters, that is for approximately 10 per cent of the plausible parameter
space.
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1. Introduction

We analyse a two-stage duopoly game, where firms set capacities in the
first stage and prices in the second. Demand is stochastic and becomes
known only after the capacity stage, but before the pricing stage. Capacity-
then-price games with demand uncertainty are relevant for a great number
of industries where capacity is costly and outputs cannot be stored, such as
scheduled transport and telecommunication services, electricity generation,
hotels and so on. For example, Acemoglu et al. (2009) use the Internet,
where service providers invest in capacities and then compete in prices, as
their motivating example.

In their seminal article, Kreps and Scheinkman (1983) establish that
capacity-then-price games yield profit maximising capacities equal to profit
maximising quantities in a one-stage Cournot game. Their contribution has
spurred a wave of research into capacity-then-price games focussing on the
role of demand uncertainty and product differentiation.1 In our analysis,
we take both demand uncertainty and product differentiation into account.
Although prior literature includes various studies addressing product differ-
entiation and demand uncertainty in capacity-then-price games separately,
the combination of these two has not been studied before. Besides mere
academic interests in these two extensions, both are realistic features of the
above mentioned markets.

Several authors study demand uncertainty in the Kreps and Scheinkman
framework. Gal-Or (1984) and De Frutos and Fabra (2011) allow for de-
mand uncertainty with price-inelastic demand. In contrast, Hviid (1991),
Gabszewicz and Poddar (1997), Reynolds and Wilson (2000) and Lepore
(2012) allow for demand uncertainty with downward sloping demand. In
short, these studies show that equilibria in pure strategies either fail to exist
or only exist for specific configurations of the demand functions.2 However,
the main insight by Kreps and Scheinkman, i.e. the equivalence between
Bertrand and Cournot outcomes, has not been rejected.

Product differentiation is the other major extension of the Kreps and

1The particular focus on demand uncertainty might be fully attributed to Kreps and
Scheinkman, because they conjecture that noise in the demand function will change their
main findings dramatically.

2De Frutos and Fabra (2011) prove existence of the equilibrium by defining the capacity
choice game submodular.
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Scheinkman framework drawing attention amongst scholars. Benassy (1989)
identifies the impact of substitutability in Betrand-Edgeworth-Chamberlin
models for given capacities. Yin and Ng (1997), Martin (1999) and Schulz
(1999) include exogenous product differentiation into the Kreps and Scheink-
man framework. An attractive consequence of including product differenti-
ation is that the main result of Kreps and Scheinkman is then shown to hold
without relying on an arbitrary rationing rule (Yin and Ng, 1997).

We add to the literature by combining both extensions into one com-
prehensive model. Our model accounts for demand uncertainty before the
capacity stage with a downward sloping demand function, like Reynolds and
Wilson (2000) and Lepore (2012), and allows for substitutability between
products of both firms, as suggested by Yin and Ng (1997). The firms in
our duopoly might differ in (perceived) quality of their product and capacity
costs. We find a unique equilibrium in pure strategies in both the pricing
and capacity stage, provided the level of vertical product differentiation is
sufficiently high.

A key finding is that under demand uncertainty equilibrium outcomes
in capacities are asymmetric for quality and capacity costs differences that
would yield symmetric outcomes in a setting without demand uncertainty.
In particular, the capacity costs prevent the high-quality firm from serving
occasional high levels of demand, leaving more room for the low-quality firm
to serve the market than it would have without demand uncertainty. We
further show that if a welfare maximising regulator ignores the stochastic
nature of demand, regulation yields lower welfare than the unregulated mar-
ket outcome for a large range of feasible parameter values. Only in approxim-
ately 10 per cent of all possible scenarios of quality and cost differences, this
so-called naive regulation would outperform the unregulated market. This
clearly highlights the importance of taking into account the stochastic nature
of demand.

The remainder of this article is organised as follows. Section 2 outlines
the model, followed by a discussion of the existence of equilibria in pure
strategies in Section 3. We describe the pricing stage in Section 4 and the
capacity stage in Section 5. In Section 6, we provide a numerical analysis
to address the impact of demand uncertainty and product differentiation on
market and regulatory performance. The final section, Section 7, concludes.
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2. Basic model

2.1. Model set-up

Our model follows the framework used in Kreps and Scheinkman (1983),
but adds demand uncertainty and exogenous product differentiation. Two
firms play a capacity-then-price game. Firms set capacities in the first stage
and prices in the second stage. In both stages the firms act simultaneously.
A quadratic utility function of the representative consumer implies the fol-
lowing:3

p1(z1, z2, b, ϕ, α) = α− (z1 + ϕz2)/b,

p2(z1, z2, b, ϕ, θ, α) = θα− (ϕz1 + z2)/b,
(1)

where zi represents the firm specific output, α the reservation price, and b
is the direct demand sensitivity. We assume this demand sensitivity to be
equal for both goods. The degree of horizontal product differentiation is
captured by ϕ, which ranges from 0 for independent goods to 1 for perfect
substitutes.4 Vertical product differentiation is represented by θ where a
unit value indicates that the goods are not differentiated. Without loss of
generality, we appoint firm 1 as the high-quality firm by assuming θ < 1.5

Additionally, we assume that θ/ϕ is sufficiently large to ensure that firm 2
will install a positive capacity. For ease of exposition and interpretation,
the parameters α and b are scaled in such a way that utility is measured
in monetary terms. Both determine the level of demand. Throughout this
analysis, we focus on demand uncertainty in the level of demand through
stochasticity in b, assuming that the reservation price is constant for different
realised levels of demand.

Firm profits are equal to revenue, pizi, minus costs. Firms maximise
their profits by setting capacities, xi, in the first stage and prices, pi, in
the second stage of the model. Output is constrained such that zi ≤ xi.
Firms face a cost of ci per unit of capacity and are assumed to have no
other costs. So, Ci(ci, xi) = cixi. We allow these costs to differ between
firms. The only formal restriction on the cost parameter is that capacity

3See, for example, Vives (1999).
4Formally, 0 ≤ ϕ ≤ 1 ensures that the two goods are substitutes and that the quadratic

utility function is strictly concave.
5Quality may also refer to perceived quality or desirability. we relate vertical product

differentiation to the reservation price for easy comparison of high cost, high-quality firms
with low cost,low-quality firms.
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costs are strictly positive for both firms. Additionally, one may argue that
in practice the higher quality firm is likely to have higher costs per unit of
capacity. Examples of firms with higher (perceived) quality in combination
with higher capital costs include legacy versus low-cost airlines, low- versus
high end hotels, and - if consumers mind environmental aspects - renewable
versus traditional electricity generation.

Kreps and Scheinkman (1983) establish that capacity-then-price games
lead to Cournot outcomes, motivating the use of the single stage Cournot
outcome of our model as a benchmark for further analysis. If demand is
deterministic, the Cournot outcome becomes:

x∗1,C(b̄, c1, c2, ·) = b̄
2(α− c1) − ϕ(θα− c2)

4 − ϕ2
,

x∗2,C(b̄, c1, c2, ·) = b̄
2(θα− c2) − ϕ(α− c1)

4 − ϕ2
,

(2)

where b̄ is a positive parameter equal to the mean of the probability function
of b if demand uncertainty is included in the model as we will discus below.
Without demand uncertainty, the capacities are equal to the outputs for
both firms in the equilibrium: zi = xi. The model is asymmetric for θ < 1,
unless the cost difference per unit of capacity equals the relative difference
in reservation prices, c1 − c2 = (1 − θ)α. The level of demand and degree of
horizontal product differentiation do not alter this condition.

2.2. Demand uncertainty

We now introduce demand uncertainty into the model. When setting
capacities, firms know that different demand states will occur after capacities
are chosen. Firms thus base their capacity decisions on a probability function
of b, with support (0, α−1] and mean b̄.6 The expected profit for firm i equals:

πi(x1, x2, ·) =

α−1∫
0

pi(x1, x2, b, ·)zi(x1, x2, b, ·)f(b)db− cixi, (3)

Firms maximise expected profits by setting capacities in the first stage
and prices in the second, with outputs following from capacities, prices and

6The upper bound α−1, only scales the model in the output dimension and ensures
that demand cannot exceed 1 for any given positive price.
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states of the world. The next section discusses how the states of the world,
the level of demand and capacities are interrelated. The model is solved by
backward induction.

Apart from the profits of each firm, we look at the efficiency of the result-
ing equilibria over the different degrees of product differentiation, costs, and
demand uncertainty. For the latter, we compare the efficiency of the stand-
ard Cournot outcome as shown in (2) and the results based on optimisation
of (3). In line with earlier work, see e.g., Acemoglu et al. (2009), efficiency is
defined as the ratio of social surplus in equilibrium relative to the first-best
outcome, with social surplus (as measure of welfare) defined as:

W (x1, x2, ·) =

α−1∫
0

 z∗1 (b,·)∫
0

p1(ζ, ·)dζ +

z∗2 (x1,b,·)∫
0

p2(ζ, ·)dζ

 f(b)db− c1x1 − c2x2,

(4)

where z∗1 and z∗2 are (social) optimal values of output determined in the
pricing stage subject to the capacity restrictions zi ≤ xi. The term in between
brackets denotes the consumer benefit for output 1 and 2 respectively, with
inverse demand pi(·) defined as in (1). We discuss the first-best outcome at
length in Section 5.2.

3. Existence of pure strategy equilibria

The existence of equilibria in pure strategies is not generally guaranteed
in capacity-then-price games with uncertain demand. At the core of the
problem lies the incentive in Bertrand-Edgeworth models for one firm, to
increase its price if the other firm’s output is near capacity. As a result, the
competitor’s capacity constraint becomes binding, and the firm earns resid-
ual monopoly profits instead of Bertrand duopoly profits. Benassy (1989,
p. 227) establishes that for an equilibrium to exist, it should be impossible or
irrational for any firm to saturate the capacity of its competitor(s) by raising
its own price. In the case of deterministic demand, firms produce at full
capacity by construction, so the problem does not arise, and hence existence
of a pure strategy equilibrium is guaranteed.

If demand is uncertain and capacity is costly, firms do not produce at
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full capacity for all levels of demand.7 Three situations in the price-stage
may apply, and hence three parameter regions can be distinguished. The
boundaries for each region depend on the level of demand b, relative to the
endogenous capacities x1 and x2. In the first region, demand is too low for
any firm to produce at full capacity, and firms play unrestricted Bertrand
in the price stage of the game. In the third region, demand is sufficiently
high to have both firms produce at full capacity and charge clearing prices
corresponding to their capacities, which boils down to the results reported
by Kreps and Scheinkman (1983).8 The problem lies however in the region
between high and low demand, where at least one of the firms has an incentive
to saturate the other’s capacity.

The following example illustrates this point. Consider a Bertrand duo-
poly without product differentiation, and both firms producing near capacity.
Since neither firm is capacity restricted, both firms make zero profit in the
Bertrand-Nash equilibrium. Either firm can, however, obtain a positive profit
by setting a price above marginal costs, as this will saturate the other firm’s
capacity, implying that some consumers cannot switch to the other firm. For
example, suppose firm 1 raises its price to saturate firm 2. This provides an
incentive for firm 2, who is now capacity restricted, to raise its price as well.
Actually, firm 2 may raise its price to just undercut firm 1’s price without
losing consumers, because the products are pure substitutes. In turn, this
provides an incentive for firm 1 to undercut firm 2’s price. We then have the
non-existence result as established by Benassy (1989), which may also hold
for imperfect substitutes (Benassy, 1989, theorem 3).

Proposition 3.1. A Nash equilibrium in pure strategies in the pricing stage
exists if and only if θ ≤ ϕ/(2 − ϕ2).

Proof. We start by showing that the equilibrium in pure strategies does not
exist if θ > ϕ/(2 − ϕ2). Following Benassy (1989), it is sufficient to prove
that both firms produce positive outputs if neither firm is capacity restricted.
Rewriting (1) yields the firm specific demand functions without capacity
restrictions:

7For low levels of demand, capacity utilization will be under-utilized, whereas for high
levels of demand it may be fully utilized.

8Based on the first and third region only, Young (2010) claims to have found an
equilibrium in pure strategies. However, this finding is based on ignoring the intermediate
region in which pure strategy equilibria in prices fail to exist.
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D1(p1, p2, b, ·) =
b(α(1 − θϕ) − p1 + ϕp2

1 − ϕ2
,

D2(p1, p2, b, ·) =
b(α(θ − ϕ) − p2 + ϕp1

1 − ϕ2
,

(5)

The profit function equals the demand as defined in (5) multiplied by the
corresponding price. Taking the first order conditions of these with respect
to prices, solving for prices and substituting these prices in (5), yields the
equilibrium prices and outputs for each firm:

p∗1(·) =
α(2 − ϕ2 − ϕθ)

4 − ϕ2
, p∗2(·) =

α(2θ − ϕ2θ − ϕ)

4 − ϕ2
, (6)

z∗1(b, ·) =
αb(2 − ϕ2 − ϕθ)

(4 − ϕ2)(1 − ϕ2)
, z∗2(b, ·) =

αb(2θ − ϕ2θ − ϕ)

(4 − ϕ2)(1 − ϕ2)
, (7)

It follows directly that θ > ϕ/(2 − ϕ2) guarantees positive outputs for both
firms. This gives rise to the non-existence problem as identified by Benassy
(1989), because both firms have an incentive to just undercut the compet-
itor’s price.

For the equilibrium in pure strategies to exist, we need to establish that
the high-quality firm does not have the incentive to saturate the capacity
of the low-quality firm. If the high-quality firm chooses not to saturate the
competitor’s capacity, it will act like a contested monopoly, and set a limit
price. The profits are defined by multiplying the equilibrium price in (6) and
output in (7) of the high-quality firm:

π∗
1,CM(b, ·) = α2bθ(ϕ− θ)/ϕ2 − c1x1, (8)

where subscript CM refers to the contested monopoly strategy.9

9A special case arises if θ ≤ ϕ/2. In this case, the low-quality firm cannot produce
profitably whilst setting a positive price for its output. As a result, the contested monopoly
becomes a pure monopoly if both firms are not capacity restricted. By comparing pure
monopoly profits π∗

1,M (b, ·) = (1/4)α2b with the contested monopoly profits as defined in
(8), we can show that for π∗

1,CM > π∗
1,M to hold, it is required that θ > (1/2)ϕ. It is

only profitable for firm 1 to act as a monopolist if firm 2 cannot produce profitably at the
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If firm 1 does saturate firm 2’s capacity, it acts as a residual monopolist.
Firm 2’s best response function in prices in that case equals:

p2,RM1(·) = (α(θ − ϕ) + ϕp1,RM1)/2, (9)

where subscript RM1 refers to the residual monopoly strategy of firm 1.
Rewriting this function for p1,RM1 and substituting the clearing price p∗2,RM1

for which D2(p
∗
2,RM1

) = x2, yields the equilibrium price for firm 1:

p∗1,RM1
(x2, b, ·) =

α(ϕ− θ) + 2p∗2,RM1

ϕ
=
αb(ϕ− θ) + 2x2(1 − ϕ2)

bϕ
.

Substituting this price into the demand function yields equilibrium output:
z∗1,RM1

(x2, b, ·) = (αbθ− x2(2−ϕ2))/ϕ. Therefore the profit for firm 1 acting
as a residual monopolist equals:

π∗
1,RM1

(x2, b, ·) =
(αbθ − x2(2 − ϕ2))(αb(ϕ− θ) + 2x2(1 − ϕ2))

bϕ2
. (10)

It is only rational for firm 1 to saturate firm 2’s capacity if π∗
1,CM < π∗

1,RM1
.

This implies that for:

θ <
(2 − ϕ2)(αbϕ+ 2x2(1 − ϕ2))

αb(4 − 3ϕ2)
, (11)

firm 1 does not have the incentive to saturate firm 2’s capacity. It is easy to
show that this condition is always satisfied for θ ≤ ϕ/(2 − ϕ2): substituting
θ̄ = ϕ/(2 − ϕ2) as an upper bound of θ in (11) yields:

θ̄ − (2 − ϕ2)(αbϕ+ 2x2(1 − ϕ2))

αb(4 − 3ϕ2)
=

(1 − ϕ2)(αbϕ3 − 2(2 − ϕ2)2)

αb(2 − ϕ2)(4 − 3ϕ2)
< 0, (12)

since αbϕ3 < 2(2 − ϕ2)2, expression (12) is negative for any level of demand
b and for 0 ≤ ϕ ≤ 1.

monopoly price. Substituting this monopoly price p∗1,M (·) = (1/2)α, into the best response
function of firm 2 yields firm 2’s equilibrium price: p∗2,M (·) = α(2θ − ϕ)/4. Obviously,
θ ≤ (1/2) yields a zero or negative equilibrium price for firm 2. Whether the high-quality
firm acts as a contested or pure monopoly does not alter the analysis of price competition
where at least one firm is constrained in capacity.
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Proposition 3.1 sets the stage for the remainder of this article, focusing on
what we will call the mainly vertical product differentiation case, for which
the existence of a Nash equilibrium in pure strategies is guaranteed. Such
a setting is relevant in real markets such as air transport (low-cost versus
legacy carriers) and hotels (low-end versus high-end hotels). Throughout the
subsequent analysis, the degree of vertical product differentiation is bounded
by a lower bound θ guaranteeing the capacity of the low-quality firm to be
positive, and by an upper bound θ̄ guaranteeing the existence of a Nash
equilibrium in pure strategies.

4. Pricing stage

After both firms installed their capacity and the actual level of demand
b has been revealed to both firms, we can distinguish between three levels
of demand: low, medium, and high demand. We categorize these levels
of demand by the nature of strategic interaction occurring in each region:
contested monopoly, residual monopoly and Bertrand Edgeworth duopoly re-
spectively.10 The boundaries for each demand region depend on the level of
demand b relative to installed capacities x1 and x2, which are to be taken as
exogenous in the pricing stage.

4.1. Contested monopoly

Proposition 4.1. For demand levels defined by bCM ≤ x1ϕ/αθ the low-
quality firm, firm 2, will not produce and the high-quality firm, firm 1, will
set a limit price equal to p∗1,CM(·) = α(ϕ − θ)/ϕ, resulting in equilibrium
output z∗1,CM(b, ·) = αbθ/ϕ.

Proof. It follows directly from Proposition 3.1 that the firm 2 has zero output.
However, firm 1 has to take into account potential production of firm 2.
Therefore, firm 1 offers output at the limit price at which firm 2 will just not
produce. This limit price as mentioned in Proposition 4.1 can be found by
setting firm 2’s best response in prices equal to zero and solve for p∗1,CM(·).
Substituting p∗1,CM(·) and z2 = 0 into firm 1’s demand function gives the

10Note that the only resemblance between our definition of three regions in the pricing
stage and the definition as used in, for example, De Frutos and Fabra (2011) and Osborne
and Pitchik (1986), is the fact that both sets of regions depend on demand and capacity
characteristics.
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equilibrium output z∗1,CM(b, ·). The upper bound of the first region, as defined
in Proposition 4.1, can be found by equating z∗1,CM(b, ·) to firm 1’s capacity
and solve for b.

Both firm 1’s equilibrium price and output are increasing in the degree
of horizontal differentiation, implying that firm 1’s profits are higher if the
outputs are more horizontally differentiated. The price is positively related
to the reservation price α and to the level of vertical product differentiation
θ. A smaller difference in the (perceived) quality between the two firms,
indicated by a higher value of θ, leaves less room for the high-quality firm to
reap quality rents, which is what one would expect from a limit price. For
θ > 1/2 the profit of firm 1 increases in the degree of vertical differentiation.

4.2. Residual monopoly

Proposition 4.2. For demand levels defined by x1ϕ
αθ

< bRM ≤ (x1ϕ+2x2)
αθ

firm 1

will produce at full capacity with p∗1,RM(x1, b, ·) = αb(2−θϕ)−x1(2−ϕ2)
2b

and firm 2

serves residual demand z∗2,RM(x1, b, ·) = αbθ−x1ϕ
2

at p∗2,RM(x1, b, ·) = αbθ−x1ϕ
2b

.

Proof. Following Proposition 3.1, it is rational for the high-quality firm,
firm 1 , to produce at full capacity if the level of demand exceeds the threshold
level as defined in Proposition 4.1. This implies that the low-quality firm,
firm 2, serves residual demand as a monopolist. Substituting z∗1 = x1 into the
inverse demand function and rewriting for z2 yields the demand function for
the output of firm 2: D2,RM(x1, p2,RM , b, ·) = αbθ− bp2,RM − x1ϕ. The profit
for firm 2 simply equals price times demand minus capacity costs. The profit
maximising price as mentioned in Proposition 4.2 for firm 2 now follows dir-
ectly from rewriting the first order condition. Substituting p∗2,RM(x1, b, ·) into
the demand function for firm 2 yields the accompanying equilibrium output.
Since firm 1 is capacity restricted, its optimal price is the clearing price given
firm 2’s optimal behaviour. Substituting z1 = x1 and z∗2,RM(x1, b, ·) into the
inverse demand function for output 1 as defined in (5) gives p∗1,RM(x1, b, ·).
The lower bound of this residual demand region follows directly from Propos-
ition 4.1, whereas the upper bound is determined by equating z∗2,RM(x1, b, ·)
to firm 2’s capacity x2 and solve for b.

Both the equilibrium price and output for firm 2 are increasing in the level
of demand b, and decreasing in firm 1’s capacity. Vertical product differen-
tiation decreases firm 2’s profits because it gives firm 1 more possibilities to
exercise its contestable monopoly power in the first region. The equilibrium
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price of firm 1 is positively related to the level of vertical product differenti-
ation (or the quality difference) and negatively to its own capacity, which is
a common funding in capacity restricted price games.

4.3. Bertrand Edgeworth duopoly region

If demand exceeds the threshold level as given in Proposition 4.2, both
firms are capacity restricted. Stated otherwise, the outputs associated to
their optimal pricing exceed their installed capacities.

Proposition 4.3. For demand levels defined by bBE > (x1ϕ+ 2x2)/αθ, both
firms will produce at full capacity z∗i,BE = xi, yielding equilibrium clearing

prices: p∗1,BE(x1, x2, b, ·) = α− x1+x2ϕ
b

and p∗2,BE(x1, x2, b, ·) = αθ − x1ϕ+x2
b

.

Proof. The proof follows straightforwardly from the boundary for the level
of demand mentioned in Proposition 4.2. For this and higher levels of b,
the profit maximising output of both firms exceeds their capacities, implying
that they will produce at full capacity. Given that both firms produce at
full capacity, it is rational for them to set clearing prices to maximise profits.
The equilibrium clearing prices can be found by substituting capacities for
outputs in the inverse demand functions.

Both prices are negatively related to the firms’ joint capacity (corrected
for horizontal product differentiation), which is a common feature of Bertrand
Edgeworth models.

5. Capacity stage

5.1. Profit maximising capacities

Having expressed all equilibrium prices and outputs in terms of capacity
and the level of demand b in Section 4, we can now solve the capacity stage.
To solve for the capacity stage, we first substitute the established equilibrium
prices and outputs for each demand region into the profit function for firm 1

12



as defined in (3):

π1(x1, x2, ·) =

bCM (x1,·)∫
0

z∗1,CM(b, ·)p1,CM(·)∗f(b)db

+

bRM (x1,x2,·)∫
bCM (x1,·)

x1p
∗
1,RM(x1, b, ·)f(b)db

+

α−1∫
bRM (x1,x2,·)

x1p
∗
1,BE(x1, x2, b, ·)f(b)db− c1x1,

(13)

and for firm 2:

π2(x1, x2, ·) =

bRM (x1,x2,·)∫
bCM (x1,·)

z∗2,RM(x1, b, ·)p∗2,RM(x1, b, ·)f(b)db

+

α−1∫
bRM (x1,x2,·)

x2p
∗
2,BE(x1, x2, b, ·)f(b)db− c2x2.

(14)

The three separate integrals in (13) reflect the relevant three regions contested
monopoly, residual monopoly and Bertrand Edgeworth duopoly for firm 1,
whereas the two integrals in (14) reflect the ones relevant for firm 2. Note that
the domain of integration for each region depends on the installed capacities
by each firm. Both firms maximise their expected profits by setting capacities
simultaneously.

Proposition 5.1. There exists a unique profit maximising equilibrium in the
capacity stage. In this equilibrium, both firms install that level of capacity
for which the marginal revenue of capacity is equal to the marginal cost of
capacity.

Proof. Applying Leibniz Integration Rule to (13) and (14) allows us to write
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the first order conditions for profit maximisation as follows:

∂π1(x1, x2, ·)
∂x1

=

bRM (x1,x2,·)∫
bCM (x1,·)

∂

∂x1
x1p

∗
1,RM(x1, b, ·)f(b)db

+

α−1∫
bRM (x1,x2,·)

∂

∂x1
x1p

∗
1,be(x1, x2, b, ·)f(b)db− c1 = 0,

(15)

and for firm 2:

∂π2(x1, x2, ·)
∂x2

=

bRM (x1,x2,·)∫
bCM (x1,·)

∂

∂x2
z∗2,RM(x1, b, ·)p∗2,RM(x1, b, ·)f(b)db

+

α−1∫
bRM (x1,x2,·)

∂

∂x2
x2p

∗
2,be(x1, x2, b, ·)f(b)db− c2 = 0.

(16)

The first order conditions in (15) and (16) show that both firms set marginal
revenues of capacity equal to marginal costs of capacity. By construction,
capacity is never binding for firm 1 in the contested monopoly region, and
hence marginal revenue of capacity equals zero in that demand region.11

It is straightforward to verify that each first order condition has a unique
solution in capacity. For each marginal revenue term within a specific demand
region, we know that it is decreasing in the relevant capacity over the whole
domain of the integral.12 At the boundary value bRM , the marginal revenue
is equal for both regions of demand. Therefore, total marginal revenue is
monotonically decreasing in capacity, whereas marginal costs of capacity are
constant, implying a unique solution in capacity.

5.2. Welfare maximizing capacities

We now characterise the normative first-best solution of the above defined
capacity-then-price game. This solution includes both optimal capacity and

11Firm 2 has no revenues in the contested monopoly region.
12For example, in the residual monopoly demand region firm 1 revenues equal:

x1(αb(2 − θϕ) − x1(2 − ϕ2))/2b. Hence, the marginal revenue (αb(2−θϕ)−2x1(2−ϕ2))/2b
is decreasing in x1.
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accompanying output levels. Looking only at cases where θ ≤ ϕ/(2 − ϕ2),
one needs to take into account whether the (perceived) qualitative superior
output has strictly higher capacity costs or not.

Proposition 5.2. For c1 ≤ c2, a unique welfare maximizing equilibrium
in the capacity stage exists. In this equilibrium, the high-quality firm should
install that level of capacity for which the marginal benefit of capacity is equal
to marginal cost of capacity, whereas the low-quality firm should not install
any capacity.

Proof. Assuming that the two firms have the same production costs and only
differ in (perceived) quality and capacity costs, it is straightforward that for
c1 ≤ c2 only the (perceived) qualitative superior output should be produced
to maximise welfare.13 If demand is low, the social optimal output follows
from maximizing

∫ z1
0
p1(ζ, b, ·)dζ with respect to z1. Using the fact that

z2 = 0, the optimal output yields: z∗1 = αb. This implies that the capacity
restriction is binding when demand is high, that is: b > x1α

−1. We refer
to this boundary value as bl. Hence, the applicable welfare function in the
capacity stage is:

W (x1, ·) =

bl(x1,·)∫
0

z∗1 (b,·)∫
0

p1(ζ, b, ·)dζf(b)db+

α−1∫
bl(x1,·)

x1∫
0

p1(ζ, b, ·)dζf(b)db− c1x1,

(17)
where p1(ζ, b, ·) follows directly from (1). Applying Leibniz Integration Rule
yields the following first order condition for welfare maximisation:

∂W (x1, ·)
∂x1

=

α−1∫
bl(x1,·)

(
∂

∂x1

x1∫
0

p1(ζ, b, ·)dζ

)
f(b)db− c1 = 0. (18)

In (18), the term within brackets is equal to the marginal consumers’ benefit
of capacity installed by the high-quality firm, which is equal to α − x1/b.
Hence, (18) implies that the marginal benefit of capacity needs to be equal
to the marginal cost of capacity. The marginal benefit of an extra unit
of capacity is, just as the marginal revenue, equal to zero if the capacity
constraint is not binding.

13The assumed symmetry in production costs does not alter our main result.
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Proposition 5.3. For c1 > c2, a unique welfare maximizing equilibrium in
the capacity stage exists. In this equilibrium, both firms install that level of
capacity for which the marginal benefit of capacity is equal to marginal cost
of capacity.

Proof. For c1 > c2, the low-quality firm should start producing when the
high-quality firm cannot serve all demand due to its capacity restriction.
Hence, if demand is low, only the high-qualitative firm produces. If demand
is increasing such that its output is constrained by its capacity, let’s call
this medium demand, the low-quality firm starts producing as well. For high
levels of demand, both firms are producing at their capacity. When demand
is low, the same reasoning applies as in the case of c1 ≤ c2 described above,
yielding an equal contribution to the appropriate welfare function in the
capacity stage as the first RHS term in (17). If demand increases such that
b > x1α

−1, our so-called medium demand stage, the social optimal output

follows from maximizing
z2∫
0

p2(ζ, b, ·)dζ with respect to z2 given z∗1 = x1. The

resulting optimal output for firm 2 yields therefore: z∗2 = θαb− ϕx1. When
b > (ϕx1 + x2)/θα, i.e. for high levels of demand, the capacity constraints
are binding for both firms. We refer to this boundary value using subscript
m. The optimal output supplied for b > bm equals x1 and x2. Combining
the optimal output for both firms over these three demand levels, yields the
following welfare function in the capacity stage:

W (x1, x2, ·) = −c1x1 − c2x2 +

bl(x1,·)∫
0

z∗1 (b,·)∫
0

pl1(ζ, b, ·)dζf(b)db

+

bm(x1,x2,·)∫
bl(x1,·)

( x1∫
0

pm1 (ζ, b, ·)dζ +

z∗2 (x1,b,·)∫
0

pm2 (ζ, x1, b)dζ

)
f(b)db

+

α−1∫
bm(x1,x2,·)

( x1∫
0

ph1(ζ, x2, b, ·)dζ +

x2∫
0

ph2(ζ, x1, b, ·)dζ

)
f(b)db,

(19)

where the subscripts l, m, and h indicate that the inverse demand functions
for both outputs, as specified in (1), are different for low, medium and high

16



levels of demand. The resulting first order conditions for welfare maximizing
are:

∂W (x1, x2, ·)
∂x1

=

bm(x1,x2,·)∫
bl(x1,·)

(
∂

∂x1

x1∫
0

pm1 (ζ, b, ·)dζ

)
f(b)db

+

α−1∫
bm(x1,x2,·)

(
∂

∂x1

x1∫
0

ph1(ζ, x2, b, ·)dζ

)
f(b)db− c1 = 0,

∂W (x1, x2, ·)
∂x2

=

α−1∫
bm(x1,x2,·)

(
∂

∂x2

x2∫
0

ph2(ζ, x1, b, ·)dζ

)
f(b)db− c2 = 0.

(20)

The above first order conditions have the same straightforward interpretation
as before: marginal costs of capacity need to equal the marginal benefit (util-
ity) of capacity. Only if both firms are capacity constrained, i.e. with high
demand, adding an extra unit of capacity of the low-quality firm increases
welfare. The marginal benefit of both capacities depends in this case depend
on each other. For medium demand, adding an extra unit of capacity of the
low-quality firm does not increase welfare because with this level of demand
the low-quality firm is not capacity constrained.

6. Numerical analysis: stochastic versus deterministic demand

Although the first order conditions with respect to capacity have a straight-
forward interpretation, their structure prevents insightful analytical results
for equilibria in the capacity stage from being available. Therefore, we per-
form a numerical analysis focussing on the differences between deterministic
and stochastic demand. For such an analysis we need to define the distribu-
tion of b. The choice for a specific distribution does not alter the structure of
the capacity-then-price game since the first order conditions are valid for any
type of assumed distribution. We assume that b follows a uniform distribu-
tion over the interval (0, α−1], where the upper bound scales the model such
that D(0) ≤ 1. The model allows us to present numerical results over the
entire relevant domain without making any additional arbitrary assumptions
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on parameter values other that on the cost parameters.14 Parameters ϕ and
θ are bounded by the restrictions that guarantee the existence of an equilib-
rium in pure strategies in the pricing stage as defined in Proposition 3.1. We
vary the two parameters within these boundaries to assess their impact.15

6.1. Profit maximising capacity levels

Figure 1 depicts the relationship between total capacity and the cost level.
In the deterministic case, this relationship is represented by a downward slop-
ing linear line. In the stochastic case however, the relationship is non-linear.
Figure 1a is based on equal capacity costs, whereas c2 = 1

4
c1 in Figure 1b.

If capacity costs are sufficiently low, it is rewarding to build capacity that
stands idle for most of the time in order to serve peak demand. If capa-
city costs are large however, holding capacity just for high demand states is
more costly and firms will build less than under deterministic demand. For

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

c1(c2 = c1)

x
1

+
x
2

Total market capacity for θ = 0.9

(a) Equal capacity costs

0 0.1 0.2 0.3 0.4 0.5 0.6
c1(c2 = 1

4
c1)

Stochastic: U ∼ b[0, 1)

Deterministic: b = 1/2

(b) Unequal capacity costs

Figure 1: Total market capacity for equal and unequal capacity costs.

14As mentioned above, using an upper bound of b equal to α−1 merely scales the model.
Hence, setting α to unity scales all prices, outputs, quantities and boundary values of b as
a fraction of the reservation price and maximum demand respectively.

15Since the degree of horizontal product differentiation ϕ only has a minor effect on any
of the outcomes presented here, only results for the limit case of its value nearing unity
are reported.
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lower values of θ, i.e. larger (perceived) quality differences, the pattern is
similar, but the market becomes a monopoly at higher cost levels. If the
low-quality firm has lower capacity costs, market capacity decreases slower
with the cost level of the high-quality firm in without demand uncertainty
(compare dashed line in 1a and 1b), and stronger so for stochastic demand
(compare solid line in 1a and 1b). The intuition behind is as follows: the
low costs of capacity (for the low-quality firm) yields it profitable to build
capacity to cater for peak demand states of the world, whereas the costs of
leaving the capacity idle in lower demand states is not such a heavy burden.

This intuition is confirmed in Figure 2. The lines, solid for the stochastic
and dashed for the deterministic model, show the combinations of quality
and cost differences for which both firms offer equal capacities, i.e. capacity
isoquants. For all parameter sets to the right (left) of these lines, the low
(high) quality firm offers more capacity than the high (low) quality firm. In
the deterministic case, the capacity isoquant is determined by the equality
(1 − θ)α = c1 − c2. At this equality, the quality difference exactly offsets
the cost difference. The capacity isoquant for the stochastic case lies to the
left of and above the capacity isoquant for the deterministic case, implying
that the stochastic model yields an asymmetric outcome for parameter values
that in a deterministic model would yield symmetric outcomes. The finding
of an asymmetric result for values of θ and ci that would in the deterministic
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x1 < x2
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−
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Capacity isoquants

Stochastic: x1 = x2
Deterministic: x1 = x2

Figure 2: Capacity isoquants as function of c1, c2 = 0.1 and θ.
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case yield symmetric outcomes is consistent with earlier results, reported by
Reynolds and Wilson (2000) and De Frutos and Fabra (2011). Firm 1’s high
capacity costs withhold it from serving occasional high levels of demand,
leaving more room for firm 2 to serve the market than it would have in the
deterministic case.16

The profit maximizing capacities are plotted in Figure 3 for each firm
and different levels of (perceived) quality differentiation. For θ = 0.7, both
firms have equal capacities in the deterministic model because the quality
difference offsets the cost difference. In the stochastic case, however, the
capacity of the low cost, low-quality firm exceeds that of the higher quality
firm. The difference increases as the difference in quality decreases. It is also
obvious from Figure 3 that the difference in capacity levels increases more in
the stochastic model compared to the deterministic case. 17
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Figure 3: Profit maximising capacities for c1 = 0.4 and c2 = 0.1.

16If the cost level for both firms increases equally, the difference between restoring
symmetric outcomes for stochastic versus deterministic demand, measured in θ, becomes
smaller. For high cost levels, symmetry is restored at the mentioned equality for both
stochastic and deterministic demand.

17At equal costs, not shown here, the capacity of the high-quality firm exceeds that of
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Figure 4 provides the profit isoquants for combinations of quality differ-
ences and cost differences. The pattern is fairly similar to that in Figure
2, although the difference between the stochastic and deterministic case is
smaller for profits than for capacities. Like in the case of capacities, there
is a range of parameters for which the deterministic model predicts higher
profits for the high-quality firm, whereas the stochastic model predicts higher
profits for the low-quality firm.

6.2. Impact of naive regulation and market power on welfare

The difference between the deterministic and the stochastic version of
the model allows us to analyse the situation that we label as naive regula-
tion. Under such naive regulation, the regulator assumes that the world is
deterministic, whereas it is in fact stochastic. We use the same definition of
efficiency as, amongst others, Acemoglu et al. (2009): the ratio of welfare
in equilibrium relative to the first-best outcome. The first-best outcome in
this case is defined as welfare maximisation by a regulator who acknowledges
that the world is stochastic, as discussed in Section 5.2.

Figure 5 compares the efficiency of naive regulation and the market out-
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Figure 4: Profit isoquants as function of c1, c2 = 0.1 and θ.

the low cost firm, and again the differences are larger in the stochastic case.
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come without regulation for different degrees of product differentiation. If
the quality difference is exactly offset by the cost difference, here at θ = 0.7,
naive regulation nearly reaches the first-best level of welfare. If the quality
difference is smaller than the cost difference, the efficiency of naive regulation
drops instantly to a level below that of the unregulated market outcome. If
the quality difference is larger than the cost difference the drop is not instant,
but the efficiency of naive regulation still drops fast. The bad performance
of naive regulation is because it ignores the fact that a mix of low- and
high-quality capacity is welfare improving if demand is uncertain: for the
given cost levels and θ > 0.7, the naive regulator only installs capacity of
the low-quality firm, not taking into account the realised level of demand.
However, in reality, for a whole range of low levels of demand it would have
been better to have the high-quality firm producing and leave only occasional
peak demand to be served by the low-quality firm.18 Only if the differences
in quality and capacity costs nearly offset each other, the costs of having
no mix of production is absent. Given that competition without regulation
results in installed positive capacities for both firms, Figure 5 suggests that
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Figure 5: Efficiency for different levels of θ with c1 = 0.4 and c2 = 0.1.

18For θ < 0.7, only the high-quality firm installs positive capacity under naive regula-
tion. As a result, in reality, the society incurs too high capacity costs to serve occasional
peak demand.
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naive regulation only outperforms the market outcome in a small area where
the quality difference is approximately equal to the cost difference.

We check the robustness of this result in Figure 6. The graph depicts all
combinations of cost and quality differences for which naive regulation leads
to the same level of welfare as the unregulated market outcome. Only in the
small band where cost and quality differences are about equal, we find that
naive regulation leads to higher welfare than the market outcome. This holds
for about 10 per cent of all possible parameter values. This suggests that
ignoring the stochastic nature of demand comes at a high risk of regulation
that reduces welfare rather than increasing it. This clearly establishes the
importance of our analysis and results.
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Figure 6: Contour lines for welfare regimes as function of c1, c2 = 0.1 and θ.

7. Conclusion

In this article we studied capacity-then-price competition under demand
uncertainty in a duopoly with product differentiation. Besides the academic
interest in finding approaches to solve such multi-stage strategic games, fol-
lowing the seminal paper by Kreps and Scheinkman (1983), our study and
findings may be highly relevant for market and policy analysis for a great
number of industries where capacity is costly and outputs cannot be stored,
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such as scheduled transport services, telecommunication services and electri-
city generation.

We considered a two-stage duopoly game, where firms set simultaneously
capacities in the first, and prices in the second stage. The actual level of
demand is known only after setting capacity and varies between time peri-
ods. Using backward induction, we solved the pricing stage by defining three
different regions: contested monopoly, residual monopoly and Bertrand Edge-
worth duopoly. These regions are based on the actual level of demand and
installed capacities in the first stage. We established a unique equilibrium
in pure strategies in both the pricing and capacity stage when the market is
characterised by a sufficient degree of vertical product differentiation relative
to horizontal differentiation. In the capacity stage, firms equate their mar-
ginal capacity costs to the expected marginal revenue of capacity over the
relevant regions. To the best of our knowledge, this is the first study to find
pure strategy equilibria for capacity-then-price games addressing explicitly
both demand uncertainty and product differentiation.

In case of relative low (high) capacity costs, profit maximising capacit-
ies are higher (lower) under stochastic demand compared to deterministic
demand. If demand is stochastic and capacity costs are low, it is econom-
ically viable to hold a large amount of spare capacity to serve high demand
states of the world if they occur. For asymmetric capacity costs, the results
show that under stochastic demand the model yields asymmetric outcomes
even if the cost difference exactly offsets the quality difference. In partic-
ular, the capacity costs prevent the high-quality firm to install capacity to
serve occasional high levels of demand. As a result, the low-quality firm will
install more capacity under demand uncertainty, compared to deterministic
demand.

If a welfare maximizing regulator ignores the fact that demand is stochastic
(labelled as naive regulation), regulation will only outperform the market in
terms of welfare for a narrow band of parameters, about 10 per cent of the
feasible parameter space, where the quality difference is approximately equal
to the cost difference. For other parameter sets, naive regulation leads to
substantial welfare losses due to not providing a mix of low- and high-quality
capacity. This clearly stresses the importance of taking the stochastic nature
of demand into account, both regulation and in economic research.

Future research might address testing our model and key findings em-
pirically, where adequately identifying and measuring the degree of product
differentiation is a true challenge. Finally, one could argue that firms in real-
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ity may choose the degree of product differentiation. Hence, extending the
analysis to the case of endogenous quality choice would be a promising venue
for future research.
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