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Abstract

Hamiache (2001) assigns to every TU game a so-called associated game and
then shows that the Shapley value is characterized as the unique solution for
TU games satisfying the inessential game property, continuity and associated
consistency. The latter notion means that for every game the Shapley value
of the associated game is equal to the Shapley value of the game itself. In
this paper we show that also the EANS-value as well as the CIS-value are
characterized by these three properties for appropriately modified notions
of the associated game. This shows that these three values only differ with
respect to the associated game. The characterization is obtained by applying
the matrix approach as the pivotal technique for characterizing linear values
of TU games in terms of associated consistency.

Keywords: TU games, Shapley value, EANS-value, CIS-value, associated
consistency, matrix approach

1. Introduction

In the axiomatic analysis of cooperative games with Transferable Utility,
shortly TU games, consistency is an important characteristic of viable and
stable solutions. A solution, or value, assigns to each TU game a vector
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whose components specify the payoffs to the players in the game. A value is
consistent if it gives the same payoffs in some kind of modified game as in the
original game. In the literature there are two different ideas for modifying
the original game. The first one is the idea of ‘reduced game’, being a game
that remains after some players have left and have been paid according to
the prevailing value. Reduced game consistency requires that the remaining
players in the reduced game receive the same payoff as in the original game.
The second one is the notion of ‘associated game’. In this case each coalition
revalues its worth in terms of a rule related to the original game. Associated
consistency requires that the value assigns the same payoff vector to the
associated game as to the original game.

Reduced game consistency has been investigated for various solution con-
cepts. It appears that various solutions satisfying reduced game consistency
are only different with respect to the definition of the reduced game. Most
of these results can be found in the survey papers by Driessen (1991) or
Thomson (1996).

Hamiache (2001) introduced the notion of associated game and showed
that the Shapley value satisfies associated game consistency.1 This consis-
tency property of the Shapley value was studied by applying matrix analysis
in Xu et al. (2008) and Hamiache (2010), respectively. Driessen (2010) gen-
eralized associated game consistency to the class of linear, symmetric and
efficient values. Naumova (2009) treated a cooperative game as a bargain-
ing problem with claim point, and studied the weighted entropy solution in
terms of associated consistency. Most of these results fit within the frame-
work of Hamiache (2001), that means that the values are characterized by
the inessential game property, continuity and associated game consistency
for some modified notion of associated game.

Hwang (2006) modified the definition of the associated game of Hamiache
(2001) to characterize the Equal Allocation of Non-Separable costs (EANS)
value, also known as the Egalitarian Non-Separable Contribution (ENSC)
value in Driessen and Funaki (1991). However, this modified associated game
did not allow to characterize the EANS-value by Hamiache’s triple of charac-
terizing properties. Instead Hwang (2006) used five properties to characterize

1Similar as reduced game consistency, in this paper we speak about associated game
consistency instead of just associated consistency. This is also motivated because we
define for different values different associated games, whereas in Hamiache (2001) only
one associated game is considered to characterize the Shapley value.
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the EANS-value by replacing the inessential property by three other axioms
namely efficiency, anonymity and translation covariance. Then it is shown
that the EANS-value is characterized by these three properties, continuity
and associated game consistency for the modified associated game.

The main aim of this paper is to stay within the framework of Hamiache
(2001) and to characterize the EANS-value as the unique value satisfying the
inessential game property, continuity and associated game consistency for an
appropriately modified associated game. By applying the matrix approach,
we show how to characterize linear values for TU games within the framework
of Hamiache (2001). We then follow this approach to characterize the Center
of gravity of Imputation Set (CIS) value, introduced in Driessen and Funaki
(1991). This value is the dual value of the EANS-value. Using this duality
the characterization of the EANS-value follows straightforwardly.

The paper is organized as follows. In Section 2 definitions, notations and
related notions are introduced. In Section 3, we define two types of associated
games and present the characterization results for the EANS and CIS-values
with respect to these two associated games respectively. In Section 4 the
characterization results are proved by applying the matrix approach for linear
values.

2. Definitions and notations

A cooperative game with Transferable Utility (TU game) is a pair 〈N, v〉,
where N ⊂ N is a nonempty, finite player set and v : 2N → R is a char-
acteristic function on the power set of N , satisfying v(∅) = 0. An element
i ∈ N and a set of players S ∈ 2N are called a player and coalition respec-
tively, and the associated real number v(S) is called the worth of coalition
S. We denote by GN the set of all TU-games 〈N, v〉 on player set N and
by Ω = 2N\{∅} the set of all nonempty coalitions. A game 〈N, v〉 is called
inessential, if v(S) =

∑
i∈S v({i}) for all S ∈ Ω. For 〈N, v〉 ∈ GN , its dual

game is the game
〈
N, vD

〉
defined by vD(S) = v(N)−v(N\S) for all S ∈ 2N .

It is obvious that for an inessential game 〈N, v〉, its dual game
〈
N, vD

〉
is

given by vD(S) = v(S) for every S ∈ 2N and so
〈
N, vD

〉
is inessential too.

The cardinality of a finite set K is denoted by k, so s is the number of players
in coalition S. For K ⊂ N, we denote by RK the k-dimensional vector space
whose elements x ∈ RK have components xi, i ∈ K.

The main aim of cooperative game theory is to assign an allocation to
every game 〈N, v〉 ∈ GN , that is to assign for every game 〈N, v〉 a payoff

3



xi ∈ R to every i ∈ N . A single-valued solution, called value, is a function φ
that assigns a single payoff vector φ(N, v) ∈ RN to every game 〈N, v〉 ∈ GN .
The payoff φi(N, v) of player i represents an assessment by i of his or her gains
from participating in game 〈N, v〉. A value φ is efficient if

∑
i∈N φi(v) =

v(N) for every 〈N, v〉 ∈ GN , so an efficient value divides precisely the overall
earnings v(N) of the grand coalition N among the players in the game. The
best-known efficient value is the Shapley value, denoted by Sh. This value
assigns to each 〈N, v〉 ∈ GN the payoffs

Shi(N, v) =
∑

{S∈Ω|i∈S}

(n− s)!(s− 1)!

n!
(v(S)− v(S \ {i})), for all i ∈ N.

A value φ on GN is said to satisfy
(i) linearity, if φ(N,α · v + β · w) = α · φ(N, v) + β · φ(N,w) for all 〈N, v〉,
〈N,w〉 ∈ GN , and all α, β ∈ R;
(ii) anonymity2, if φπ(i)(N, πv) = φi(N, v) for every 〈N, v〉 ∈ GN , every i ∈ N ,
and every permutation π on N ;
(iii) inessential game property, if φi(N, v) = v({i}) for every inessential game
〈N, v〉 ∈ GN , and all i ∈ N ;
(iv) continuity, if for every convergent sequence of games {〈N, vk〉}∞k=1 and
its limit game 〈N, ṽ〉 (i.e., for every S ∈ Ω, vk(S) converges to ṽ(S)), the cor-
responding sequence of payoff vectors {φ(N, vk)}∞k=1 converges to the payoff
vector φ(N, ṽ);
(v) translation covariance, if φ(N, v+α) = φ(N, v)+α for every game 〈N, v〉
and every α ∈ RN , where 〈N, v+α〉 is defined by (v+α)(S) = v(S)+

∑
i∈S αi

for all S ∈ Ω.
It is trivial to see that any linear value φ verifies continuity.

The Equal Allocation of Non-Separable contributions (EANS) value, see
Moulin (1985), assigns to each 〈N, v〉 ∈ GN the payoffs

EANSi(N, v) = SCi(N, v) +
1

n

[
v(N)−

∑
j∈N

SCj(N, v)
]
, for all i ∈ N,

where SCj(N, v) = v(N)−v(N\{j}) is the marginal contribution of player j,

2We remark that Hwang (2006) calls this symmetry although that name is usually used
for the weaker property stating that φi(N, v) = φj(N, v) whenever i, j ∈ N are such that
v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.
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j ∈ N , to the grand coalition N .3 So, the EANS-value assigns to each player
i ∈ N its own marginal contribution SCi(N, v) and distributes the nonsep-
arable contributions v(N) −

∑
j∈N SCj(N, v) equally among the players.

Notice that
∑

i∈N EANSi(N, v) = v(N) and so the EANS-value is efficient.
For a game 〈N, v〉 ∈ GN , the Imputation Set is the collection of all payoff
vectors

I(N, v) = {x ∈ RN |
∑
i∈N

xi = v(N) and xi ≥ v({i}) for all i ∈ N}.

The Center of gravity of the Imputation Set (CIS) value, introduced by
Driessen and Funaki (1991), is consequently defined as

CISi(N, v) = v({i}) +
1

n

[
v(N)−

∑
j∈N

v({j})
]
, for all i ∈ N.

Obviously, also the CIS-value is efficient. Since, by definition of the dual
game, vD({j}) = v(N) − v(N \ {j}) = SCj(N, v) for all j ∈ N , it follows
that EANS(N, v) = CIS(N, vD), so the EANS-value and the CIS value are
each other’s dual. On the other hand, the Shapley value is self-dual, i.e.
Sh(N, v) = Sh(N, vD). Finally, notice that both values are linear as well as
continuous.

For a class of equal surplus sharing solutions, including both the EANS-
value and the CIS-value, van den Brink and Funaki (2009) provided charac-
terizations in terms of some type of reduced game consistency. In this paper,
we follow Hamiache’s approach and provide an axiomatization of the EANS
and CIS-value by associated game consistency.

3. Associated consistency for the EANS and CIS-values

To characterize the Shapley value, Hamiache (2001) introduced a consis-
tency axiom with respect to a specific associated game. For a game 〈N, v〉,
an associated game is a game 〈N, vA〉 that revalues for every coalition S ∈ Ω
its worth from v(S) to a worth vA(S) related to the original game according
to some function on the class of games GN , i.e., there is some function f

3The EANS-value has been introduced originally for costs games (i.e. for each S, v(S)
are the costs of coalition S instead of revenues) as the EANS cost solution. For costs
games SCj(N, v) are the separable costs of player j.
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on GN that maps 〈N, v〉 into 〈N, f(v)〉. Hamiache’s associated consistency
axiom, in this paper renamed as associated game consistency is defined with
reference to an associated game rule.

Axiom 1. For a rule f : GN → GN , a value φ satisfies f -associated game
consistency if φ(N, v) = φ(N, f(v)) for every game 〈N, v〉 ∈ GN .

In the sequel we will often just speak about associated game consistency
when there is no confusion about the rule f . According to associated game
consistency, a value behaves invariant under the adaptation of the game into
the associated game. To characterize the Shapley value, Hamiache (2001)
defined for some value λ, 0 ≤ λ ≤ 1, the associated game, denoted by
〈N, vShλ 〉, as

vShλ (S) = v(S) + λ
∑
j∈N\S

[
v(S ∪ {j})− v(S)− v({j})

]
, for all S ∈ Ω.

For an interpretation we refer to Hamiache (2001). Briefly, coalition S can
earn v(S) on its own. Knowing that eventually the ‘grand coalition’ N will
be formed, coalition S will earn somewhat more or less than this worth. The
associated game specifies what coalition S expects to earn additional to its
worth (where this addition can be negative). The different associated games
differ with respect to what is the additional earnings coalition S expects
above its own worth. In the associated game of Hamiache this is a fraction
of all the surplusses that can be generated by bilateral cooperation between
S and each player outside S.

The Shapley value is characterized as the unique solution that satisfies
associated game consistency with respect to 〈N, vShλ 〉 for 0 < λ < 2

n
, con-

tinuity and the inessential game property. To show this, Hamiache (2001)
considered the infinite sequence of games

{
〈N, vk,Sh〉

}∞
k=1

, where, for some

fixed value of λ, 0 < λ < 2
n
, v1,Sh = vShλ and vk+1,Sh = (vk,Sh)Shλ , k = 1, 2, . . . ,

i.e., vk+1,Sh is the associated game to vk,Sh according to the given rule. It
is then proved that this sequence of repeated associated games converges to
the inessential limit game 〈N, ṽ〉 given by

ṽ(S) =
∑
i∈S

Shi(N, v).

Now, let φ be a solution satisfying associated game consistency with respect
to 〈N, vShλ 〉, continuity and the inessential game property. Then by the first
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two properties we have that

φ(N, v) = φ(N, v1,Sh) = · · · = φ(N, vk,Sh) = · · · = φ(N, ṽ)

and with the inessential game property it then follows that φi(N, v) = Shi(N, v),
i ∈ N .

To characterize the EANS-value Hwang (2006) defined for some value λ,
the associated game, denoted by 〈N, vHwλ 〉, as

vHwλ (S) = v(S) + λ
∑
j∈N\S

[
v(S ∪ {j})− v(S)− SCj(N, v)

]
, for all S ∈ Ω.

Compared to Hamiache’s associated game, the term v({j}) in the definition
of 〈N, vShλ 〉 is replaced by its dual worth SCj(N, v) in 〈N, vHwλ 〉. This seems
somewhat surprising since the Shapley value is not the dual solution of the
EANS-value. In fact, the dual of the EANS-value is the CIS-value while the
Shapley value is self-dual. However, later in this paper we will see that this
has to do with the different frameworks where the two associated games are
applied, whereas we introduce an associated game for the EANS-value in the
framework of Hamiache (2001) (and consequently also obtain an associated
game for its dual, the CIS-value).

Now, the infinite sequence of repeated associated games
{
〈N, vk,Hw〉

}∞
k=1

,

where, for some fixed value of λ, 0 < λ < 2
n−1

, v1,Hw = vHwλ and vk+1,Hw =

(vk,Hw)Hwλ , k = 1, 2, . . ., converges to the limit game 〈N, v̂〉 given by

v̂(S) =
∑
j∈S

SCj(N, v) +
[
v(N)−

∑
j∈N

SCj(N, v)
]
, for all S ∈ Ω.

This limit game 〈N, v̂〉 is not inessential, but is the sum of the inessential
game 〈N, v〉 given by v(S) =

∑
j∈S SCj(N, v), S ∈ Ω, and the constant

game 〈N, v〉 given by v(S) = v(N) −
∑

j∈N SCj(N, v), S ∈ Ω. As a conse-
quence, the inessential game property can not be used now to characterize
the EANS-value. Instead Hwang (2006) shows that the EANS-value is char-
acterized as the unique solution satisfying associated game consistency with
respect to 〈N, vHwλ 〉 (for 0 < λ < 2

n−1
), continuity and the three axioms of

efficiency, anonymity and translation covariance. So, Hwang’s approach does
not fit within Hamiache’s framework in the sense that the limit game is not
inessential and consequently in the corresponding axiom system the inessen-
tial property is replaced by efficiency, anonymity and translation covariance.
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In the sequel we establish a characterization of the EANS-value within
the framework of Hamiache (2001). So, we define an associated game in
such a way that the EANS-value is the unique solution satisfying associated
game consistency with respect to this game, continuity and the inessential
game property. For some value λ, 0 < λ < 1, the associated game 〈N, vEλ 〉 is
defined as, for all S ∈ Ω

vEλ (S) = v(S)+λ
[ s
n

(
v(N)−

∑
j∈N

SCj(N, v)
)
−
(
v(S)−

∑
j∈S

SCj(N, v)
)]
. (3.1)

This associated game can been interpreted as follows. Every coalition S
assumes that, besides it worth v(S), the nonspearable costs are allocated
over the players. If the nonseparable costs are allocated equally over the
players in N than each player gets 1

n
(v(N) −

∑
j∈N SCj(N, v)) of it. So,

coalition S would receive s
n
(v(N) −

∑
j∈N SCj(N, v)) of this. But since

coalition S already assumes to get v(S), it should get less of the nonseparable
cost(if v(S) is positive). How much coalition S gets from the nonseparable
costs is determined by the difference between the nonseparable costs v(S)−∑

j∈S SCj(N, v) within S and the share of S in case the nonseparable costs
of N would be allocated equally among all players.

We will show in Section 4 that the EANS-value satisfies associated game
consistency for the game 〈N, vEλ 〉, thus EANSi(N, v) = EANSi(N, v

E
λ ), i ∈ N ,

for every game 〈N, v〉 ∈ GN . We then consider the infinite sequence of
repeated associated games {〈N, vk,E〉}∞k=1, where, for some fixed value of λ,
v1,E = vEλ and vk+1,E = (vk,E)Eλ , k = 1, 2, . . ., and show that this sequence
converges to the inessential limit game 〈N, v∗〉 given by

v∗(S) =
∑
j∈S

EANSj(N, v), for all S ∈ Ω.

It then follows that, in accordance with the framework of Hamiache, the
EANS-value is characterized by the associated game consistency with respect
to 〈N, vE〉, continuity and the inessential game property. This yields the
following theorem, that will be proven in Section 4.

Theorem 3.1. The EANS-value is the unique value satisfying associated
game consistency with respect to 〈N, vEλ 〉, continuity and the inessential game
property.
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Motivated by the dual relationship between the CIS-value and the EANS-
value, replacing in 〈N, vEλ 〉 the term SCj(N, v) = vD({j}) by its dual worth
v({j}), we define for λ, 0 < λ < 1, the associated game 〈N, vCλ 〉 as, for all
S ∈ Ω,

vCλ (S) = v(S) + λ
[ s
n

(
v(N)−

∑
j∈N

v({j})
)
−
(
v(S)−

∑
j∈S

v({j})
)]
. (3.2)

The next proposition shows that for every game 〈N, v〉, the dual game of its
associated game (3.1) is the associated game (3.2) of its dual game 〈N, vD〉.

Proposition 3.2. For any game 〈N, v〉 ∈ GN , 〈N, (vEλ )D〉 = 〈N, (vD)Cλ 〉.

Proof. For any game 〈N, v〉 ∈ GN , it is obvious that vEλ (N) = v(N) and
vCλ (N) = v(N) by (3.1) and (3.2). Further, for all S ∈ Ω, we have

(vEλ )D(S) = vEλ (N)− vEλ (N\S)

= v(N)− v(N\S)

− λ
[n− s

n

(
v(N)−

∑
j∈N

SCj(N, v)
)
−
(
v(N\S)−

∑
j∈N\S

SCj(N, v)
)]

= v(N)− v(N\S) + λ
[ s
n

(
v(N)−

∑
j∈N

SCj(N, v)
)

− v(N) +
∑
j∈N

SCj(N, v) + v(N\S)−
∑
j∈N\S

SCj(N, v)
]

= v(N)− v(N\S)

+ λ
[ s
n

(
v(N)−

∑
j∈N

SCj(N, v)
)
−
(
v(N)− v(N\S)−

∑
j∈S

SCj(N, v)
)]
.

On the other hand, since vD({j}) = SCj(N, v) for all i ∈ N , we have

(vD)Cλ (S) = vD(S) + λ
[ s
n

(
vD(N)−

∑
j∈N

vD({j})
)
−
(
vD(S)−

∑
j∈S

vD({j})
)]

= v(N)− v(N\S)

+ λ
[ s
n

(
v(N)−

∑
j∈N

SCj(N, v)
)
−
(
v(N)− v(N\S)−

∑
j∈S

SCj(N, v)
)]
.

We conclude that 〈N, (vEλ )D〉 = 〈N, (vD)Cλ 〉. 2
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Taking again the infinite sequence {〈N, vk,C〉}∞k=1, where, for some fixed
value of λ, v1,C = vCλ and vk+1,C = (vk,C)Cλ , k = 1, 2, . . ., also the CIS-
value is characterized in terms of the axiom system within the framework of
Hamiache (2001).

Theorem 3.3. The CIS-value is the unique value satisfying associated game
consistency with respect to 〈N, vCλ 〉, continuity and the inessential game prop-
erty.

In the next section we first prove Theorem 3.3 by using the matrix approach.
Then the characterization of the EANS-value in Theorem 3.1 is obtained
immediately from the relationship given in Proposition 3.2.

4. Matrix approach to associated consistency for linear values

As is well-known, every game 〈N, v〉 ∈ GN can be identified by a column
vector in the (2n−1)-dimensional vector space R2n−1, where the components
of such a vector represent the worths v(S) of the 2n− 1 nonempty coalitions
in Ω.4 We assume that the coalitions are ordered according to the lexico-
graphical ordering. Obviously, any linear operator on the game space GN
has a matrix interpretation, in particular a linear value φ can be written as
φ(N, v) = Mφ · v with Mφ an n× (2n− 1) matrix and any type of associated
game 〈N, vA〉 as vA = MA · v with MA a square matrix of size 2n − 1.

The algebraic representation and matrix approach to cooperative game
theory have appeared to be natural as well as powerful. Kleinberg and Weiss
(1985) constructed a direct sum decomposition of the null space and studied
equivalent classes of games with respect of the Shapley value, i.e., two games
are in the same class if they have the same Shapley value. Dragan (1991,
1996) introduced the potential basis to study the weighted Shapley value and
the Banzhaf value. Grabisch (2000) presented a way to use matrices instead
of operators to study linear nonsingular functions on the class of cooperative
games. Recently, Hernandez-Lamoneda et al. (2007) introduced a natural
representation theory by computing a direct sum decomposition for the game
space GN . Following this scheme, well known results as well as new theorems
and characterizations of a certain class of linear symmetric values are derived.
The matrix approach was applied to study associated game consistency for

4The worth of the empty set is not represented, since v(∅) = 0 for every 〈N, v〉 ∈ GN .
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the Shapley value by Xu et al. (2008) and Hamiache (2010), respectively.
Recently, this approach has also been applied by Hamiache (2012) to study
the efficient Aumann-Drèze value for TU games with coalition structure and
the efficient Myerson value for TU games with communication structure.

Xu et al. (2008) introduced the notion of coalitional matrices representing
linear operators on the game space GN . A matrix M is called row (column)-
coalitional if the number of rows (respectively columns) is 2n − 1 and are
indexed in lexicographic ordering by all coalitions S ∈ Ω. A matrix M is
called square-coalitional if it is both row-coalitional and column-coalitional.
Then the following results are shown.

(i) A value φ is linear on GN if and only if there is a column-coalitional
matrix Mφ such that φ(N, v) = Mφ · v for any game 〈N, v〉 ∈ GN .

(ii) For any linear operator that maps game 〈N, v〉 in its associated game
〈N, vλ〉 for some value λ, and the corresponding infinite sequence of repeated
associated games {〈N, vk〉}∞k=1 with v1 = vλ and vk+1 = (vk)λ, k = 1, 2, . . .,
there is an associated square-coalitional matrix Mλ, such that vλ = Mλ · v
and vk = (Mλ)

k · v, k = 1, 2, . . ..
(iii) When the sequence of associated games converges to limit game

〈N, ṽ〉, then ṽ = M̃ · v with M̃ = lim
k→∞

(Mλ)
k.

Applying these results the matrix approach can now be used to charac-
terize values within the axiom system of Hamiache (2001).

First, the associated game consistency of a linear value φ with respect to
the associated game 〈N, vλ〉 follows from Mφ being invariant under multipli-
cation with the associated matrix Mλ, i.e., Mφ = MφMλ.

Second, using the diagonal decomposition Mλ = PDλP
−1, where Dλ is

the diagonal matrix with all diagonal elements being the eigenvalues of Mλ

and P is the matrix consisting of all corresponding eigenvectors, it follows
that (Mλ)

k = P (Dλ)
kP . By the restrictions on the value of λ, it follows that

all eigenvalues of Mλ are in [0, 1]. It then follows that lim
k→∞

(Dλ)
k exists and

so
M̃ = lim

k→∞
(Mλ)

k = P lim
k→∞

(Dλ)
kP−1 = PDP−1.

Applying the continuity property yields φ(N, v) = M̃ · v.
Third, to apply the inessential game property it is required that Mλ has

an eigenvector equal to one (otherwise lim
k→∞

(Dλ)
k is the zero matrix) and that

M̃ is a row-inessential square-coalitional matrix, i.e., the row of M̃ indexed
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by a coalition S ∈ Ω is equal to the sum over all i ∈ S of the rows of M̃
indexed by i. Thus M̃S =

∑
i∈S

M̃i where, in this paper, the index of the row

with respect to a singleton coalition {i}, i ∈ N , is shortened as i.

In the following we apply this matrix technique to prove Theorems 3.1
and 3.3. Since the comparatively simple form of the CIS-value simplifies the
proof, we first prove the latter theorem and then we use duality between
the CIS and EANS-value to prove the first one. However, notice that the
characterizing procedures of these two values are equivalent from an algebraic
point of view.

For any game 〈N, v〉, the CIS-value can be written in matrix form as

CIS(N, v) = MC · v, (4.1)

with the element
[
MC

]
i,S

on the i-th row and the column indexed by S ∈ Ω

given by

[
MC

]
i,S

=


1
n
, if S = N ;

1− 1
n
, if S = {i};

− 1
n
, if S = {j}, j ∈ N\{i};

0, otherwise.

(4.2)

Further, rewriting the worth vCλ (S), S ∈ Ω, of the associated game given in
equation (3.2) as

vCλ (S) = (1−λ)v(S)+
s

n
λv(N)− s

n
λ
∑
j∈N\S

v({j})+(1− s
n

)λ
∑
j∈S

v({j}), (4.3)

the associated game 〈N, vCλ 〉 can be written as

vCλ = MC
λ · v, (4.4)

with the element
[
MC

λ

]
S∈Ω,T∈Ω

given by

[
MC

λ

]
S,T

=



1− 1
n
λ, if T = S, s = 1;

1− λ, if T = S, 2 < s < n;
1, if T = S, s = n;
s
n
λ, if T 6= S, t = n;
− s
n
λ, if T = {j}, j /∈ S, 1 ≤ s ≤ n;

(1− s
n
)λ, if T = {j}, j ∈ S, 2 < s < n;

0, otherwise.

(4.5)
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In the next proposition the associated game consistency for the CIS-value
with respect to the associated game 〈N, vCλ 〉 is stated and proved in terms of
the matrix approach. For notational convenience we often write i instead of
{i}.

Proposition 4.1. The matrix MC is invariant under multiplication with the
associated matrix MC

λ , that is MC = MCMC
λ .

Proof. We check the matrix equality by showing
[
MCMC

λ

]
i,S

=
[
MC

]
i,S

for

all i ∈ N and all S ∈ Ω. For all i ∈ N and all S ∈ Ω, we have[
MCMC

λ

]
i,S

=
∑
T∈Ω

[
MC

]
i,T

[
MC

λ

]
T,S

=
[
MC

]
i,i

[
MC

λ

]
i,S

+
∑
j 6=i

[
MC

]
i,j

[
MC

λ

]
j,S

+
[
MC

]
i,N

[
MC

λ

]
N,S

. (4.6)

From (4.2) and (4.5), if S = N , then (4.6) yields[
MCMC

λ

]
i,N

= (1− 1

n
) · 1

n
λ− (n− 1)

1

n
· 1

n
λ+

1

n
· 1 =

1

n
=
[
MC

]
i,N
.

Similarly, using (4.2), (4.5) and (4.6) yields that
[
MCMC

λ

]
i,S

=
[
MC

]
i,S

for

all i ∈ N and all S 6= N . 2

In the following we investigate the diagonalizable decomposition of MC
λ

by analyzing its eigenvalues and eigenvectors. A (2n− 1)-dimensional vector
x with components xS indexed by the coalitions S ∈ Ω is row-inessential if
xS =

∑
i∈S xi for every S ∈ Ω.

Lemma 4.2. For the associated matrix MC
λ , we have

1. 1 is an eigenvalue of MC
λ , the eigenvectors corresponding to eigenvalue

1 are row-inessential and the dimension of the corresponding eigenspace
is equal to n;

2. 1− λ is an eigenvalue of MC
λ , and the rank R[MC

λ − (1− λ)I] ≤ n;

3. the matrix MC
λ is diagonalizable.

Proof. 1. Let I be the identity matrix. Since vCλ (N) = v(N), the last row
of matrix MC

λ − I is the zero vector. So 1 is an eigenvalue of MC
λ . Let the

(2n − 1)-dimensional vector x be an eigenvector corresponding to eigenvalue
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1 with components xS, S ∈ Ω. Since (MC
λ − I)x = 0 and λ 6= 0, we have for

all S ∈ Ω with 1 ≤ s < n that

−xS +
s

n
xN −

s

n

∑
j /∈S

xj + (1− s

n
)
∑
j∈S

xj = 0. (4.7)

For s = 1, i.e. S = {j}, j ∈ N , this yields that

− 1

n
xj +

1

n
xN −

1

n

∑
j /∈S

xj = 0.

That is xN =
∑

j∈N xj. Taking this into (4.7), we have for all S ∈ Ω, 2 ≤
s < n,

−xS +
s

n

∑
j∈S

xj + (1− s

n
)
∑
j∈S

xj = 0.

So, we conclude that

xS =
∑
j∈S

xj, for all S ∈ Ω,

and thus any eigenvector x corresponding to eigenvalue 1 is row-inessential.
From this it follows that the dimension of the corresponding eigenspace is
equal to n.

2. Let A = MC
λ − (1−λ)I. Considering the columns of matrix A, denote

by [A]·T the column of A indexed by coalition T ∈ Ω. Obviously, all columns
[A]·T with 2 ≤ t ≤ n − 1 are zero vectors 0. This implies that 1 − λ is an
eigenvalue of MC

λ . It is left to analyze the n+1 non-zero columns [A]·T for the
n singleton coalitions T = {j} and the grand coalition T = N . It turns out
that

∑
j∈N [A]·j = 0, i.e., the n columns indexed by the singleton coalitions

sum up to the zero vector. To show this, consider S ∈ Ω. If S = {i}, i ∈ N ,
then ∑

j∈N

[A]i,j = [A]j,j +
∑
j 6=i

[A]i,j = λ(1− 1

n
) + λ(− 1

n
) · (n− 1) = 0.

Further, if S ∈ Ω is a coalition with at least two members, 2 ≤ s < n, it
follows that∑

j∈N

[A]S,j =
∑
j∈S

[A]S,j +
∑
j /∈S

[A]S,j = λ(1− s

n
) · s+ λ(− s

n
) · (n− s) = 0.

14



If s = n, since [A]N,j = 0 for all j ∈ N , so
∑

j∈N [A]N,j = 0.
So, the sum over all j ∈ N of the columns [A]·j is equal to the zero vector

0 and therefore these columns are linear dependent. Together with the fact
that all columns [A]·T with 2 ≤ t ≤ n − 1 are zero vectors, it follows that
R[MC

λ − (1− λ)I] ≤ n.
3. Denote by m1, m1−λ the multiplicities of the eigenvalues 1, 1 − λ

respectively, and by d1, d1−λ the dimensions of the corresponding eigenspaces.
Since the order of MC

λ is 2n−1, the dimension d1−λ of the solution space of the
linear system [MC

λ −(1−λ)I]x = 0 satisfies d1−λ = 2n−1−R[MC
λ −(1−λ)I] ≥

2n − 1 − n. From the theory of linear algebra it is known that the sum of
the multiplicities of all eigenvalues of a matrix equals its order and each
multiplicity is at least the dimension of the corresponding eigenspace. From
the facts 1 and 2 proved above we know that 1 and 1− λ are eigenvalues of
MC

λ and d1 = n. It follows that

2n − 1 ≥ m1 +m1−λ ≥ d1 + d1−λ ≥ n+ 2n − 1− n = 2n − 1,

which can only be true if all inequalities hold with equalities and thus m1−λ =
d1−λ = 2n− 1− n. So MC

λ has no other eigenvalues and is diagonalizable. 2

To prove that for given λ, 0 < λ < 1 the infinite sequence of repeated
associated games {〈N, vk,C〉}∞k=1 converges to an inessential game, we use the
results of the lemma above and the results given in next lemma proved in
Xu et al. (2008).

Lemma 4.3 (Xu et al. (2008)). For N ⊂ N and m ∈ N, let M be a (2n−
1)×m row-coalitional matrix and A be a matrix with m rows.

1. If M is inessential, then the row-coalitional matrix MA is inessential.

2. If A is invertible, then MA is inessential if and only if M is inessential.

3. For every game 〈N, v〉 ∈ GN , if M is inessential, then 〈N,M · v〉 is
inessential.

Theorem 4.4. For any game 〈N, v〉 ∈ GN and fixed λ, 0 < λ < 1, the
sequence of repeated associated games {〈N, vk,C}∞k=1 converges and the limit
game is inessential.

Proof. By 3 of Lemma 4.2, the matrix MC
λ is diagonalizable. Denote MC

λ =
PDC

λ P
−1, where DC

λ = diag
(
1, · · · , 1, 1 − λ, · · · , 1 − λ

)
and P consists of
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eigenvectors ofMC
λ corresponding to eigenvalues 1 and 1−λ. Since 0 < λ < 1,

we have

lim
k→∞

(MC
λ )k = lim

k→∞
P (DC

λ )kP−1 = P lim
k→∞

(DC
λ )kP−1 = PDP−1,

with D = diag(1, · · · , 1, 0, · · · , 0) and the elements 1 repeat n times. For the
row-coalitional matrix PD we have

PD = [x1, x2, · · · , xn,0, · · · ,0],

where the column vectors xi (i = 1, 2, . . . , n) are different eigenvectors of MC
λ

corresponding to eigenvalue 1. By 1 of Lemma 4.2 these eigenvectors are all
inessential vectors. Therefore PD is inessential and by 2 of Lemma 4.3 also
PDP−1 is inessential. By the matrix representation of {〈N, vk,C〉}∞k=1, we
have

lim
k→∞

vk,C = lim
k→∞

(MC
λ )k · v = PDP−1 · v.

By 3 of Lemma 4.3, game 〈N,PDP−1 · v〉 is inessential. 2

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. By Proposition 4.1 the CIS-value satisfies the
associated game consistency with respect to 〈N, vCλ 〉. Further it is straight-
forward to see that the CIS-value satisfies continuity and the inessential game
property.

Next, let φ be a value satisfying these three axioms. For any game 〈N, v〉,
we show that φ(N, v) = CIS(N, v). According to Theorem 4.4 the sequence
of repeated associated games {〈N, vk,C〉}∞k=1 converges to an inessential game.
Denote the limit game by 〈N, v∗∗〉. By associated game consistency and con-
tinuity of φ, it holds that φ(N, v) = φ(N, v∗∗). Further the inessential game
property yields φi(N, v

∗∗) = v∗∗({i}) for all i ∈ N . So, φ is uniquely deter-
mined by the three axioms. Since the CIS-value satisfies these three axioms,
it follows φ(N, v) = CIS(N, v). 2

It remains to prove Theorem 3.1 characterizing the EANS-value. There-
fore, recall from Proposition 3.2 that the dual game of the associated game
(3.1) of v is the associated game (3.2) of the dual game of v. In terms of
similarity of matrices, Xu et al. (2009) derived a similar type of duality as-
sociated game for the Shapley value, based on the dual operator Q on the

16



game space. So Q is a square-coalitional matrix with Q−1 = Q that maps
any game 〈N, v〉 into its dual game 〈N, vD〉, that is vD = Q · v, where the
dual matrix Q =

[
Q
]
S∈Ω,T∈Ω

is given by

[
Q
]
S,T

=


−1, if T = N \ S and S 6= N ;
1, if T = N ;
0, otherwise.

Similar as for the CIS-value, for any game 〈N, v〉, the EANS-value can
be written in matrix form as EANS(N, v) = ME · v and correspondingly the
associated game 〈N, vEλ 〉 can be written as

vEλ = ME
λ · v, (4.8)

with ME
λ the square-coalitional matrix reflecting (3.1). Since EANS(v) =

CIS(vD), we obtain from the CIS-value matrix representation (4.1) that

ME = MCQ, or equivalently MC = MEQ. (4.9)

Also in the next proposition, we restate the relationship between the asso-
ciated game 〈N, vEλ 〉 of the EANS-value and the associated game 〈N, vCλ 〉 of
the CIS-value in terms of the corresponding transformation matrices, by the
dual operator Q.

Proposition 4.5. Let ME
λ and MC

λ be the square-coalitional matrices intro-
duced in (4.4) and (4.8) for the associated games (3.1) and (3.2) respectively.
Then

ME
λ = QMC

λ Q, or equivalently MC
λ = QME

λ Q.

Proof. For any game 〈N, v〉 we have by Proposition 3.2 that 〈N, (vEλ )D〉 =
〈N, (vD)Cλ 〉. In matrix representation this yields

Q · vEλ = MC
λ · vD, or QME

λ · v = MC
λ Q · v.

By the arbitrariness of 〈N, v〉, we get QME
λ = MC

λ Q. Since Q−1 = Q, we get
by premultiplying with Q−1 that ME

λ = QMCX
λ Q, or equivalently by post-

multiplying with Q−1 that MC
λ = QME

λ Q. 2

We now have the following results for the EANS-value and the corre-
sponding associated game (3.1).
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Lemma 4.6. The EANS-value satisfies the associated game consistency with
respect to the associated game 〈N, vEλ 〉, that is ME = MEME

λ .

Proof. By Proposition 4.1 and Proposition 4.5, we have MC = MCMC
λ and

ME = QMC
λ Q. Together with (4.9), it follows that

MEME
λ = MEQMC

λ Q = MCMC
λ Q = MCQ = ME. 2

Proposition 4.7. For any game 〈N, v〉 ∈ GN , the sequence of repeated as-
sociated games {〈N, vk,E〉}∞k=1 converges, and its limit game is inessential.

Proof. By Proposition 4.5, ME
λ = QMC

λ Q and from the proof of Theorem
4.4 we have that lim

k→∞
(MC

λ )k = PDP−1. Therefore,

lim
k→∞

(ME
λ )k = Q lim

k→∞
(MC

λ )kQ = QPDP−1Q.

So for any game 〈N, v〉 we have

lim
k→∞

vk,E = lim
k→∞

(ME
λ )k · v = QPDP−1Q · v.

Since the row-coalitional matrix PD is inessential as shown in the proof of
Theorem 4.4, by 2 of Lemma 4.3 we have that PDP−1Q is inessential too.
By 3 of Lemma 4.3 it follows that the game 〈N,PDP−1Q · v〉 is inessential.
Recalling that the dual game of an inessential game is inessential, it follows
that the limit game 〈N,QPDP−1Q · v〉 is also inessential. 2

Theorem 3.1 can now be proved similar to Theorem 3.3. The proof is
omitted here.

Theorem 4.4 and Proposition 4.7 claim that both of the two sequences
{〈N, vk,C〉}∞k=1 and {〈N, vk,E〉}∞k=1 converge to an inessential game, but no
exact forms of the limit games are given. However, by the characteriza-
tion of the EANS and CIS-value respectively, it follows that the sequence
{〈N, vk,E〉}∞k=1 converges to the limit game 〈N, v∗〉 given by

v∗(S) =
∑
i∈S

v∗({i}) =
∑
i∈S

EANSi(N, v), for all S ∈ Ω.

and the sequence {〈N, vk,C〉}∞k=1 to the limit game 〈N, v∗∗〉 given by

v∗∗(S) =
∑
i∈S

v∗∗({i}) =
∑
i∈S

CISi(N, v), for all S ∈ Ω.
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