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Abstract

We discuss Bayesian inferential procedures within the family of instrumental va-
riables regression models and focus on two issues: existence conditions for posterior
moments of the parameters of interest under a flat prior and the potential of Direct
Monte Carlo (DMC) approaches for efficient evaluation of such possibly highly non-
elliptical posteriors. We show that, for the general case of m endogenous variables
under a flat prior, posterior moments of order r exist for the coefficients reflecting
the endogenous regressors’ effect on the dependent variable, if the number of instru-
ments is greater than m+r, even though there is an issue of local non-identification
that causes non-elliptical shapes of the posterior. This stresses the need for effi-
cient Monte Carlo integration methods. We introduce an extension of DMC that
incorporates an acceptance-rejection sampling step within DMC. This Acceptance-
Rejection within Direct Monte Carlo (ARDMC) method has the attractive property
that the generated random drawings are independent, which greatly helps the fast
convergence of simulation results, and which facilitates the evaluation of the nume-
rical accuracy. The speed of ARDMC can be easily further improved by making use
of parallelized computation using multiple core machines or computer clusters. We
note that ARDMC is an analogue to the well-known “Metropolis-Hastings within
Gibbs” sampling in the sense that one ‘more difficult’ step is used within an ‘easier’
simulation method. We compare the ARDMC approach with the Gibbs sampler
using simulated data and two empirical data sets, involving the settler mortality
instrument of Acemoglu et al. (2001) and father’s education’s instrument used by
Hoogerheide et al. (2012a). Even without making use of parallelized computation,
an efficiency gain is observed both under strong and weak instruments, where the
gain can be enormous in the latter case.

Key words: Instrumental variables, Bayesian inference, Direct Monte Carlo,
Acceptance-Rejection, numerical standard errors
JEL Classification: C11, C15, C26, C36

1 Introduction

In many areas of economics and other sciences, models are specified that contain
instantaneous feedback mechanisms between variables. An important example is the
market system where prices and quantities are jointly determined. The Simultaneous
Equations Model (SEM), that incorporates this mechanism, was systematically ana-
lyzed in the nineteen forties and early nineteen fifties and documented in the well-
known Cowles Commission Monographs (Koopmans, 1950; Hood and Koopmans,
1950) and has been widely employed to analyze the behavior of markets, macroeco-
nomic and other multivariate systems. Inference on a complete system of the SEM is
rather involved and very sensitive to the assumptions, see e.g. Bauwens and Van Dijk
(1990); Van Dijk (2003). Therefore, Zellner, Bauwens, and Van Dijk (1988) procee-
ded with a more tractable and robust analysis of a single equation of the SEM. This
model can be linked to the so-called Instrumental Variable (IV) regression model,
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where the issue of endogeneity, another expression for immediate feedback mecha-
nisms, is extensively investigated (see e.g. Angrist and Krueger (1991)). A third
basic econometric model is the Errors in Variables (EV) model where a measure-
ment error in all variables is explicitly specified. The interesting feature of these three
models, SEM, IV and EV models, is their common statistical structure, namely, a
possible strong correlation between a right hand side variable in an equation and
the disturbance of that equation. This creates, however, an important problem for
Bayesian econometric inference compared to such inference in the basic regression
model. We note that in case of the basic linear regression model using a flat prior,
the coefficients have a Student-t posterior distribution. In the IV models that we
investigate, the posterior densities of the parameters of interest are a product of a
Student-t density and a polynomial or rational function. Then one faces two issues.
First, do analytical properties of posterior distributions exist? Second, how can one
efficiently evaluate posterior properties numerically by Monte Carlo methods, es-
pecially if the shape of the posterior may be highly non-elliptical? We emphasize
that some of our results on these two issues carry over to the SEM and EV model
but that for space considerations we restrict ourselves to the IV model. For more
details on the similarity of the mathematical structure of the IV model, EV model
and SEM we refer to Zellner et al. (2011).

The first issue on conditions for the existence of posterior moments relates to the
well-known condition of non-singularity of the parameter matrix that reflects the
effect of the instrumental variables on the possibly endogenous regressors, and to
the number of instrumental variables compared to the number of endogenous re-
gressors. We present an overview of the joint, conditional and marginal posterior
distributions (and posterior moments) in the IV model with m ≥ 1 possibly endo-
genous regressors under a flat prior. We show that in the case of over-identification,
or more precisely in the presence of m + r + 1 instruments, posterior moments of
order r exist for the coefficients that reflect the endogenous regressors’ effect on the
dependent variable, even though a parameter matrix may become singular. Further,
for the coefficients that indicate the instruments’ effect on the endogenous regres-
sors the first few moments exist for any case of over-identification; to the best of our
knowledge, an analysis of the posterior moments of these coefficients is novel. This
is contrary to earlier suggestions in the literature stating that the posterior of an IV
model with flat prior may be improper due to the unboundedness of the marginal
posterior; see for instance Hoogerheide et al. (2007). In case of over-identification
Gibbs sampling is feasible; the region of locally non-identified parameter values is
not an absorbing state (if identified parameter values are used as initial values),
contrary to a claim by Kleibergen and Van Dijk (1998).

Although the posterior is proper in case of a sufficient number of instruments, one
faces in empirical econometrics many situations where the data information is weak
in the sense of weak identifiability or weak instrumental variables, strong endoge-
neity and the lack of many available instruments. In these situations, the posterior
may often have substantial mass near and/or at the boundary of the parameter re-
gion. Examples of data sets yielding such posterior shapes are given in section 4; see
also De Pooter et al. (2008). The empirical issue is the following: given that much
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data information may exist at or near the boundary of singularity, the researcher
may not want to exclude this information by a strong informative prior that focuses
on the center of the parameter space and seriously down-weights or truncates re-
levant information near the boundary. This situation does not only occur in weak
instrument models but also in unit root and cointegration models where the issue
of near-market efficiency is related to the occurrence of time series with near unit
roots. One also faces this issue in factor models. In all these situations one may
encounter a most important problem for empirical research, that is, the appearance
of highly non-elliptical shapes of the posterior distributions.

Monte Carlo methods have been successfully applied for the computation of pos-
terior and predictive results. Typically, one uses an indirect Monte Carlo method
where one makes use of a correction mechanism like a rejection step, an importance
weighting step or Markov Chain steps. For details on these methods we refer to stan-
dard textbooks like Geweke (2005). The obvious reason is that direct sampling –
simulating independent drawings without a rejection step, an importance weighting
step or Markov Chain steps – is typically not feasible. Very attractive properties
of direct simulation are that it is straightforward to apply and that the generated
random drawings are independent, which greatly helps the speed of convergence of
simulation results, and facilitates the computation of accurate numerical standard
errors or predictive likelihoods. Further, the computations can be easily performed
in a parallelized fashion, which may yield another huge reduction of computing time
on multiple core machines or computer clusters. In earlier work Zellner and Ando
labeled this approach Direct Monte Carlo (DMC); see Zellner and Ando (2008),
Zellner and Ando (2010a), Zellner and Ando (2010b) and Ando and Zellner (2010).

The important issue in the present paper is to determine whether the posterior
distribution studied for IV models allows for DMC. Specifically, we discuss the
applicability of DMC approaches in IV models with several possibly endogenous
regressors, multiple instruments, and Gaussian errors under a flat prior. We empha-
size that for models with multiple endogenous regressors complete direct sampling is
not possible. We introduce an acceptance-rejection sampling step within the DMC
method to simulate from a low-dimensional marginal posterior distribution of co-
efficients of interest. In order to obtain a suitable candidate distribution we use a
novel adaptation of the Mixture of t by Importance Sampling weighted Expectation
Maximization (MitISEM) method of Hoogerheide et al. (2012b). Until now the MitI-
SEM procedure has only been used to construct an importance or candidate density
for Importance Sampling or the independence chain Metropolis-Hastings algorithm.
Our novel adaptation aims at a high acceptance rate in the acceptance-rejection
method rather than a low variance of the Importance Sampling weights. Due to the
flexibility of the MitISEM approach and the low dimension of the marginal poste-
rior, we are able to achieve rather high acceptance rates, i.e., higher than 45%. We
label our method Acceptance-Rejection within Direct Monte Carlo (ARDMC) and
note that ARDMC is an analogue to the well-known “Metropolis-Hastings within
Gibbs” sampling method in the sense that one ‘more difficult’ step is used within
an ‘easier’ simulation method.
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In order to evaluate the efficiency of ARDMC, we compare our approach with the
Gibbs sampler using simulated data and two empirical data sets, involving the settler
mortality instrument of Acemoglu et al. (2001) and father’s education’s instrument
used by Hoogerheide et al. (2012a). Even without making use of parallelized com-
putation, an efficiency gain is observed both under strong and weak instruments,
where the gain can be enormous in the latter case. For illustrative purposes, we also
present the posterior shapes.

The remainder of this paper is organized as follows. Section 2 considers the joint,
conditional and marginal posterior distributions (and their moments) in the IV
model with m ≥ 1 possibly endogenous regressors. Section 3 discusses DMC and
our proposed Acceptance-Rejection within Direct Monte Carlo (ARDMC) approach.
Section 4 shows applications where the performance of ARDMC and Gibbs sampling
is investigated. Section 5 discusses further possibilities of ARDMC, stressing the
scope of the method. Section 6 concludes.

2 IV model with m possibly endogenous regressors under a flat prior:
Existence of proper conditional and marginal posterior distributions
and posterior moments

In this section, we present an analysis of the joint, conditional and marginal posterior
distributions (and posterior moments) in the following IV model withm ≥ 1 possibly
endogenous regressors under a flat prior:

yt = xtβ + ut, (1)

xt = ztΠ+ vt, (2)

for t = 1, . . . , T , where yt is the dependent variable, xt is the 1 × m vector of
(possibly) endogenous explanatory variables, zt is the 1 × k vector of instruments;
β (m × 1) and Π (k × m) contain model parameters; ut (1 × 1) and vt (1 × m)
contain disturbances. Finally, (ut, v

′
t)

′ ∼ NID(0(m+1)×1,Σ) with (m + 1)× (m + 1)

positive-definite symmetric matrix Σ =
(
σ11 σ12

σ′
12 Σ22

)
, where σ11, σ12 and Σ22 are 1× 1,

1×m and m×m matrices, respectively. 1

The matrix representation of the model in (1) and (2) is:

y = Xβ + u, (3)

X = ZΠ+ V, (4)

1 The model (1)-(2) may include exogenous explanatory variables wt (1 × n) in both
equations. In that case, we assume a flat prior for the coefficients at wt, and these coeffi-
cients are marginalized out of the posterior distribution using analytical integration. This
amounts to replacing yt, xt and zt by their residuals after regression on wt, and replacing
T by T − n.
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where y = (y1, . . . , yT )
′, X = (x′

1, . . . , x
′
T )

′, Z = (z′1, . . . , z
′
T )

′, u = (u1, . . . , uT )
′,

V = (v′1, . . . , v
′
T )

′, and (u′, vec(V )′)′ ∼ N(0(T×(m+1))×1,Σ⊗ IT ). We assume that the
data matrix (y X Z) has full column rank m+ k + 1. The posterior density under

a flat prior p(β,Π,Σ) ∝ |Σ|−h/2 with h = m+ 2 is:

p(β,Π,Σ | y,X, Z) ∝ |Σ|−(T+m+2)/2 exp
{
−1

2
tr
(
(u V )′ (u V ) Σ−1

)}
, (5)

where u = y − Xβ and V = X − ZΠ. Highly non-elliptical posterior shapes may
result from the local non-identification of β if Π does not have full column rank,
which is easily seen from the restricted reduced form:

y = ZΠβ + ũ, (6)

X = ZΠ+ V, (7)

with ũ ≡ V β + u, where β drops out from (6)-(7) if Π = 0.

We will consider the marginal and conditional posterior densities under a flat prior
and discuss existence conditions for these posteriors and their first and higher order
moments. A summary of results is presented in Figure 1. For a description of the
matrix normal and matrix t distributions we refer to Zellner (1971). The marginal
posterior distributions of β and Π were derived by Drèze (1976, 1977) and Kleibergen
and Van Dijk (1998), respectively. The contribution of this section is that it provides
an overview of all the marginal and conditional posteriors, where it is discussed
whether these are proper and whether these have finite moments. To the best of our
knowledge, an analysis of the posterior moments of Π is novel. A warning is included
that an unknowing user may use the Gibbs sampler in case of an improper posterior,
while this would obviously not make sense. Further, for a concise derivation of these
posteriors and their properties we refer to Appendix A.

The full conditional posterior distributions of β, Π and Σ are as follows:

• The conditional posterior of Σ given β and Π is easily seen from (5) as a
kernel of the Inverse-Wishart density with T degrees of freedom and scale matrix
(u V )′(u V ) with u = y −Xβ, V = X − ZΠ.

• The conditional posterior of β given Π and Σ is the multivariate normal dis-
tribution N(µβ|Π,Σ,Ωβ|Π,Σ), where µβ|Π,Σ ≡ (X ′X)−1X ′(y − µu|V,Σ) and Ωβ|Π,Σ ≡
ωu|V,Σ (X ′X)−1; here we have µu|V,Σ ≡ V Σ−1

22 σ
′
12 and ωu|V,Σ ≡ σ11 − σ12Σ

−1
22 σ

′
12.

• The conditional posterior of Π given β and Σ is the matrix normal distri-
bution Nmatrix(µΠ|β,Σ,ΩV |u,Σ, (Z

′Z)−1) with µΠ|β,Σ ≡ (Z ′Z)−1Z ′(X−µV |u,Σ); here
we have µV |u,Σ ≡ uσ−1

11 σ12 and ΩV |u,Σ ≡ Σ22−σ′
12σ

−1
11 σ12. That is, vec(Π)|β,Σ, y,X, Z ∼

N(vec(µΠ|β,Σ),ΩV |u,Σ ⊗ (Z ′Z)−1).
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Figure 1. Posterior distributions in the IV model with m possibly endogenous regressors,
k instruments, and Gaussian errors, under a flat prior
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The conditional distributions of β and Π (after integrating out Σ) are as follows:

• The conditional posterior of β given Π is the multivariate t density with
location vector β̂ and scale matrix s2

β̂
(X ′MVX)−1 and T − m degrees of free-

dom — where Mα ≡ I − α (α′α)−1 α′, β̂ ≡ (X ′MVX)−1 X ′MV y, and s2
β̂

≡
(y − Xβ̂)′Mv(y − Xβ̂)/(T − m) — given that (X ′MVX) has full rank m. The
latter holds if and only if Π has full rank m. If rank(Π) < m, for example if k < m
(under-identification), then the conditional posterior of β given Π is improper.

• The conditional posterior of Π given β is a matrix t density with location
matrix Π̂, scale matrices (Z ′MuZ)

−1 and SΠ̂, and T−k−m+1 degrees of freedom

— with Π̂ ≡ (Z ′MuZ)
−1 Z ′MuX and SΠ̂ = (X − ZΠ̂)′Mu(X − ZΠ̂)) — for any

number of endogenous variables m, any number of instruments k and for every
value of β.

The full conditional posteriors of β, Π and Σ are proper distributions for all values
of β, Π and Σ in their domain, for any number of instruments k ≥ 1 and for any
number of possibly endogenous regressors m ≥ 1. This implies that an unknowing
user may erroneously apply the Gibbs sampler in case of exact identification (or
even under-identification), even though the (joint) posterior distribution is impro-
per, which will be discussed below. A Gibbs sampler that simulates only β and Π
(after integrating out Σ) may also be erroneously applied in case of exact identifi-
cation.

The marginal posterior distributions of β and Π are as follows:

• The marginal posterior of β is

p(β | y,X, Z) ∝(u′u)−
T−m

2 (u′MZu)
T−k−m

2 , (8)

which is a t-density multiplied by a polynomial, or

p(β | y,X, Z) ∝
(
u′MZu

u′u

)T−k−m
2

(u′u)−
k
2 , (9)

which is an improper density for k ≤ m (exact or under-identification), and a
proper density for k > m (over-identification). In the latter case, moments exist
for (integer) order r = 0, 1, 2, . . . k−m− 1. From the marginal posterior of β, the
conditional posterior of Π given β (which is proper for any β), and the conditional
posterior of Σ given β and Π (which is proper for any β and Π) it is immediately
clear that the joint posterior of β, Π and Σ is proper if and only if k > m (over-
identification).

• The marginal posterior of Π is

p (Π | y,X, Z) ∝|V ′V |−
T−1
2 |Π′Z ′MXZΠ|

T−m−1
2

∣∣∣Π′Z ′M(y X)ZΠ
∣∣∣−T−m

2 , (10)
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a matrix t-density multiplied by a rational function, or

p (Π | y,X, Z) ∝|V ′V |−
T−1
2

 |Π′Z ′MXZΠ|∣∣∣Π′Z ′M(y X)ZΠ
∣∣∣


T−m
2

|Π′Z ′MXZΠ|−
1
2 , (11)

which is integrable only for k > m (over-identification). In this case, the first
few moments – i.e., at least up to the fourth moment – exist (given that T is
not very small). For example, consider the case of m = 1. For k = 1 the factor

|Π′Z ′MXZΠ|−
1
2 is not integrable around Π = 0, since

∫ 1
−1

1
|Π|dΠ = ∞. For k = 2

|Π′Z ′MXZΠ|−
1
2 is integrable around Π = 0, since

∫
{Π|Π2

1+Π2
2≤1}

1
(Π2

1+Π2
2)

1/2dΠ = 2π.

Intuitively speaking, given that the posterior of Π is proper, higher order moments
are finite, since problems regarding integrability only occur due to the ‘vertical
asymptote’ for Π tending to values with rank(Π) < m, not due to fat tails (as
for the posterior of β). Multiplying (11) by Πd

ij (i = 1, . . . , k; j = 1, . . . ,m;
d = 1, 2, . . .) makes the function only ‘easier’ to integrate.

2.1 IV model with m possibly endogenous regressors under informative prior on β

If one specifies a proper prior p(β) for β, e.g. a normal prior, so that

p(β,Π,Σ) ∝ p(β)× |Σ|−
m+1

2 , (12)

then the marginal, conditional and joint posteriors in the IV model are always
proper, no matter the dimensions k and m. The marginal posterior of β is then
obviously obtained by multiplying (9) by p(β):

p(β | y,X, Z) ∝p(β)

(
u′MZu

u′u

)T−k−m
2

(u′u)−
k
2 , (13)

whereas the conditional posteriors of Π given β, and of Σ given β and Π remain the
same matrix t and Inverse-Wishart distributions. Finite prior moments of β then
imply finite posterior moments of β (where the order of finite posterior moments
may be k −m+ 1 larger than the order of finite prior moments).

3 The potential of Direct Monte Carlo in IV models

Naturally, we should consider cases in which the posterior distribution is proper:
therefore we consider the IV model (1)-(2) with k ≥ m + 1 instruments (over-
identification) under a flat prior, and also address the IV model with k ≥ m instru-
ments (exact or over-identification) under a proper prior p(β). For m = 1 or m = 2
the posterior moments of β can be computed accurately using quadrature. However,
to analyze whether the instruments have explanatory power for the regressors or
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whether the regressors are endogenous in the first place, one is often also interested
in the posteriors of Π and Σ, respectively.

We propose the following Acceptance-rejection within Direct Monte Carlo (ARDMC)
method, a simulation-consistent method for posterior simulation from the IV model
with m ≥ 1 possibly endogenous regressors:

Step 1: Draw β from its marginal posterior in (9) (or (13) under a proper prior on β),
using the acceptance-rejection method (i.e., rejection sampling).

Step 2: Draw Π conditionally on β from its conditional matrix t posterior.

Step 3: Draw Σ conditionally on (β,Π) from its conditional Inverse-Wishart distribution.

The acceptance-rejection method in step 1 produces a set of independent drawings
from the marginal posterior of β, which implies that we obtain a set of independent
drawings of (β,Π,Σ). Obviously we only simulate Π and Σ for accepted drawings of
β from step 1, so that steps 2 and 3 are exactly those of a DMC method, directly
simulating independent drawings from the conditional distributions without a rejec-
tion step, an importance weighting step or Markov Chain steps. The independence
of the drawings generated by ARDMC greatly helps the speed of convergence of
simulation results, and facilitates the computation of accurate numerical standard
errors or predictive likelihoods. Further, the computations can be easily performed
in a parallelized fashion, which may yield another huge reduction of computing time
on multiple core machines or computer clusters. We note that ARDMC is an ana-
logue to the well-known “Metropolis-Hastings within Gibbs” sampling in the sense
that one ‘more difficult’ step is used within an ‘easier’ simulation method.

Generally, the acceptance-rejection method has one major drawback: it requires a
candidate density that provides a reasonably accurate approximation of the target
(posterior) density and that dominates the target density (in the sense that the
ratio of candidate over target has a finite maximum, that should be as small as
possible). In this situation we are able to obtain such an accurate approximation
for two reasons. First, the dimension m of β is typically low; e.g. m = 1 or m = 2
(although our ARDMC also appeared to work well in cases of m = 4). The lower
dimension of β is also the reason why we approximate the marginal posterior of
β rather than Π in step 1. Second, we use a novel adaptation of the Mixture of t
by Importance Sampling weighted Expectation Maximization (MitISEM) method of
Hoogerheide et al. (2012b). Until now the MitISEM procedure has only been used
to construct an importance or candidate density for Importance Sampling or the in-
dependence chain Metropolis-Hastings algorithm. 2 Our novel adaptation aims at a
high acceptance rate in the acceptance-rejection method rather than a low variance
of the Importance Sampling weights. We use a mixture of Student-t densities as the

2 The intimate link between Importance Sampling and the independence chain
Metropolis-Hastings (MH) algorithm is pointed out by Liu (1996).
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candidate, because it is easily evaluated, easily simulated from, and very flexible
in the sense that it can approximate a wide variety of posterior shapes (e.g. multi-
modality or other types of non-elliptically curved shapes). Given a proper posterior
kernel, the adapted MitISEM algorithm automatically finds an approximation of the
posterior distribution: it starts with a Student-t distribution around the posterior
mode and adds Student-t distributions as long as adding more Student-t components
substantially increases the acceptance rate of the acceptance-rejection method. An
IS weighted EM algorithm is used to optimize the locations, scales and degrees of
freedom of all Student-t distributions, minimizing the Kullback-Leibler divergence
between candidate and posterior. The allowed range of the degrees of freedom pa-
rameters of the Student-t distributions is restricted (from above) to ensure that the
tails of the candidate distribution are fatter than those of the posterior, so that the
candidate surely dominates the posterior.

In order to find the maximum of the ratio of the target density kernel to the can-
didate density, required for the acceptance-rejection sampling method, we proceed
as follows. First, we compute this ratio for each of a large set of candidate draws
for β (e.g., 100,000 candidate draws) that we will use in the acceptance-rejection
sampling method, and find the value βarg max in sample that corresponds to the highest
ratio. Second, we apply the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
with initial value βarg max in sample to find βarg max BFGS where the ratio takes a (local)
maximum. In our examples below, β is 1-dimensional or 2-dimensional, so that it is
relatively easy to check, using a graphical analysis and the evaluation of the ratio
on a very fine grid of values for β, that the found βarg max BFGS is indeed the value
βarg max global where the ratio takes its global maximum.

For higher dimensional β such a check would be more difficult. However, the above-
mentioned two-step procedure followed by the application of the acceptance-rejection
procedure is simulation-consistent, because the probability that the ratio takes its
global maximum at the found value βarg max BFGS tends to 1 as the number of can-
didate draws tends to infinity. In other words, the procedure is the (simulation-
consistent) regular acceptance-rejection method (with probability one) if the num-
ber of candidate draws tends to infinity. The reason for this is that the ratio is a
smooth function of β, for which there exists a convex set B of values of β around
βarg max global for which (i) the ratio is larger than in any point β outside B, (ii) the
ratio is a concave function on B, (iii) the posterior probability Pβ∈B that β lies in B
is positive, so that also the probability P̃β∈B that a candidate draw for β lies in B is
positive. The latter implication holds true, since we know that the ratio has a finite
global maximum ratiomax (so that P̃β∈B ≥ Pβ∈B/ratiomax > 0), which is ensured by
the property that the candidate density has fatter tails than the posterior density.

That is, for large enough number of candidate draws βarg max in sample lies in B after
which the BFGS method will yield βarg max BFGS = βarg max global. Note that if the
ratio would have multiple global maxima, then the procedure will find one of these
global maxima, which is sufficient for the acceptance-rejection method to work ap-
propriately.
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Summarizing, the proposed ARDMCmethod has the major advantages of DMC: it is
fast and generates a set of independent drawings from the posterior. We will illustrate
the quality of ARDMC for both simulated and empirical data sets, comparing its
performance with the Gibbs sampler.

4 Applications of Acceptance-Rejection within DMC (ARDMC)

4.1 ARDMC simulation from posteriors for simulated data sets

We consider the posterior distribution in the IV model (1)-(2) under the flat prior
for four simulated data sets. We consider the following cases of weak or strong
instruments for either m = 1 or m = 2 possibly endogenous regressors:

Case 1: k = 4 weak instruments for m = 1 strongly endogenous regressor: Π = 0.05 ι4×1,
Σ = ( 1 0.99

0.99 1 ), T = 50, where ι denotes a vector or matrix of ones.

Case 2: k = 6 weak instruments form = 2 strongly endogenous regressors: Π = 0.1
(

ι3×1 03×1

03×1 ι3×1

)
,

Σ =
(

1 0.99 0.99
0.99 1 0.99
0.99 0.99 1

)
, T = 50.

Case 3: k = 4 very strong instruments for m = 1 moderately endogenous regressor:
Π = ι4×1, Σ = ( 1 0.5

0.5 1 ), T = 100.

Case 4: k = 6 very strong instruments for m = 2 moderately endogenous regressors:

Π =
(

ι3×1 03×1

03×1 ι3×1

)
, Σ =

(
1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

)
, T = 100.

For each case we take the instruments zt ∼ N(0, Ik) i.i.d., and β = 0m×1; the
true value of β = 0 does not affect the shape of its posterior, only its location.
Hoogerheide et al. (2007) considered posteriors (for cases of m = 1 endogenous
regressor) on bounded regions: cases 1 and 3 are similar to the most extreme cases
of Hoogerheide et al. (2007) where β has a highly non-elliptical (bimodal) posterior
and an almost elliptical posterior, respectively.

Simulation results (without making use of parallelized computation or Rao-Black-
wellization) for ARDMC and Gibbs sampling are reported in Table 1, where, to save
space, for cases 2 and 4 (with m = 2) only simulation results are shown for β. In all
cases ARDMC performs better than the Gibbs sampler: ARDMC requires substan-
tially less computing time than Gibbs sampling (on an Intel Centrinotm processor)
to yield similar precision (for very strong instruments) or much higher precision
(for weak instruments). For ARDMC the Numerical Standard Error (NSE) of the
estimated posterior mean is easily computed as the estimated posterior standard
deviation divided by the square root of the number of accepted draws, whereas for
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the Gibbs sampler we make use of the Initial Positive Sequence Estimator of Geyer
(1992). The Effective Sample Size is the equivalent number of independent draws
from the posterior that would lead to the same NSE; see Liu (2001).

For cases 1 and 2, the Gibbs sampler’s ESS values are very low, less than 1000 for
a set of 100000 draws. The slow movement of the Gibbs sequence through the pa-
rameter space is reflected by the high serial correlation for β and ρ ≡ σ12/

√
σ11σ22.

Moreover, the difference in quality between ARDMC and Gibbs sampling is even
larger than suggested by the NSE and ESS. The Gibbs sampler misses relevant
parts of the parameter space. For case 1 (2), Figure 2 (4) shows that the posterior
of β is bimodal; that the adapted MitISEM method generates (in merely 24 (11)
seconds) a mixture of 7 (3) Student-t distributions that provides a reasonably accu-
rate approximation of the posterior, which yields a set of 100000 candidate draws of
which 64133 (47157) independent posterior draws are accepted; and that the Gibbs
sequence is stuck in a region of parameter values around one of the two modes.
Even if we generate ten million draws, the Gibbs sequence is still stuck in the region
around one of the two modes. For case 1, the histogram of each 100th Gibbs draw
in Figure 3 shows that one of the two modes is now completely ‘covered’, but that
the other mode is still ‘missed’ by ten million consecutive Gibbs draws. So, reliable
Gibbs sampling requires a chain that is impracticably long in this example, because
the Gibbs sampler is very poorly mixing. Note that we do not claim that the Gibbs
sampler is (theoretically) nonergodic; for an infinite number of draws, the Gibbs
sampler will move between the modes. For case 2 the bottom-right panel of Figure 4
shows that all Gibbs draws are from the bottom-left “mountain” around the origin,
which is much smaller than the top-right “mountain” around (β1, β2) = (1, 1) (in
the sense that the first contains much less posterior probability mass). Therefore
this bottom-left “mountain” may look a bit ‘wider’ for the Gibbs sampler than for
ARDMC in the scatter plots of Figure 4, since only a small fraction of the ARDMC
draws is located in this area.

To explain the posterior shapes for case 2, we rewrite the marginal posterior of β
as:

p(β | y,X, Z) ∝
(
(y −Xβ)′MZ(y −Xβ)

(y −Xβ)′(y −Xβ)

)T−k−m
2

((y −Xβ)′(y −Xβ))−
k
2

=

(
1− (PZy)

′MPZX(PZy) + (β − β̂2SLS)
′X ′PZX(β − β̂2SLS)

y′MXy + (β − β̂OLS)′X ′X(β − β̂OLS)

)T−k−m
2

×

(y′MXy + (β − β̂OLS)
′X ′X(β − β̂OLS))

− k
2 (14)

with PZ = Z(Z ′Z)−1Z ′, β̂2SLS = (X ′PZX)−1X ′PZy, β̂OLS = (X ′X)−1X ′y.

In case of weak instruments β̂OLS and β̂2SLS may be relatively far apart. Indeed
for our case 2 the difference between β̂OLS = (0.44, 0.58)′ and β̂2SLS = (0.70, 0.80)′

is relatively large, and (PZy)
′MPZX(PZy) and y′MXy are both small, due to the

weakness of the instruments and the strong endogeneity, respectively. This implies
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that (14) is very low for β ≈ β̂OLS, whereas on both sides of βOLS there are regions
where (14) is not negligible. X ′X has eigenvectors (−0.72, 0.70) and (0.70, 0.72) with
eigenvalues 2.57 and 91.58, respectively, which explains the ‘ravine’ of low posterior
density values around the line {β = β̂OLS + λ(−0.72, 0.70)′|λ ∈ R}. The top row
of Figure 5 shows contour plots of the logarithm of the posterior, the numerator
(PZy)

′MPZX(PZy)+ (β− β̂2SLS)
′X ′PZX(β− β̂2SLS), and the denominator y′MXy+

(β − β̂OLS)
′X ′X(β − β̂OLS) of the ratio in (14). For case 1 the (bimodal) posterior

shapes are explained in an analogous fashion.

For cases 3 and 4 the Gibbs sampler performs reasonably well, although it requires
more computing time than ARDMC. It should be noted that the simulated ins-
truments are very strong; in many empirical applications – of which one will be
considered below – the elements of Π are less significant and more similar among
columns, or the instruments are correlated. In cases 3 and 4 the posterior is closer
to an elliptical distribution, see Figure 6. Therefore it takes the adapted MitISEM
method even less time to construct an approximation of the posterior, since mix-
tures of only two Student-t distributions are used. Figure 6 shows that, although
its (far) tails are Student-t type, the ‘middle part’ of the posterior of β in case 3 is
more like a Gaussian distribution. The bottom row of Figure 5 shows the logarithm
of the posterior of β for case 4. Here the difference between β̂OLS = (0.04, 0.19)′ and
β̂2SLS = (−0.02, 0.14)′ is smaller than for case 2. Moreover, the strong instruments
and moderate endogeneity imply that (PZy)

′MPZX(PZy) and y′MXy are much lar-

ger than in case 2, so that there is no ‘ravine’ through β̂OLS. Far away from the
posterior mode, the shapes (driven by the eigenvectors and eigenvalues of X ′PZX
and X ′X) become somewhat similar to case 4, but this occurs only for very low
levels of the posterior density. For case 3 the posterior shapes are explained in an
analogous fashion.

Table 2 shows simulation results for case 1 and 3 where we make use of Rao-
Blackwellization in order to estimate the posterior means (and standard deviations)
of β and Π. The benefits of Rao-Blackwellization depend crucially on three factors:
(i) the simulation method, (ii) the strength of the instruments, and (iii) the parame-
ter that is considered. For ARDMC the benefits are substantial unless one considers
the posterior mean of β in case 1 of weak instruments. For the Gibbs sampler the
benefits are substantial unless one considers the posterior mean of either β or Π in
case 1 of weak instruments. In the latter case, one faces negligible gains.

If we estimate the posterior mean of β, then the benefits of Rao-Blackwellization
stem from the fact that the standard deviation of E[β|Π,Σ, data] (where a posterior
draw is used for (Π,Σ)), reported in the last column of Table 2, is smaller than the
posterior standard deviation of β itself, since Rao-Blackwellization means that we
compute the average of the first instead of the second. However, in our case 1 of weak
instruments the benefits are small, since the standard deviation of E[β|Π,Σ, data]
almost equals the posterior standard deviation of β due to the strong posterior de-
pendence between β, Π, and Σ. For Rao-Blackwellization of the Gibbs sampler, a
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disadvantage is that the serial correlation in the Gibbs sequence may be much larger
for E[β|Π,Σ, data] than for β itself, so that the benefits due to the smaller standard
deviation are partly (or in certain cases almost completely) lost. This phenomenon
is observed for the estimation of the posterior mean of Π in case 1 of weak instru-
ments. For ARDMC this disadvantage is not present, since ARDMC generates a
set of independent draws. Therefore, the relative benefits of Rao-Blackwellization
are larger for ARDMC than for the Gibbs sampler. In fact, in our case 1 of weak
instruments the difference in precision between ARDMC and Gibbs is much larger
than the benefits from Rao-Blackwellization in either procedure.

For the Gibbs sampler in case 1 the reported ESS for Π1 and Π3 is even slightly
smaller for the case with Rao-Blackwellization than without Rao-Blackwellization.
This is merely caused by the fact that the used NSE and posterior standard devia-
tion are estimates.

We have also considered cases with m = 4, with weak or strong instruments, similar
to cases 2 and 4. Then we still observe a similar ‘victory’ of ARDMC (with accep-
tance rates of 38% and 52%) over the Gibbs sampler in terms of numerical accuracy.
This is no surprise, as Hoogerheide et al. (2012b) show examples of posteriors with
17 and 36 parameters, where the MitISEM method provides importance densities
that are reasonably accurate approximations of the joint posterior.
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Table 1
Simulation results for posterior distributions in IV model for four simulated data sets
(without making use of Rao-Blackwellization)

ARDMC Gibbs sampling

posterior posterior

mean st.dev. NSE mean st.dev. NSE s.c. ESS

Case 1 (k = 4 weak instruments for m = 1 strongly endogenous regressor):

β 1.2984 0.6318 0.0025 1.4661 0.2265 0.0189 0.995 143

Π1 -0.0493 0.0733 0.0003 -0.0753 0.0476 0.0016 0.245 908

Π2 -0.1049 0.1111 0.0004 -0.1461 0.0677 0.0038 0.667 317

Π3 -0.0886 0.1075 0.0004 -0.1303 0.0566 0.0030 0.573 368

Π4 -0.1167 0.1218 0.0005 -0.1615 0.0749 0.0042 0.684 317

ρ ≡ σ12/
√
σ11σ22 -0.6482 0.7201 0.0028 -0.9659 0.0273 0.0015 0.815 354

number of draws 100000 candidate draws 100000 (+1000 burnin)

64133 accepted draws

computing time: ∗ total 44 s 61 s

∗ candidate 24 s

∗ sampling 20 s

Case 2 (k = 6 weak instruments for m = 2 strongly endogenous regressors):

β1 0.5814 0.3666 0.0017 0.1634 0.3285 0.0114 0.970 832

β2 0.7077 0.3432 0.0016 0.3340 0.3384 0.0138 0.973 595

number of draws 100000 candidate draws 100000 (+1000 burnin)

47153 accepted draws

computing time: ∗ total 47 s 82 s

∗ candidate 11 s

∗ sampling 36 s

Case 3 (k = 4 very strong instruments for m = 1 moderately endogenous regressor):

β -0.0174 0.0514 0.1886 ·10−3 -0.0177 0.0512 0.1985 ·10−3 0.358 66580

Π1 0.9893 0.0888 0.3258 ·10−3 0.9888 0.0888 0.2901 ·10−3 0.059 93807

Π2 1.0412 0.0845 0.3101 ·10−3 1.0410 0.0843 0.2849 ·10−3 0.103 87654

Π3 0.9921 0.0864 0.3170 ·10−3 0.9918 0.0863 0.2798 ·10−3 0.061 95172

Π4 1.0057 0.0868 0.3185 ·10−3 1.0063 0.0864 0.2885 ·10−3 0.068 89414

ρ ≡ σ12/
√
σ11σ22 0.4498 0.0898 0.3298 ·10−3 0.4502 0.0897 0.3193 ·10−3 0.206 78861

number of draws 100000 candidate draws 100000 (+1000 burnin)

74224 accepted draws

computing time: ∗ total 32 s 64 s

∗ candidate 7 s

∗ sampling 25 s

Case 4 (k = 6 very strong instruments for m = 2 moderately endogenous regressors):

β1 -0.0305 0.0532 0.2170 ·10−3 -0.0303 0.0533 0.2303 ·10−3 0.424 53473

β2 0.1290 0.0480 0.1956 ·10−3 0.1296 0.0479 0.1966 ·10−3 0.383 59241

number of draws 100000 candidate draws 100000 (+1000 burnin)

60105 accepted draws

computing time: ∗ total 41 s 85 s

∗ candidate 7 s

∗ sampling 34 s

NSE = Numerical Standard Error of estimated posterior mean

s.c. = first order serial correlation in Gibbs sequence

ESS = Effective Sample Size (for estimating the posterior mean)16



Table 2
Simulation results for posterior distributions in IV model for simulated data sets using
Rao-Blackwellization

ARDMC Gibbs sampling

posterior st.dev. posterior st.dev.

mean st.dev. NSE ESS cond. mean mean st.dev. NSE s.c. ESS cond. mean

Case 1 (k = 4 weak instruments for m = 1 strongly endogenous regressor):

β 1.2984 0.6318 0.0025 64 173 0.6316 1.4662 0.2266 0.0189 0.995 144 0.2260

Π1 -0.0495 0.0736 0.0002 90 713 0.0618 -0.0753 0.0477 0.0016 0.850 898 0.0240

Π2 -0.1049 0.1111 0.0004 72 580 0.1042 -0.1462 0.0679 0.0038 0.982 324 0.0555

Π3 -0.0885 0.1075 0.0004 72 074 0.1014 -0.1305 0.0567 0.0030 0.945 364 0.0429

Π4 -0.1166 0.1216 0.0005 72 113 0.1147 -0.1618 0.0750 0.0042 0.979 317 0.0622

Case 3 (k = 4 very strong instruments for m = 1 moderately endogenous regressor):

β -0.0175 0.0512 0.1127 ·10−3 206 468 0.0307 -0.0176 0.0512 0.1199 ·10−3 0.381 182 287 0.0307

Π1 0.9889 0.0888 0.0821 ·10−3 1 170 614 0.0244 0.9888 0.0888 0.0875 ·10−3 0.373 1 029 485 0.0224

Π2 1.0408 0.0846 0.0994 ·10−3 723 466 0.0271 1.0407 0.0846 0.1067 ·10−3 0.397 627 583 0.0272

Π3 0.9918 0.0861 0.0777 ·10−3 1 230 014 0.0212 0.9917 0.0861 0.0749 ·10−3 0.174 1 321 586 0.0212

Π4 1.0064 0.0867 0.0814 ·10−3 1 135 037 0.0222 1.0063 0.0867 0.0863 ·10−3 0.359 1 009 336 0.0222

NSE = Numerical Standard Error of estimated posterior mean

s.c. = first order serial correlation in Gibbs sequence of conditional posterior mean

ESS = Effective Sample Size (for estimating the posterior mean)
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Figure 2. Marginal posterior of β in case 1 (k = 4 weak instruments for m = 1 strongly
endogenous regressor): posterior density kernel (top left); candidate density (mixture of 7
Student-t densities) (top right); histogram of ARDMC draws (bottom left); histogram of
Gibbs draws (bottom right).
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Figure 3. Marginal posterior of β in case 1 (k = 4 weak instruments for m = 1 strongly
endogenous regressor): histogram of each 100th draw in a Gibbs sequence of ten million
draws.
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Figure 4. Marginal posterior of β in case 2 (k = 6 weak instruments for m = 2 strongly
endogenous regressors): contour plot of posterior density kernel (top left); contour plot of
candidate density (mixture of 3 Student-t densities) (top right); scatter plot of posterior
draws generated by ARDMC (bottom left); scatter plot of posterior draws generated by the
Gibbs sampler (bottom right).
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Figure 5. Contour plots: logarithm of posterior density kernel (left); numerator
(PZy)

′MPZX(PZy) + (β − β̂2SLS)
′X ′PZX(β − β̂2SLS) of ratio in (14) (middle); deno-

minator y′MXy + (β − β̂OLS)
′X ′X(β − β̂OLS) of ratio in (14) (right).

Top row: case 2 (k = 6 weak instruments for m = 2 strongly endogenous regressors).
Bottom row: case 4 (k = 6 very strong instruments for m = 2 moderately endogenous
regressors).
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Figure 6. Marginal posterior of β in case 3 (k = 4 strong instruments for m = 1 modera-
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Marginal posterior of β in case 4 (k = 6 strong instruments for m = 2 moderately endo-
genous regressors): contour plot of posterior density kernel (right).
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4.2 ARDMC simulation from posteriors for empirical data sets

Our first empirical example is due to Acemoglu et al. (2001), see also Conley et al.
(2008). Acemoglu et al. (2001) consider the effect of the risk of expropriation on the
GDP per capita. To solve the endogeneity problem, European settler mortality is
used as an instrument for the risk of expropriation. The idea behind this instrument
is that in former colonies with high settler mortality Europeans could not settle
and, therefore, set up more extractive institutions. The sample consists of T = 64
ex-colony countries. The model is given by

logGDPt = APERt β + wtγ1 + ut, (15)

APERt = logmortalitytΠ+ wtγ2 + vt, (16)

where the dependent variable logGDPt is the logarithm of GDP per capita in 1995,
the m = 1 possibly endogenous regressor APERt is the ‘Average protection against
expropriation risk’ for the period 1985-1995, the k = 1 instrument logmortalityt
is the logarithm of European settler mortality. The exogenous regressors wt are
the conditioning variables including a constant, latitude and dummies for African
and Asian countries. The data yt, xt and zt in (1)-(2), obtained as the residuals of
logGDPt, APERt and logmortalityt after regression on the control variables wt, are
shown in Figure 7. The left panel illustrates the weakness of the instrument.
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Figure 7. Empirical data set of Acemoglu et al. (2001) that is used in the first empirical
example.

In this case of exact identification (k = m = 1) we use a proper, non-informative
prior for β, a normal distribution with mean 0 and standard deviation 100. Under
the flat prior, the posterior would be improper.

Simulation results are reported in Table 3. The posterior mean and standard devia-
tion of Π show that this concerns a case of weak instruments, similar to case 1 of
the simulated data sets. Figure 8 shows that the Gibbs sampler, which suffers from
a huge serial correlation in the Gibbs sequence of drawings, misses a relevant part
(consisting of negative values of β) of the bimodal posterior. On the other hand,
ARDMC yields (with a high acceptance rate) a set of posterior drawings in a quick
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and reliable fashion.

Our second empirical example uses a data set that is made available by the Ger-
man Socio-Economic Panel Study (SOEP) at the German Institute for Economic
Research (DIW), Berlin. For more information about the SOEP, we refer to Wagner
et al. (1993, 2007). The data set has been used by Hoogerheide et al. (2012a). The
sample consists of a cross section of T = 8244 individuals (without missing values)
in the year 2004. The model is given by

log waget = educationt β + wtγ1 + ut, (17)

educationt = father’s educationtΠ+ wtγ2 + vt, (18)

where the dependent variable log waget is the logarithm of hourly wage in 2004, the
m = 1 possibly endogenous regressor educationt is the number of years of education,
the k = 3 instruments (father’s educationt) are dummy variables reflecting father’s
secondary education: ‘Hauptschule’ (9 years), ‘Realschule’ (10 years), ‘Fachhoch-
schulreife’ (12 years) or ‘Abitur’ (13 years). We take ‘Hauptschule’ as the reference
category. The exogenous regressors wt are a constant, respondent’s labor market
experience (in its linear and squared terms), gender, wealth (as proxied by the re-
spondent’s income from assets), marriage status, nationality, whether the respondent
lives in the former West-Germany, whether the respondent is self-employed, industry
dummies, and the duration that an individual has been unemployed in his or her
entire working life. The data yt, xt and zt in (1)-(2) are obtained as the residuals of
log waget, educationt and father’s educationt after regression on the control variables
wt. In this case of over-identification (k = m+ 2) a flat prior would imply a proper
posterior with a finite posterior mean of β. However, since we are also interested in
the posterior variance of β, and particularly since we desire to compare (finite) Nu-
merical Standard Errors for the estimated posterior mean of β, we specify a proper,
non-informative prior for β, a standard normal distribution.

Simulation results are reported in Table 3. The posterior means and standard de-
viations of the elements of Π show that this concerns a case of strong instruments,
similar to case 3 of the simulated data sets. However, although the estimated pos-
terior moments are similar for Gibbs sampling and ARDMC, the Gibbs sampler’s
Effective Sample Size for estimating the posterior mean of β and ρ is merely around
6500 (for 100000 draws), due to the rather high serial correlation in the Gibbs se-
quences of draws of β and ρ. Therefore, ARDMC clearly provides a higher numerical
accuracy than the Gibbs sampler in this case of strong instruments.

We now estimate a model with m = 2 possibly endogenous regressors:

log waget = educationt β1 + unemploymenttβ2 + wtγ1 + ut, (19)

educationt = father’s educationtΠ1 + wtγ21 + vt1, (20)

unemploymentt = father’s educationtΠ2 + wtγ22 + vt2, (21)

where both years of education and the duration that an individual has been unem-
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ployed (in his or her entire working life) are considered as possibly endogenous
regressors, where the latter is now also excluded from wt. The idea behind this
choice is that unemployment duration, just like education, may be correlated with
a latent ‘ability’ that affects the error term ut in (19). We specify a proper, non-
informative N(0, I2) prior for β. Simulation results are reported in Table 3. Here
the Gibbs sequence of β has a huge serial correlation, illustrated by Figure 9, which
causes a very low ESS. On the other hand, ARDMC still has a high acceptance rate
of approximately 60%. This model provides a nice example of a marginal posterior
of β that is rather close to an elliptical distribution, where the Gibbs sampler would
require many more drawings (and much more computing time) than ARDMC to
yield accurate estimates of the posterior moments.

Table 4 shows simulation results for the first two empirical models where we make
use of Rao-Blackwellization in order to estimate the posterior means (and standard
deviations) of β and Π. The findings are similar to those for the simulated data
sets. In the first case of one weak instrument the difference in precision between
ARDMC and Gibbs is much larger than the benefits from Rao-Blackwellization in
either procedure. In the second case of three strong instruments, the benefits from
Rao-Blackwellization are substantial, where the relative benefits are even larger for
ARDMC than for the Gibbs sampler.
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Figure 8. Marginal posterior of β for example due to Acemoglu et al. (2001): posterior
density kernel (top left); candidate density (mixture of 8 Student-t densities) (top right);
histogram of ARDMC draws (bottom left); histogram of Gibbs draws (bottom right).
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Table 3
Posterior simulation results for empirical examples (without making use of Rao-
Blackwellization)

ARDMC Gibbs sampling

posterior posterior

mean st.dev. NSE mean st.dev. NSE s.c. ESS

Example (m = 1, k = 1, T = 64 countries) due to Acemoglu et al. (2001) under proper, noninformative N(0,100) prior on β:

yt = log GDP per capita; xt = Average Protection against Expropriation Risk; zt = log European settler mortality.

β 1.7936 26.6797 0.0991 2.2131 2.1621 0.5358 0.999 16

Π1 -0.2564 0.2066 0.0008 -0.2899 0.1898 0.0302 0.804 39

ρ ≡ σ12/
√
σ11σ22 -0.6613 0.5868 0.0022 -0.8562 0.1593 0.0178 0.932 81

number of draws 100000 candidate draws 100000 (+1000 burnin)

72472 accepted draws

computing time: ∗ total 48 s 59 s

∗ candidate 27 s

∗ sampling 21 s

Example (m = 1, k = 3, T = 8244 individuals) of German SOEP data under proper, noninformative N(0, 1) prior on β:

yt = log hourly wage; xt = years of education; zt = dummy variables indicating father’s education.

β 0.0812 0.0064 0.2196 ·10−4 0.0813 0.0063 0.7903 ·10−4 0.892 6435

Π1 1.1525 0.0738 2.5447 ·10−4 1.1524 0.0734 2.3373 ·10−4 0.001 98490

Π2 1.4388 0.3095 10.6693 ·10−4 1.4387 0.3112 10.1407 ·10−4 0.002 94169

Π3 2.4151 0.0801 2.7604 ·10−4 2.4156 0.0800 2.7242 ·10−4 0.013 86191

ρ ≡ σ12/
√
σ11σ22 -0.0858 0.0331 1.1421 ·10−4 -0.0859 0.0331 4.1193 ·10−4 0.891 6458

number of draws 100000 candidate draws 100000 (+1000 burnin)

84156 accepted draws

computing time: ∗ total 38 s 68 s

∗ candidate 10 s

∗ sampling 28 s

Example (m = 2, k = 3, T = 8244 individuals) of German SOEP data under proper, noninformative N(0, I2) prior on β:

yt = log hourly wage; xt = years of education, unemployment duration; zt = dummy variables indicating father’s education.

β1 0.0653 0.0196 0.0798 ·10−3 0.0623 0.0188 4.3665 ·10−3 0.988 19

β2 -0.2595 0.2380 0.9692 ·10−3 -0.3030 0.2298 57.8415 ·10−3 0.999 16

number of draws 100000 candidate draws 100000 (+1000 burnin)

60312 accepted draws

computing time: ∗ total 56 s 91 s

∗ candidate 8 s

∗ sampling 48 s

NSE, s.c., ESS: see Table 1.
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Table 4
Posterior simulation results for empirical examples using Rao-Blackwellization

ARDMC Gibbs sampling

posterior st.dev. posterior st.dev.

mean st.dev. NSE ESS cond. mean mean st.dev. NSE s.c. ESS cond. mean

Example (m = 1, k = 1, T = 64 countries) due to Acemoglu et al. (2001) under proper, noninformative N(0,100) prior on β:

yt = log GDP per capita; xt = Average Protection against Expropriation Risk; zt = log European settler mortality.

β 1.7937 26.6794 0.0991 72 471 26.6795 2.2130 2.1619 0.5357 0.999 16 2.1613

Π1 -0.2561 0.2068 0.0008 85 266 0.1906 -0.2893 0.1896 0.0302 0.986 39 0.1699

Example (m = 1, k = 3, T = 8244 individuals) of German SOEP data under proper, noninformative N(0, 1) prior on β:

yt = log hourly wage; xt = years of education; zt = dummy variables indicating father’s education.

β 0.0813 0.0064 0.2073 ·10−4 94 312 0.0060 0.0813 0.0064 0.7475 ·10−4 0.892 7 237 0.0060

Π1 1.1522 0.0734 0.0708 ·10−4 107 500 475 0.0021 1.1522 0.0734 0.1797 ·10−4 0.683 16 690 268 0.0020

Π2 1.4382 0.3113 0.4583 ·10−4 46 134 501 0.0133 1.4382 0.3113 1.6559 ·10−4 0.909 3 534 037 0.0132

Π3 2.4153 0.0799 0.2731 ·10−4 8 556 410 0.0079 2.4153 0.0799 0.9337 ·10−4 0.887 731 870 0.0078

NSE, s.c., ESS: see Table 2.
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Figure 9. IV model with m = 2 possibly endogenous regressors (education and unemploy-
ment spell): scatter plot of every 100th draw in the Gibbs sequence
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5 Further possibilities of ARDMC

Suppose that one is also interested in the effect of the included exogenous variables
wt (1× n) in

yt = xtβ + wtγ1 + ut, (22)

xt = ztΠ+ wtΓ2 + vt, (23)

where one specifies the prior p(β,Π,Σ, γ1,Γ2) ∝ p(β) |Σ|−m+2
2 . After applying the

ARDMC method to the posteriors where yt, xt and zt are replaced by their re-
siduals after regression on wt (and where T is replaced by T − n), the ARDMC
procedure is easily extended by a fourth step where (γ1, vec(Γ2))

′ is simulated from
its conditional posterior (conditional upon β,Π and Σ), N(vec[(W ′W )−1W ′(y −
Xβ) (W ′W )−1W ′(X − ZΠ)],Σ⊗ (W ′W )−1) with W = (w′

1, . . . , w
′
T )

′.

Further, the ARDMC procedure can be applied in a non-linear IV model

yt = f(xt, β) + ut, (24)

xt = ztΠ+ vt, (25)

with (ut, v
′
t)

′ ∼ NID(0(m+1)×1,Σ) under the prior p(β,Π,Σ) ∝ p(β) |Σ|−m+2
2 . Then

the adapted MitISEM method in step 1 will aim at the marginal posterior of β

p(β | y,X, Z) ∝p(β)
((y − f(X, β))′MZ(y − f(X, β)))

T−k−m
2

((y − f(X, β))′(y − f(X, β)))
T−m

2

(26)

where f(X, β) ≡ (f(x1, β), . . . , f(xT , β))
′. For example, a possibly non-linear ef-

fect of education on the logarithm of income could be investigated by specifying
f(xt, β) = β0 + β1x

β2
t . The conditional posteriors (of Π given β, and of Σ given β

and Π) in steps 2 and 3 simply remain the matrix t and inverse-Wishart distributions
(with u ≡ y − f(X, β)).

The ARDMC method can not be readily applied to the posterior under Jeffreys’
prior. Although Jeffreys’ prior eliminates the vertical asymptote of the marginal
posterior of Π around Π = 0, the marginal posterior of β (and the posterior of
(β,Π)) may still be highly non-elliptical; see subsection 4.2.2 of Hoogerheide (2006).
Moreover, posterior moments of β and Π do not exist, since the posteriors of β and
Π under Jeffreys’ prior have Cauchy-type tails, even in case of over-identification.
Summarizing, not all the issues due to local non-identification are solved by the use
of Jeffreys’ prior, and it leads to posterior properties that may be found undesirable.
For posterior simulation under Jeffreys’ prior we refer to the methods developed by
Kleibergen and Van Dijk (1998) and Kleibergen and Paap (2002).
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6 Conclusions and Future Work

We discussed Bayesian inferential procedures within the instrumental variables re-
gression model and focused on two issues: existence conditions for posterior moments
under a flat prior and the potential of Direct Monte Carlo (DMC) approaches for
efficient evaluation of such possibly highly non-elliptical posteriors. We discussed
that, for the general case of m endogenous variables, posterior moments of order
r exist using a flat prior if the number of instruments is greater than m + r. We
discussed the potential of DMC approaches for this case and introduced an exten-
sion of DMC that incorporates an acceptance-rejection sampling step within DMC.
This Acceptance-Rejection within DMC (ARDMC) method has as attractive pro-
perty that the generated random drawings are independent, which greatly helps the
fast convergence of simulation results, and which facilitates the evaluation of the
numerical accuracy. For several cases of simulated and empirical data sets ARDMC
outperforms the Gibbs sampler in terms of numerical accuracy.

We leave the following issues as topics for future research. First, the speed of
ARDMC can be easily further improved by making use of parallelized computation
using multiple core machines and computer clusters, which is less straightforward
for MCMC methods. This could reduce the computing time by a substantial factor.
Second, one may focus on the Errors in Variables (EV) model and the Simultaneous
Equations Model (SEM). Third, as an alternative to a choice between the linear mo-
del and IV model, one may use Bayesian Model Averaging (BMA) of the posteriors
in the linear and IV model, based on either the marginal or predictive likelihoods of
the models, see Zellner et al. (2011). Fourth, the ARDMC procedure may be used
to simulate candidate draws for Importance Sampling or the independence chain
Metropolis-Hastings algorithm, in cases where one specifies an informative prior for
the parameters Π or Σ.
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A IV model with m possibly endogenous regressors under a flat prior:
derivations of conditional and marginal posterior distributions

This Appendix provides a concise derivation of the conditional and marginal pos-
terior distributions, and the results on properness and posterior moments, that are
considered in Section 2.

For the conditional posterior density of β given Π and Σ, we use the fact
that only u is a function of parameter β in (5), and properties of the multivariate
normal distribution. We have u|V,Σ ∼ N(µu|V,Σ, ωu|V,Σ IT ). Hence the conditional
posterior of β given Π and Σ is:

p(β | Π,Σ, y,X, Z) ∝ p(u|V,Σ) ∝ exp
{
−1

2
tr
(
ω−1
u|V,Σ

(
y − µu|V,Σ −Xβ

)′ (
y − µu|V,Σ −Xβ

))}
.

(A.1)

Completing the sum of squares in (A.1) shows that the conditional posterior of β |
Π,Σ is the multivariate normal densityN(µβ|Π,Σ,Ωβ|Π,Σ), where µβ|Π,Σ ≡ (X ′X)−1X ′(y−
µu|V,Σ) and Ωβ|Π,Σ ≡ ωu|V,Σ (X ′X)−1.

For the conditional posterior density of Π given β and Σ, we use the fact
that only V is a function of parameter Π in (5), and properties of multivariate
normal distribution. We have vec(V )|u,Σ ∼ N(vec(µV |u,Σ),ΩV |u,Σ ⊗ IT ). Hence the
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conditional posterior of Π is:

p(Π | β,Σ, y,X, Z) ∝ p(V |u,Σ) ∝ exp
{
−1

2
tr
(
Ω−1

V |u,Σ

(
X − µV |u,Σ − ZΠ

)′ (
X − µV |u,Σ − ZΠ

))}
.

(A.2)

Completing the squares in (A.2) shows that the conditional posterior of Π|β,Σ
is the matrix normal distribution Nmatrix(µΠ|β,Σ,ΩV |u,Σ, (Z

′Z)−1) with µΠ|β,Σ ≡
(Z ′Z)−1Z ′(X − µV |u,Σ).

The marginal posterior of β and Π is obtained by the Inverse-Wishart step on
Σ:

p(β,Π | y,X, Z) ∝
∫
Σ

|Σ|−(T+m+2)/2 exp
{
−1

2
tr
(
(u V )′ (u V ) Σ−1

)}
dΣ, (A.3)

where the right hand side is the Inverse-Wishart density apart from an integrating
constant and the factor |(u V )′(u V )|T/2, so

p(β,Π | y,X, Z) ∝
∣∣∣(u V )′ (u V )

∣∣∣−T/2
. (A.4)

The conditional posterior of β given Π is obtained by using the following de-
terminant decomposition:

p (Π, β | y,X, Z) ∝
∣∣∣(u V )′ (u V )

∣∣∣−T/2
= |V ′V |−T/2 (u′MV u)

−T/2
(A.5)

Completing the squares on β yields:

p (β,Π | y,X, Z) ∝|V ′V |−
T
2

(
(T −m) s2

β̂

)−T
2

1 +
(
β − β̂

)′
(X ′MVX)

(
β − β̂

)
(T −m) s2

β̂


−T

2

,

(A.6)

so that p(β | Π, y,X, Z) is a multivariate t density with location vector β̂ and scale
matrix s2

β̂
(X ′MVX)−1 and T −m degrees of freedom, given that (X ′MVX) has full

rank m. The latter holds if

|X ′MVX| = |V ′MXV | |X
′X|

|V ′V |
> 0 ⇔ |Π′Z ′MXZΠ|

|X ′X|
|V ′V |

> 0 (A.7)

where we have used thatMXV = MX(X−ZΠ) = −MXZΠ. (A.7) holds if Π
′Z ′MXZΠ

has full rank m, which is true if and only if Π has full column rank m.

In a similar fashion, we derive the conditional posterior of Π given β:

p (β,Π | y,X, Z) ∝(u′u)−T/2

∣∣∣∣SΠ̂

(
Im + (SΠ̂)

−1
(
Π− Π̂

)′
Z ′MuZ

(
Π− Π̂

))∣∣∣∣−T/2

.

(A.8)
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That is, p(Π | β, y,X, Z) is a matrix t density with location matrix Π̂, scale matrices
(Z ′MuZ)

−1 and SΠ̂, and T − k − m + 1 degrees of freedom for any number of
endogenous variables m, any number of instruments k and for every value of β.

The marginal posterior of β is derived by integrating (A.8):

p (β | y,X, Z) ∝(u′u)−T/2
∫
Π

|SΠ̂|
−T/2

∣∣∣∣(Im + (SΠ̂)
−1
(
Π− Π̂

)′
Z ′MuZ

(
Π− Π̂

))∣∣∣∣−T/2

dΠ,

(A.9)

=(u′u)−T/2 |SΠ̂|
−(T−k)/2 |Z ′MuZ|−m/2∫

Π

|Z ′MuZ|m/2 |SΠ̂|
−k/2

(
Im + (SΠ̂)

−1
(
Π− Π̂

)′
Z ′MuZ

(
Π− Π̂

))
dΠ,

(A.10)

∝(u′u)−T/2 |SΠ̂|
−(T−k)/2 |Z ′MuZ|−m/2

, (A.11)

where the integral in (A.10) is the matrix t density. The marginal posterior of β in
(A.11) is simplified as follows. The third factor (A.11) is:

|Z ′MuZ| = (u′MZu)
|Z ′Z|
(u′u)

∝ u′MZu

u′u
. (A.12)

The second factor in (A.11) is:

|SΠ̂| =
∣∣∣(MuX)′ MMuZ (MuX)

∣∣∣ = |(MuZ)
′MMuXMuZ|

|X ′MuX|
|Z ′MuZ|

, (A.13)

where the first factor on the right-hand side of (A.13), the sample covariance matrix
(multiplied by T −m− 1) of the residuals in a regression of Z on X and u, is equal
to

(MuZ)
′MMuXMuZ = (MXZ)

′MMXuMXZ = (MXZ)
′MMXyMXZ, (A.14)

which does not depend on β; in (A.14) we used MXu = MX(y − Xβ) = MXy.
Therefore

|ΣΠ̂| ∝
|X ′MuX|
|Z ′MuZ|

∝ u′MXu |X ′X|
u′u

(
u′MZu |Z ′Z|

u′u

)−1

∝ (u′MZu)
−1. (A.15)

Substituting (A.12) and (A.15) into (A.11) yields:

p(β | y,X, Z) ∝(u′u)−
T−m

2 (u′MZu)
T−k−m

2 , (A.16)

which is a t-density multiplied by a polynomial, or

p(β | y,X, Z) ∝
(
u′MZu

u′u

)T−k−m
2

(u′u)−
k
2 , (A.17)
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where the ratio u′MZu
u′u

< 1 for any β; for ‘large enough’ β (i.e., ||β|| large enough)

the ratio u′MZu
u′u

is bounded from below and above by ratios of positive eigenvalues
of X ′MZX and X ′X. Therefore, the tail behavior and properness of p(β | y,X, Z)

are determined by the factor (u′u)−
k
2 , which is an m-dimensional t density with

r = k − m integer degrees of freedom. Therefore, p(β | y,X, Z) is an improper
density for k ≤ m (exact or under-identification), and a proper density for k > m
(over-identification).

The marginal posterior of Π is derived by integrating (A.6):

p (Π | y,X, Z) ∝|V ′V |−
T
2

(
(T −m) s2

β̂

)−T
2

∣∣∣∣∣∣X
′MVX

s2
β̂

∣∣∣∣∣∣
−1/2

×
∫
β

∣∣∣∣∣∣X
′MVX

s2
β̂

∣∣∣∣∣∣
1/2
1 +

(
β − β̂

)′
(X ′MVX)

(
β − β̂

)
(T −m) s2

β̂


−T

2

dβ,

(A.18)

∝|V ′V |−
T
2

(
s2
β̂

)−T
2

∣∣∣∣∣∣X
′MVX

s2
β̂

∣∣∣∣∣∣
−1/2

∝ |V ′V |−
T
2

(
s2
β̂

)−T−m
2 |X ′MVX|−1/2

,

(A.19)

where the integrand in (A.18) is a multivariate t density. Inserting

|X ′MVX| = |V ′MXV | |X
′X|

|V ′V |
(A.20)

σ2
β̂
∝ | (MXy)

′MMV X (MXy) | = | (MXV )′ MMyX (MXv) |
(y′MXy)

|V ′MXV |
∝

|V ′M(y X)V |
|V ′MXV |

(A.21)

into (A.19) yields:

p (Π | y,X, Z) ∝|V ′V |−T/2

(
|V ′MXV |
|V ′V |

)−1/2 ∣∣∣V ′M(y X)V
∣∣∣T−m

2 |V ′MXV |−
T−m

2 .

(A.22)

Substituting

MXV =MX (X − ZΠ) = MXZΠ (A.23)

M(y X)v =M(y X) (X − ZΠ) = M(y X)ZΠ. (A.24)

into (A.22) yields:

p (Π | y,X, Z) ∝|V ′V |−
T−1
2 |Π′Z ′MXZΠ|

T−m−1
2

∣∣∣Π′Z ′M(y X)ZΠ
∣∣∣−T−m

2 , (A.25)
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a matrix t-density multiplied by a rational function, or

p (Π | y,X, Z) ∝|V ′V |−
T−1
2

 |Π′Z ′MXZΠ|∣∣∣Π′Z ′M(y X)ZΠ
∣∣∣


T−m
2

|Π′Z ′MXZΠ|−
1
2 , (A.26)

where |V ′V |−T−1
2 is a density kernel of a proper matrix t distribution of which

the first few moments are finite (given that T is not very small), and the ratio
|Π′Z′MXZΠ|

|Π′Z′M(y X)ZΠ| is bounded from below and above by ratios of positive eigenvalues of

Z ′MXZ and Z ′M(y X)Z. So, the properness of p (Π | y,X, Z) is determined by the

factor |Π′Z ′MXZΠ|−
1
2 , which is integrable if and only if k > m (over-identification).

In the latter case, the first few moments – i.e., at least up to the fourth moment –
exist (given that T is not very small).
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