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A Class of Adaptive Importance Sampling Weighted EM Algorithms for

Efficient and Robust Posterior and Predictive Simulation

Lennart Hoogerheide∗† Anne Opschoor‡ Herman K. van Dijk§

Abstract

A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The

proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical

shapes such as multimodality and skewness. The basic method makes use of sequences of importance weighted

Expectation Maximization steps in order to efficiently construct a mixture of Student-t densities that approxi-

mates accurately the target distribution – typically a posterior distribution, of which we only require a kernel

– in the sense that the Kullback-Leibler divergence between target and mixture is minimized. We label this

approach Mixture of t by Importance Sampling weighted Expectation Maximization (MitISEM). The constructed

mixture is used as a candidate density for quick and reliable application of either Importance Sampling (IS)

or the Metropolis-Hastings (MH) method. We also introduce three extensions of the basic MitISEM approach.

First, we propose a method for applying MitISEM in a sequential manner, so that the candidate distribution

for posterior simulation is cleverly updated when new data become available. Our results show that the com-

putational effort reduces enormously, while the quality of the approximation remains almost unchanged. This

sequential approach can be combined with a tempering approach, which facilitates the simulation from densities

with multiple modes that are far apart. Second, we introduce a permutation-augmented MitISEM approach.

This is useful for importance or Metropolis-Hastings sampling from posterior distributions in mixture models

without the requirement of imposing identification restrictions on the model’s mixture regimes’ parameters.

Third, we propose a partial MitISEM approach, which aims at approximating the joint distribution by estimat-

ing a product of marginal and conditional distributions. This division can substantially reduce the dimension

of the approximation problem, which facilitates the application of adaptive importance sampling for posterior

simulation in more complex models with larger numbers of parameters. Our results indicate that the proposed

methods can substantially reduce the computational burden in econometric models like DCC or mixture GARCH

models and a mixture instrumental variables model.

Keywords: mixture of Student-t distributions, importance sampling, Kullback-Leibler divergence, Expectation

Maximization, Metropolis-Hastings algorithm, predictive likelihood, DCC GARCH, mixture GARCH, instru-

mental variables.

1 Introduction

Since a few decades there is considerable interest in Bayesian analysis using computer generated pseudo random

draws from the posterior and predictive distribution. Markov Chain Monte Carlo (MCMC) techniques are

useful for this purpose and a popular MCMC technique is the Metropolis-Hastings algorithm, developed by

Metropolis et al. (1953) and generalized by Hastings (1970). Several updates of this sampler are proposed in

the literature, especially the idea of adapting the proposal distribution given sampled draws.

Monte Carlo procedures based on Importance Sampling (IS), see Hammersley and Handscomb (1964),

are an alternative. This idea has been introduced in Bayesian inference by Kloek and Van Dijk (1978) and

is further developed by Van Dijk and Kloek (1980, 1984) and, in particular, by Geweke (1989). Cappé et
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al. (2008) discuss that there exists renewed interest in Importance Sampling. This is due to its relatively

simple properties which allow for the development of parallel implementation. The increased popularity of

Importance Sampling goes jointly with the development of multiple core machines and computer clusters.

In this paper we specify a class of adaptive sampling methods for efficient and reliable posterior and

predictive simulation. The proposed methods are robust in the sense that they can handle target distributions

that exhibit non-elliptical shapes such as multimodality and skewness. These methods are especially useful

for posteriors where the convergence of alternative simulation methods is slow or even doubtful, such as high

serial correlation in Gibbs sequences that may be caused by large numbers of latent variables or non-elliptical

shapes. Importance Sampling and Gibbs sampling are not necessarily substitutes: given that diagnostic

checks can never fully guarantee that results have converged to the true values (that is, that convergence has

been reached and that no errors have been made in the derivations and code), the use of both simulation

methods that have completely different theory and implementation can be a useful validity check. Further, an

appropriate candidate distribution can be used to draw initial values for multiple Gibbs sequences, whereas

a sample of Gibbs draws can be used to obtain initial values for the mean and covariance matrix in the

process of constructing an approximating candidate distribution. Our proposed methods make use of the

novel Mixture of t by Importance Sampling weighted Expectation Maximization (MitISEM) approach. This

approach uses sequences of importance weighted steps in an Expectation Maximization algorithm in order to

relatively quickly construct a mixture of Student-t densities, which is used as an efficient and reliable candidate

density for Importance Sampling (IS) or the Metropolis-Hastings (MH) method. Next to assessing possibly

non-elliptical posterior distributions, MitISEM is particulary useful for accurately estimating marginal and

predictive likelihoods via IS.

Apart from specifying the basic approach of MitISEM, we introduce three extensions. First, we propose

a method for applying MitISEM in a sequential manner, so that the candidate distribution for posterior

simulation is cleverly updated when new data become available. Our results show that the computational

effort reduces enormously, while the quality of the approximation remains almost unchanged, as compared

with an ‘ad hoc’ procedure in which the construction of the MitISEM candidate is performed ‘from scratch’ at

every moment in time. This sequential approach can be combined with a tempering approach, which facilitates

the simulation from densities with multiple modes that are far apart. The proposed tempering method moves

sequentially from a tempered target density kernel, the target density kernel to the power of a positive number

that is smaller than 1, towards the real target density kernel. The tempered target distribution is more diffuse

and hence the probability of detecting far-away modes is higher. The idea of tempering was introduced by

Geyer (1991), see also Hukushima and Nemoto (1996).

Second, we introduce a permutation-augmented MitISEM approach, for importance sampling from posterior

distributions in mixture models without the requirement of imposing a priori identification restrictions on the

mixture components’ parameters. As discussed by Geweke (2007), the mixture model likelihood function is

invariant with respect to permutation of the components of the mixture model. If functions of interest are

permutation sensitive, as in classification applications, then interpretation of the likelihood function requires

valid inequality constraints. If functions of interest are permutation invariant, as in prediction applications,

then there are no such problems of interpretation. Geweke (2007) proposes the permutation-augmented Gibbs

sampler, which can be considered as an extension of the random permutation sampler of Frühwirth-Schnatter

(2001). The practical implementation of the idea of the permutation-augmented Gibbs sampler is that one

simulates a Gibbs sequence with total disregard for label switching or the prior’s labeling restrictions. Only

after that and only if functions of interest are permutation sensitive, then one simply permutes the Gibbs

sampler’s output so as to satisfy the labeling restrictions. We propose a method of permutation-augmented

IS, for which we extend the MitISEM approach to construct an approximation to the unrestricted posterior,

taking into account the permutation structure. If m is the number of components of the mixture model, then
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the addition of a Student-t component to the candidate implies an addition of the m! equivalent permutations.

Thereby, we construct a mixture of mixtures ofm! Student-t components, where the restriction is imposed that

the m! permutations have equal candidate density. Intuitively stated, we help the basic MitISEM approach

by ‘telling’ it about the invariance with respect to permutations. It should be noted that this invariance with

respect to permutations is not the only possible cause of non-elliptical shapes in a mixture model’s posterior.

For example, if the probability of one of the model’s components tends to zero, the local non-identification of

the component’s other parameters causes ridge shapes.

Third, we propose a partial MitISEM approach, which aims at approximating the joint distribution by

estimating a product of marginal and conditional distributions. This division can substantially reduce the di-

mension of the approximation problem, which facilitates the application of adaptive importance or Metropolis-

Hastings sampling for posterior simulation in more complex models with larger numbers of parameters. Ap-

proximating the joint posterior density kernel with a mixture of Student-t distributions allows for a huge

flexibility of shapes. However, rarely all of this flexibility is required. It is typically enough to use mixtures of

Student-t distributions for the dependence within subsets of the parameters. We can often divide the param-

eters into subsets, where the dependence between different subsets is less complicated. Our partial MitISEM

approach divides the model parameters into ordered subsets, where the conditional candidate distributions’

means are linear combinations of (functions of) the parameters in previous subsets. The partial MitISEM

approach is a way to provide a usable approximation to the posterior, while preventing problems such as

numerical issues with specifying huge covariance matrices for a joint candidate distribution – problems that

have led researchers to conclude that IS necessarily suffers from a ‘curse of dimensionality’.

Several approaches of adaptive sampling using mixtures exist in the literature. Keith et al. (2008) de-

veloped adaptive independence samplers by minimizing the Kullback-Leibler (KL) divergence in order to

provide the best candidate density, which consists of a mixture of Gaussian densities. The minimization of the

KL-divergence is done by applying the EM algorithm of Dempster et al. (1977) and the number of mixture

components is selected through information criteria like AIC (Akaike (1974)), BIC (Schwarz (1978)) or DIC

(Gelman et al. (2003)). Our basic approach is a ‘bottom up’ procedure that starts with one Student-t dis-

tribution (instead of a Gaussian distribution) and Student-t components are added iteratively until a certain

stop criterion is met. We emphasize that the IS-weighted version of the EM algorithm is applied in order

to use all candidate draws without requiring the Metropolis-Hastings algorithm to transform the candidate

draws into a set of posterior draws. Cappé et al. (2008) and Cornuet et al. (2009) also use IS-weights in the

EM algorithm with a mixture of Student-t densities as candidate density. Cappé et al. (2008) developed the

M-PMC (Mixture Population Monte Carlo) algorithm, which is an adaptive algorithm that iteratively updates

both the weights and component parameters of a mixture importance sampling density. An important dif-

ference between Cappé et al. (2008) (and also Cornuet et al. (2009)) and the present paper is the choice of

the number of mixture components and the starting values of the candidate mixture’s Student-t components’

means and covariances in the EM optimization procedure. Regarding the first issue, in earlier papers the

number of mixture components is chosen a priori, where we let the algorithm choose the required number

of components. Second, we choose the starting values based on the draws that correspond to the highest

IS-weights for the previous mixture of Student-t candidate in the algorithm, where Cappé et al. (2008) do

not provide a strategy for choosing starting values. Although the EM procedure is guaranteed to converge

to a local optimum, the choice of the starting values may still be crucial, given that the KL divergence be-

tween target and candidate (as a function of the candidate mixture’s means, covariances, degrees of freedom

and component weights) is a highly non-elliptical, multimodal function. Moreover, we provide extensions

(sequential, tempered, permutation-augmented and partial MitISEM) that facilitate simulation for specific

applications and for particular statistical and econometric models. A different strand of literature is the use

of adaptive MCMC algorithms where the parameters of the candidate density are automatically tuned during
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the sampling procedure. Learning about candidate density parameter values leading to more efficient sampling

while maintaining the ergodicity property for asymptotic convergence is, of course, important. Roberts and

Rosenthal (2009) consider an adaptive random walk Metropolis sampler and Giordani and Kohn (2010) use

a mixture of densities in their adaptive independent MH sampler. We differ from these authors by using a

two-stage approach. Using the Kullback-Leibler distance function, we fit during a first stage of preliminary

adaptation a flexible candidate to the target with the IS-weighted EM algorithm. In the second stage we

insert the obtained candidate in a ‘standard’, non-adaptive IS or MH algorithm. So, in terms of Giordani and

Kohn (2010), we do not perform strict adaptation; our second phase of non-adaptive IS or MH ensures that

the simulation output converges to the correct distribution. In section 2.1, we compare the efficiency of our

approach with those from Roberts and Rosenthal (2009) and Giordani and Kohn (2010) in the context of a

DCC-GARCH model with 17 parameters. The results indicate that our approach compares favorably with

these alternative adaptive MCMC schemes, but we emphasize that a systematic study of the relevant merits of

alternative sampling schemes for a variety of target density shapes is a topic of great interest, which is however

beyond the scope of the present study.

A final remark considering the literature regards the Adaptive Mixture of t (AdMit) approach of Hooger-

heide, Kaashoek and Van Dijk (2007). Whereas the idea behind AdMit and MitISEM is the same, i.e. iteratively

constructing an approximation of a target distribution by a mixture of Student-t distributions, there are three

substantial differences. First, AdMit aims at minimizing the variance of the IS estimator directly, whereas

MitISEM aims at this goal indirectly by minimizing the Kullback-Leibler divergence. As a result, AdMit

optimizes the mixture component weights using a non-linear optimization procedure that requires consider-

able computational effort. Second, in the AdMit method, means and covariance matrices of the candidate

components are chosen heuristically and are never updated when additional components are added to the

mixture, whereas in MitISEM all mixture parameters are optimized jointly by means of the relatively quick

EM algorithm. This implies a large reduction of the computing time in the approximation procedure, and is

expected to lead to a better candidate in most applications. Third, AdMit requires the joint target density

kernel, whereas MitISEM requires candidate draws and importance weights. This implies that AdMit can not

be applied partially to the marginal and conditional posterior distributions of subsets of parameters, whereas

we propose a partial MitISEM approach. One relative advantage of the AdMit approach is the step in which

the importance weight function is maximized with respect to the parameter vector, which may lead to finding

relevant areas of the parameter space that were ‘missed’ by all draws from the previous candidate. We intend

to investigate the use of such an AdMit step within MitISEM in further research.

The outline of this paper is as follows. In section 2 we introduce the MitISEM method, and we show

applications in a multivariate GARCH model with 17 parameters, and a (Wishart) posterior density kernel of

up to 36 parameters in an inverse covariance matrix. Section 3 introduces the sequential MitISEM method, and

includes a subsection on the tempering method. In section 4 the permutation-augmented MitISEM approach

is proposed. Section 5 introduces the partial MitISEM method. Section 6 concludes. The appendix provides

the derivations of the IS-weighted EM methods, and discusses the alternative simulation methods of Roberts

and Rosenthal (2009) and Giordani and Kohn (2010).

2 Mixture of t by Importance Sampling weighted Expectation Max-

imization (MitISEM)

If one uses Importance Sampling or the Metropolis-Hastings algorithm to conduct posterior analysis, a key

issue is to find a candidate density which approximates the target distribution. This can be quite difficult

if the target density is not elliptical. This paper proposes to specify the candidate distribution as a mixture

of Student-t distributions. As discussed by Hoogerheide et al. (2007), the usage of mixtures of Student-t
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distributions has several advantages. First, they can provide an accurate approximation to a wide variety

of target densities. For example, they can exhibit substantial skewness or irregularly curved contours such

as multimodality. Zeevi and Meir (1997) show that under certain conditions any density function may be

approximated to arbitrary accuracy by a convex combination of ‘basis’ densities; the mixture of Student-t

densities falls within their framework. Second, simulation from the Student-t distribution and evaluation of

the Student-t density are performed easily and efficiently. Third, Student-t distributions have fatter tails than

normal distributions, which reduces the risk that the tails of the candidate density are thinner than those of

the target distribution. Fourth, a mixture of t approximation to a target distribution can be constructed in a

quick, automatic, reliable manner by our novel procedure.

We will use the notation f(θ) for the target density kernel of θ, the k-dimensional vector of interest. f(θ)

is typically a posterior density kernel, but it can also be a density kernel of observable variables or a density

kernel of both parameters and observable variables. g(θ) is the candidate density, a mixture of H Student-t

densities:

g(θ) = g(θ|ζ) =
H∑

h=1

ηh tk(θ|µh,Σh, νh), (1)

where ζ is the set of modes µh, scale matrices Σh, degrees of freedom νh, and mixing probabilities ηh (h =

1, . . . ,H) of the k-dimensional Student-t components with density:

tk(θ|µh,Σh, νh) =
Γ
(
νh+k

2

)
Γ
(
νh

2

)
(πνh)k/2

|Σh|−1/2

(
1 +

(θ − µh)
′
Σ−1

h (θ − µh)

νh

)−(k+νh)/2

. (2)

Here Σh is positive definite, ηh ≥ 0 and
∑H

h=1 ηh = 1. We further restrict νh such that νh ≥ 1.

First, assume that the number of components H is given. In the sequel of this section we will propose

a ‘bottom up’ procedure that starts with one Student-t distribution and which iteratively adds Student-t

components until a certain stop criterion is met. The aim is to choose the candidate mixture density g(θ) in

such a way that it provides a good approximation of the target density f̃(θ) of which f(θ) is a kernel. Typically,

f̃(θ) will represent the posterior density, whereas f(θ) represents the unnormalized posterior density kernel

which can be evaluated explicitly. We do this by choosing ζ such that it minimizes the Kullback-Leibler

divergence (or Cross-entropy distance) (Kullback and Leibler (1951)), which is defined as

D1(f̃ → g) =

∫
f̃(θ) log

f̃(θ)

g(θ|ζ)
dθ. (3)

This is obviously equivalent with minimizing

D1(f → g) =

∫
f(θ) log

f(θ)

g(θ|ζ)
dθ. (4)

as long as the same kernel f of the target density f̃ is used throughout the minimization. Since

D1(f → g) =

∫
f(θ) log

f(θ)

g(θ|ζ)
dθ =

∫
f(θ) log f(θ) dθ −

∫
f(θ) log g(θ|ζ) dθ, (5)

where only the second term on the right-hand side of (5) depends on ζ, this amounts to maximizing∫
f(θ) log g(θ|ζ) dθ = Eθ∼f(θ)[log g(θ|ζ)] = (6)∫

g0(θ)
f(θ)

g0(θ)
log g(θ|ζ) dθ = Eθ∼g0(θ)

[
f(θ)

g0(θ)
log g(θ|ζ)

]
, (7)

where g0(θ) is a given candidate density that has been obtained in a previous step. For H = 1 the density

g0(θ) is an initial candidate distribution, such as a Student-t distribution around the posterior mode with scale

matrix equal to minus the inverse Hessian of the log-posterior at the mode, or an adapted version thereof. For
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H ≥ 2, g0 is a mixture of H − 1 Student-t components, that has been obtained in the previous step of the

‘bottom up’ construction procedure.

We use an Expectation-Maximization (EM) algorithm for minimizing the stochastic counterpart of (7) in

order to find

ζ∗ = argmax
ζ

1

N

N∑
i=1

W i log g(θi|ζ) with W i =
f(θi)

g0(θi)
,

where θi (i = 1, 2, . . . , N) are independent draws from g0. Note that both the θi and W i are given during

the optimization; θi and W i (i = 1, 2, . . . , N) do not depend on ζ. We emphasize that the importance

weighted version of the EM algorithm is applied, rather than minimizing the stochastic counterpart of (6)

by a ‘regular’ EM algorithm, in order to use all candidate draws without requiring the Metropolis-Hastings

algorithm to transform the candidate draws into a set of posterior draws. This has three advantages. First,

we do not require a burn-in sample. Second, the use of all candidate draws θi (i = 1, 2, . . . , N) helps to

prevent numerical problems with estimating candidate covariance matrices; also draws with relatively small,

but positive importance weights are helpful for this purpose. Third, the use of all candidate draws may lead

to a better approximation.

The EM algorithm (Dempster et al. (1977)) is based on the idea that a complex model for some observable

‘data’ θ with parameters ζ can be formulated in a simpler form with latent data θ̃ in addition to θ and ζ. If the

latent data θ̃ were observed, the computation of the Maximum Likelihood estimator of θ would be relatively

straightforward. Each iteration L of the EM algorithm consists of two (iterative) steps, the Expectation and

Maximization step. The first (Expectation) step takes the expectation of the log-likelihood function with

respect to the latent data θ̃ (given the parameter values ζ(L−1) from the previous iteration). The second

(Maximization) step maximizes this expected log-likelihood with respect to the parameters.

In our situation we maximize the weighted log-density

1

N

N∑
i=1

W i log g(θi|ζ),

where g(.|ζ) is the mixture of Student-t densities (1). The mixture of Student-t densities (1) for θi is equivalent

with the specification

θi ∼ N(µh, w
i
hΣh) if zih = 1,

where zi is a latent H-dimensional vector indicating from which Student-t component the observation θi stems:

if θi stems from component h, then zih = 1, zij = 0 for j ̸= h; Pr[zi = eh] = ηh with eh the h-th column of the

identity matrix; wi
h has the Inverse-Gamma distribution IG(νh/2, νh/2). For a more extensive explanation of

the continuous scale mixing representation of Student-t distributions we refer to Rubin (1983) and to Lange,

Little and Taylor (1989) who consider the more general situation with unknown degrees of freedom. For

mixtures of Student-t distributions we refer to Peel and McLachlan (2000).

Here we have latent ‘data’ θ̃i (i = 1, . . . , N)

θ̃i = {zih, wi
h|h = 1, . . . , H}

and the so-called data-augmented density is given by

log p(θi, wi, zi|ζ) = log p(θi|wi, zi, ζ) + log p(wi|ζ) + log p(zi|ζ)

=
H∑

h=1

zih log
[
pdfN(µh,wi

hΣh)
(θi)

]
+

H∑
h=1

log pdfIG(νh/2,νh/2)
(wi

h) +
H∑

h=1

zih log(ηh)
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=
H∑

h=1

zih

{
−k
2
log(2π)− 1

2
log |Σh| −

k

2
log(wi

h)−
1

2

(θi − µh)
′(Σh)

−1(θi − µh)

wi
h

}

+
H∑

h=1

{
νh
2

log
(νh
2

)
−
(νh
2

− 1
)
log(wi

h)−
νh
2

1

wi
h

− log
(
Γ
(νh
2

))}

+
H∑

h=1

zih log(ηh), (8)

where wi and zi are a priori independent. The expressions of the latent variables wi and zi that appear

in terms which also involve the parameters ζ to be optimized are zih,
zi
h

wi
h

, logwi
h, and

1
wi

h

. The conditional

expectations given θi and ζ = ζ(L−1), the optimal parameters in the previous EM iteration, are as follows:

z̃ih ≡ E
[
zih

∣∣∣θi, ζ = ζ(L−1)
]
=

t(θi|µh,Σh, νh) ηh∑H
j=1 t(θ

i|µj ,Σj , νj) ηj
, (9)

z̃/w
i

h ≡ E

[
zih
wi

h

∣∣∣∣ θi, ζ = ζ(L−1)

]
= z̃ih

k + νh
ρih + νh

, (10)

ξih ≡ E
[
logwi

h

∣∣∣θi, ζ = ζ(L−1)
]
=

=

[
log

(
ρih + νh

2

)
− ψ

(
k + νh

2

)]
z̃ih +

[
log
(νh
2

)
− ψ

(νh
2

)]
(1− z̃ih), (11)

δih ≡ E

[
1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
=

k + νh
ρih + νh

z̃ih + (1− z̃ih), (12)

with ρih = (θi − µh)
′Σ−1

h (θi − µh), ψ(.) the digamma function (the derivative of the logarithm of the gamma

function log Γ(.)), and all parameters µh,Σh, νh, ηh elements of ζ(L−1). For the derivations of these expectations

we refer to the appendix.

Define log p̃(θi, wi, zi|ζ) as the result of substituting the expectations (9)-(12) into log p(θi, wi, zi|ζ) in (8).

The Maximization step amounts to computing the ζ that maximizes

ζ(L) = argmax
ζ

1

N

N∑
i=1

W i log p̃(θi, wi, zi|ζ).

Using the analogy with Maximum Likelihood estimation for the Seemingly Unrelated Regression model with

Gaussian errors (for the k elements of θi) and the same ‘regressor’ (a constant term) in each equation, in

which case the Ordinary Least Squares (OLS) estimator provides the Maximum Likelihood Estimator, and

Maximum Likelihood estimation for the multinomial distribution, it is easily derived that ζ(L) consists of:

µ
(L)
h =

[
N∑
i=1

Wi z̃/w
i

h

]−1 [ N∑
i=1

Wi z̃/w
i

h θ
i

]
, (13)

Σ̂
(L)
h =

∑N
i=1Wi z̃/w

i

h (θi − µ
(L)
h )(θi − µ

(L)
h )′∑N

i=1Wi z̃ih
, (14)

η
(L)
h =

∑N
i=1Wi z̃

i
h∑N

i=1Wi

. (15)

Further, ν
(L)
h is solved from the first order condition of νh:

−ψ(νh/2) + log(νh/2) + 1−
∑N

i=1Wi ξ
i
h∑N

i=1Wi

−
∑N

i=1Wi δ
i
h∑N

i=1Wi

= 0. (16)

Cappé et al. (2008) only update the expectations and covariance structures of the Student-t distributions and

not the degrees of freedom, because there is no closed-form solution for the latter. We propose to optimize also

the degrees of freedom parameter νh during the EM procedure for three reasons. First, the larger flexibility
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may lead to a better approximation of the target distribution. Second, solving νh from (16) requires only a

one-dimensional root finder, which requires little computation time. Moreover, 1−
∑N

i=1 Wi ξih∑N
i=1 Wi

−
∑N

i=1 Wi δih∑N
i=1 Wi

is

constant with respect to νh, so that it only has to be evaluated once in the process of solving the equation.

Third, the resulting values of νh (h = 1, . . . , H) may provide information on the shape of the target distribution

(e.g. whether the kurtosis is small, moderate or large).

We now discuss two remaining issues: (1) how to choose the number of components H; (2) how to specify

the initial values in the EM algorithm. In order to deal with both issues, we use a ‘bottom up’ procedure that

starts with one Student-t distribution and which iteratively adds Student-t components until a certain stop

criterion is met:

Algorithm 1. The basic MitISEM approach for obtaining an approximation to a target density:

(0) Initialization: Simulate draws θ1, . . . , θN from the naive proposal density gnaive where gnaive denotes

a Student-t distribution with mode and scale matrix equal to the target distribution’s mode and minus

the inverse Hessian of the log-target density kernel evaluated at the mode.

(1) Adaptation: Estimate the target distribution’s mean and covariance matrix using IS with the draws

θ1, . . . , θN from gnaive. Use these estimates as the mode and scale matrix of Student-t distribution

gadaptive. Draw a sample θ1, . . . , θN from this adaptive Student-t distribution g0 = gadaptive, and compute

the IS weights for this sample.

(2) Apply the IS-weighted EM algorithm given the latest IS weights and the drawn sample of step 1. The

output consists of the new candidate density g with optimized ζ, the set of µh,Σh, νh, ηh (h = 1, . . . , H).

Draw a new sample θ1, . . . , θN from this proposal density and compute corresponding IS weights.

(3) Iterate on the number of mixture components: Given the current mixture of H components with

corresponding µh,Σh, νh and ηh (h = 1, . . . , H), take x% of the sample θ1, . . . , θN that correspond to

the highest IS weights. Construct with these draws and IS weights a new mode µH+1 and scale matrix

ΣH+1 which are starting values for the additional component in the mixture candidate density. The

reason behind this choice is that the new component is meant to cover a region of the parameter space

in which the previous candidate mixture had relatively too little probability mass. Starting values for

ηH+1 and νH+1 are at each iteration set at 0.10 and 1, respectively. Obvious starting values for µh, Σh

and νh (h = 1, . . . , H) are the optimal values in the mixture of H components, while ηh is 0.90 times the

previously optimal value. Given the latest IS weights and the drawn sample from the current mixture

of H components, apply the IS-weighted EM algorithm to optimize each mixture component µh,Σh, νh

and ηh (h = 1, . . . , H + 1). Draw a new sample from the mixture of H + 1 components and compute

corresponding IS weights.

(4) Evaluate the IS weights by computing the Coefficient of Variation (C.o.V.), i.e. the standard devi-

ation of the IS weights divided by their mean. Stop the algorithm when this coefficient has converged.

Otherwise return to step 3.

Step (1) can be seen as an intermediate step which quickly tries to improve the initial candidate distribution

g0, before calling the IS-weighted EM algorithm. If during the EM algorithm, a scale matrix Σh of a Student-t

component (with very small weight ηh) becomes (nearly) singular, then this h-th component is removed from

the mixture. We emphasize that in the iteration on the number of mixture components, the EM algorithm is

applied to optimize all components. This is a qualitative improvement compared to the AdMit approach of

Hoogerheide et al. (2007), which fixes the Student-t densities once they are formed.
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There are still two strategic issues to be discussed about the MitISEM algorithm. The first issue relates to

the following question: what is an efficient simulation method? Is this a simulation method that, given a certain

amount of computing time, provides an estimate of a quantity of interest with the highest possible precision?

Or is this a simulation method that, given a certain required precision, needs the shortest computing time.

The optimal number of Student-t components may depend on the available computing time or the required

precision. The more computing time is available, or the higher the required precision, the more rewarding a

large ‘investment’ in an accurate approximation may be. Moreover, in order to choose the optimal number of

Student-t components, we need to know the quantity of interest. That is, for a particular quantity of interest

and a particular desired precision (or available amount of computing time), one could attempt to compute an

optimal allocation of computing time over the construction of the candidate and the subsequential use in IS

or the MH algorithm. We intend to investigate this issue in future research. In the current paper, we propose

a heuristic procedure that continues adding Student-t components until the approximation’s quality ‘hardly’

improves. We define the latter as a relative change in the C.o.V. of the IS weights that is smaller than 10%.

We discuss examples in which the posterior distribution is itself approximated, which seems a reasonable

choice when we are interested in quantities such as the posterior mean, median or covariance. For the specific

application of multi-step-ahead forecasting of Value at Risk (VaR), it is arguably wise to approximate the

optimal importance density of Geweke (1989), see Hoogerheide and Van Dijk (2010). In the latter case, one

may monitor the Numerical Standard Error (NSE) of the estimated VaR, as an alternative to the C.o.V. of IS

weights.

Second, although the EM procedure is guaranteed to converge to a local optimum, the choice of the starting

values may still be crucial, given that the KL divergence between target and candidate (as a function of the

candidate mixture’s means, covariances, degrees of freedom and component weights) is a highly non-elliptical,

multimodal function. MitISEM uses x% of the sample θ1, . . . , θN that correspond to the highest IS weights,

in order to compute starting values for the mode µH+1 and scale matrix ΣH+1 of the additional component

in the mixture candidate density. The optimal choice of x% depends on the particular target distribution and

the current candidate mixture of H Student-t components. Therefore, we apply the EM algorithm with three

different starting values (based on 1%, 5% or 10% of the draws θ1, . . . , θN ), and continue the algorithm with

the resulting mixture of H + 1 Student-t components that yields the lowest C.o.V. value of the IS weights

among the three approaches.

The results in the present paper suggest that the current implementation of MitISEM is successful at

constructing approximations that are useful candidate distributions. It should be stressed that we do not

require the globally optimal candidate distribution: it suffices to have a ‘good’ approximation that makes a

trade-off between the computing time of constructing a candidate distribution and the efficiency during the

subsequential simulation.

2.1 Application: Bayesian analysis of the DCC-GARCH model

In this subsection the MitISEM approach is applied to the popular Dynamic Conditional Correlation (DCC)

GARCH model of Engle (2002). This multivariate GARCH model allows the conditional correlation between

multiple time series to be time-varying, whereas it allows flexible GARCH specifications for the univariate

processes. For the Bayesian estimation of this model, a regular Gibbs sampling approach is not feasible due

to the recursive structure of GARCH models. One could apply a Griddy-Gibbs sampler (Ritter and Tanner

(1992)), but this sampler is known to be relatively very slow. We use the MH sampler with a candidate density

resulting from the MitISEM algorithm, and compare the performance of the MitISEM candidate density with

two samplers from the literature: the adaptive Metropolis (AM) sampler of Roberts and Rosenthal (2009) and

the adaptive independent Metropolis-Hastings (AIMH) sampler of Giordani and Kohn (2010).
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In our example, the d-dimensional vector yt (t = 1, . . . , T ) consists of (demeaned) returns of asset prices

and is supposed to follow the following conditional distribution:

yt|It−1 ∼ N(0,Ht) (17)

with It−1 the information set at time t−1 and Ht representing the time-varying conditional covariance matrix

of the returns. Decomposing Ht into conditional variances and correlations, Ht can be written as

Ht = DtRtDt, (18)

whereDt represents a d×d time-varying diagonal matrix containing the square root of the conditional variances

hi,t (i = 1, . . . , d) of the asset returns yi,t. The d conditional variances follow a GARCH process,

hi,t = ωi + αiy
2
i,t−1 + βihi,t−1 (i = 1, . . . , d) (19)

with the usual restrictions ωi ≥ 0, αi ≥ 0 and βi ≥ 0 in order to ensure positive values of the conditional

variance. To ensure covariance stationarity of yt, one must impose αi + βi ≤ 1 (i = 1, . . . , d).

Regarding the correlations, Engle (2002) suggests a dynamic process

Qt = (1−A−B) Q̄+A (zt−1z
′
t−1) +BQt−1 (20)

with scalars A and B satisfying A ≥ 0, B ≥ 0 and A + B ≤ 1, and with Q̄ representing the unconditional

correlation matrix of the standardized residuals zt = D−1
t yt. This matrix Q̄ is estimated by the sample

correlation matrix 1
T

∑T
t=1 ẑtẑt

′
. The stated conditions plus a positive definite initial matrix Q0 guarantee

a positive definite matrix Qt. The matrix Qt has to be rescaled however to produce a valid time-varying

correlation matrix (with diagonal elements 1):

Rt = (I ◦Qt)
−1/2Qt(I ◦Qt)

−1/2, (21)

where ‘◦’ denotes the Hadamard product. We take uniform priors on the parameter vector θ, which consists of

17 parameters (5 times a univariate GARCH process plus the Dynamic Correlation process). For αi, βi, A and

B, we are restricted to [0,1] plus the covariance stationarity restrictions. For the remaining five parameters

ωi we use a truncated uniform prior [0, P ] in order to have proper non-informative priors. When using

truncated uniform priors, many draws may fall outside the feasible prior region for a naive Student-t candidate

distribution. An advantage of the MitISEM algorithm is that it produces a rather close approximation to the

posterior (including the 0 level outside the ‘allowed range’) that will have almost all probability mass inside

the feasible region.

We take returns from five indices: the MSCI World, the MSCI Emerging Markets, the Barclays Global

Bond Index, the DJ AIG-Spot Commodity Index and the FTSE EPRA/NAREIT Global Real Estate Index.

The first series is a stock market index of 1500 world stocks of 23 different developed countries, maintained by

Morgan Stanley Capital International (MSCI inc.). The Emerging Markets Index is a market capitalization

index that consists of indices in 26 emerging economies. The third series is often used to represent investment

grade bonds being traded in the United States. The Dow Jones-AIG Commodity Index is a benchmark index

for the commodities markets. It is composed of futures contracts on 19 physical commodities. The last series

represents trends in real estate equities worldwide. From these indices we use daily observations on log return

(100 times the change of the logarithm of the closing price) from January 3 2000 to November 3 2003.

Posterior means of the model parameters are estimated by using the independence chain MH algorithm with

the candidate density produced by MitISEM. We compare the performance of MitISEM to the AM sampler

of Roberts and Rosenthal (2009) and the AIMH sampler of Giordani and Kohn (2010). The first sampler is

based on a mixture of two multivariate normal distributions, where both covariance matrices are multiplied

by factors that aim at an optimal random walk proposal distribution and a high acceptance rate of the local
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Table 1: Application of the basic MitISEM algorithm, the AIMH sampler of Giordani and Kohn (2010), and the AM sampler of

Roberts and Rosenthal (2009) to posterior in DCC-GARCH model with 17 parameters: estimated posterior means, corresponding

numerical standard errors (NSEs) and first order autocorrelations of draws ρθ(1). Results are based on 100,000 draws after a

burn-in period of 5,000 draws. We report 100 times the NSE values which are obtained by equation (23).

MitISEM AIMH (GK) AM (RR)

mean NSE · 100 ρθ(1) mean NSE · 100 ρθ(1) mean NSE · 100 ρθ(1)

ω1 0.056 0.022 0.716 0.056 0.028 0.832 0.056 0.041 0.970

α1 0.076 0.016 0.679 0.075 0.021 0.817 0.076 0.034 0.970

β1 0.872 0.031 0.698 0.872 0.041 0.827 0.872 0.061 0.969

ω2 0.123 0.065 0.723 0.124 0.088 0.853 0.124 0.119 0.971

α2 0.090 0.027 0.700 0.090 0.033 0.828 0.090 0.048 0.968

β2 0.802 0.076 0.716 0.801 0.105 0.852 0.801 0.136 0.970

ω3 0.005 0.002 0.722 0.005 0.003 0.843 0.005 0.004 0.973

α3 0.096 0.026 0.687 0.095 0.035 0.821 0.095 0.053 0.970

β3 0.749 0.073 0.709 0.747 0.104 0.839 0.750 0.147 0.972

ω4 0.353 0.120 0.705 0.355 0.162 0.830 0.355 0.237 0.969

α4 0.130 0.046 0.710 0.132 0.061 0.837 0.131 0.083 0.968

β4 0.409 0.174 0.705 0.405 0.235 0.835 0.407 0.338 0.968

ω5 0.072 0.018 0.685 0.072 0.024 0.826 0.072 0.036 0.970

α5 0.173 0.040 0.697 0.173 0.051 0.828 0.172 0.073 0.970

β5 0.659 0.064 0.687 0.660 0.090 0.831 0.660 0.123 0.969

A 0.014 0.003 0.692 0.014 0.004 0.824 0.014 0.005 0.971

B 0.974 0.008 0.725 0.974 0.008 0.834 0.975 0.012 0.973

Acceptance rate 34% 19% 29%

Computational time (in seconds)

constructing candidate 2170

MH-sampler 3400 4625 5590

sampler. The second sampler consists of a mixture of normal densities, which are estimated by the k-harmonic

means clustering algorithm instead of the EM-algorithm that is used in MitISEM. See the appendix for a brief

description of both samplers.

Table 1 shows posterior means estimated by the MH algorithms. For all methods, we simulate 100,000

draws after a burn-in sample of 5000 draws. Numerical standard errors (NSE) are obtained by using the

integrated autocorrelation time (IACT),

IACT = 1 + 2

∞∑
τ=1

ρθ(τ), (22)

where we truncate this sum of τ -th order autocorrelations ρθ(τ) at τmax = 50. Hence the variance of the

sample mean θ̂mean after N iterations of the MCMC algorithm is equal to:

var(θ̂mean) = σ2
θ/N × IACT. (23)

The main result from Table 1 is that MitISEM outperforms the competing algorithms in this DCC-GARCH

application, since the NSE values of the estimated posterior means are smaller than the corresponding values

of AIMH and AM. MitISEM combines a higher acceptance rate with lower first order autocorrelations than

the competing algorithms. MitISEM does require more computing time (on an AMD Athlontm II X2 B24

processor) than AIMH, but if we give AIMH the same computing time (generating more draws), then its NSEs

only drop approximately 10%, so that these are still clearly worse than those of MitISEM. If we compare the

AIMH and AM algorithms, then the acceptance rate of AM is higher than the rate of AIMH, but the high

serial correlation of the AM draws increases the IACT, causing higher NSE values.

Note that the relative quality of the AIMH and AM algorithms, as compared with MitISEM, may improve

for parameter spaces with higher dimension. In such cases a comparison of AIMH and AM with the basic
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MitISEM approach and the partial MitISEM method of section 5 would be particularly interesting. A sys-

tematic study of the relevant merits of alternative sampling schemes for a variety of target density shapes and

dimensions is a topic of great interest, which is however beyond the scope of the present study. In any case,

we expect that no algorithm will dominate in all applications. Moreover, given that diagnostic checks can

never fully guarantee that simulation results have converged to the true values, the use of multiple simulation

methods can be a quite useful validity check.

2.2 Application: Wishart posterior distribution of inverse covariance matrix

In this subsection we show an example to analyze the MitISEM algorithm for different numbers of parameters

k. Suppose we have i.i.d. observations yt (t = 1, 2, . . . , T ), with the (d × 1) vector yt ∼ N(0,Σ). We specify

the diffuse prior p(Σ) ∝ |Σ|− d+1
2 , so that the posterior of Σ is Inverted Wishart; the posterior of Ψ ≡ Σ−1 is

Wishart with mean the inverse of the sample covariance matrix of yt (t = 1, 2, . . . , T ) and degrees of freedom

the number of observations T . Suppose T = 250 and the sample covariance matrix is ριι′ + (1 − ρ)I with

ρ = 0.5 and ι the (T × 1) vector of ones, i.e., all variances are 1 and all covariances are ρ = 0.5. Of course, we

could simulate directly from this Wishart distribution. However, we use this example to illustrate the quality

of the MitISEM algorithm for different numbers of parameters, the k = 1
2d(d+ 1) elements of the symmetric

d× d matrix Ψ (ψij ; i = 1, . . . , d; j = 1, . . . , d; i ≤ j). Table 2 gives simulation results for d = 1, 2, . . . 8, where

d = 8 implies k = 36 parameters. The Relative Numerical Efficiency (RNE) is the ratio of the variance of a

direct sampling estimator and the variance of the MitISEM IS estimator (with the same number of draws);

see Geweke (1989). This can be used to compute the Effective Sample Size (ESS), see Liu (2001). The mean,

min and max RNE indicate the mean, minimum and maximum of the k = 1
2d(d+ 1) RNEs for the estimated

posterior means of the parameters ψij (i = 1, . . . , d; j = 1, . . . , d; i ≤ j). For small numbers of parameters k,

the MitISEM approach produces an extremely good candidate distribution (RNEs close to 1, MH acceptance

rates above 80%). For larger numbers of parameters up to 36, the computing time increases, whereas the

quality decreases, although the latter is still rather high. In such dimensions, a RNE of 0.378 or a MH

acceptance rate of 40.9% can still be considered fine. For comparison, for the case of 36 parameters, the RNEs

of IS with the ‘naive’ candidate distribution around the posterior mode (with scale matrix equal to minus the

inverse Hessian of the log-posterior at the mode) have mean 0.0469 (falling in the interval [0.0382, 0.0514]),

and the MH acceptance rate is 8.5%. From the ratio of the RNEs we see that approximately 8 times more

draws would be required from the naive candidate to reach the same precision as MitISEM; that is, assuming

that no relevant parts of the parameter space are ‘missed’ by the naive candidate, otherwise the naive results

would be biased. Summarizing, this example illustrates that MitISEM can produce useful results for moderate

dimensions, at least up to 35 parameters.

For larger numbers of parameters, one may split the parameters into subsets, and construct the joint

candidate distribution by estimating a product of marginal and conditionals. This partial MitISEM approach

will be introduced in Section 5. Alternatively, one may consider the methods of Roberts and Rosenthal(2009)

or Giordani and Kohn (2010).

For the efficient evaluation of Value-at-Risk or Expected Shortfall, we may specifically focus on higher

values of variance and covariance parameters; see Hoogerheide and Van Dijk (2010). In such a case, no direct

sampling is possible. One may also consider mixtures of Wishart or Inverted Wishart distributions, instead of

Student-t distributions, which is left as a topic for further research.

3 Sequential MitISEM

In this section, we propose a method for applying MitISEM in a sequential manner, so that the candidate

distribution for posterior simulation is cleverly updated when new data become available. Our results show
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Table 2: Application of basic MitISEM to posterior (Wishart) density kernel for k = 1
2
d(d + 1) parameters in symmetric d × d

inverse covariance matrix Ψ ≡ Σ−1 for different dimensions d: simulation results where the mean, min and max RNE indicate

the mean, minimum and maximum of the k = 1
2
d(d + 1) Relative Numerical Efficiencies for the estimated posterior means of

the parameters ψij (i = 1, . . . , d; j = 1, . . . , d; i ≤ j).

Basic MitISEM computing time (s)

Importance Sampling MH

d k C.o.V. IS weights mean RNE min RNE max RNE acc. rate

1 1 0.130 0.946 0.946 0.946 0.939 39.1

2 3 0.227 0.925 0.921 0.927 0.884 46.0

3 6 0.351 0.864 0.856 0.871 0.806 48.8

4 10 0.491 0.783 0.774 0.791 0.724 53.7

5 15 0.643 0.686 0.680 0.692 0.639 61.5

6 21 0.805 0.588 0.573 0.595 0.561 72.3

7 28 1.002 0.481 0.470 0.494 0.486 96.8

8 36 1.240 0.378 0.365 0.389 0.409 117.7

that the computational effort reduces enormously, while the quality of the approximation remains almost

unchanged, as compared with an ‘ad hoc’ procedure in which the construction of the MitISEM candidate

is performed ‘from scratch’ at every moment in time. In the next subsection we show how this sequential

approach can be combined with a tempering approach, which facilitates the simulation from densities with

multiple modes that are far apart. For sequential Monte Carlo methods, we refer to Liu and Chen (1998),

Doucet et al. (2001), and Chopin (2002). The latter explicitly takes into account that a candidate proposal

will not be updated until the sequential weights become very variable.

The previous section showed that, although the IS-weighted EM steps are relatively efficient, the con-

struction of an appropriate candidate distribution may still require considerable computing time. This may

seem a serious disadvantage if one requires multiple estimates over time, for example daily Bayesian forecasts.

However, the idea behind the procedure in this section is that the posterior for the parameters given the data

y1:T+1 = {y1, . . . , yT , yT+1} is typically not so different from the posterior for the parameters given the data

y1:T = {y1, . . . , yT }. That is, for large T , p(θ|y1, . . . , yT+1) ≈ p(θ|y1, . . . , yT ) where

p(θ|y1, . . . , yT+1) =
p(yT+1|θ, y1, . . . , yT )p(θ|y1, . . . , yT )

p(yT+1|y1, . . . , yT )
.

The variance of the incremental weight p(yT+1|θ, y1, . . . , yT ), with respect to p(θ|y1, . . . , yT ), declines with T ,
as shown by Chopin (2002). Therefore, one can ‘recycle’ the same candidate distribution. At many moments,

the candidate distribution can simply be reused. Further, if the candidate distribution needs to be updated,

i.e. if its quality falls below a certain level, then we still do not require to start from scratch. It may suffice to

perform an update using the IS-weighted EM algorithm, keeping the number H of Student-t components the

same. Only if the resulting quality is still below a desired level, then we start the MitISEM procedure, adding

components until convergence has been reached.

Suppose that at time T + τ (τ = 1, 2, . . .) we want to analyze the posterior based on data y1:T+τ =

{y1, . . . , yT+τ}, and that time T was the last time when we had to update the candidate density. That is, the

current candidate distribution has been estimated using the data y1:T . Then at time T + τ we perform the

following algorithm:

Algorithm 2. The Sequential MitISEM approach for obtaining a candidate density for the

posterior density for data y1:T+τ (τ = 1, 2, . . .):

(1) Compute C.o.V.(no update), the C.o.V. value that is based on the posterior density kernel for data

y1:T+τ and the current candidate density.
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(2) Compare C.o.V.(no update) with C.o.V.(T), the C.o.V. value of the last time when the candidate was

updated. If the change is below a certain threshold (10%), stop. Otherwise go to step (3).

(3) Run the IS-weighted EM algorithm with the current mixture of H Student-t densities as starting values.

Sample from the new distribution (with the same number of components H) and compute IS weights and

the corresponding C.o.V. value C.o.V.(only EM update). Since the IS-weighted EM algorithm updates

all mixture components, it can easily perform a useful shift of the candidate density.

(4) Judge the value of C.o.V.(only EM update). If the change of quality is below a certain threshold (10%),

stop. Otherwise go to step (5).

(5) Iterate on the number of components until the C.o.V. value has converged.

When a particular Student-t component gets a minimal weight, then the practical relevance is negligible.

In such a case we delete the Student-t component from the mixture. So, the number of Student-t components

is not monotonically increasing over time. In step (2) we compare C.o.V.(no update) with C.o.V.(T) rather

than the C.o.V. for the posterior at time yT+τ−1, since in the latter case a series of small increases of the

C.o.V. may eventually lead to a much worse candidate density, without the algorithm ever being ‘alarmed’ to

update the candidate.

We apply the Sequential MitISEM algorithm to the univariate two-component Gaussian Mixture EGARCH

model, which is given by:

yt = µ+
√
ht εt, (24)

log(ht) = ω + γ
yt−1 − µ√

ht−1

+ α

(
|yt−1 − µ|√

ht−1

− E|yt−1 − µ|√
ht−1

)
+ β log(ht−1), (25)

εt ∼

{
N(0, σ2) with probability ρ

N(0, σ2/λ) with probability 1− ρ
, (26)

with ht the conditional variance of yt given the information set It−1 = {yt−1, yt−2, yt−3, . . .}. See Nelson

(1991) for the original (one-component) EGARCH model. In addition, 0 < λ < 1, and σ2 ≡ 1/(ρ+ (1− ρ)/λ)

so that var(εt) = 1; h0 is treated as a known constant. We restrict |β| ≤ 1 to ensure covariance stationarity of

ht and impose the prior restriction 0.5 < λ < 1, so that it is ensured that the state with smaller variance has

larger probability than the state with larger variance. Moreover, we truncate µ, ω, α and γ such that these

have proper (non-informative) priors. For the parameter vector θ = (ρ, λ, µ, ω, γ, α, β)′ of dimension k = 7 we

have a uniform prior on [0.5, 1]× [0, 1]× [−1, 1]× [−1, 1]× [−1, 1]× [0, 1]× [0, 1].

The returns yt are taken from the S&P 500 index. From this index we use daily observations yt (t =

1, . . . , T ) on the log return (100 times the change of the logarithm of the closing price) from January 2 1998

to March 6 2003 (1350 observations).

We estimate the model on the first 1300 observations and recycle the obtained candidate density by adding

iteratively one observation of the forecast sample to the existing sample. At each time t = 1301, . . . , 1350, we

compute the predictive likelihood, see Gelfand and Dey (1994) and Eklund and Karlsson (2007), who provide

an overview of several approaches including the fractional Bayes factor of O’Hagan(1995) and the intrinsic

Bayes factor of Berger and Pericchi (1996). In principle, the marginal likelihood exists for this flat, proper

prior. However, if we would perform a model comparison, then we could make the marginal likelihood for the

mixture EGARCH model as low as we want, for example, by increasing the prior range for the parameter µ

or ω. For the predictive likelihood this does not hold, since the effect of a lower (exact) prior density due to

a wider prior range for µ or ω drops out of the ratio in (28) below. For other adaptive sampling methods for

estimating marginal and predictive likelihoods we refer to Frühwirth-Schnatter and Wagner (2008) and Pitt

et al. (2010).
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The predictive likelihood, a useful quantity in Bayesian inference for model comparison, is computed as

follows. By splitting the data y = (y1, . . . , yT ) into y∗ = (y1, . . . , ym) and ỹ = (ym+1, . . . yT ), the predictive

likelihood of model M is given by:

p(ỹ|y∗,M) =

∫
p(ỹ|θ, y∗,M)p(θ|y∗,M)dθ, (27)

which is actually the marginal likelihood if we consider ỹ as ‘the data’ and p(θ|y∗,M), the exact posterior

density after observing y∗, as ‘the prior’. Using Bayes’ rule for this exact posterior density p(θ|y∗,M) and

substituting into (27) yields

p(ỹ|y∗,M) =

∫
p(y|θ,M)p(θ|M)dθ∫
p(y∗|θ,M)p(θ|M)dθ

, (28)

where p(y|θ,M) is the likelihood of the model M and p(θ|M) the prior density of the parameters θ in the

model. Hence this predictive likelihood is simply the ratio of the marginal likelihood for all observations over

the marginal likelihood for the first part of the data. In our example, the training sample y∗ (for the marginal

likelihood in the denominator of the predictive likelihood) consists of 500 observations, and remains fixed.

We compare the Sequential MitISEM approach with the ‘ad hoc MitISEM approach’, which runs the

MitISEM algorithm from scratch at each time t = 1301, . . . , 1350. The comparison is twofold. First we

compare the computing time that is required by both methods. Second the quality of the estimates of the

predictive likelihood is compared. In order to fulfill the second comparison measure, we repeat the calculation

of the predictive likelihoods 100 times and compute the NSE as the standard deviation over the repetitions.

Table 3 compares both methods in computational effort and provides more details about the results of the

Sequential MitISEM algorithm. During the forecast sample, the constructed candidate density is adapted only

one time (step (3)). In all other cases, it was not necessary in our strategy to adapt the candidate density.

Using the Sequential MitISEM algorithm implies a huge computational advantage, as it is more than 45

times faster than the ‘ad hoc MitISEM method’. The Sequential MitISEM algorithm is visualized in the left

panel of Figure 1. The blue line represents C.o.V.(T), the Coefficient of Variation that is used in step (2) for

comparison, whereas the green line denotes C.o.V.(no update). Finally the red line gives an impression of the

quality of the ‘ad hoc MitISEM approach’: the average C.o.V. value of the ‘ad hoc MitISEM approach’ over

the same period. When the dataset includes the 25th observation of the forecast sample, the new C.o.V. value

is relatively too high. In this case the candidate density is updated which is shown by the upward shift of

the blue line, representing the new value of C.o.V.(T) (and the new moment T of the latest update). The

figure suggests that the quality of Sequential MitISEM is approximately the same as the ‘ad hoc MitISEM

approach’, since the difference in C.o.V. values is quite small. (Note that the y-axis corresponds to merely the

interval [0.66, 0.84].)

An additional indication is given by the right panel of Figure 1 which shows the mean of 100 predictive

likelihoods with 95% confidence bounds. Since the blue and red asterisks lie most of the time in both confidence

intervals, we suggest again that the quality of the Sequential MitISEM algorithm is of the same order as the

‘ad hoc MitISEM approach’. We further note that the same procedure can be used if one makes use of a

moving window instead of the expanding window of data that we use. To conclude this subsection, Sequential

MitISEM is far more efficient compared to an ‘ad hoc approach’ as it produces approximately the same quality

of candidate distributions for predictive likelihood estimation with considerably less computational effort.

The mixture of Student-t densities exists on the real line. In case of parameters that are restricted to

certain intervals, it may be more efficient to simulate the parameters in an indirect fashion, first sampling

transformed parameters that exist on the real line. For example, in the mixture EGARCH model one may

first simulate transformed parameters like ρ∗, λ∗ and µ∗ that take values on the whole interval (−∞,∞),

where

ρ ≡ 1 + 2 exp(ρ∗)

2 + 2 exp(ρ∗)
, λ ≡ exp(λ∗)

1 + exp(λ∗)
, µ ≡ exp(µ∗)− 1

exp(µ∗) + 1
.
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Table 3: Application of Sequential MitISEM and ‘ad hoc MitISEM’ (which simply runs the MitISEM algorithm from scratch on

each sample y1:t (t = 1301, . . . , 1350)) to a Gaussian Mixture EGARCH model. The number of times adapted denotes the case

when the candidate is only updated, using IS-weighted EM, while the number of components is held constant. When the candidate

is adapted and extended, the number of components increases. Reusing the candidate density implies that the same candidate

density is held, hence no updating occurs.

Sequential MitISEM Adhoc MitISEM

Sequential MitISEM steps

# adapted 1

# adapted and extended 0

# reused 48

Computational effort

Construct 50 candidate densities over period (1301− 1350) 117 s 5602 s
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Figure 1: Illustration of the Sequential MitISEM approach for predictive likelihood estimation in a Gaussian Mixture EGARCH

model. Left panel: The blue line represents C.o.V.(T), the Coefficient of Variation that is used for comparison in step (2) of the

Sequential MitISEM approach, whereas the green line denotes C.o.V.(no update). Finally the red line gives an impression of the

quality of the ‘ad hoc MitISEM approach’: the average C.o.V. value of the ‘ad hoc MitISEM approach’ over the same period.

When the dataset includes the 25th observation of the forecast sample, the new C.o.V. value is relatively too high. In this case

the candidate density is updated which is shown by the upward shift of the blue line, representing the new value of C.o.V.(T)

(and the new moment T of the latest update).

Right Panel: Predictive likelihood estimates. The asterisks show at each time the mean of 100 predictive likelihoods; the red and

blue lines correspond with 95% confidence bounds. The red asterisks and confidence bounds are based on the ‘ad hoc MitISEM

approach’, where each day the MitISEM approach is applied from scratch. The blue asterisks and confidence bounds are based

on the Sequential MitISEM algorithm.

This may further improve the performance of the MitISEM approach, working better and with greater stability

in the optimization steps of Section 2, as the transformed parameters have no infeasible regions and are on

the same space as the proposal. Additionally, it may be the case that fewer components are required. The

analysis of such parameter transformations in cases of restricted priors is left as a topic for further research.

Finally, we want to briefly point out the diagnostic advantages from sequential processing, in that it allows

not only a robust way to obtain marginal likelihoods but also diagnostics such as estimating the forecast

distribution transformed residuals (FDTR), see Smith (1985),

uT+1 ≡ F (yT+1|y1, . . . , yT ) =
∫
F (yT+1|θ, y1, . . . , yT )p(θ|y1, . . . , yT )dθ,

where F (yT+1|θ, y1, . . . , yT ) is the conditional cumulative distribution function. These uT+1 should be inde-

pendent uniformly distributed variables under the assumption that the model and the prior are correct. Our

sequential MitISEM method clearly has two advantages. First, the uT+1 emerge as a free by-product. Second,

the diagnostic check takes into account parameter uncertainty (unlike a frequentist plug-in approach).
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3.1 Tempered MitISEM

Although the MitISEM approach can approximate multimodal target distributions, it may occur in extreme

cases that the modes of a target distribution are so wide apart that one or more of the modes are ‘missed’. To

decrease the probability that distant modes are ‘missed’, one can combine MitISEM with a tempering approach.

The proposed tempering method moves sequentially from a tempered target density kernel, the target density

kernel to the power of a positive number that is smaller than 1, towards the real target density kernel.

The tempered target distribution is more diffuse, roughly stated ‘more uniform’, and hence the probability of

detecting far-away modes is higher. The idea of tempering was introduced by Geyer (1991), see also Hukushima

and Nemoto (1996). The tempering idea is also used in the Equi-Energy sampler, developed by Kou, Zhou

and Wong (2006).

We apply the tempering approach in the following way as a Sequential MitISEM algorithm. Given a target

density kernel f(θ), we temper this kernel by raising it to the power (1/P0) with P0 > 1, i.e. f(θ)1/P0 . The

MitISEM algorithm is applied to this tempered kernel f(θ)1/P0 . The resulting mixture of Student-t densities

is used as input for the updated tempered target kernel, say f(θ)1/P1 , with 1 ≤ P1 < P0. This approach is

repeated by decreasing Pn (n = 0, 1, 2, . . . , ñ) iteratively to Pñ = 1, corresponding to the real target kernel.

Many possible choices can be made on the number of iterations and the distance between the Pn. We follow

Kou, Zhou and Wong (2006), and take equidistant steps of log(Pn). We label this approach the Tempered

MitISEM procedure:

Algorithm 2*. The Tempered MitISEM approach for obtaining an approximation to a mul-

timodal target density with kernel f(θ): Apply the Sequential MitISEM algorithm to f(θ)1/Pn (n =

0, 1, 2, . . . , ñ) with Pn monotonically decreasing to Pñ = 1.

To illustrate the Tempered MitISEM approach, we apply it to the same highly multimodal density that is

used by Kou, Zhou and Wong (2006), a two-dimensional normal mixture for θ = (x1, x2)
′ with 20 modes that

are relatively very far apart. Since most local modes are 15 standard deviations away from the nearest one,

this mixture distribution is a good test for our approach. We compare three methods. First the Tempered

MitISEM approach is used. In more detail, we choose P0 = 5 and apply the MitISEM algorithm to the

tempered target density. That is, we start with a ‘naive’ Student-t distribution around one of the modes, with

scale matrix equal to minus the inverse Hessian of the log-density. We use this ‘naive’ Student-t distribution

as a candidate in IS to obtain a first estimate of the mean and covariance matrix of the target distribution.

We then continue with an ‘adaptive’ Student-t distribution with mode and scale matrix given by the first

estimates of the target distribution’s mean and covariance matrix. After that, the usual steps 2-4 of Algorithm

1 in Section 2 are conducted. Given a candidate density, we move sequentially in five steps to P5 = 1 with

equally (log) spaced intervals. The second method applies the basic MitISEM algorithm to the real target

density. Here no tempering approach is used. The final method is the aforementioned ‘adaptive’ candidate

density, which is the Student-t distribution with adapted mode and scale matrix. That is, for the ‘adaptive’

candidate density we perform only step (0) and step (1) of the original MitISEM algorithm.

Figure 2 and Table 4 show simulation results from these three methods. All figures are based on 10,000

simulated draws. Panels (A∗) and (B∗) of Figure 2 show simulated draws from the adaptive candidate density,

where panel (B∗) is similar to panel (A∗) but zoomed in on a closer interval. These panels plus the huge

C.o.V. of IS weights in the table suggest that the ‘adaptive’ Student-t density produces poor results. In other

words, one really needs advanced samplers to handle multimodal target kernels. Second, the basic MitISEM

approach without tempering is a serious improvement, as the C.o.V. value decreases substantially from 23

to 0.77. The MitISEM algorithm is able to detect most of the modes, however by comparing panel (C∗)

- simulated draws from the candidate density that is produced by MitISEM - to panel (D∗) of Figure 2,
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Figure 2: Application to bivariate multimodal distribution of Kou, Zhou and Wong (2006). Left: Panel (A*) and (B*) denote

samples generated by the Adaptive Student-t density. These panels represent the same draws, but panel (B*) focuses on a

smaller interval. Panel (C*) shows draws resulting from applying MitISEM to the original target density. Panel (D*) shows

draws simulated from the real target distribution.

Right: Samples generated from each step of the Tempered MitISEM algorithm. Starting from panel (A) to (E), simulated draws

are shown from the candidate density that is produced by applying MitISEM to the target density f(θ)1/P , with P equally log-spaced

from 5 to 1. Panel (F) shows draws simulated from the real target distribution.

which represents simulated draws from the real target density, not all modes are covered. The mode around

(8.41, 1.68) is missed by MitISEM. This reflects that if the mode lies too far away from the remaining modes,

MitISEM may not be able to detect this important subdomain of the target density. Finally, the tempered

MitISEM approach is shown in the right-hand panels of Figure 2. From panel (A) to (E), simulated candidate

draws from the resulting candidate density of MitISEM applied to the target density p(θ)1/P are shown, where

P is equally log-spaced from 5 to 1. The importance of sequentially lowering the value of Pn lies in the fact

that first the global area of interest is captured. Then a lower Pn in the subsequent panels shows an increasing

precision of the local modes. In the end, the improvement of tempered MitISEM over basic MitISEM is clearly

illustrated in panel (E), since all 20 modes are covered. The quality of the final candidate density is also

confirmed by Table 4, as the C.o.V. value drops further from 0.77 to 0.43. We stress that the reported numbers

of Student-t components are not chosen beforehand by the user; these are automatically found by the basic

and tempered MitISEM methods.

Table 4: Results of simulation from the two-dimensional normal mixture of Kou, Zhou and Wong (2006) using three different

candidates: an (adaptive) Student-t density, and mixtures of Student-t densities from basic and tempered MitISEM. The number

of components of (Tempered) MitISEM and the corresponding C.o.V. of IS weights correspond with the last iteration of the

MitISEM algorithm, as described in Algorithms 1 and 2*.

Adaptive t Basic MitISEM Tempered MitISEM

Number of components in candidate mixture 1 14 16

C.o.V. of IS weights 21.57 0.78 0.43
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4 Permutation-augmented MitISEM

In this section, we introduce a permutation-augmented MitISEM approach, for importance sampling (or the

MH algorithm) from posterior distributions in mixture models without the requirement of imposing a pri-

ori identification restrictions on the mixture components’ parameters. As discussed by Geweke (2007), the

mixture model likelihood function is invariant with respect to permutation of the components of the mixture.

If functions of interest are permutation sensitive, as in classification applications, then interpretation of the

likelihood function requires valid inequality constraints. If functions of interest are permutation invariant, as

in prediction applications, then there are no such problems of interpretation. Geweke (2007) proposes the

permutation-augmented Gibbs sampler, which can be considered as an extension of the random permuta-

tion sampler of Frühwirth-Schnatter (2001). The practical implementation of the idea of the permutation-

augmented Gibbs sampler is that one simulates a Gibbs sequence with total disregard for label switching or

the prior’s labeling restrictions. Only after that and only if functions of interest are permutation sensitive, then

one simply permutes the Gibbs sampler’s output so as to satisfy the labeling restrictions. We propose a method

of permutation-augmented IS, for which we extend the MitISEM approach to construct an approximation to

the unrestricted posterior, taking into account the permutation structure. If m is the number of components

of the mixture model, then the addition of a Student-t component to the candidate implies an addition of the

m! equivalent permutations. Thereby, we construct a mixture of mixtures of m! Student-t components, where

the restriction is imposed that the m! permutations have equal candidate density. Intuitively stated, we help

the basic MitISEM approach by ‘telling’ it about the invariance with respect to permutations. It should be

noted that this invariance with respect to permutations is not the only possible cause of non-elliptical shapes

in a mixture model’s posterior. For example, if the probability of one of the model’s components tends to zero,

the local non-identification of the component’s other parameters causes ridge shapes.

To illustrate our permutation-augmented method, we consider mixtures of m normal distributions. We

assume that scalar yt are independently distributed with

yt ∼ N(µj , σ
2
j ) if ztj = 1 (t = 1, . . . , T ; j = 1, . . . ,m),

where zt = (zt1, . . . , ztJ)
′ is a vector of latent 0/1 variables of which exactly one of the m elements is equal to

1, where

Pr[ztj = 1] = πj (t = 1, . . . , T ; j = 1, . . . ,m).

Define y = (y1, . . . , yT )
′ and z = {z1, . . . , zT }. Then the likelihood is given by:

p(y|θ) =
T∏

t=1


m∑
j=1

πj

[
(2π)−1/2σ−1

j exp

(
− 1

2σ2
j

(yt − µj)
2

)} (29)

with θ = (µ1, . . . , µm, σ1, . . . , σm, π1, . . . , πm−1), where πm ≡ 1−
∑m−1

j=1 πj . We use proper non-informative pri-

ors for all parameters θ: truncated uniform priors for µj and log σj and (π1, . . . , πm−1, πm) ∼ Dirichlet(1, 1, . . . , 1).

First, we consider the simple case of m = 2 with µ1 = µ2 = 0, so that θ = (σ1, σ2, π1). We simulate 250

observations from this model with true values θ = (σ1, σ2, π1) = (1,
√
2, 0.8). The left panel of Figure 3 shows

the shapes of the unrestricted posterior distribution. In addition to the multimodality due to the absence

of identification restrictions, the distribution ‘per mode’ is also highly non-elliptical in the sense of ‘curved

contours’.

The bimodal shapes reflect that the model with parameter values (σ1, σ2, π1) and the permuted version

(σ2, σ1, 1−π1) are obviously equivalent. We will use the subscript c to denote the permutations of the original

vector θ. In the case of m = 2 components with m! = 2 permutations, we use θc=1 for the original parameter

vector, and θc=2 for the permuted version. For the model with m = 3 and µ1 = µ2 = µ3 = 0, we have

θ = (σ1, σ2, σ3, π1, π2). Here we have m! = 6 permutations θc (c = 1, . . . ,m!). For an explanation of our
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Table 5: Explanation of notation for permutation θc and inverse permutation θinv(c) in mixture models with m = 2 and m = 3

regimes with parameter vector θ. The examples that are referred to are the mixtures of normal distributions with µj = 0

(j = 1, . . . ,m)

Mixture model with m = 2 components and m! = 2 permutations:

c permutation θc in example inverse permutation θinv(c) in example inv(c)

1 (1,2) → (1,2) (σ1, σ2, π1) (1,2) → (1,2) (σ1, σ2, π1) 1

2 (1,2) → (2,1) (σ2, σ1, 1− π1) (1,2) → (2,1) (σ2, σ1, 1− π1) 2

Mixture model with m = 3 components and m! = 6 permutations:

c permutation θc in example inverse permutation θinv(c) in example inv(c)

1 (1,2,3) → (1,2,3) (σ1, σ2, σ3, π1, π2) (1,2,3) → (1,2,3) (σ1, σ2, σ3, π1, π2) 1

2 (1,2,3) → (1,3,2) (σ1, σ3, σ2, π1, 1− π1 − π2) (1,2,3) → (1,3,2) (σ1, σ3, σ2, π1, 1− π1 − π2) 2

3 (1,2,3) → (2,1,3) (σ2, σ1, σ3, π2, π1) (1,2,3) → (2,1,3) (σ2, σ1, σ3, π2, π1) 3

4 (1,2,3) → (2,3,1) (σ2, σ3, σ1, π2, 1− π1 − π2) (1,2,3) → (3,1,2) (σ3, σ1, σ2, 1− π1 − π2, π1) 5

5 (1,2,3) → (3,1,2) (σ3, σ1, σ2, 1− π1 − π2, π1) (1,2,3) → (2,3,1) (σ2, σ3, σ1, π2, 1− π1 − π2) 4

6 (1,2,3) → (3,2,1) (σ3, σ2, σ1, 1− π1 − π2, π2) (1,2,3) → (3,2,1) (σ3, σ2, σ1, 1− π1 − π2, π2) 6

notation θc we refer to Table 5. During the permutation-augmented algorithm we also make use of the inverse

permutation θinv(c), defined such that (θinv(c))c = (θc)inv(c) = θ. In the case of m = 2 regimes, θinv(c) = θc;

there are only two options, leaving θ the same or switching the two regimes, where applying the same operation

twice always returns the original θ. The case of m = 3 regimes is somewhat less straightforward; there are two

permutations that require a different permutation to return to the original θ. Table 5 provides the details.

The basic idea of the permutation-augmented MitISEM approach is the same as the basic, ‘plain vanilla’

MitISEM. However, there are subtle differences in the IS-weighted EM algorithm. Instead of H Student-t

components h (h = 1, . . . , H), the candidate distribution now consists of H ·m! Student-t components (h, c)

(h = 1, . . . , H; c = 1, . . . ,m!), where for each Student-t component (h, c) µh,c, Σh,c are permuted versions of

µh = µh,1 and Σh = Σh,1; further we have νh,c = νh and ηh,c = ηh/m!. Instead of (9)-(12), the conditional

expectations of the latent variables given θi and ζ = ζ(L−1), the optimal parameters in the previous EM

iteration, are given by:

z̃ih,c ≡ E
[
zih,c

∣∣∣θi, ζ = ζ(L−1)
]
=

t(θi|µh,c,Σh,c, νh) ηh∑J
j=1

∑m!
l=1 t(θ

i|µj,l,Σj,l, ηj) ηj
. (30)

z̃/w
i

h,c ≡ E

[
zih,c

1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
= z̃ih,c

k + νh
ρih,c + νh

. (31)

ξih ≡ E
[
logwi

h

∣∣∣θi, ζ = ζ(L−1)
]
=

=
m!∑
c=1

{[
log

(
ρih,c + νh

2

)
− ψ

(
k + νh

2

)]
z̃ih,c

}

+
[
log
(νh
2

)
− ψ

(νh
2

)](
1−

m!∑
c=1

z̃ih,c

)
, (32)

δih ≡ E

[
1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
=

m!∑
c=1

k + νh
ρih,c + νh

z̃ih,c +

(
1−

m!∑
c=1

z̃ih,c

)
. (33)

with ρih,c = (θi − µh,c)
′Σ−1

h,c(θ
i − µh,c), and all parameters µh,c,Σh,c, νh, ηh elements of ζ(L−1). Instead of
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(13)-(15), the expressions of the Maximization step are given by:

µ
(L)
h =

[
N∑
i=1

m!∑
c=1

Wi z̃/w
i

h,c

]−1 [ N∑
i=1

m!∑
c=1

Wi z̃/w
i

h,c θ
i
inv(c)

]
, (34)

Σ̂
(L)
h =

∑N
i=1

∑m!
c=1Wi z̃/w

i

h,c (θ
i
inv(c) − µ

(L)
h )(θiinv(c) − µ

(L)
h )′∑N

i=1

∑m!
c=1Wi z̃ih,c

, (35)

η
(L)
h =

∑N
i=1

∑m!
c=1Wi z̃

i
h,c∑N

i=1Wi

, (36)

whereas the equation of the first order condition for νh remains (16). For the derivations we refer to the

appendix. The permutation-augmented MitISEM algorithm is briefly summarized as:

Algorithm 3. The permutation-augmented MitISEM approach for obtaining an approximation

to an unrestricted posterior distribution in a mixture model: Apply the basic MitISEM algorithm

with formulas (9)-(15) replaced by (30)-(36) to the unrestricted posterior density kernel.

We apply the permutation-augmented MitISEM approach to the posterior distribution in the left panel

of Figure 3, resulting in a mixture of 2 · 7 Student-t distributions shown in the middle panel of Figure 3.

We use this candidate in the IS and MH methods to estimate the standard deviation of yt (t = 1, . . . , T ),

σ =
√∑m

j=1 πj (σ
2
j + µ2

j )− µ2 with µ =
∑m

j=1 πj µj . This quantity is clearly not permutation-sensitive, so

that we do not require identification restrictions. The results are in the first row of Table 6. The low C.o.V. of

the IS weights and the high MH acceptance rate reflect the accuracy of the permutation-augmented MitISEM

approximation.

To stress the advantage of the permutation-augmented MitISEM algorithm over the basic MitISEMmethod,

we compare their performance in two simple examples. First, for the posterior in the left panel of Figure 3

the basic MitISEM approximation is given in the right panel of Figure 3. The approximation is slightly

worse than for permutation-augmented MitISEM, which is clear from the second row of Table 6. After more

computing time the quality of the basic MitISEM candidate is somewhat worse. Second, we consider a

simple case of a posterior for 250 simulated observations from the model with m = 2, µ1 = µ2 = 0, and

θ = (σ1, σ2, π1) = (1, 5, 0.8). This posterior is shown in the first panel of Figure 4. The permutation-

augmented MitISEM method quickly constructs a close approximation, shown in the second panel of Figure

4. The third row of Table 6 confirms the high quality of the resulting candidate. On the other hand, the basic

MitISEM approach yields a candidate, shown in the third panel of Figure 4, that completely misses one of

the two modes. Apparently, the distance between the two modes is too large for basic MitISEM. Only if we

make use of tempering, then both modes are found; the candidate from tempered MitISEM is shown in the

fourth panel of Figure 4. Here tempered MitISEM starts with 10,000 draws from a Student-t approximation of

f(θ)1/50 around the posterior mode, with f(θ) the posterior density kernel. The tempered MitISEM method

requires substantially more computing time than permutation-augmented MitISEM, while it also results in a

somewhat worse candidate; see the fourth row of Table 6. For the candidate resulting from basic MitISEM,

the missed mode does not necessarily cause a problem in a permutation-augmented approach, as long as the

second mode is also completely missed during the second stage of using the candidate for IS or MH. However, if

accidentally one or more draws are generated near the missed mode, then these will have huge IS weight. IS or

MH estimates will then have huge variance. Summarizing, for the computing time and accuracy, it is profitable

that the a priori knowledge on the likelihood’s invariance is incorporated within the permutation-augmented

MitISEM method.

To further stress the relevance of the (permutation-augmented) MitISEM method, we note that for the

posterior in Figure 3 a ‘naive’ Student-t candidate distribution (around posterior mode with scale matrix

21



Figure 3: Application of permutation-augmented and basic MitISEM to posterior in mixture model with 2 normally distributed

regimes: Highest Posterior Density credible region of θ = (σ1, σ2, π1) (left); ‘Highest Candidate Density region’ for mixture of 2 ·7
Student-t candidate distribution, constructed by permutation-augmented MitISEM (middle); ‘Highest Candidate Density region’

for mixture of 9 Student-t candidate distribution, constructed by basic MitISEM (right).

Figure 4: Application of permutation-augmented, basic and tempered MitISEM to posterior in mixture model with 2 normally

distributed regimes: Highest Posterior Density credible region of θ = (σ1, σ2, π1) [first]; ‘Highest Candidate Density region’ for

mixture of 2 · 4 Student-t candidate distribution, constructed by permutation-augmented MitISEM [second]; ‘Highest Candidate

Density region’ for mixture of 3 Student-t candidate distribution, constructed by basic MitISEM [third]; ‘Highest Candidate

Density region’ for mixture of 7 Student-t candidate distribution, constructed by tempered MitISEM [fourth].

Table 6: Application of permutation-augmented and basic MitISEM to posteriors in mixture models with 2 normally distributed

regimes: simulation results for IS using 10,000 draws from the candidate distribution resulting from the permutation-augmented

and basic MitISEM procedures

posterior mean NSE · 100 time (in s) for time (in s) C.o.V. number

of σ construction for simulating of IS of t

of MitISEM 10000 weights components

candidate draws in MitISEM

DGP (m = 2 and µj = 0): (σ1, σ2, π1) = (1,
√
2, 0.8)

permutation-augmented MitISEM 1.0397 0.0683 73.26 0.73 0.58 2 · 7
basic MitISEM 1.0395 0.0853 85.47 0.72 0.87 9

DGP (m = 2 and µj = 0): (σ1, σ2, π1) = (1, 5, 0.8)

permutation-augmented MitISEM 2.4340 0.2869 26.65 0.70 0.24 2 · 4
tempered MitISEM 2.4347 0.3293 104.27 0.70 0.31 7

equal to minus the inverse Hessian of the log-posterior at the mode) would yield a RNE of 0.0009 for the

estimated posterior mean of σ, whereas the permutation-augmented MitISEM gives a RNE of 0.7109. The

naive sampler would require approximately 800 times more draws than permutation-augmented MitISEM to

reach the same accuracy, whereas permutation-augmented MitISEM only requires 1.4 times the number of

draws of a hypothetical direct simulation method.

At this point, we must address a disadvantage of the permutation-augmented MitISEM approach. The

number of expectations of latent variables z̃ih,c and z̃/w
i

h,c in (30) and (31) that need to be computed, increases

with the factorial m! of the number of regimes in the model. This implies that we should only apply the

permutation-augmented MitISEM approach with a ‘limited’ value of m. Table 7 shows that the permutation-

augmented MitISEM approach is at least feasible (and useful) for m = 2, m = 3 and m = 4 regimes (with
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Table 7: Application of permutation-augmented MitISEM and Gibbs sampler to posteriors in mixture models with m nor-

mally distributed regimes: simulation results for IS and the MH algorithm, using the candidate distribution resulting from the

permutation-augmented MitISEM procedure, and for the permutation-augmented Gibbs sampler of Geweke (2007)

IS or MH with permutation-augmented MitISEM Gibbs sampling

posterior NSE time (in s) for time (in s) C.o.V. MH posterior NSE time (in s)

mean construction for simulating of IS accep- mean for simulating

of σ of 10000 weights tance of σ 10000 draws

candidate draws rate (+1000 burn-in)

m = 2 4.9339 0.0009 19.63 0.79 0.30 0.83 4.9330 0.0009 46.75

m = 3 7.4978 0.0014 23.20 1.24 0.47 0.74 7.4963 0.0021 66.11

m = 4 10.8300 0.0031 75.08 1.89 0.61 0.67 10.8267 0.0029 84.54

2! = 2, 3! = 6 and 4! = 24). For each setting, we simulated 250 observations, applied the permutation-

augmented MitISEM approach to the model including µj (j = 1, . . . ,m), and compared the results of IS with

the permutation-augmented Gibbs sampler of Geweke (2007). The permutation-augmented Gibbs sampler

requires more computing time to reach the same (or worse) accuracy. If we would desire a higher level of

precision, then the difference in computing time would be enormous, since simulating 10, 000 extra draws

requires much more time in the Gibbs sampler. Since the increase from 4! = 24 to 5! = 120 is obviously huge,

the permutation-augmented MitISEM algorithm may have its practical limit at m = 4.

It should be noted that the permutation-augmented MitISEM approach outperforms the Gibbs sampler,

even though the latter does not suffer from a large serial correlation in the Gibbs sequence (the first order

serial correlation is at each instance below 0.30), which may be a problem in other settings. Further, the IS

approach has the advantage that an estimate of the marginal likelihood is immediately available as the average

of the IS weights, whereas for the Gibbs sampler the method of Chib (1995) would require additional reduced

runs.

Finally, we note that also in mixture models with more than 4 regimes the permutation-augmented MitISEM

approach can be useful. Although in such cases we can not proceed without any identification restrictions,

we can still use permutation-augmented MitISEM to reduce the number of identification restrictions. For

example, in a mixture of 6 normal distributions, we can impose that the first and last have the smallest and

largest variance (or mean), whereas the 4 middle regimes are left unrestricted. This may still have the same

positive effect on the computing time and the quality of the candidate. A tempered permutation-augmented

MitISEM approach may be useful then.

5 Partial MitISEM

In this section, we propose a partial MitISEM approach, which aims at approximating the joint posterior

indirectly, by approximating the product of marginal and conditional posterior distributions of subsets of

model parameters. This division can substantially reduce the dimension of the approximation problem, which

facilitates the application of adaptive importance or Metropolis-Hastings sampling for posterior simulation in

more complex models with larger numbers of parameters. Approximating the joint posterior density kernel with

a mixture of Student-t distributions allows for a huge flexibility of shapes. However, rarely all of this flexibility

is required. It is typically enough to use mixtures of Student-t distributions for the dependence within subsets

of the parameters. We can often divide the parameters into subsets, where the dependence between different

subsets is less complicated. Our partial MitISEM approach is to divide the model parameters into ordered

subsets, where the conditional candidate distributions are mixtures of Student-t distributions with component

modes that are linear combinations of (functions of) the parameters in previous subsets. In this way the mode,

covariance and shape of the conditional candidate are allowed to depend on the parameters in previous subsets.
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The partial MitISEM approach is a way to provide a usable approximation to the posterior, while preventing

problems such as numerical issues with specifying huge covariance matrices for a joint candidate distribution

– problems that have led researchers to conclude that IS necessarily suffers from a ‘curse of dimensionality’.

Intuitively, the idea behind the basic MitISEM approach is as follows. First, the asymptotic normal

distributionN(θmode,−H(θmode)
−1), with θmode the mode of the target distribution, andH(θmode) the Hessian

of the log-target density at the mode, is replaced by a Student-t distribution t(θmode,−H(θmode)
−1, ν) with low

degrees of freedom ν to have fat tails. Second, t(θmode,−H(θmode)
−1, ν) is replaced by a mixture of Student-t

distributions with optimized modes, scale matrices, degrees of freedom and weights, to have more flexibility

of the candidate’s shapes.

The partial MitISEM approach is based on the following idea. Divide the set of parameters θ into two

subsets θ1 and θ2. The asymptotic normal distribution θ ∼ N(µ = θmode,Σ = −H(θmode)
−1) is equivalent

with

θ1 ∼ N(µ1,Σ11), (37)

θ2|θ1 ∼ N(µ2 +Σ−1
22 Σ21(θ1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12), (38)

with

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

In the partial MitISEM approach we replace both normal distributions of (37) and (38) by mixtures of Student-

t distributions, with optimized scale matrices, degrees of freedom and weights of the marginal candidate of θ1

and conditional candidate of θ2 given θ1. For θ1 we further optimize the Student-t components’ modes. For

the conditional candidate of θ2 we use a slightly different IS-weighted EM algorithm in which coefficients are

optimized. That is, we basically replace µ2 and Σ−1
22 Σ21 by optimized coefficients that are allowed to differ

between the Student-t components. Moreover, the conditional means are allowed to be a linear combination

of non-linear functions of θ1 (and the given data set).

Suppose we have S subsets of parameters θs (s = 1, . . . , S). Then the partial MitISEM approach constructs

one marginal candidate distribution of θ1, and S− 1 conditional candidate distributions (θ2 given θ1; θ3 given

θ1, θ2; . . . ; θS given θ1, ..., θS−1), by iteratively adding Student-t components until for all subsets the latest

addition has not caused a substantial improvement of the candidate, as an approximation to the target. For

the marginal distribution of θ1 we use the basic IS-weighted EM algorithm. However, for the conditional

distribution of θs (ks× 1) given θ1, . . . , θs−1 we use an extended version where µh = βhX (h = 1, . . . ,H), with

βh a ks × r matrix and X an r × 1 vector (of which the elements are functions of θ1, . . . , θs−1 (and the given

data)). It is important that X contains a constant, a column of ones. If not, the conditional candidate density

would be too restrictive. To obtain the appropriate Expectation and Maximization steps in the IS-weighted

EM algorithm, one substitutes µh = µi
h = βhX

i. Moreover, (13) is replaced by

β
(L)′

h =

[
N∑
i=1

W i z̃/w
i

h X
i Xi′

]−1 [ N∑
i=1

W i z̃/w
i

h X
i θi

′

]
, (39)

or in case of the permutation-augmented MitISEM approach (34) is replaced by

β
(L)′

h =

[
N∑
i=1

m!∑
c=1

W i z̃/w
i

h,c X
i Xi′

]−1 [ N∑
i=1

m!∑
c=1

W i z̃/w
i

h,c X
i θi

′

inv(c)

]
. (40)

For the derivations we refer to the appendix.

We propose the following ‘bottom up’ procedure that starts with one Student-t distribution and which

iteratively adds Student-t components until a certain stop criterion is met:
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Algorithm 4. The partial MitISEM approach for obtaining an approximation to a target density

with kernel f(θ), where θ is decomposed in subsets θ(s) (s = 1, . . . , S):

(0) Initialization: Simulate draws θ1, . . . , θN from the naive proposal density gnaive where gnaive denotes

a Student-t distribution with mode and scale matrix equal to the target distribution’s mode and minus

the inverse Hessian of the log-target density kernel evaluated at the mode.

(1) Adaptation: Estimate the target distribution’s mean and covariance matrix using IS with the draws

θ1, . . . , θN from gnaive. Use these estimates as the mode and scale matrix of Student-t distribution

gadaptive. Draw a sample θ1, . . . , θN from this adaptive Student-t distribution g0 = gadaptive, and compute

the IS weights W i
0 ≡ f(θi)/g0(θ

i) (i = 1, 2, . . . , N) for this sample.

(2) Do for subset θ(s) (s = 1, . . . , S) — approximating the marginal target distribution of θ1 and conditional

target distribution of θ(s) given θ(1), . . . , θ(s−1) (s = 2, . . . , S):

(2a) Apply the IS-weighted EM algorithm given the drawn sample from g0 and the corresponding

IS weights W i
0. The output consists of the new marginal or conditional candidate density g(s) of

θ(s) with optimized ζ(s), the set of µ(s),h or β(s),h, Σ(s),h, ν(s),h, η(s),h (h = 1, . . . , H(s)).

(2b) Iterate on the number of mixture components H(s) of the candidate g(s) for subset

θ(s): Take x% of the sample θ1, . . . , θN from g0 that correspond to the highest IS weights for

the current candidate W i
current ≡ f(θi)/

∏S
s=1 g(θ

i
(s)|θ

i
(1), . . . , θ

i
(s−1)) (i = 1, 2, . . . , N), where all

marginal and conditional candidate densities are the latest that have been obtained during the

algorithm. Construct with these draws a new mode µ(s),H(s)+1 and scale matrix Σ(s),H(s)+1 which

are starting values for the additional component in the mixture candidate density. Starting values

for η(s),H(s)+1 and ν(s),H(s)+1 are at each iteration set at 0.10 and 1, respectively. Obvious starting

values for µ(s),h, Σ(s),h and ν(s),h (h = 1, . . . , H(s)) are the optimal values in the mixture of H(s)

components, while η(s),h is 0.90 times the previously optimal value. Given the drawn sample from g0

and the corresponding IS weights W i
0, apply the IS-weighted EM algorithm to optimize parameters

µ(s),h or β(s),h, Σ(s),h, ν(s),h and η(s),h with h = 1, . . . , Hs + 1.

(2c) Evaluate the IS weights by estimating the Coefficient of Variation (C.o.V.) for the latest candi-

date, where the expected IS weight and the expected squared IS weight for the latest candidate are

estimated using IS with the draws from g0. Stop the iteration s for subset θ(s) when this coefficient

has converged. Otherwise return to step 2b.

(3) Simulate a new set of draws θ1, . . . , θN from the latest candidate, sampling from marginal and condi-

tional candidate densities for s = 1, . . . , S. Update all marginal and conditional candidate distributions,

applying the IS-weighted EM algorithms with the latest set of draws and corresponding IS weights (with

initial values for the IS-weighted EM algorithms given by the latest marginal and conditional candidates,

and keeping the numbers of components constant). If this leads to a change of the C.o.V. that is smaller

than the ‘tolerance’ of 10%, then stop. Otherwise, call the latest candidate density g0, the corresponding

weights W i
0, and return to step 2.

The idea of step 3 is that if the C.o.V. of IS weights improves substantially when the marginal and

conditional candidates are re-estimated using a new, better set of candidate draws, then the quality of the

approximation has not yet converged. The expected IS weight Eθ∼g(θ)

[
f(θ)
g(θ)

]
and expected squared IS weight

Eθ∼g(θ)

[
f(θ)2

g(θ)2

]
for the latest joint candidate g(θ) (the product of the latest marginal and conditional candi-

dates), which are required for the evaluation of the C.o.V., are simply estimated as the sample mean of f(θ)
g0(θ)
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and f(θ)2

g(θ)g0(θ)
with θ from g0, since

Eθ∼g(θ)

[
f(θ)

g(θ)

]
=

∫
f(θ)

g(θ)
g(θ) dθ =

∫
f(θ)

g0(θ)
g0(θ) dθ = Eθ∼g0(θ)

[
f(θ)

g0(θ)

]
,

Eθ∼g(θ)

[
f(θ)2

g(θ)2

]
=

∫
f(θ)2

g(θ)
dθ =

∫
f(θ)2

g(θ) g0(θ)
g0(θ) dθ = Eθ∼g0(θ)

[
f(θ)2

g(θ)g0(θ)

]
.

Note that we only require the evaluation of the joint target density kernel, no marginal or conditional

target densities need to be evaluated. Further, this joint target density kernel is typically evaluated less often

than in the basic MitISEM approach, since not each addition of a Student-t component to one of the marginal

or conditional candidates implies a new set of candidate draws for which target and candidate density must

be evaluated. There are two reasons for this choice. First, otherwise the computing time would be much

longer; the number of target density evaluations would increase quadratically with an increasing number of

subsets of parameters. Second, since the parameter subsets are smaller than the whole parameter vector, their

marginal and conditional distributions are typically much easier to approximate, as the distributions have

smaller dimension (and may have ‘easier’ shapes as well). That is, fewer Student-t components are required,

and each Student-t component has fewer candidate parameters. Therefore it is much more efficient to work

with ‘older’ candidate draws and IS weights in the IS-weighted EM steps. Step 3 takes care that the ‘older’

draws are not too bad for obtaining a good approximation to the target density.

Further, also only the marginal or conditional candidate density for subset θ(s) that has just been updated

needs to be evaluated in step 2c. The candidate densities for the other subsets have been evaluated in previous

steps. The number of Student-t components H(s) may (and typically will) differ between the subsets θ(s);

typically a low number of 2 or 3 components suffices for most or even all subsets.

We apply the partial MitISEM approach to an instrumental variables model in which the distribution of

the error terms is a mixture of two normal distributions. We use quarter of birth as an instrumental variable

for education. The data are from Angrist and Krueger (1991): 8933 observations on male individuals of the

state of Kentucky, the state in which the instrument is the strongest (or the ‘least weak’), in the sense that

the multiple F-test of the first stage regression has the smallest (significant) p-value.

The dependent variable yt is the log of weekly income of individual t in 1979, the possibly endogenous

regressor xt is the number of years of education, zt consists of three dummies indicating quarter of birth (the

first quarter being the reference category), where each variable is taken in deviation from its sample mean for

the individual’s year of birth (1930-1939). The structural form of the model is:

yt = xtβ + εt (41)

xt = ztγ + vt (42)

with

(εt, vt)
′ ∼ N(0,Σj) if Ztj = 1 (t = 1, . . . , T ; j = 1, 2),

and

Pr[Ztj = 1] = πj (t = 1, . . . , T ; j = 1, 2).

The restricted reduced form is:

yt = ztγβ + v1t (43)

xt = ztγ + vt (44)

with v1t = vtβ + εt; here

(v1t, vt)
′ ∼ N(0,Ωj) if Ztj = 1 (t = 1, . . . , T ; j = 1, 2).
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As in the mixture EGARCH model, we assume that the state with smaller variance has larger probability than

the state with smaller variance: π1 > 0.5 and ω1,11 < ω2,11 (with ωl,ij the element (i, j) of Ωl). Further, we

specify proper non-informative priors. We consider the 11-dimensional vector of the restricted reduced form’s

parameters

θ = (β, γ, ω1,11, ω1,12, ω1,22, ω2,11, ω2,12, ω2,22, π1)
′.

The reason for simulating the elements of the reduced form matrices Ωj (j = 1, 2), rather than the structural

form matrices Σj , is that we divide θ into two subsets

θ(1) = (β, γ′)′ (k1 = 4) and θ(2) = (ω1,11, ω1,12, ω1,22, ω2,11, ω2,12, ω2,22, π1)
′ (k2 = 7).

The relationship between (β, γ) and Ωj (j = 1, 2) is ‘simpler’ than the relationship between (β, γ) and Σj

(j = 1, 2), where

Σj =


ωj,11 + ωj,22β

2 − 2ωj,12β ωj,12 − ωj,22β

ωj,12 − ωj,22β ωj,22


depends on β. In other words, in the restricted reduced form β only appears in the product γ ·β; this product
is always identified, even if γ → 0. So, even if γ → 0, we would not have ‘problems’ with the posterior

distribution of the Ωj (j = 1, 2). For γ → 0 we are faced with the well-known case of local non-identification

of β.

For the covariance matrices Ωj (j = 1, 2) we have local non-identification for πj → 0. Therefore, multiple

parameters may exhibit irregular, non-elliptical posterior contours. However, we can approximate the posterior

shapes of θ(1) and θ(2) separately, since these two issues of possible non-identification are not strongly related.

The parameters in each subset do not become unidentified for particular parameter values in the other subset.

For θ(2) the conditional candidate is specified as a mixture of Student-t distributions with modes given

by µi
h,c = βh,cX

i, where Xi consists of a constant and the elements of the sample covariance matrix of the

restricted reduced form’s ‘residuals’ yt − ztγ
iβi and xt − ztγ

i (t = 1, . . . , T ) for given values of θi(1) = (βi, γi).

There are two reasons for choosing this ordering of the subsets θ(1) and θ(2). First, the covariance matrix of

the restricted reduced form’s ‘residuals’ provides a concise summary of the effect of β and γ on Ωl (l = 1, 2).

Second, this ‘residual’ covariance matrix arguably affects mainly the conditional mean of Ωl (l = 1, 2). On the

other hand, Ωl (l = 1, 2) would affect mainly the (co)variance of β and γ, a dependence that may be somewhat

more difficult to approximate. This may require more Student-t components in the conditional candidate, and

hence more computing time.

Note that for an optimal selection of the subsets, some understanding of the model and its posterior

distribution are required, and that the ordering of the subsets should preferably be chosen in a careful manner.

For example, in a cointegration model one could group the parameters occurring in the matrix having a

reduced rank restriction as the first subset, whereas the other parameters may typically have ‘easy’ conditional

posterior distributions. Alternatively, a preliminary diagnostic analysis using MitISEM may be used when the

model structure does not give a clear indication.

Table 8 shows the results of basic and partial MitISEM for 11,000 draws. The basic MitISEM approach

produces a good candidate distribution leading to a low C.o.V. of the IS weights of 0.589 and low NSEs; for the

computation of NSEs for IS estimates see e.g. Hoogerheide et al. (2009). The Metropolis-Hastings algorithm

(with a burnin of 1,000 draws) yields similar results to IS with a high acceptance rate of 68.7%. However,

the partial MitISEM provides a somewhat better candidate distribution with lower NSEs and C.o.V. of the IS

weights, and requires substantially less computing time than the basic MitISEM approach. For this candidate,

the Metropolis-Hastings algorithm again yields similar results to IS with a high acceptance rate of 71.8%. This

example involves 11 parameters and 2 subsets. If the numbers of parameters and subsets increase, the relative
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Table 8: Application of basic and partial MitISEM to posterior in mixture IV model: estimated posterior means and corresponding

numerical standard errors (NSEs), obtained by Importance Sampling with candidate distributions resulting from basic MitISEM

and partial MitISEM approaches. We report 100 times the NSE values.

basic MitISEM partial MitISEM

mean NSE · 100 mean NSE · 100
β 0.046 0.035 0.046 0.031

γ1 0.109 0.115 0.110 0.112

γ2 0.363 0.120 0.365 0.116

γ3 0.528 0.125 0.529 0.116

ω1,11 0.215 0.005 0.215 0.005

ω1,12 0.615 0.025 0.615 0.024

ω1,22 11.629 0.237 11.628 0.228

ω2,11 3.111 0.242 3.111 0.236

ω2,12 1.734 0.347 1.735 0.353

ω2,22 21.025 1.610 21.020 1.524

π1 0.906 0.007 0.906 0.007

C.o.V. of IS weights 0.589 0.529

Computational time (in seconds)

constructing candidate 238 139

IS using candidate 36 35

performance (in terms of computing time and quality of the candidate) of the partial MitISEM method, as

compared with the basic MitISEM approach, may improve even much further.

If we know the full conditional distribution for one of the subsets, then we may consider this subset as

the last subset θ(S) and use the true full conditional distribution (instead of approximating it by mixtures of

Student-t distributions). This obviously reduces the computing time and improves the quality of the candi-

date. For example, in a random effects model one can apply partial MitISEM in which the random effects are

the last subset of parameters, and in which the true conditional posterior distribution of the random effects is

used. Alternatively, if possible, one may analytically integrate out the random effects from the data-augmented

posterior, and subsequently apply the basic MitISEM approach to the posterior density kernel of the remaining

parameters (or partial MitISEM to subsets of the remaining parameters).

6 Concluding remarks

We introduced a new class of adaptive sampling methods for efficient and reliable posterior and predictive

simulation. Multiple examples have shown the possible relevance of the novel methods, as a substitute for

worse candidate distributions in Importance Sampling or the Metropolis-Hastings algorithm, or as a substitute

or complement (e.g., as a validity check for estimated posterior moments or marginal likelihoods) for Gibbs

sampling.

In this paper we dealt with flexible approximations to posterior distributions of parameter vectors that

have a small or moderate dimension (up to 36 parameters), and where each data observation has at most

dimension 5. The following remarks concern the application of our MitISEM approach to situations with higher

dimensional data. First, the MitISEM method is obviously no substitute for theoretical a priori restrictions on

model structures that may be required in case of higher dimensional data. For example, VAR or multivariate

GARCH models for large numbers of time series may still require certain restrictive ‘shrinkage’ priors. The use

of the MitISEM approach within a diagnostic procedure to assess the implications of different types of priors

is an interesting topic for further research, but clearly beyond the scope of the present paper. Second, we
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have illustrated the partial MitISEM approach for two subsets of parameters. We will investigate the partial

MitISEM method for larger numbers of parameter subsets, applied to models with more parameters such as IV

models with structural breaks for high-dimensional panel data, multivariate probit models, and DCC-GARCH

models for large numbers of time series. In the latter case, one may first concentrate on the parameters of the

univariate GARCH models, and then on the DCC parameters conditionally upon the GARCH parameters,

in a similar way as the two-step frequentist estimation method proposed by Engle (2002). Such analogies

to well-known two-step frequentist methods can be exploited more often in partial MitISEM. The use of IS

or MH ensures that the simulation results will be representative for the joint posterior of all parameters,

rather than an approximation. Third, we will analyze the combination of sequential and partial MitISEM for

sequentially building marginal and conditional candidate densities in time series state-space models such as

Stochastic Volatility and factor models. In these applications, existing filter methods may provide the initial

series of marginal and conditional (Gaussian or Student-t) candidate distributions, after which the MitISEM

steps improve the robustness and efficiency.

Finally, in order to make the MitISEM approach accessible, we will publish and illustrate a software package

in R, see Baştürk et al. (2012).
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[14] Frühwirth−Schnatter S. (2001), “Markov chain Monte Carlo estimation of classical and dynamic switching models”, Journal

of the American Statistical Association, 96, 194−209.
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A Derivation of the IS-weighted EM algorithm for mixtures of

Student-t distributions

This appendix provides the derivation of the most general IS-weighted EM algorithm that is considered in

this paper: the permutation-augmented algorithm in a mixture model of m components, in which the modes

µh,c (k× 1) of the candidate mixture’s Student-t components are linear combinations µh,c = βh,cX (with βh,c

k× r and X r×1) where X consists of (functions of) parameters in previous subsets (plus typically a constant

term). For the ‘plain vanilla’ algorithm, that is used in the basic MitISEM approach, one simply sets m = 1

(deleting the permutation-related subscripts c and inv(c) at all variables), X = 1 (r = 1) and βh,c = µh.

The candidate density g(θ) is a mixture of H ·m! Student-t densities (h = 1, . . . ,H; c = 1, . . . ,m!):

g(θ) = g(θ|ζ) =
H∑

h=1

ηh,c

m!∑
c=1

tk(θ|βh,cX,Σh,c, νh), (45)

where ζ is the set of coefficients βh,c, scale matrices Σh,c, degrees of freedom νh, and mixing probabilities ηh,c

of the k-dimensional Student-t components with density:

tk(θ|βh,cX,Σh,c, νh) =
Γ
(
νh+k

2

)
Γ
(
νh

2

)
(πνh)k/2

|Σh,c|−1/2

(
1 +

(θ − βh,cX)
′
Σ−1

h,c(θ − βh,cX)

νh

)−(k+νh)/2

. (46)

Here Σh,c is positive definite, νh ≥ 1, ηh ≥ 0 and
∑H

h=1 ηh = 1. Moreover, in order to have a permutation-

invariant candidate the mixing probabilities satisfy ηh,c =
ηh

m! .

In our situation we maximize the weighted log-likelihood

1

N

N∑
i=1

W i log g(θi|ζ)
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where g(.|ζ) is the mixture of Student-t densities (45).

The mixture of Student-t densities (45) for θi is equivalent with the specification

θi ∼ N(βh,cX
i, wi

hΣh,c) if zih,c = 1,

where zi is a set of H · m! latent variables indicating from which Student-t component, and from which

permutation thereof, the observation θi stems: if θi stems from component h and permutation c, then zih,c = 1,

zij,l = 0 for (j, l) ̸= (h, c); Pr[zh,c = 1] = ηh,c; w
i
h has the Inverse-Gamma distribution IG(νh/2, νh/2).

For a more extensive explanation of this continuous scale mixing representation of (mixtures of) Student-t

distributions we refer to Peel and McLachlan (2000). Here we have latent ‘data’ θ̃i (i = 1, . . . , N)

θ̃i = {zih,c, wi
h|h = 1, . . . , H; c = 1, . . . ,m!}

and the so-called data-augmented density is given by

log p(θi, wi, zi|ζ) = log p(θi|wi, zi, ζ) + log p(wi|ζ) + log p(zi|ζ)

=
H∑

h=1

m!∑
c=1

zih,c log
[
pdfN(βh,cXi,wi

hΣh,c)
(θi)

]
+

H∑
h=1

log pdfIG(νh/2,νh/2)
(wi

h) +
H∑

h=1

zih,c log
( ηh
m!

)
=

H∑
h=1

m!∑
c=1

zih,c

{
−k
2
log(2π)− 1

2
log |Σh,c| −

k

2
log(wi

h)

−1

2

(θi − βh,cX
i)′(Σh,c)

−1(θi − βh,cX
i)

wi
h

}
+

H∑
h=1

{
νh
2

log
(νh
2

)
−
(νh
2

− 1
)
log(wi

h)−
νh
2

1

wi
h

− log
(
Γ
(νh
2

))}

+
H∑

h=1

m!∑
c=1

zih,c log
( ηh
m!

)
=

H∑
h=1

m!∑
c=1

zih,c

{
−k
2
log(2π)− 1

2
log |Σh| −

k

2
log(wi

h)

−1

2

(θiinv(c) −Xiβh)
′(Σh)

−1(θiinv(c) −Xiβh)

wi
h

}

+
H∑

h=1

{
νh
2

log
(νh
2

)
−
(νh
2

− 1
)
log(wi

h)−
νh
2

1

wi
h

− log
(
Γ
(νh
2

))}

+
H∑

h=1

m!∑
c=1

zih,c log
( ηh
m!

)
, (47)

where wi and zi are a priori independent, and where inv(c) is the inverse of the permutation c. That is,

applying permutation c and permutation inv(c) subsequentially yields the original vector or matrix.

The expressions of the latent variables wi and zi that appear in terms which also involve the parameters ζ

to be optimized are zih,c,
zi
h,c

wi
h

, logwi
h, and

1
wi

h

. Therefore, we derive the conditional expectations of zih,c,
zi
h,c

wi
h

,

logwi
h, and

1
wi

h

given θi and ζ = ζ(L−1), the optimal parameters in the previous EM iteration:

(1) Expectation of zih,c: in order to speed up the convergence of the (IS weighted) EM algorithm we

compute the expectation

z̃ih,c ≡ E
[
zih,c

∣∣∣θi, ζ = ζ(L−1)
]
= Pr[zih,c = 1|θi, ζ = ζ(L−1)]
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not given wi
h; that is, w

i
h is integrated out:

p(θi, zi|ζ) =

H∏
h=1

m!∏
c=1

[
p(θi|zih,c = 1, ζ) Pr[zih,c = 1|ζ]

]zi
h,c

=
H∏

h=1

m!∏
m=1

[
t(θi|βh,cXi,Σh,c, νh)

ηh
m!

]zi
h,c

,

which is a kernel of a probability function of a multinomial distribution for the set of zih,c (h =

1, . . . , H; c = 1, . . . ,m!) given θi and ζ, with probabilities Pr[zih,c = 1|θi, ζ = ζ(L−1)] equal to

z̃ih,c ≡ E
[
zih,c

∣∣∣θi, ζ = ζ(L−1)
]
=

t(θi|βh,cXi,Σh,c, νh) ηh∑J
j=1

∑m!
l=1 t(θ

i|βj,lXi,Σj,l, ηj) ηj
. (48)

(2) Expectation of
zi
h,c

wi
h

:

z̃/w
i

h,c ≡ E

[
zih,c

1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
= Pr[zih,c = 1|θi, ζ = ζ(L−1)] ×

E

[
1

wi
h

∣∣∣∣ zih,c = 1, θi, ζ = ζ(L−1)

]
.

Given zih,c = 1, i.e. given that θi stems from permutation c of Student-t component h, the situation

reduces to the case of the EM algorithm for a Student-t distribution without mixtures (see Hu (2005)

for an extensive explanation):

E

[
1

wi
h

∣∣∣∣ zih,c = 1, θi, ζ

]
=

k + νh
ρih,c + νh

.

with

ρih,c = (θi − βh,cX)′Σ−1
h,c(θ

i − βh,cX).

Therefore we have

z̃/w
i

h,c ≡ E

[
zih,c

1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
= z̃ih,c

k + νh
ρih,c + νh

. (49)

(3) Expectation of logwi
h:

ξih ≡ E
[
logwi

h

∣∣∣θi, ζ = ζ(L−1)
]
=

=

m!∑
c=1

E
[
logwi

h

∣∣∣zh,c = 1, θi, ζ = ζ(L−1)
]
Pr[zih,c = 1|θi, ζ = ζ(L−1)]

+E
[
logwi

h

∣∣∣zih,c = 0 ∀c, θi, ζ = ζ(L−1)
]
Pr[zih,c = 0 ∀c|θi, ζ = ζ(L−1)]

=
m!∑
c=1

{[
log

(
ρih,c + νh

2

)
− ψ

(
k + νh

2

)]
z̃ih,c

}

+
[
log
(νh
2

)
− ψ

(νh
2

)](
1−

m!∑
c=1

z̃ih,c

)
, (50)

where ψ(.) is the digamma function (the derivative of the logarithm of the gamma function log Γ(.)),

and where we again used that given zh,c = 1 the situation reduces to the case of the EM algorithm for

a Student-t distribution without mixtures (see Hu (2005) for an extensive explanation). For zih,c = 0 ∀c,
the conditional distribution of wi

h given θi, ζ is the distribution given only ζ (since the observation θi

does not depend on wi
h) which is Inverse-Gamma IG(νh/2, νh/2):

E
[
logwi

h

∣∣∣zih,c = 0 ∀c, θi, ζ = ζ(L−1)
]

= log
(νh
2

)
− ψ

(νh
2

)
.
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(4) Expectation of 1
wi

h

:

δih ≡ E

[
1

wi
h

∣∣∣∣ θi, ζ = ζ(L−1)

]
=

m!∑
c=1

E

[
1

wi
h

∣∣∣∣ zih,c = 1, θi, ζ = ζ(L−1)

]
Pr[zih,c = 1|θi, ζ = ζ(L−1)]

+E

[
1

wi
h

∣∣∣∣ zih,c = 0 ∀c, θi, ζ = ζ(L−1)

]
Pr[zih,c = 0 ∀c|θi, ζ = ζ(L−1)]

=

m!∑
c=1

k + νh
ρih,c + νh

z̃ih,c +

(
1−

m!∑
c=1

z̃ih,c

)
. (51)

where if zih,c = 0 ∀c, 1/wi
h has the Gamma(νj/2, νj/2) distribution with

E[1/wi
h|zih,c = 0 ∀c, θi, ζ = ζ(L−1)] = 1.

Define log p̃(θi, wi, zi|ζ) as the result of substituting the expectations (48)-(51) into log p(θi, wi, zi|ζ) in

(47). The Maximization step amounts to computing the ζ that maximizes

ζ(L) = argmax
ζ

1

N

N∑
i=1

W i log p̃(θi, wi, zi|ζ).

Using the analogy with Maximum Likelihood estimation for the Seemingly Unrelated Regression model with

Gaussian errors (for the k elements of θi) and the same r ‘regressors’ Xi in each equation, in which case the

Ordinary Least Squares (OLS) estimator provides the Maximum Likelihood Estimator, and with Maximum

Likelihood estimation for the multinomial distribution, it is easily derived that ζ(L) consists of:

β
(L)′

h =

[
N∑
i=1

m!∑
c=1

W i z̃/w
i

h,c X
i Xi′

]−1 [ N∑
i=1

m!∑
c=1

W i z̃/w
i

h,c X
i θi

′

inv(c)

]
, (52)

Σ̂
(L)
h =

∑N
i=1

∑m!
c=1W

i z̃/w
i

h,c (θ
i
inv(c) − β

(L)
h Xi)(θiinv(c) − β

(L)
h Xi)′∑N

i=1

∑m!
c=1W

i z̃ih,c
, (53)

η
(L)
h =

∑N
i=1

∑m!
c=1W

i z̃ih,c∑N
i=1W

i
. (54)

Further, ν
(L)
h is solved from the first order condition of νh:

−ψ(νh/2) + log(νh/2) + 1−
∑N

i=1W
i ξih∑N

i=1W
i

−
∑N

i=1W
i δih∑N

i=1W
i

= 0 (55)

using a procedure for one-dimensional root finding.

B Two alternative adaptive simulation methods

B.1 Adaptive Metropolis (AM) of Roberts and Rosenthal (2009)

The Adaptive Metropolis (AM) sampler is proposed on page 3 of Roberts and Rosenthal (2009). It is a version

of the AM algorithm of Haario, Saksman and Tamminen (2001). Defining V as the covariance matrix of the

Laplace approximation to the posterior at the posterior mode, at iteration j the proposal distribution is given

by:

qj(θ
c, .) = N(θc, (0.1)2V/k) if j < 5k,

qj(θ
c, .) = (1− β)N(θc, (2.38)2Σj/k) + β N(θc, (0.1)2V/k) if j ≥ 5k, (56)
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with θc the current value of θ, k the dimension of θ, β = 0.05 and Σj the current empirical estimate of the

covariance matrix of the target distribution based on the iterations thus far. The scalar 0.1 tries to achieve

a high acceptance rate by moving the sampler locally. From previous literature, (see Roberts and Rosenthal

(2001)) it is known that the proposal N(θc, (2.38)2Σ/k) is optimal in a particular large-dimensional context.

In the original setting, Roberts and Rosenthal (2009) propose Ik instead of the covariance matrix V when

j < 5k. Here we follow Giordani and Kohn (2010) and replace the identity matrix by V .

B.2 Adaptive Independence Metropolis-Hastings (AIMH) sampler of Giordani

and Kohn (2010)

Giordani and Kohn (2010) propose a mixture with four terms as candidate density in their adaptive independent

Metropolis-Hastings approach. Starting with the general form, the candidate density at iteration j is given by

qj(θ, λn) = ω1 g0(θ) + (1− ω1) gj(θ;λj), (57)

where λj denotes a parameter vector that evolves over time. The density g0(θ) is constant and given by a

mixture of the form g0(θ) = 0.6ϕ0(θ) + 0.4 ϕ̃0(θ) where ϕ0(θ) is a mixture of normals, initialized at iteration

j = 1 by a Laplace expansion in which case it is a multivariate normal. The density ϕ̃0(θ) is a mixture

of normals with similar parameters as ϕ0(θ), however the covariance matrices are multiplied by a factor k1.

Omitting the parameter vector λj , the density gj(θ) is given by:

gj(θ) = ω∗
2 g

∗
j (θ) + (1− ω∗

2) g̃
∗
j (θ), (58)

where both g∗j (θ) and g̃
∗
j (θ) are mixtures of normals with again the same parameters, except that the covariance

matrices of the last density are multiplied by a scalar k2. These parameters are estimated by the k-harmonic

means clustering algorithm, see Giordani and Kohn (2009) for a discussion of this k-harmonic means clustering

algorithm.
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