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Abstract

An exact maximum likelihood method is developed for the estimation of parameters in a

nonlinear non-Gaussian dynamic panel data model with unobserved random individual-

specific and time-varying effects. We propose an estimation procedure based on the

importance sampling technique. In particular, a sequence of conditional importance

densities is derived which integrates out all random effects from the joint distribution

of endogenous variables. We disentangle the integration over both the cross-section

and the time series dimensions. The estimation method facilitates the modeling of

large panels in both dimensions. We evaluate the method in an extended Monte Carlo

study for dynamic panel data models with observations from different non-Gaussian

distributions. We finally present three empirical illustrations for (i) union choice of

young males using a Binary panel, (ii) crime rates of families using a Binomial panel

and (iii) economic growth modeling using a Student’s t panel.
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1 Introduction

In this paper we develop a Monte Carlo maximum likelihood procedure for the estimation of

parameters in a generalized dynamic panel data model. The model consists of a nonlinear

non-Gaussian density for the observations conditional on a latent signal. We decompose the

latent signal into a fixed component and a stochastic component. The fixed component is

defined as a linear function of explanatory variables and lagged observations, whereas the

stochastic component includes random individual-specific effects and time-varying effects.

The two effects are assumed to come from mutually independent Gaussian densities. When

the density of the observations is considered to be conditionally Gaussian with mean equal

to the latent signal and some arbitrary variance, the model reduces to the linear Gaussian

random effects panel data model as studied in Hsiao (2003) and Baltagi (2005).

Maximum likelihood estimation is not trivial for the generalized dynamic panel data

model because the likelihood does not exist in closed form. The functional form of the

observation density together with the stochastic component of the latent signal prohibit

closed form solutions. For a simultaneous analysis of random individual-specific and time-

varying effects we extend the methods of Shephard & Pitt (1997) and Durbin & Koopman

(1997) which are based on Monte Carlo simulation methods. In particular, they adopt an

importance sampler for which an approximating linear Gaussian state space model is used

to draw samples of latent signals. We extend their method for the treatment of random

individual-specific effects. We construct a sequence of conditional importance densities that

sequentially integrates out random effects from the joint distribution. We disentangle the

integration over the cross-section dimension (for the individual-specific effects) and the time

series dimension (for the time-varying effects). The constructed importance densities are

based on a linear Gaussian dynamic panel data model which sufficiently approximates the

true model for the simulation of latent signals.

We further show that the panel of time series can be collapsed into two low-dimensional

vector series, which are used to sample the random individual-specific and time-varying

2



effects from the importance densities. In particular, we collapse the cross-sectional dimension

of y without compromising any information that is needed to sample the time-varying effects

and visa versa. The transformations are based on modifications of the methods introduced

in Jungbacker & Koopman (2008) and lead to large computational savings when evaluating

the Monte Carlo likelihood.

For linear dynamic panel data models, transformations can be adopted to eliminate the

individual-specific effects, whereas time-varying effects are typically modeled using deter-

ministic functions. Then instrumental variables can be found for the implementation in a

generalized method of moments framework, see for example Arellano & Bond (1991) and

Blundell & Bond (1998). For most non-Gaussian dynamic panel data models no known

transformations exist to eliminate the individual-specific effects. Therefore, it is common to

assume stochastic specifications for these effects, see the discussion in Wooldridge (2005).

In order to integrate the random effects from the complete likelihood, several other Monte

Carlo estimation methods have been proposed in the literature. Examples for models without

time-varying effects, are simulated maximum likelihood approaches based on the Geweke-

Hajivassiliou-Keane (GHK) sampler, see Geweke (1991), Hajivassiliou (1990) and Keane

(1994), and the more general Markov Chain Monte Carlo methods including Gibbs sam-

pling and the Metropolis-Hastings algorithm, see Geweke & Keane (2001) and Chib (2008).

Arellano & Bonhomme (2011) discuss further advances in nonlinear panel data analysis for

models without time-varying random effects.

Richard & Zhang (2007) and Liesenfeld & Richard (2008) show that simulation based in-

ference is possible using their efficient importance sampling (EIS) method for non-Gaussian

dynamic panel data models with individual-specific and time-varying effects. Our method

differs from the Richard & Zhang (2007) approach in several ways. First, we disentangle

the Monte Carlo integration over the individual-specific and time-varying effects by con-

ditioning on the posterior modal values of the time-varying and individual-specific effects,

respectively. This allows us to separate the treatment of the different random effects. Sec-

ond, by transforming the panel into two low-dimensional vector series prior to sampling
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from the importance densities increasing panel dimensions only marginally impact the over-

all computational efficiency of our proposed estimation method. Third, the construction of

the importance densities differs highly from each other.

Our proposed estimation method for the general model provides a number of additional

benefits. First, when only individual-specific effects are included in our model, our sampler

remains highly accurate despite the length of the time series dimension. In this respect

we improve on the GHK sampler based simulation method, whose performance is shown to

deteriorate as the time series dimension becomes large, see Lee (1997). Similar improvements,

using the EIS methodology for probit panel data models, have been proposed by Liesenfeld,

Moura & Richard (2010) and Liesenfeld & Richard (2010). Second, our framework allows

for the simultaneous analysis of unobserved heterogeneity, state dependence and correlated

error terms. This is useful as in many empirical panel data studies there are multiple

underlying sources of error. Third, parameter heterogeneity can be imposed for our non-

Gaussian framework with respect to the time periods as well as the individuals by following

the implementations described in Harvey (1989) and Hsiao & Pesaran (2008). They discuss

heterogeneous parameters in the context of linear models. Fourth, the estimation method

can be computationally modified to handle missing values and unbalanced panels. Additional

methods are not necessary and it contrasts with the two-step procedures as developed by,

for example, Stock & Watson (2002).

The remainder of the paper is organized as follows. Section 2 formally describes the

generalized dynamic panel data model in detail. In Section 3 we develop our Monte Carlo

maximum likelihood method for the general model. Section 4 evaluates the performance

of our estimation method in a simulation study. We consider dynamic panel data models

with Binary, Binomial and Student’s t densities. In Section 5 we present empirical stud-

ies for the union choice of young males, the crime rates of families and economic growth

rates of countries. The empirical studies highlight the flexibility of our framework with re-

spect to handling missing values, state dependence and parameter heterogeneity. Section 6

summarizes our findings.
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2 Statistical model formulation

We formally define the generalized dynamic panel data model for observations of variable

yi,t, that is associated with individual i and time t. Data is available for N individuals.

For each individual i the time series dimension is Ti, for i = 1, . . . , N . Each time period

is indexed by t. The entire time span of the unbalanced panel is restricted between some

arbitrary starting period t = 1 and the final period t = T . The general model for variable

yi,t is given by

yi,t
i.i.d.∼ p(yi,t|zi,t;ψ), (1)

where zi,t is the signal for yi,t and p(yi,t|zi,t;ψ) is a density that depends on the parameter

vector ψ. We assume that p(yi,t|zi,t;ψ) is possibly non-Gaussian and is correctly specified.

In Section 5 we consider the Binary, Binomial and Student’s t densities as examples for

p(yi,t|zi,t;ψ) and illustrate their empirical relevance. The latent signal zi,t incorporates all

dynamics, covariates and stochastic processes driving the density p(yi,t|zi,t;ψ). A general

decomposition of signal zi,t is given by

zi,t = wi,t + εi,t, (2)

where wi,t is a fixed component and εi,t is a stochastic component. The components are

given by

wi,t = x′i,tβ + γ1yi,t−1 + . . .+ γpyyt−py , and εi,t = a′i,tµi + b′i,tξt, (3)

where xi,t is a k×1 vector of observable explanatory variables, β is a k×1 parameter vector,

γj is an unknown parameter for j = 1, . . . , py and for some non-negative integer py, the q×1

vector of individual-specific effects µi for individual i is weighted at time period t by the

q× 1 vector ai,t and the r× 1 vector of time-varying effects ξt is weighted for individual i at

time period t by r × 1 vector bi,t. Both weight vectors, ai,t and bi,t, are assumed fixed and

may depend on the parameter vector ψ.
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The individual-specific effects µi and the time-varying effects ξt are given by

µi ∼ NID(δ,Σµ), ξt = Gαt, αt+1 = Hαt +Rηt, ηt ∼ NID(0,Ση), (4)

where the individual effects µi are assumed normally and independently distributed, with

q× 1 common mean vector δ and q× q variance matrix Σµ, which are both considered fixed,

the r × p dimensional matrix G relates the generating linear autoregressive process αt to

the time-varying effects ξt, H is a p× p transition matrix, R is a p× l disturbance selection

matrix, and ηt is an l×1 vector of disturbances with variance matrix Ση. The system matrices

G, H, R and Ση are fixed and known, although some elements may depend on parameter

vector ψ. The initial state vector α1 is assumed normally distributed with mean zero and

variance matrix P . Individual-specific effects µi and µj are assumed mutually uncorrelated

and independent from the time-varying effects, ξt, for all i, j = 1, . . . , N and t = 1, . . . , T .

For the initial signal zi,1 we assume that yi,t, for t < 1, are fixed and known constants for

all i = 1, . . . , N . Also, we will assume that parameters β and γ are common for all individuals

and time periods, and that explanatory variables xi,t are exogenous and uncorrelated with εj,t,

for all i, j = i, . . . , N and common time periods t. Section 5 discusses options for relaxing

these assumptions. In particular, there we adopt the methods developed in Chamberlain

(1980), Wooldridge (2005), Hsiao & Pesaran (2008) and Harvey (1989).

The specification of the signal allows us to distinguish between two sources capable

of explaining the dynamics between particular outcomes, see Heckman (1981a, b). The

first source is the presence of “true state dependence”, which is the phenomenon that past

outcomes provide explanatory power for future outcomes. This is represented in our model

by the terms γ1yi,t−1 + . . . + γpyyi,t−py . The second source, referred to by Heckman (1981a)

as “spurious state dependence”, explains dynamics as resulting from serial correlation in

stochastic component εi,t. We aim to capture serial correlation in εi,t by including individual-

specific effects µi and time-varying effects ξt.

The general model contains many parameters. To identify these parameters in the model
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different strategies can be considered of which the appropriateness needs to be evaluated

on a case by case basis. In general we need to restrict either the distribution of µi, ξt or a

combination of both. Further, as only a limited number of elements of weight vectors ai,t

and bi,t can be identified, some hierarchical constraints must be imposed.

The generalized dynamic panel data model of this paper is fully defined by equations (1),

(2), (3), and (4). All parameters are collected in vector ψ and typically contain parameters

affecting signal zi,t. Under the assumption that the model is correctly specified, the density

of the observations y = {yi,t} conditional on signal z = {zi,t} is given by

p(y|z;ψ) =
N∏
i=1

Ti∏
t=1

p(yi,t|zi,t;ψ) =
N∏
i=1

p(yi,1|zi,1;ψ)

Ti∏
t=2

p(yi,t|µi, ξt;xi,t,Yi,t−1, ψ), (5)

where Yi,t = {yi,1, . . . , yi,t}. The last equality is partly the result of the prediction error

decomposition.

3 Likelihood evaluation by Monte Carlo integration

This section discusses the method of Monte Carlo maximum likelihood for the estimation

of the parameter vector ψ. We first consider the generalized dynamic panel data model

for balanced panels, Ti = T for all i = 1, . . . , N . In Section 3.4 we provide the necessary

alterations for the treatment of unbalanced panels. The loglikelihood for observation vector y

is defined by `(ψ) = log p(y;ψ), where p(y;ψ) denotes the joint density of all observations for

parameter vector ψ. In the remainder of this section we drop the dependence on parameter

vector ψ for notational convenience. For example, we have log p(y) ≡ log p(y;ψ).

In the presence of unobserved random individual-specific and time-varying effects, µ =

{µi} and ξ = {ξt}, density p(y) can be expressed as

p(y) =

∫
z

p(y, z) dz =

∫
ξ

∫
µ

p(y, µ, ξ;x) dµ dξ =

∫
ξ

∫
µ

p(y|µ, ξ;x)p(µ, ξ) dµ dξ, (6)

where the second equality holds as x = {xi,t} is deterministic and where p(µ, ξ) = p(µ)p(ξ),
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since µ and ξ are independent. The evaluation of the high dimensional integral (6) is compli-

cated because an analytical solution is not available for the nonlinear non-Gaussian density

p(y|µ, ξ;x) = p(y|z). We propose to solve the integral by Monte Carlo integration using the

importance sampling technique, see Ripley (1987).

A general importance sampling representation for p(y) is given by

p(y) =

∫
ξ

∫
µ

p(y|µ, ξ;x)p(µ, ξ)

g(µ, ξ|y)
g(µ, ξ|y) dµ dξ, (7)

where g(µ, ξ|y) denotes the importance density. Integral (7) can be solved by Monte Carlo

integration for which we sample µ(i) and ξ(i) from the importance density g(µ, ξ|y) and

compute estimate M−1∑M
i=1 p(y, µ

(i), ξ(i);x) / g(µ(i), ξ(i)|y).

For any choice of the density g(µ, ξ|y), which accounts for the complicated a-posteriori

covariance structure of µ and ξ, sampling from it is likely to be complicated. More specific,

as y depends on both µ and ξ, there exists correlation between all individuals (due to ξ)

and time periods (due to µ). This makes sampling from densities g(µ, ξ|y) that account for

these correlations infeasible even for moderate panel sizes. As a consequence, the importance

sampling based methods of Durbin & Koopman (1997) and Shephard & Pitt (1997), which

construct g(µ, ξ|y) based on an approximating linear Gaussian model, need to be modified

in order to obtain a feasible importance sampler.

We propose to integrate out µ by keeping ξ fixed at its posterior modal value and we

propose to integrate out ξ by keeping µ fixed at its posterior modal value. When either µ

or ξ is fixed the covariance structure of y greatly simplifies. The posterior modal values are

chosen for computational convenience. For density p(y) from the generalized dynamic panel

data model we propose the following importance sampling representation

p(y) =

∫
ξ

∫
µ

p(y|µ, ξ;x)p(µ)p(ξ)

g(µ|y; ξ̂)g(ξ|y; µ̂)
g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ, (8)

where g(µ|y; ξ̂) and g(ξ|y; µ̂) are the importance densities. We define µ̂ and ξ̂ as the posterior
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modal values of p(µ, ξ|y;x), which can be found iteratively as we discuss in Section 3.1. When

applying Bayes rule twice to the right hand side of equation (8) we obtain

p(y) = g(y; ξ̂)g(y; µ̂)

∫
ξ

∫
µ

p(y|µ, ξ;x)

g(y|µ; ξ̂)g(y|ξ; µ̂)
g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ, (9)

where we have retained the marginal properties of µ and ξ by imposing g(ξ) = p(ξ) and

g(µ) = p(µ). It holds that g(y; ξ̂) and g(y; µ̂) are the conditional likelihoods, which are

implicitly defined by the choice for the importance densities. Under the assumption that the

modes µ̂ and ξ̂ are well defined and can be computed, we define p̂(y) as the Monte Carlo

estimate of (9) and given by

p̂(y) = g(y; ξ̂)g(y; µ̂)
1

M

M∑
i=1

p(y|µ(i), ξ(i);x)

g(y|µ(i); ξ̂)g(y|ξ(i); µ̂)
, (10)

where samples {µ(1), . . . , µ(M)} are drawn independently from importance density g(µ|y; ξ̂)

and samples {ξ(1), . . . , ξ(M)} from g(ξ|y; µ̂). The density p(y|µ(i), ξ(i);x) is evaluated using

equation (5).

The quality of the estimate in equation (10) depends on how well the product of g(µ|y; ξ̂)

and g(ξ|y; µ̂) approximates p(y, µ, ξ;x), which needs to be evaluated on a case by case basis.

The Lindeberg-Levy central limit theorem implies a
√
M convergence rate for p̂(y) → p(y)

as M →∞ if draws from the importance sampler are independent and if importance weights

w(i) = p(y|µ(i), ξ(i);x)/
[
g(y|ξ(i); µ̂)g(y|µ(i); ξ̂)

]
, (11)

have finite mean and variance, as argued in Geweke (1989). The last condition can be

examined empirically using extreme value theory based tests proposed in Monahan (2001)

and Koopman, Shephard & Creal (2009). In the simulation study of Section 4 we consider

diagnostic test statistics for the existence of a variance in a sequence of importance weights

drawn from Binary, Binomial and Student’s t dynamic panel data models.
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3.1 Constructing the importance density

Next we consider the construction of importance densities g(µ|y; ξ̂) and g(ξ|y; µ̂), proposed

for evaluating estimate p̂(y), given in equation (10). We choose both densities to follow

Gaussian distributions and modify their means and variances such that their modes are equal

to the modes of the original posterior density p(µ, ξ|y;x). Similar strategies are followed

for models without random individual-specific effects, see, for example, Shephard & Pitt

(1997) and Durbin & Koopman (1997, 2000). So (2003) and Jungbacker & Koopman (2007)

argue that this strategy can be implemented by numerically maximizing log p(µ, ξ|y;x) =

log p(y|µ, ξ;x) + log p(µ, ξ)− log p(y;x) with respect to µ and ξ.

The instrumental basis to facilitate this numerical maximization is given, for variable yi,t,

by the linear Gaussian panel data model

yi,t = ci,t + εi,t + ui,t, ui,t ∼ NID(0, d2i,t), (12)

where ci,t is a fixed constant, stochastic component εi,t is given by equation (3) and ui,t is

a random variable with mean zero and fixed variance d2i,t. The predetermined component

wi,t is not explicitly included in approximating model (12) since it is fixed at time t. The

constants ci,t and di,t are chosen such that (12) can be used to compute the posterior modal

values µ̂ and ξ̂, respectively. The elements ui,t and εj,s are uncorrelated with each other, for

all i, j = 1, . . . , N and s, t = 1, . . . , T . Furthermore, ui,t is serially uncorrelated. It follows

that

g(y|µ, ξ) =
N∏
i=1

T∏
t=1

g(yi,t|µi, ξt), with g(yi,t|µi, ξt) ≡ NID(ci,t + εi,t, d
2
i,t). (13)

The maximization of log p(µ, ξ|y;x) with respect to µ and ξ can be carried out via the

Newton-Raphson method. The idea is to iterate between linearizing p(y|µ, ξ;x), by comput-

ing c = {ci,t} and d = {di,t}, to obtain g(y|µ, ξ) and updating µ and ξ based on the linearized

model given by equations (12) and (3). The following algorithm summarizes this method.
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Algorithm A

(i) Initialize the algorithm by choosing µ∗ and ξ∗ as starting values, which gives ε∗i,t and

z∗i,t, for all i = 1, . . . , N and t = 1, . . . , T ;

(ii) Given the set of two equations

∂ log p(yi,t|zi,t)
∂zi,t

=
∂ log g(yi,t|εi,t)

∂εi,t
,

∂2 log p(yi,t|zi,t)
∂zi,t∂zi,t

=
∂2 log g(yi,t|εi,t)

∂εi,t∂εi,t
,

for i = 1, . . . , N and t = 1, . . . , T , where p(yi,t|zi,t) is the observation model (1) and

g(yi,t|εi,t) is given by (13), we can deduct expressions for ci,t and di,t as functions of

zi,t, and compute ci,t = c∗i,t and di,t = d∗i,t for εi,t = ε∗i,t and zi,t = z∗i,t;

(iii) Compute new µ∗ = Eg(µ|y; ξ∗) from the resulting model (12) with ξ = ξ∗, ci,t = c∗i,t

and di,t = d∗i,t;

(iv) Compute new ξ∗ = Eg(ξ|y;µ∗) from the resulting model (12) with µ = µ∗, ci,t = c∗i,t

and di,t = d∗i,t;

(v) Iterate from (ii) to (iv) until convergence.

Since the mode and the mean of the approximating linear Gaussian model are set equal to

the mode of the original model, it holds that after convergence µ∗ = µ̂ = argmaxµ p(µ|y; ξ̂;x)

and ξ∗ = ξ̂ = argmaxµ p(ξ|y; µ̂;x). Further, it holds that {µ̂, ξ̂} = argmaxµ,ξ p(µ, ξ|y;x).

The performance of Algorithm A depends crucially on the efficient computation of the

conditional expectations in steps (iii) and (v). With respect to step (iii), for a given value of

ξ, the approximating model (12) is reduced to a standard random effects model as given by

ȳi = c̄i + Āiµi + B̄i + ūi, ūi ∼ NID(0, D̄i), i = 1, . . . , N, (14)

where ȳi = (yi,1, . . . , yi,T )′, c̄i = (ci,1, . . . , ci,T )′, Āi = (ai,1, . . . , ai,T )′, B̄i = (b′i,1ξ1, . . . , b
′
i,T ξT )′

and ūi = (ui,1, . . . , ui,T )′, see Baltagi (2005, Chapters 2 and 5). The T × T variance matrix
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D̄i is diagonal by construction, with elements d2i,1, . . . , d
2
i,T on the main diagonal. Based on

(14), the computation of Eg(µ|y; ξ∗) can be performed using standard multivariate normal

regression theory.

In step (v) we need to compute Eg(ξ|y;µ∗). Given a value of µ, the approximating model

(12) can be written as a linear Gaussian state space model as given by

yt = ct +At +Btξt + ut, ut ∼ NID(0, Dt), t = 1, . . . , T, (15)

where yt = (y1,t, . . . , yN,t)
′, ct = (c1,t, . . . , cN,t)

′,At = (a′1,tµ1, . . . , a
′
N,tµN)′, Bt = (b1,t, . . . , bN,t)

′

and ut = (u1,t, . . . , uN,t)
′. Variance matrix Dt is diagonal by construction, with elements

d21,t, . . . , d
2
N,t on the main diagonal. Based on (15) the computation of Eg(ξ|y;µ∗) is carried

out using the Kalman filter and smoothing methods. Additional computational details are

provided in the Technical Appendix.

3.2 Collapsing the approximate linear Gaussian panel data model

The evaluation of likelihood estimate p̂(y) in (10) requires M samples of µ and ξ from

importance densities g(µ|y; ξ̂) and g(ξ|y; µ̂), respectively. Both importance densities are

based on approximating models given in (14) and (15). However, both models have large

dimensions leading to simulation smoother methods that are computationally demanding.

Instead, we show that more efficiency can be obtained by first performing two transformations

to reduce the cross-section and time series dimensions of observed data y. In particular, we

show that samples ξ(i) and µ(i) can be drawn from g(ξ|yl; µ̂) and g(µ|ȳl; ξ̂), respectively,

where ȳl =
[
(ȳl1)

′, . . . , (ȳlN)′
]′

and yl =
[
(yl1)

′, . . . , (ylT )′
]′

are low-dimensional vector series.

The resulting samples can be regarded as coming from g(µ|y; ξ̂) and g(ξ|y; µ̂), respectively.

For the simulation of time-varying effects ξ(i) from g(ξ|yl; µ̂), we collapse N×1 vectors yt,

based on equation (15), with At replaced by Ât = (a′1,tµ̂1, . . . , a
′
N,tµ̂N)′, into low-dimensional

r × 1 vectors ylt, without losing information relevant for the extraction of ξ. A r × N

transformation matrix Slt that satisfies the conditions to prevent information loss is given by
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Slt = ∆′tB
′
tD
−1
t , ∆t∆

′
t = (B′tD

−1
t Bt)

−1, (16)

with ∆t being a lower triangular matrix, see Jungbacker & Koopman (2008). This choice

for ylt = Sltyt gives

ylt = ∆−1t ξt + ult, ult ∼ NID(0, Ir), t = 1, . . . , T, (17)

where ∆−1t is a r×r lower triangular matrix, ξt is defined in (4) and ult is a random vector with

mean zero and variance equal to the r-dimensional unit matrix Ir. Sampling time-varying

effects ξ(i) from g(ξ|yl; µ̂) is performed by applying the simulation smoother methods of

Durbin & Koopman (2002) to r-dimensional vector series ylt and model (17), for t = 1, . . . , T .

The high dimensional orthogonal complement of Slt can be constructed from Slt but is not

required for any of the necessary computations.

For the simulation of individual-specific effects µ(i) from g(µ|ȳl; ξ̂) we collapse T × 1

vectors ȳi, for i = 1, . . . , N , based on vector representation (14), with B̄i replaced by

B̂i = (b′i,1ξ̂1, . . . , b
′
i,T ξ̂T )′, into q × 1 vectors ȳli. We consider similar least squares type trans-

formations as for the cross-section dimension above. However, because µi and µj are inde-

pendent, the transformed observations ȳli become simple rescaled averages of the variables

in ȳi. A suitable T × q transformation matrix S̄li is given by

S̄li = ∆̄′iĀ
′
iD̄
−1
i , ∆̄i∆̄

′
i = (Ā′iD̄

−1
i Āi)

−1, . (18)

with ∆̄i being a lower triangular matrix. The resulting model for ȳli = S̄li ȳi is given by

ȳli = ∆̄−1i µi + ūli, ūlt ∼ NID(0, Iq), i = 1, . . . , N, (19)

where ∆̄−1i is a lower triangular q×q matrix, µi is given in (4) and ūli is a random vector with

mean zero and q×q unit variance. Samples µ(i) can be drawn independently from g(µi|ȳli; ξ̂),
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which is a Gaussian density with mean Σµ∆̄−1i (∆̄−1
′

i Σµ∆̄−1i + Iq)
−1ȳli and variance Σµ −

Σµ∆̄−1i (∆̄−1
′

i Σµ∆̄−1i +Iq)
−1∆̄−1

′

i Σµ. In the Technical Appendix we present the computational

details for the transformations and we discuss the computational gains. On average the

likelihood evaluation times reduce between 2 and 10 times depending on the different random

effects included in the model.

3.3 Constructing the Monte Carlo likelihood

Next we discuss the construction of the Monte Carlo likelihood estimate p̂(y) in equation

(10). The estimate relies on densities g(y; µ̂) and g(y; ξ̂), that are based on the approximating

model (12). Density log g(y; µ̂) can be computed from the prediction error decomposition of

vector representation (15), with µ replaced by µ̂. This is obtained by a single pass through

the Kalman filter, see Durbin & Koopman (2012, Chapter 7). Computational efficiency can

increased by using the lower dimensional model (17), based on vector series ylt. In particular,

Jungbacker & Koopman (2008) show that

log g(y; µ̂) = constant + log g(yl; µ̂)− 1

2

T∑
t=1

log |Dt|+ e′tD
−1
t et, (20)

where yl = (yl
′
1 , . . . , y

l′
T )′ and et = yt − ct − Ât − Bt(B

′
tD
−1
t Bt)

−1B′tD
−1
t (yt − ct − Ât) is

the generalized least squares residual vector. Density g(yl; µ̂) can be computed from the

prediction error decomposition of model (17), which is a r × T -dimensional problem.

The logdensity log g(y; ξ̂) is also evaluated using the collapsed vector series ȳli, for i =

1, . . . , N . Based on model (19) we obtain

log g(y; ξ̂) = constant + log g(ȳl; ξ̂)− 1

2

N∑
i=1

log |D̄i|+ ē′iD̄
−1
i ēi, (21)

where ȳl = (ȳl
′
1 , . . . , ȳ

l′
N)′ and ēi = ȳi − c̄i − B̂i − Āi(Ā′iD̄−1i Āi)

−1Ā′iD̄
−1
i (ȳi − c̄i − B̂i).

The following algorithm summarizes the evaluation of the loglikelihood for balanced

panels. Given parameter vector ψ we can evaluate the Monte Carlo loglikelihood estimate

14



log p̂(y) in the following steps:

Algorithm B

(i) Run Algorithm A, where the posterior modal values µ̂ and ξ̂ are calculated;

(ii) Collapse panel y into low-dimensional vector series ȳli and ylt using Section 3.2;

(iii) Sample M draws µ(i) and ξ(i) from densities g(ξ|yl; µ̂) and g(µ|ȳl; ξ̂), which are based

on transformed models (17) and (19), and compute importance weights w(i), as given

in equation (11);

(iv) Evaluate logdensities log g(y; µ̂) as in (20) and log g(y; ξ̂) as in (21);

(v) Compute log p̂(y) = log g(y; µ̂) + log g(y; ξ̂) + logM−1∑M
i=1w

(i).

Loglikelihood estimate log p̂(y) can be optimized with respect to parameter vector ψ

using an arbitrary numerical optimization method. As a practical choice we use the BFGS

algorithm, see Nocedal & Wright (1999). To retain the smoothness of the likelihood in ψ we

use the same random seed and the same value of M for each loglikelihood evaluation. The

resulting Monte Carlo parameter estimates are denoted by ψ̃. Durbin & Koopman (1997)

advocate the use of antithetic variables to improve the efficiency of the importance sampling

weights. An antithetic variable in our context is constructed for each random draw µ(i) or

ξ(i) from the importance densities such that it is equiprobable with µ or ξ, respectively, and

it leads to smaller Monte Carlo variation. For each draw of µ(i) and ξ(i) we manufacture

antithetic variables that balance for location and for scale.

3.4 Unbalanced or incomplete panels

In this section we provide the details for the treatment of unbalanced panels. We assume

that for each individual we observe yi,t and xi,t for Ti consecutive time periods during a fixed

time interval. When yi,t is unobserved step (ii) of Algorithm A is adjusted by removing xi,t

and unobservable lags Yi,t−1 from zi,t. The resulting zi,t only depends on µi, ξt and possibly
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observed elements of Yt−1. Calculations in step (iii), conditional on ξ∗, are based on the

standard random effects model, for which missing values can be handled by adopting the

methods discussed by Baltagi (2005, Chapter 9). Step (v) of Algorithm A is calculated by

Kalman filter and smoothing methods, which can account for missing values, see Durbin &

Koopman (2012, Section 4.10).

The transformations for panel reduction from Section 3.2 need to be adjusted for missing

values as well. Jungbacker, Koopman & van der Wel (2011), show that by choosing an

alternative state space representation for model (15) collapsed vectors ylt can be computed

using similar transformations. The second transformation for the construction of ȳli can be

computed based on the observed elements of ȳi only, as µi and µj are independent for all

i, j = 1, . . . , N .

Likelihood estimate p̂(y) is based on densities g(y; µ̂) and g(y; ξ̂) and weights w(i). Density

g(y; µ̂) is based on the prediction error decomposition of lower dimensional model (17) and

can be computed from the Kalman filter output. Generalized least squares residuals et only

need to be computed for observed elements of yt. Density g(y; ξ̂), equation (21) can be

computed based on lower dimensional model (19) and by adjusting the generalized least

squares residual vectors ēi to contain only the observed elements of ȳi. The weights w(i) in

(11) are based on elements of p(y|µ(i), ξ(i);x) for which yi,t and xi,t are actually observed.

4 Monte Carlo study

We present and discuss our results from an extended Monte Carlo study for the generalized

dynamic panel data model with the Binary, Binomial and Student’s t observation densities.

These three models are also considered in our empirical illustrations discussed in Section

5. The purpose of the Monte Carlo study is to evaluate the small sample properties of

the estimation procedure presented in Section 3. In particular, we examine whether a
√
M

convergence rate is likely to exist for our simulated likelihood estimate from Algorithm B.

Additionally, we study the magnitude of the Monte Carlo variance of the simulated likelihood
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estimate. Finally, the computational feasibility and accuracy of the estimation methodology

is studied.

4.1 Monte Carlo design

Our aim is to assess the performance of our simulation-based estimation procedure for a

set of different densities, signals, parameter values, panel sizes and numbers of missing

values. Table 1 presents the combinations of densities, signals and parameter values, that

we investigate in our study. Three different observation densities are considered for (1)

and correspond to (A) Binary, (B) Binomial or (C) Student’s t distributions. The signals

correspond to models with 1. individual-specific effects or 2. time-varying effects or 3. both

1. and 2.

The signal is generated as explained in equations (2) – (4) of Section 2. The fixed

component wi,t is based on a single covariate xi,t, that is drawn independently from the

N(0, 1) distribution, with β = 1 and on the lagged dependent variable with py = 1 and

γ1 = γ = 0.2. The stochastic component is based on the univariate, q = 1, individual-specific

effect µi and the univariate, r = 1, time-varying effect ξt with weights ai,t = bi,t = 1. The

individual-specific effect µi is normally distributed with common mean δ = 0 and variance

Σµ = σ2
µ, that is µi ∼ N(0, σ2

µ). We investigate the results for different values of standard

deviation σµ = 0.5, 1, 3. The time-varying effect is updated by an autoregressive process αt

of order 1, where G = 1, H = h, R = 1 and Ση = σ2
η. Different degrees of persistence are

investigated by taking h = 0.3 or h = 0.9. The scaling of the time-varying effects is chosen

as ση = 0.2.

For the Student’s t density we have additional parameters ν and σ, where ν is the degrees

of freedom and σ is the scaling. We fix the value of σ at one and estimate degrees of freedom

ν along with the other parameters. We consider ν = 3, ν = 5 and ν = 10. The entire

parameter vector is given by ψ = {γ, β, σµ, h, ση, ν}.

We consider five different combinations of the panel dimensions N, T = 10, 50, 100, 250

In the case of N = T = 10, the dimensions are sufficiently small that we can also consider
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the standard implementation of Shephard & Pitt (1997) and Durbin & Koopman (1997), see

Section 4.3. In all other cases, it is computationally only feasible to implement our newly

proposed method presented in Section 3.

4.2 Diagnostic tests for the importance sampler

A sufficient condition to guarantee a
√
M convergence rate for the Monte Carlo estimate

p̂(y) in (10) is the existence of the variance in the importance samplings weights w(i), as

given in equation (11), for i = 1, . . . ,M , see Geweke (1989). To test whether the variance is

finite Koopman et al. (2009) propose test statistics for evaluating variance in a sequence of

importance weights. Implementation of their suggested Wald type test statistic is done by

the following steps: (1) Simulate a panel y using a combination of observation density, signal,

parameter values and panel dimensions as given in Table 1. (2) Estimate the parameters

using the Monte Carlo maximum likelihood methods of Section 3 and replace the parameter

vector ψ by the resulting estimate ψ̃. (3) Generate 100, 000 importance sampling weights w(i)

using the importance densities g(ξ|yl; µ̂) and g(µ|ȳl; ξ̂). (4) Consider s exceedence sampling

weights, denoted by x1, . . . , xs, which are larger than some threshold wmin and are assumed

to come from the generalized Pareto distribution with logdensity function f(a, b) = − log b−

(1 + a−1) log (1 + ab−1xi) for i = 1, . . . , s, where unknown parameters a and b determine the

shape and scale of the density, respectively. When a ≤ 0.5, the variance of the importance

sampling weights exists and a
√
M convergence rate can be assumed. (5) Estimate a and b

by maximum likelihood and denote the estimates by ã and b̃, respectively. (6) Compute the

t-test statistic tw = b̃−1
√
s / 3(ã − 0.5) to test the null hypothesis H0 : a = 0.5. We reject

the null hypothesis when the statistic is positive and significantly different from zero, that

is, when it is larger than 1.96 with 95% confidence.

Figures 1(a) and 1(b) present the diagnostic test statistics for the importance samplers

applied to three different densities (A, B and C), and four signals (1.b, 2.b, 3.b and 3.e) as

listed in Table 1. Furthermore, the test statistics are computed for different values of the

threshold wmin. We choose wmin values such that a range of the largest 1% to 50% of the
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Observation density

(A) Binary log p(yi,t|zi,t) = yi,tzi,t − log(1 + exp zi,t)

(B) Binomial log p(yi,t|zi,t) = yi,tzi,t − ni,t(1 + exp zi,t)− log
(
ni,t

yi,t

)
(C) Student’s t log p(yi,t|zi,t) = log a(ν) + 1

2
log λ− ν+1

2
log(1 + λ(yi,t − zi,t)2)

Signal Parameters
γ β σµ h ση ν

(1) zi,t = yi,t−1γ + x′i,tβ + µi a) 0.2 1 0.5 - - (3,5,10)
b) 0.2 1 1 - - (3,5,10)
c) 0.2 1 3 - - (3,5,10)

(2) zi,t = yi,t−1γ + x′i,tβ + ξt a) 0.2 1 - 0.3 0.2 (3,5,10)
b) 0.2 1 - 0.9 0.2 (3,5,10)

(3) zi,t = yi,t−1γ + x′i,tβ + µi + ξt a) 0.2 1 0.5 0.3 0.2 (3,5,10)
b) 0.2 1 0.5 0.9 0.2 (3,5,10)
c) 0.2 1 1 0.3 0.2 (3,5,10)
d) 0.2 1 1 0.9 0.2 (3,5,10)
e) 0.2 1 3 0.3 0.2 (3,5,10)
f) 0.2 1 3 0.9 0.2 (3,5,10)

Table 1: Monte Carlo design with our signal specifications, parameter values and panel dimensions
for simulating the observations. The data generation process is further given by xi,t ∼ NID(0, 1),
µi ∼ NID(0, σ2µ), ξt = αt, αt+1 = hαt + ηt and ηt ∼ NID(0, σ2η). The initial time varying effect is
taken as N(0, σ2η/(1− h2)). For the Student’s t density it holds that a(ν) = Γ(ν/2 + 1/2)/Γ(ν/2)
and λ−1 = (ν − 2)σ2.
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Figure 1: Importance sampling diagnostics for dynamic panel data models, based on 100, 000
simulations of weights w(i) defined in equation (11). The test statistics are presented for densities
A Binary and B Binomial, and signals 1.b, 2.b, 3.b and 3.e from Table 1 and for different panel
sizes. For each combination we computed test statistics for different thresholds wmin, by procedures
explained in Section 4.2. Thresholds are based on the number of exceedence values x1, . . . , xs
included. We have taken 0.01 = s/100000, 0.025 = s/100000, 0.05 = s/100000, until 0.5 =
s/100000. The area above the dotted straight line at 2 indicates the rejection area.
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weights are included. The test statistics are computed with the use of antithetic variables

in all cases.

The test statistics in Figure 1(a) for the Binary and Binomial densities are negative for

all combinations of signals, parameter values and panel dimensions. They provide strong

evidence for the existence of a variance for the importance density function. The test statis-

tics in Figure 1(b) for the Student’s t density present a similar picture. However, when the

degrees of freedom is small, ν = 3, and the panel dimensions are large N = 250 and T = 250,

the test is rejected for threshold values that lead to exceedence samples that include more

than 35% of all weights. When the degrees of freedom becomes even smaller similar results

are obtained. We notice that only for large exceedance samples, we move away from the

left-tail of the test statistic distribution.

We may conclude that there is substantial evidence that a
√
M convergence rate exists

for our proposed likelihood estimate for the generalized dynamic panel data model. However

we do recommend to check for each application whether the importance weights are finite.

The presented results also hold for the other signals listed in Table 1. They are further

discussed in the Technical Appendix.

4.3 Measuring the efficiency loss of Algorithm A

We discussed in Section 3 that our proposed implementation of importance sampling for

the generalized dynamic panel data model is different from the standard implementation

of Shephard & Pitt (1997) and Durbin & Koopman (1997), hereafter SPDK. The standard

SPDK method would sample µ(i) and ξ(i) from g(µ, ξ|y), where g(µ, ξ|y) is based on the

linear Gaussian model (12). The corresponding likelihood is then estimated by

p̂(y) = g(y)M−1
M∑
i=1

w(i), w(i) =
p(y|µ(i), ξ(i);x)

g(y|µ(i), ξ(i))
, (22)

where µ(i) and ξ(i) are drawn from g(µ, ξ|y). This implementation is not feasible for even

moderately large panels, see the discussion in Section 3.

21



It is anticipated that the variance of the importance weight function increases when the

SPDK method in (22) is replaced by our method in (10) because Algorithm A does not

account for the dependence between µ and ξ in g(µ, ξ|y). To study the extent of the increase

in the variance, we compare the t-test statistics for the importance weights in (11) with

importance weights in (22). We notice that sampling from the SPDK importance density is

only computationally feasible for small panel sizes and that the collapsing method of Section

3.2 is not applicable to g(µ, ξ|y).

For the small panel N = 10 with T = 10, we have implemented the standard SPDK

method for our models to facilitate its comparison with our proposed method. Hence Figures

1(a) and 1(b) also present the diagnostic test statistics of Section 4.2 for the SPDK method

and for the smallest panel only. The differences between the test statistics for SPDK and

Algorithm A are small. For all three models, the test statistics for the SPDK importance

weights are slightly lower, but both are very negative. We notice that SPDK is clearly not

feasible for even modest panel dimensions.

In the Technical Appendix we also provide estimates for the loss of efficiency in the

likelihood that results from the increase in variance. We document that the loss can be sub-

stantial for the Binary and Binomial densities, but low for the Student’s t density. However,

the increase of variance in the likelihood estimate can be offset by increasing the number of

draws M . Any degree of accuracy can be achieved and given the large computational im-

provements that are also documented in the Technical Appendix, this is a minor difficulty.

In the remainder of this paper we always take M = 1000 draws from the importance density

of Algorithm A.

4.4 Finite sample properties of Algorithm B

We investigate the accuracy of the likelihood estimates by simulating 100 data panels for

each possible design given in Table 1. For each simulated data panel, we estimate the

parameter vector ψ using Algorithm B with collapsed vectors. After collecting all estimated

parameter vectors, we report the average bias and standard deviation in Table 2 for signals
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N T γ β σµ h ση ν

A.3.b 100 50 -0.004 0.072 0.001 0.036 -0.002 0.057 -0.057 0.127 0.001 0.042 -
50 100 -0.006 0.065 -0.004 0.041 -0.012 0.058 -0.032 0.085 -0.001 0.038 -
100 100 0.004 0.045 0.004 0.032 -0.004 0.043 -0.034 0.081 0.002 0.037 -
250 250 -0.001 0.019 -0.000 0.010 -0.004 0.024 -0.007 0.035 -0.001 0.016 -

A.3.e 100 50 0.004 0.100 0.004 0.046 -0.028 0.271 -0.027 0.379 -0.033 0.096 -
50 100 -0.019 0.100 -0.001 0.052 -0.055 0.303 -0.059 0.357 -0.015 0.073 -
100 100 -0.003 0.061 0.003 0.035 -0.021 0.234 -0.040 0.325 -0.019 0.067 -
250 250 0.002 0.029 0.001 0.013 -0.020 0.138 -0.019 0.112 -0.000 0.018 -

B.3.b 100 50 0.003 0.012 -0.001 0.023 -0.011 0.037 -0.042 0.092 -0.000 0.030 -
50 100 0.002 0.013 0.002 0.021 -0.009 0.047 -0.019 0.056 0.002 0.027 -
100 100 0.000 0.009 0.002 0.014 0.000 0.037 -0.026 0.064 -0.001 0.021 -
250 250 0.000 0.003 0.001 0.005 -0.001 0.024 -0.006 0.031 -0.001 0.010 -

B.3.e 100 50 0.002 0.018 0.005 0.028 -0.013 0.224 -0.034 0.207 -0.005 0.037 -
50 100 0.005 0.020 -0.001 0.027 -0.021 0.300 -0.045 0.200 -0.005 0.037 -
100 100 0.002 0.013 0.000 0.019 0.002 0.225 -0.035 0.160 -0.005 0.025 -
250 250 0.000 0.004 0.000 0.007 -0.008 0.142 0.000 0.073 -0.001 0.010 -

C.3.b 100 50 -0.001 0.008 -0.002 0.009 -0.011 0.030 -0.018 0.040 0.002 0.022 0.010 0.051

50 100 -0.001 0.009 -0.003 0.009 -0.012 0.040 -0.017 0.054 -0.003 0.023 0.008 0.050

100 100 0.000 0.005 -0.000 0.007 -0.000 0.025 -0.012 0.035 0.002 0.015 -0.002 0.038

250 250 0.000 0.002 0.000 0.003 0.000 0.011 -0.000 0.025 0.000 0.010 0.002 0.015

C.3.e 100 50 -0.001 0.008 -0.002 0.009 -0.037 0.168 -0.029 0.124 -0.000 0.020 0.010 0.051

50 100 -0.001 0.008 -0.003 0.009 -0.049 0.226 -0.001 0.107 -0.004 0.020 0.010 0.050

100 100 0.000 0.005 -0.000 0.007 0.015 0.261 -0.012 0.097 0.000 0.021 -0.002 0.039

250 250 0.000 0.002 0.001 0.003 -0.009 0.057 -0.006 0.041 0.000 0.007 0.001 0.012

C.3.b 100 50 -0.001 0.009 0.005 0.013 -0.014 0.090 -0.067 0.090 -0.001 0.027 0.053 0.244

50 100 -0.001 0.008 0.005 0.014 -0.009 0.111 -0.038 0.072 -0.001 0.018 0.050 0.222

100 100 0.001 0.005 -0.002 0.010 -0.034 0.083 -0.017 0.055 -0.003 0.018 0.043 0.154

250 250 0.000 0.002 0.001 0.002 -0.017 0.037 -0.020 0.030 0.003 0.009 0.029 0.040

C.3.e 100 50 -0.002 0.008 0.004 0.013 -0.032 0.266 -0.081 0.177 -0.003 0.022 0.052 0.239

50 100 -0.000 0.007 0.005 0.014 0.018 0.341 -0.024 0.130 -0.005 0.016 0.055 0.222

100 100 0.000 0.005 -0.002 0.010 -0.089 0.247 -0.008 0.110 -0.004 0.018 0.046 0.155

250 250 0.000 0.003 0.001 0.002 -0.037 0.117 -0.019 0.053 0.002 0.009 0.028 0.042

Table 2: Simulation results for the non-Gaussian dynamic panel data models. We present the
average bias and in lower case the standard deviation of the parameter estimates resulting from
100 repetitive estimates from different simulated data panels. Specifications 3.b and 3.e from Table
1 together with observation models A, B and C are used for simulation. The third panel corresponds
to the Student’s t density with ν = 3 degrees of freedom whereas the fourth panel corresponds to
the Student’s t density with ν = 5 degrees of freedom All parameters are estimated by procedures
outlined in Section 3, with M = 1000 draws from importance densities g(ξ|yl; µ̂) and g(µ|ȳl; ξ̂),
respectively.
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3.b and 3.e. The results of the Monte Carlo study show that the estimation procedure is

successful. All parameter estimates center around their “true” values for all different models

and parameter values. We notice that individual state dependence as captured by γ(B)yi,t

can be empirically identified and separated from stochastic components µi and ξt.

For each simulated data panel we also create unbalanced panels by removing 40% of the

observations, at the beginning and end of the data set. The parameter estimates remained

unbiased and the standard errors increase slightly due to the loss of data. The full set of

parameter estimation results, with and without missing values, are presented in our Tech-

nical Appendix. For all computations in this study, we have written the code in the Ox

programming language version 6.10 of Doornik (2007).

5 Empirical illustrations

5.1 Union Participation of young males

We first analyse the union membership decision of young males, see Vella & Verbeek (1998),

Wooldridge (2005) and Liesenfeld & Richard (2008). We use the data from Vella & Verbeek

(1998) to estimate a logistic model for union membership. The binary outcome of the union

membership decision for individual i in year t is denoted by yi,t ∈ {0, 1}. The data consists

of N = 545 males and their possible membership is yearly observed between 1981 and 1987,

T = 7. The initial time period t = 0 corresponds to 1980 and the panel is balanced.

The model for the union membership decision is given by density (A) and signal 3 in Table

1. For this signal the coefficient γ captures the effect whether the individual is a current

union member or not. The explanatory variable vector xi,t includes variables capturing,

schooling, experience, marriage, ethnicity, marital status and location effects, see Table 1 in

Vella & Verbeek (1998) for more detailed descriptions of these variables. We depart from

the study of Vella & Verbeek (1998) by not including the industry and occupational dummy

variables in xi,t and by replacing their time dummies with our stochastically time-varying

effect ξt.
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We conduct three analysis. First, we aim to assess whether the persistence is a result

from either individual satisfaction of last year’s decision as captured by γyi,t−1, referred to as

true state dependence, or from underlying aspects that cause the observed persistence due

to individual-specific µi and time-varying ξt effects, referred to as spurious state dependence.

Second, we recognize that the initial observations and the time-varying explanatory variables

tend to be correlated with the individual-specific effect µi. For example, the marriage decision

partly explains the union choice, but may also influence other unobserved characteristics

that determine µi. To address this issue we allow the individual effect to be correlated with

the initial observations yi,0 and the time-varying explanatory variables xi,t. In particular,

we implement the method of Chamberlain (1980) which has been extended for nonlinear

dynamic panel data models by Wooldridge (2005) and specify µi as

µi = yi,0λ0 +
T∑
t=1

x′i,tλt + vi vi ∼ NID(δ, σ2
µ), (23)

where λ0, λ1, . . . , λT , with T = 7, are fixed parameters that measure the correlation between

µi and the predetermined variables, and where vi represents the remainder individual-specific

effect with fixed mean δ and variance σ2
µ. Third and finally, we consider a different strategy

for capturing spurious state dependence that is discussed in Heiss (2008). Here individual-

specific time-varying stochastic trends are considered to capture the serial correlation in εi,t.

It makes the use of time-invariant individual-specific effects µi redundant. In our setting we

can implement it as

εi,t = b′iξt + yi,0λ0 +
T∑
t=1

x′i,tλt, (24)

where ξt is the (N + 1)× 1 vector of time varying effects and bi is the (N + 1)× 1 selection

vector with the ith and the (N + 1)th elements set equal to one and zero otherwise, with

N = 545. The first N time-varying effects are specific for each time series while the (N+1)th

element is common for all time series. The estimation method suggested in Heiss (2008) does

not allow for the common time-varying effect. Following Heiss (2008), we model the first N

elements by ξi,t+1 = gξi,t + ηi,t, with |g| ≤ 1 ηi,t ∼ NID(δ(1− g), σ2
λ(1− g2)). The (N + 1)th
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element is modeled by ξN+1,t+1 = hξN+1,t + ηN+1,t, with |h| < 1 and ηN+1,t ∼ NID(0, σ2
η),

which is similar as in the original model. When g = 1 it holds that ξi,1 ∼ N(δ, σ2
λ) and

ξi,t = ξi,t−1 for t > 1, and the model collapses to the original model but with ξi,1 replacing

vi in (23). We can now formally establish whether time-invariant individual-specific effects

are appropriate.

The results for the three model specification are presented in Table 3. The parameter

estimates are similar compared to the estimates reported in Vella & Verbeek (1998) and

Liesenfeld & Richard (2008). The state dependence parameter γ is strongly significant. The

estimated effects of marriage and being Black/Hispanic are positive and significant while

those for other explanatory variables are not significant. The distribution of the individual-

specific effects indicates that large differences exist between individuals.

When we allow for correlated random effects via (23) we find that the variable for marriage

in 1987 is significantly correlated with the individual-specific effect. The state dependence

parameter is estimated smaller for the extended model. However a large part of the depen-

dence is attributed to the correlation between the individual-specific effect and the initial

conditions yi,0 as measured by λ0. Similar changes for the state dependence and marriage

parameters are documented in Wooldridge (2005).

For the third model that allows for time-varying individual-specific effects (24) we find

that the parameter g is estimated very close to 1 while the estimate of σN,η is relatively

small. This may partly be due to the relatively small time series dimension T = 7. For

this application we may conclude that including a time-invariant individual-specific effect µi

is sufficient. For a larger T we may find more evidence of time-varying effects. The other

parameter values have similar estimates as for Models 1 and 2.

5.2 Crime rates between 1930 and 2005

The general credit (or default) risk modeling frameworks of Duffie, Saita & Wang (2007)

and Koopman & Lucas (2008) can be applied to other areas of empirical research where

the prediction of unattractive events is of key interest. In this empirical illustration we
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Variable Model 1 Model 2 Model 3

yi,t−1 2.344 0.167 1.770 0.153 1.782 0.157

log Experience -0.201 0.236 -0.250 0.200 -0.252 0.480

Schooling -0.020 0.054 -0.030 0.058 -0.028 0.065

Married 0.382 0.148 0.291 0.196 0.294 0.198

Black 1.124 0.268 0.990 0.286 1.008 0.290

Hispanic 0.518 0.257 0.326 0.278 0.336 0.281

Rural 0.023 0.196 0.021 0.211 0.019 0.212

Health -0.865 0.528 -0.730 0.541 -0.724 0.547

North-East 0.364 0.273 0.259 0.295 0.263 0.300

South 0.023 0.248 -0.018 0.269 -0.004 0.282

North Central 0.490 0.263 0.411 0.285 0.424 0.213

yi,0 - 2.137 0.242 2.166 0.231

Marriedi,1 - 0.115 0.326 0.113 0.331

Marriedi,2 - -0.145 0.387 -0.135 0.317

Marriedi,3 - -0.104 0.390 -0.102 0.399

Marriedi,4 - 0.045 0.422 0.033 0.415

Marriedi,5 - 0.579 0.397 0.591 0.422

Marriedi,6 - 0.248 0.397 0.247 0.400

Marriedi,7 - -0.653 0.311 -0.653 0.316

h -0.418 0.566 -0.271 0.606 -0.514 0.610

ση 0.126 0.069 0.003 0.059 0.117 0.064

g - - 0.989 0.012

σN,η - - 0.040 0.003

δ -2.440 0.923 -2.614 0.910 -2.681 1.603

σµ 1.373 0.131 1.486 0.113 1.514 0.182

log p̂(y) -4863.1 -4808.8 -4798.9
AIC 9756.3 9663.6 9645.9

Table 3: Estimation results (and standard errors in lower case) for the logistic models for the union
membership decision of young males. The binary data panel has cross-section dimension N = 545
and time series dimension T = 7. Model 1 is our basic model with yi,0 treated as fixed. Model 2
extends Model 1 with (23) for the individual-specific effect µi. Model 3 implements the stochastic
component as in (24).
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consider modeling criminal behavior, see Koopman, Ooms, Lucas, Montfort & Van der Geest

(2008) for an earlier example. We analyze crime panel data from the so-called TRANS-5

study, see Bijleveld & Wijkman (2009) for a detailed description. The data panel consists

of observations for N = 188 high-risk families from The Netherlands that reaches over five

generations between the years 1930 and 2005, T = 75. For all individuals from these families,

6039 in total, their committed crimes are registered as well as age and gender information.

The size of the families fluctuates over time.

In this illustration, we aggregate the data at the family level and let yi,t denote the

number of crimes committed by family i in year t. The observation yi,t is modeled by the

Binomial density as given by density (B) in Table 1, with ni,t being the number of family

members, and signal 3. The family-specific effect µi = yi,0λ0 +vi, with vi ∼ NID(δ, σ2
µ), and

the common time-varying effect ξt follows a random walk (h = 1). The common time-varying

effect possibly accounts for the general climate in the justice and police systems. The signal

zi,t includes explanatory variables that represent the age and gender composition of the

family. The current model extends the non-Gaussian state space framework of Koopman &

Lucas (2008) and Koopman et al. (2008) by including the individual-specific means µi. This

is an important extension as typically large differences in propensity exist between families.

The parameter estimates are presented in Table 4. The state dependence coefficient

γ is significantly estimated and has a positive value, indicating strong positive correlation

between past and future criminal behavior within families. The proportion of males in the

family has a strongly significant and positive effect on the crime intensity in the family.

The estimated coefficients for the age variables, which are constructed as the fraction of

individual family members within each age group, reach their peak in the late teenage years

after which they slowly decline.

We extend our study by investigating whether the age effects are changing over time.

Since crime reducing factors such as marriage and employment have taken place much earlier

in life in the earlier years of our sample, we may expect shifts in the age effects. We can

investigate this feature by considering time-varying effects for the age regression coefficients.
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Variable Model 1 Model 2

yi,t−1 0.195 0.021 0.193 0.027

% males 1.468 0.244 0.853 0.051

Age 12-17 1.770 0.233 1.370 0.037

Age 18-24 2.214 0.189 2.194 0.041

Age 25-34 1.351 0.213 0.619 0.031

Age 35-44 0.564 0.253 0.451 0.034

yi,0 0.068 0.044 0.052 0.029

ση 0.058 0.020 0.019 0.028

δ -6.885 0.093 -6.734 0.041

σv 0.960 0.084 0.915 0.026

log p̂(y) -28033 -24856
AIC 56084 49738

Table 4: Estimation results (and standard errors in lower case) for the crime application. The
panel consists of the number of crimes committed by N = 188 families between 1930 and 2005,
T = 75. Model 1 is the basic model specification. Model 2 extends Model 1 by also considering
time-varying effects for the age coefficients.

We replace the common time-varying effect by

b′i,tξt, where bi,t = (1,Age12-17i,t,Age18-24i,t,Age25-34i,t,Age35-44i,t),

where ξt is here a 5× 1 vector that captures the common time-varying factor and the time-

varying coefficients for age. Each element of ξt is modeled by a random walk with different

standard deviations. The last four initial elements in ξ1 are fixed at zero since we also include

the age variables in xi,t. It allows us to separate the mean age effects from the time-varying

effects, see Hsiao & Pesaran (2008). The estimates for the age effects are shown in Figure

2. We find that the variable for the age group 25-34 increases significantly from say 1980

onwards. This corresponds to an age crime curve that is decaying more slowly after its

peak. Hence we may conclude that during the more recent years, the crime reducing factors

(marriage and employment) are considered later in life when compared to say the 1930-1950

period. Some evidence of this effect may also be observed for the age group 35-44 but the

increase is more steadily and strictly not significant. The developed methodology in this

paper has provided the means to extract such interesting features from the data.
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Figure 2: Time-varying effects of the age coefficients for the age crime curve.

5.3 Economic Growth

Many studies in the econometric growth literature have the aim to identify determinants of

long run economic growth and to develop various measures and tests of growth convergence,

see Durlauf, Johnson & Temple (2005) for an extensive review of the literature. We revisit the

stochastic Solow growth model that is derived in Binder & Pesaran (1999). The stochastic

Solow growth model differs from its deterministic counterpart by explicitly allowing for

random technological progress and random labor input in the otherwise deterministic model.

The model has been empirically examined in, among others, Lee, Pesaran & Smith (1997)

and Pesaran (2007). The parameters of the log linearized solution for the stochastic Solow

growth model can be estimated by a variety of panel data estimators discussed in Pesaran &

Smith (1995) and Pesaran (2006). The method proposed in Section 3 can also be adopted for

this purpose. More standard empirical estimators, such as fixed effects, difference and system

GMM estimators impose common slope parameters and can therefore not be considered for

this model. They have been adopted for estimating variants of the deterministic Solow
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growth model with common slopes, see for example Islam (1995) and Caselli, Esquivel &

Lefort (1996).

We present an empirical study for a panel of economic growth rates for N = 34 OECD

countries for the years 1950 to 2010 that are listed in the Penn World Tables (PWT) version

7.1, see Heston, Summers & Aten (2012) and Appendix A. The resulting panel of time series

is highly unbalanced with many missing entries. We generalize the model considered by Lee

et al. (1997) but replace the Gaussian density with the Student’s t density for the measure-

ment errors. We remain to have heterogeneous stochastic growth trends and heterogeneous

slope parameters in the model. The Student’s t density is included to capture large outliers.

Further, it is likely that different countries have similar access to available technology. To

capture these common paths, we model the stochastic trends by a multi-factor structure, see

also Pesaran (2007) and Phillips & Sul (2009).

Let yi,t = 100(log Yi,t− log Yi,t−1), where Yi,t is the per capita output of country i in year

t. The model specification of Pesaran (2007) for the growth rates yi,t is given by

yi,t = (1− γi)gi + γiyi,t−1 + (1− α)∆ζi,t + (α− γi)∆ζi,t−1 − α∆2vi,t, (25)

where ∆ is the difference operator, gi is the mean growth rate, γi is the within-country

convergence parameter, α is the elasticity of output with respect to capital and ζi,t and

vi,t are the stochastic components of technology and employment, respectively. The model

for yi,t is stationary and ergodic, regardless whether ζi,t or vi,t contain a unit root. The

stochastic components of technology and employment cannot be empirically separated and

are typically modeled by a country-specific autoregressive process. However, since common

factors are likely to exists we can capture these terms by a multi-factor structure.

Model (25) can be expressed as a generalized dynamic panel data model, where the

observations are modeled by the Student’s t density (C) in Table 1. We consider the signal

zi,t in (2) with wi,t = 0 and εi,t as in (3). Further, ai,t = (1, yi,t−1)
′ such that the 2 × 1

vector µi captures the mean growth rate and the slope, bi,t = bi is the r × 1 vector of factor
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loadings and ξt is the r×1 vector of common factors. The common factors follow independent

autoregressive processes of order 2 and capture technology and employment shocks which

may contain business cycle effects.

We estimate the coefficients of model specifications with Student’s t and Gaussian (fix ν =

1, 000) densities. The most important parameter estimates for the Gaussian and Student’s t

model are presented in Table 5 for the models with r = 2 common factors. For r = 1, r = 3

and a variety of other model specifications similar results are obtained. When comparing

the Student’s t with the Gaussian specification, we find that the Student’s t model yields

a much higher loglikelihood value, both evaluated at their maximum likelihood estimates.

The degrees of freedom ν is estimated as 2.41 which clearly indicates that many large and

outlying shocks are present in the OECD PWT dataset.

The estimated mean growth rates gi and convergence parameters γi are plotted per

country in Figure 3. We find that the estimates for the Student’s t model are extracted with

much more precision. The estimates for the Gaussian model correspond to the estimates

reported by Lee et al. (1997) where the stochastic growth model is also considered for the

levels of per capita output. The mean growth rates gi are positive and on average 2.47 for

the Student’s t model and 2.44 for the Gaussian model. The implied speed of convergence

γi has mean around 0.3 for the Student’s t model and around 0.2 for the Gaussian model.

Large differences in convergence rates exists for different countries.

In Figure 4 we present the estimated common trends ξt and loadings bi for the Student’s t

and Gaussian models. For the Gaussian model, the 95% confidence bounds for the estimates

are much wider. For the Student’s t model a more pronounced business cycle emerges from

the factor estimates. The first factor is normalized to the US growth rate. Each country

loads positively on this factor. The second factor correspond to the western countries where

economic growth has slowed down in the last decade. The large values found for the loadings

for the Gaussian model can be explained by the large outliers in the growth rates. Examples

are Estonia, Slovenia and Slovakia.

For all models considered in Sections 5.1, 5.2 and 5.3 we calculated the Wald test statistics
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Model 1: yi,t ∼ t(zi,t, σζ , ν) Model 2: yi,t ∼ t(zi,t, σζ , 1000)
ν 2.413 0.227 1000
σ 4.741 2.025 2.788 0.049

δ1 1.680 0.177 1.955 0.235

δ2 0.321 0.030 0.200 0.033

σµ,1 0.291 0.143 0.311 0.130

σµ,2 0.086 0.020 0.118 0.024

h1,1 0.102 0.075 0.222 0.165

h1,2 -0.005 0.034 -0.012 0.015

h2,1 0.236 0.198 0.359 0.149

h2,2 -0.052 0.012 -0.042 0.014

log p̂(y) -7581.66 -7807.39
AIC 15317.06 15768.52

Table 5: Summary of the parameter estimation results (and standard errors in lower case) for the
economic growth rate application. The model considered is given by observation density (C) in
Table 1 with the signal specification zi,t as discussed in Section 5.3. The data panel consists of the
growth rates for 34 countries between 1950 and 2010 listed in Appendix A.

for the importance sampling weights, see the discussion in Section 4.2. All test statistics are

sufficiently negative, which indicates that a
√
M convergence rate exists for all models. The

individual results for the weight tests are presented in the Technical Appendix.

6 Conclusion

We have developed simulation-based methodology for the estimation of parameters in a gen-

eral class of dynamic panel data models with cross-section and time-varying random effects.

The new estimation method felicitates the modeling of high-dimensional non-Gaussian panel

data. The use of importance sampling and related methods provides the means for a feasible

analysis. The computational efficiency of our methods is due to the ability to separate the

cross-section effects from the time-varying effects and to collapse high-dimensional vectors to

low-dimensional vectors that contain the sufficient statistics relevant for the analysis. Fur-

ther, the use of the Kalman filter allows for the efficient sampling of the time-varying effects.

In the Monte Carlo study we have given clear evidence of the validity of our estimation

methods for finite samples. The empirical illustrations highlight the relevance and flexibility

of our methods.
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Figure 3: Country-specific effects for the economic growth model. The black bars indicate the
estimated posterior means, whereas the lighter bars provide the confidence intervals.

Appendix A

Current OECD countries: 0. Australia (AUS), 1. Austria (AUT), 2. Belgium (BEL), 3.

Canada (CAN), 4. Chile (CHL), 5. Czech Republic (CZE), 6. Denmark (DNK), 7. Estonia

(EST), 8. Finland (FIN), 9. France (FRA), 10. Germany (DUE), 11. Greece (GRC), 12.

Hungary (HUN), 13. Iceland (ISL), 14. Ireland (IRL), 15. Israel (ISR), 16. Italy (ITA),

17. Japan (JPN), 18. Korea (KOR), 19. Luxembourg (LUX), 20. Mexico (MEX), 21.

Netherlands (NLD), 22. New Zealand (NLZ), 23. Norway (NOR), 24. Poland (POL), 25.

Portugal (PRT), 26. Slovakia (SVK), 27. Slovenia (SVN), 28. Spain (ESP), 29. Sweden

(SWE), 30. Switzerland (CHE), 31. Turkey (TUR), 32. United Kingdom (GBR), 33. United

States (USA).
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Figure 4: Top panel: Common time-varying factor estimates and 95 % confidence bounds (dotted
lines) for the Student’s t and Gaussian dynamic panel data models. Bottom panel: Factor loadings
bi for the Student’s t and Gaussian dynamic panel data models. The effects are computed based
on estimated parameters ψ̃ (given in Table 5).
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Abstract

In this technical appendix we present the details for the likelihood evaluation procedure

of Mesters & Koopman (2014, Section 3) and the estimation of the posterior random

effects. Further, we present the complete set of simulation and empirical results that

are discussed in Mesters & Koopman (2014).

1 Details Likelihood Evaluation

The likelihood estimate p̂(y) for the generalized dynamic panel data model (Mesters &

Koopman (2014, Section 2)) is given in Mesters & Koopman (2014, equation 10) by

p̂(y) = g(y; ξ̂)g(y; µ̂)
1

M

M∑
i=1

w(i), (1)

where the weights are

w(i) = p(y|µ(i), ξ(i);x)/
[
g(y|ξ(i); µ̂)g(y|µ(i); ξ̂)

]
. (2)
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The samples {µ(1), . . . , µ(M)} are drawn independently from importance density g(µ|y; ξ̂)

and samples {ξ(1), . . . , ξ(M)} from g(ξ|y; µ̂). We now discuss in detail how to construct these

importance densities.

We choose both densities to follow Gaussian distributions and modify their means and

variances such that their modes are equal to the modes of the original posterior density

p(µ, ξ|y;x). Similar strategies are followed for models without random individual-specific

effects; see for example, Shephard & Pitt (1997) and Durbin & Koopman (1997, 2000). So

(2003) and Jungbacker & Koopman (2007) argue that this strategy can be implemented

by numerically maximizing log p(µ, ξ|y;x) = log p(y|µ, ξ;x) + log p(µ, ξ) − log p(y;x) with

respect to µ and ξ.

The instrumental basis to facilitate this numerical maximization is given, for variable yi,t,

by the linear Gaussian panel data model

yi,t = ci,t + εi,t + ui,t, ui,t ∼ NID(0, d2i,t), (3)

where ci,t is a fixed constant, stochastic component εi,t is given by Mesters & Koopman

(2014, equation 3) and ui,t is a random variable with mean zero and fixed variance d2i,t. The

stochastic component εi,t is the same as in the original model of interest. The predetermined

component wi,t is not explicitly included in approximating model (3) since it is fixed at time

t. The constants ci,t and di,t are chosen such that (3) can be used to compute the posterior

modal values µ̂ and ξ̂, respectively. The elements ui,t and εj,s are uncorrelated with each

other, for all i, j = 1, . . . , N and s, t = 1, . . . , T . Furthermore, ui,t is serially uncorrelated. It

follows that

g(y|µ, ξ) =
N∏
i=1

T∏
t=1

g(yi,t|µi, ξt), with g(yi,t|µi, ξt) ≡ NID(ci,t + εi,t, d
2
i,t). (4)

The maximization of log p(µ, ξ|y;x) with respect to µ and ξ can be carried out via the

Newton-Raphson method. The idea is to iterate between linearizing p(y|µ, ξ;x), by com-

puting c = {ci,t} and d = {di,t}, to obtain g(y|µ, ξ) and updating µ and ξ based on the

linearized model given by equations (3) and Mesters & Koopman (2014, equation 3). The

following algorithm summarizes this method.

Algorithm A

(i) Initialize the algorithm by choosing µ∗ and ξ∗ as starting values, which gives ε∗i,t and

z∗i,t, for all i = 1, . . . , N and t = 1, . . . , T ;

(ii) Given the set of two equations

∂ log p(yi,t|zi,t)
∂zi,t

=
∂ log g(yi,t|εi,t)

∂εi,t
,

∂2 log p(yi,t|zi,t)
∂zi,t∂zi,t

=
∂2 log g(yi,t|εi,t)

∂εi,t∂εi,t
,

for i = 1, . . . , N and t = 1, . . . , T , where p(yi,t|zi,t) is the observation model Mesters &

Koopman (2014, equation 5) and g(yi,t|εi,t) is given by (4), we can deduct expressions
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for ci,t and di,t as functions of zi,t, and compute ci,t = c∗i,t and di,t = d∗i,t for εi,t = ε∗i,t
and zi,t = z∗i,t;

(iii) Compute µ̃ = Eg(µ|y; ξ∗) from the resulting model (3) with ξ = ξ∗, ci,t = c∗i,t and

di,t = d∗i,t;

(iv) Replace µ∗ by µ∗ = µ̃;

(v) Compute ξ̃ = Eg(ξ|y;µ∗) from the resulting model (3) with µ = µ∗, ci,t = c∗i,t and

di,t = d∗i,t;

(vi) Replace ξ∗ by ξ∗ = ξ̃

(vii) Iterate from (ii) to (vi) until convergence.

Since the mode and the mean of the approximating linear Gaussian model are set equal

to the mode of the original model, it holds that µ̃ = µ̂ = argmaxµ p(µ|y; ξ̂;x) and ξ̃ = ξ̂ =

argmaxµ p(ξ|y; µ̂;x). Further, it holds that {µ̂, ξ̂} = argmaxµ,ξ p(µ, ξ|y;x).

The performance of Algorithm A depends crucially on the efficient computation of the

conditional expectations in steps (iii) and (v). With respect to step (iii), for a given value

of ξ∗, the approximating model (3) is reduced to a standard random effects model, with

weighted individual-specific effects and heteroskedastic error term ui,t, see Baltagi (2005,

Chapters 2 and 5). This simplification becomes clear when we concatenate the observations

yi,t over the time index t and when we consider the approximating model (3). We then

obtain

ȳi = c̄i + Āiµi + B̄i + ūi, ūi ∼ NID(0, D̄i), i = 1, . . . , N, (5)

where ȳi = (yi,1, . . . , yi,T )′, c̄i = (ci,1, . . . , ci,T )′, Āi = (ai,1, . . . , ai,T )′, B̄i = (b′i,1ξ1, . . . , b
′
i,T ξT )′

and ūi = (ui,1, . . . , ui,T )′. The T × T variance matrix D̄i is diagonal by construction, with

elements d2i,1, . . . , d
2
i,T on the main diagonal. Based on (5), the computation of Eg(µ|y; ξ∗)

can be performed using standard multivariate normal regression theory. In particular, it

holds that

Eg(µ|y; ξ∗) = Eg(µ; ξ∗) + Covg(µ, y; ξ∗)Varg(y; ξ∗)−1 [y − Eg(y; ξ∗)] , (6)

which can be solved separately for each element Eg(µi|ȳi; ξ∗), as given ξ∗, µi only depends

on y by means of ȳi. Some simple manipulations give

• Eg(µi; ξ
∗) = δ;

• Covg(µi, ȳi; ξ
∗) = ΣµĀ

′
i;

• Varg(ȳi; ξ
∗)−1 = D̄−1i − D̄−1i L̄i(L̄

′
iD̄
−1
i L̄i + Iq)

−1L̄′iD̄
−1
i , where L̄i = Āi · choleski(Σµ),

see Roy & Sarhan (1956) and Roy (1958);

• Eg(ȳi; ξ
∗) = c̄i + B̄∗i + Āiδ.
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Efficient implementation of the calculated can be accomplished without storing variance

matrices Varg(ȳi; ξ
∗) or its inverses.

Now consider step (v) where we need to compute Eg(ξ|y;µ∗). Given a value of µ∗,

approximating model (3), can be written as a linear Gaussian state space model. This can

be seen by concatenating variables yi,t over the cross-section dimension, which gives

yt = ct +At +Btξt + ut, ut ∼ NID(0, Dt), t = 1, . . . , T, (7)

where yt = (y1,t, . . . , yN,t)
′, ct = (c1,t, . . . , cN,t)

′,At = (a′1,tµ1, . . . , a
′
N,tµN)′, Bt = (b1,t, . . . , bN,t)

′

and ut = (u1,t, . . . , uN,t)
′. Variance matrix Dt is diagonal by construction, with elements

d21,t, . . . , d
2
N,t on the main diagonal. Based on (7) the computation of Eg(ξ|y;µ∗) is carried

out using the Kalman filter and smoothing methods; see Anderson & Moore (1979) and

Durbin & Koopman (2012, Chapter 4). Moreover, since Dt is diagonal the fast Kalman

filter and smoothing methods from Koopman & Durbin (2003) can be used.

The evaluation of likelihood estimate p̂(y) in (1), requires M samples of µ and ξ from

importance densities g(µ|y; ξ̂) and g(ξ|y; µ̂), respectively. The posterior modal values µ̂ and

ξ̂ are obtained from Algorithm A. Both importance densities are based on approximating

model (3). The vector representations (5) and (7), are adopted for computing the M sam-

ples by using the simulation smoother methods of Durbin & Koopman (2002). However,

both representations have large dimensions leading to simulation smoother methods that

are computationally demanding. Instead, we show that more efficiency can be obtained by

first performing two transformations to reduce the cross-section and time series dimensions

of observed data y. In particular, the vectors series ȳi and yt in equations (5) and (7),

can be transformed into two low-dimensional vector series ȳli and ylt, for t = 1, . . . , T and

i = 1, . . . , N . Based on these vector series, samples ξ(i) and µ(i) can be drawn from g(ξ|yl; µ̂)

and g(µ|ȳl; ξ̂), respectively, where ȳl =
[
(ȳl1)

′, . . . , (ȳlN)′
]′

and yl =
[
(yl1)

′, . . . , (ylT )′
]′

. The

resulting samples can be regarded as coming from g(µ|y; ξ̂) and g(ξ|y; µ̂), respectively. In

Section 2 we present the computational gains in evaluating the likelihood, for both sets of

importance densities. The computational improvements resulting from the transformations

are high. Apart from the computational gains, we also need to use less common random

numbers for sampling the same number of draws µ(i) and ξ(i), regardless of the simulation

smoother used.

For the simulation of time-varying effects ξ(i) from g(ξ|yl; µ̂), we collapse N×1 vectors yt,

based on equation (7), into low-dimensional vectors ylt, without losing information relevant

for the extraction of ξ. This transformation has been introduced in Jungbacker & Koopman

(2008) for the efficient evaluation of the likelihood for linear Gaussian dynamic factor models.

Here only mild modifications of their methods are required.

Consider a linear approximating model for transformed data y∗t = St(yt− ct− Ât) where

St is an N × N nonsingular projection matrix and where yt, ct and At are as given by

(7) with At replaced by Ât = (a′1,tµ̂1, . . . , a
′
N,tµ̂N)′ and µ̂i is the vector of posterior modal

individual-specific effects for time series i, for i = 1, . . . , N and t = 1, . . . , T . The transformed

4



observations are given by

y∗t =

[
ylt
yht

]
, with

ylt = Slt(yt − ct − Ât)
yht = Sht (yt − ct − Ât)

, St =

[
Slt
Sht

]
, t = 1, . . . , T, (8)

where the partioned projection matrices Slt and Sht have dimensions r×N and (N − r)×N ,

respectively. As a result the observation vectors ylt and yht become of dimensions r × 1 and

(N − r)× 1. We aim to choose Slt and Sht such that ylt and yht are uncorrelated and only ylt
depends on ξt. In particular, we aim for a model of the form

ylt = SltBtξt + ult,

yht = uht ,

(
ult
uht

)
∼ N

(
0,

[
Dl
t 0

0 Dh
t

])
, (9)

where Dl
t = SltDtS

l′
t and Dh

t = Sht DtS
h′
t are r × r and (N − r)× (N − r) variance matrices,

respectively.

Suitable matrices St, which lead to model (9) need to satisfy the following conditions;

(a) matrices St needs to be of full rank to prevent the loss of information, (b) Sht DtS
l′
t = 0

to ensure that observations ylt and yht are independent, and (c) Sht Btξt = 0 to ensure that yht
does not depend on ξt. Many matrix series St can be found that fulfill these conditions. A

convenient choice is given by

Slt = ∆′tB
′
tD
−1
t , ∆t∆

′
t = (B′tD

−1
t Bt)

−1, (10)

with ∆t being a lower triangular matrix. This choice for Slt results in

ylt = ∆−1t ξt + ult, ult ∼ NID(0, Ir), t = 1, . . . , T, (11)

where ∆−1t is a r × r lower triangular matrix, ξt is defined in Mesters & Koopman (2014,

equation 4) and ult is a random vector with mean zero and variance equal to the r-dimensional

unit matrix Ir. Sampling time-varying effects ξ(i) from g(ξ|yl; µ̂) is performed by applying the

simulation smoother methods of Durbin & Koopman (2002) to r-dimensional vector series

ylt and model (11), for t = 1, . . . , T . The matrices Sht remain of large dimensions and can be

constructed from Slt but they are not required for any of the necessary computations. Further

discussions of this transformation method are given in Jungbacker & Koopman (2008)

For the simulation of individual-specific effects µ(i) from g(µ|ȳl; ξ̂) we collapse T × 1

vectors ȳi, for i = 1, . . . , N , based on vector representation (5), with B̄i replaced by B̂i =

(b′i,1ξ̂1, . . . , b
′
i,T ξ̂T )′. We consider similar least squares type transformations as for the cross-

section dimension above. However, because µi and µj are independent, the transformed

observations ȳ∗i become simple rescaled averages of the variables in ȳi. Let

ȳ∗i =

[
ȳli
ȳhi

]
, with

ȳli = S̄li(ȳi − c̄i − B̂i)
ȳhi = S̄hi (ȳi − c̄i − B̂i)

, i = 1, . . . , N. (12)

The motivation of the transformation is the same as above. We require to sample µi based
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on only ȳli without compromising data information. We choose matrices S̄li and S̄hi to have

dimensions q× T and (T − q)× T , respectively. The model we aim to construct is given by

ȳli = S̄liĀiµi + ūli,

ȳhi = ūhi ,

(
ūli
ūhi

)
∼ N

(
0,

[
D̄l
i 0

0 D̄h
i

])
, (13)

where D̄l
i = S̄liD̄iS̄

l′
i and D̄h

i = S̄hi D̄iS̄
h′
i are q × q and (N − q)× (N − q) variance matrices

respectively. A convenient choice for S̄li, which satisfies the conditions stated above, is given

by

S̄li = ∆̄′iĀ
′
iD̄
−1
i , ∆̄i∆̄

′
i = (Ā′iD̄

−1
i Āi)

−1, . (14)

with ∆̄i being a lower triangular matrix. The resulting model for ȳli is given by

ȳli = ∆̄−1i µi + ūli, ūlt ∼ NID(0, Iq), i = 1, . . . , N, (15)

where ∆̄−1i is a lower triangular q × q matrix, µi is given in Mesters & Koopman (2014,

equation 4) and ūli is a random vector with mean zero and q × q unit variance. Again we

can construct large matrices S̄hi , but they are not required for any necessary computations.

Samples µ(i) can be drawn independently from g(µi|ȳli; ξ̂), which is a Gaussian density with

mean Σµ∆̄−1i (∆̄−1
′

i Σµ∆̄−1i + Iq)
−1ȳli and variance Σµ − Σµ∆̄−1i (∆̄−1

′

i Σµ∆̄−1i + Iq)
−1∆̄−1

′

i Σµ.

Both expressions follow from the standard lemma (6).

Next we discuss the construction of the Monte Carlo likelihood estimate p̂(y) in equation

(1). The estimate relies on densities g(y; µ̂) and g(y; ξ̂), that are based on the approximating

model (3). Density log g(y; µ̂) can be computed from the prediction error decomposition of

vector representation (7), with µ replaced by µ̂. This is obtained by a single pass through

the Kalman filter, see Durbin & Koopman (2012, Chapter 7). Computational efficiency can

increased by using the lower dimensional model (11), based on vector series ylt. In particular,

Jungbacker & Koopman (2008) show that

log g(y; µ̂) = constant + log g(yl; µ̂)− 1

2

T∑
t=1

log |Dt|+ e′tD
−1
t et, (16)

where yl = (yl
′
1 , . . . , y

l′
T )′ and et = yt − ct − Ât − Bt(B

′
tD
−1
t Bt)

−1B′tD
−1
t (yt − ct − Ât) is

the generalized least squares residual vector. Density g(yl; µ̂) can be computed from the

prediction error decomposition of model (11), which is a r × T -dimensional problem.

Due to the independence of the µi’s logdensity log g(y; ξ̂) is given by

log g(y; ξ̂) = constant− 1

2

N∑
i=1

log |Varg(ȳi; ξ̂)|+
[
(ȳi − c̄i − B̂i)′Varg(ȳi; ξ̂)

−1(ȳi − c̄i − B̂i)
]
,

where determinant |Varg(ȳi; ξ̂)| = |ĀiΣµĀ
′
i + D̄i| can be hard to evaluate, depending on the

structure of Āi. More efficiency can be obtained by using the collapsed vector series ȳli, for

6



i = 1, . . . , N . Based on model (15) we obtain

log g(y; ξ̂) = constant + log g(ȳl; ξ̂)− 1

2

N∑
i=1

log |D̄i|+ ē′iD
−1
i ēi, (17)

where ēi = Mi(ȳi − c̄i − B̂i) with Mi = I − Āi(Ā′iD̄−1i Āi)
−1Ā′iD̄

−1
i . Logdensity log g(y; ξ̂)

can therefore be cased on the N × q-dimensional model (15).

The following algorithm summarizes the evaluation of the loglikelihood for balanced

panels. Given parameter vector ψ we can evaluate the Monte Carlo loglikelihood estimate

log p̂(y) in the following steps:

Algorithm B

(i) Run Algorithm A, where the posterior modal values µ̂ and ξ̂ are calculated;

(ii) Collapse panel y into low-dimensional vector series ȳli and ylt;

(iii) Sample M draws µ(i) and ξ(i) from densities g(ξ|yl; µ̂) and g(µ|ȳl; ξ̂), which are based

on transformed models (11) and (15), and compute importance weights w(i), as given

in equation (2);

(iv) Evaluate logdensities log g(y; µ̂) as in (16) and log g(y; ξ̂) as in (17);

(v) Compute log p̂(y) = log g(y; µ̂) + log g(y; ξ̂) + logM−1∑M
i=1w

(i).

Loglikelihood estimate log p̂(y) can be optimized with respect to parameter vector ψ

using an arbitrary numerical optimization method. As a practical choice we use the BFGS

algorithm, see Nocedal & Wright (1999). To retain the smoothness of the likelihood in ψ

we use the same random seed and the same value of M for each loglikelihood evaluation.

The resulting Monte Carlo parameter estimates are denoted by ψ̃. In Section 2 we show the

computational efficiency and accuracy of our methods, by providing average estimation times

and summary statistics from repeated parameter estimates, for simulated data from different

dynamic panel data models. Durbin & Koopman (1997) advocate the use of antithetic

variables to improve the efficiency of the importance sampling weights. An antithetic variable

in our context is constructed for each random draw µ(i) or ξ(i) from the importance densities

such that it is equiprobable with µ or ξ, respectively, and it leads to smaller Monte Carlo

variation. For each draw of µ(i) and ξ(i) we manifacture antithetic variables that balance

for location and for scale. see Durbin & Koopman (2012, Section 11.4.3) for a detailed

discussion.

1.1 Estimation of the posterior random effects

Given the estimated parameter vector ψ̃ we calculate Monte Carlo estimates of the individual-

specific and time-varying effects. A more detailed discussion of this approach is given in
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Durbin & Koopman (2012, Chapter 11). Let f(µ, ξ) denote a general function of µ and ξ

that is of interest. It holds that

Ep [f(µ, ξ)|y] =

∫
ξ

∫
µ

f(µ, ξ)p(µ, ξ|y;x) dµ dξ,

where Ep[·|y] refers to the expectation with respect to the density p(µ, ξ|y;x). For given

modal values µ̂ and ξ̂, the accompanying importance sampling representation is given by

Ep [f(µ, ξ)|y] = p(y)−1
∫
ξ

∫
µ

f(µ, ξ)
p(y|µ, ξ;x)p(µ)p(ξ)

g(µ|y; ξ̂)g(ξ|y; µ̂)
g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ.

When applying Bayes rule twice to the right hand side we obtain

Ep [f(µ, ξ)|y] =
g(y; ξ̂)g(y; µ̂)

p(y)

∫
ξ

∫
µ

f(µ, ξ)w(y, µ, ξ; µ̂, ξ̂)g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ,

where

w(y, µ, ξ; µ̂, ξ̂) =
p(y|µ, ξ;x)

g(y|µ; ξ̂)g(y|ξ; µ̂)
.

Now, when setting f(µ, ξ) = 1 we obtain

1 =
g(y; ξ̂)g(y; µ̂)

p(y)

∫
ξ

∫
µ

w(y, µ, ξ; µ̂, ξ̂)g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ.

And when dividing the two equations above we get

Ep [f(µ, ξ)|y] =

∫
ξ

∫
µ
f(µ, ξ)w(y, µ, ξ; µ̂, ξ̂)g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ∫
ξ

∫
µ
w(y, µ, ξ; µ̂, ξ̂)g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ

,

for which a Monte Carlo estimate f̃(µ, ξ) is given by

f̃(µ, ξ) =

∑M
i=1 f(µ(i), ξ(i))w(i)∑M

i=1w
(i)

,

where w(i) is defined in equation (2).

2 Simulation Results

2.1 Diagnostic tests importance sampling weights

In Figures 1 - 9 we present the importance sampling diagnostics for all density, signal and

parameters combinations given in Table 1. They are computed as discussed in Mesters &

Koopman (2014, Section 4.2).
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Observation density

(A) Binary log p(yi,t|zi,t) = yi,tzi,t − log(1 + exp zi,t)

(B) Binomial log p(yi,t|zi,t) = yi,tzi,t − ni,t(1 + exp zi,t)− log
(
ni,t

yi,t

)
(C) Student’s t log p(yi,t|zi,t) = log a(ν) + 1

2
log λ− ν+1

2
log(1 + λ(yi,t − zi,t)2)

Signal Parameters
γ β σµ h ση ν

(1) zi,t = yi,t−1γ + x′i,tβ + µi a) 0.2 1 0.5 - - (3,5,10)
b) 0.2 1 1 - - (3,5,10)
c) 0.2 1 3 - - (3,5,10)

(2) zi,t = yi,t−1γ + x′i,tβ + ξt a) 0.2 1 - 0.3 0.2 (3,5,10)
b) 0.2 1 - 0.9 0.2 (3,5,10)

(3) zi,t = yi,t−1γ + x′i,tβ + µi + ξt a) 0.2 1 0.5 0.3 0.2 (3,5,10)
b) 0.2 1 0.5 0.9 0.2 (3,5,10)
c) 0.2 1 1 0.3 0.2 (3,5,10)
d) 0.2 1 1 0.9 0.2 (3,5,10)
e) 0.2 1 3 0.3 0.2 (3,5,10)
f) 0.2 1 3 0.9 0.2 (3,5,10)

Table 1: Monte Carlo design with our signal specifications, parameter values and panel dimensions
for simulating the observations. The data generation process is further given by xi,t ∼ NID(0, 1),
µi ∼ NID(0, σ2µ), ξt = αt, αt+1 = hαt + ηt and ηt ∼ NID(0, σ2η). The initial time varying effect is
taken as N(0, σ2η/(1− h2)). For the Student’s t density it holds that a(ν) = Γ(ν/2 + 1/2)/Γ(ν/2)
and λ−1 = (ν − 2)σ2.
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Figure 7: Diagnostic tests Student’s t signal 1

ν= 3 ν=5 ν= 10 

0 0.2 0.4

-15

-10

-5

C.2.a.

N=10, T=10

ν= 3 ν=5 ν= 10 

0 0.2 0.4

-10

-5

0

N=100, T=50

0 0.2 0.4

-10

-5

0

N=50, T=100

0 0.2 0.4

-10

-5

0

N=100, T=100

0 0.2 0.4

-2.5

2.5

N=250, T=250

0 0.2 0.4

-15

-10

-5

0

C.2.b.

0 0.2 0.4

-10

-5

0

0 0.2 0.4

-10

-5

0

0 0.2 0.4

-10

-5

0

0 0.2 0.4

-5

0

Figure 8: Diagnostic tests Student’s t signal 2

13



0 0.2 0.4
-10

0C.3.a.

N=10, T=10

0 0.2 0.4
-5
0

N=100, T=50

0 0.2 0.4
-5
0

N=50, T=100

0 0.2 0.4
-4
0

N=100, T=100

0 0.2 0.4
0
4

N=250, T=250

0 0.2 0.4
-7.5
-2.5C.3.b.

0 0.2 0.4
-4
0

0 0.2 0.4
-4
0

0 0.2 0.4
-4
0

0 0.2 0.4
0.0
2.5

0 0.2 0.4
-10

0
C.3.c.

0 0.2 0.4
-5
0

0 0.2 0.4
-5
0

0 0.2 0.4
-4
0

0 0.2 0.4
0
4

0 0.2 0.4
-7.5
-2.5C.3.d.

0 0.2 0.4
-4
0

0 0.2 0.4
-4
0

0 0.2 0.4
-4
0

0 0.2 0.4
0.0
2.5

0 0.2 0.4
-10

0
C.3.e.

0 0.2 0.4
-5
0

0 0.2 0.4
-4
0

0 0.2 0.4
-4
0

0 0.2 0.4
0.0
2.5

0 0.2 0.4
-7.5
-2.5

C.3.f.
0 0.2 0.4

-4
0

0 0.2 0.4
-4
0

0 0.2 0.4
-4
0

0 0.2 0.4
0.0
2.5

Figure 9: Diagnostic tests Student’s t signal 3

2.2 Efficiency loss

We discussed in Mesters & Koopman (2014, Section 3) that our proposed implementation

of importance sampling for the generalized dynamic panel data model is different from

the standard implementation of Shephard & Pitt (1997) and Durbin & Koopman (1997),

hereafter SPDK. The standard SPDK method would sample µ(i) and ξ(i) from g(µ, ξ|y),

where g(µ, ξ|y) is based on the linear Gaussian model (3). The corresponding likelihood is

then estimated by

p̂(y) = g(y)M−1
M∑
i=1

w(i), w(i) =
p(y|µ(i), ξ(i);x)

g(y|µ(i), ξ(i))
, (18)

where µ(i) and ξ(i) are drawn from g(µ, ξ|y). This implementation is not feasible for even

moderately large panels; see the discussion in Section 1.

It is anticipated that the variance of the importance weight function increases when the

SPDK method in (18) is replaced by our method in (1) because Algorithm A does not account

for the dependence between µ and ξ in g(µ, ξ|y). The efficiency loss due to Algorithm A

can also be investigated for the small panel. It may provide some insight into a possible

necessary increase in the number of draws M compared to SPDK. For this purpose we carry

out the the following simulation experiment. We generate fifty data panels based on signal 3

and for each combination of observation density and parameter values reported in Table 1.
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For each of these simulated data panels, we obtain likelihood estimates at the true parameter

values under a hundred different random seeds. We are interested in the standard deviation

of the likelihood estimates for different values of M and computed by

SDM = (1/50)
50∑
i=1

[
(1/100)

100∑
j=1

(log p̂j(y
i)− log p̄(yi))2

]0.5
,

where log p̄(yi) = (1/100)
∑100

j=1 log p̂j(y
i) with p̂j(y

i) as the likelihood estimate based on M

draws, for the jth random seed and for the ith panel yi.

The resulting values for SDM are reported in Table 2 for M = 50, 100, 1000. For the

Binary and Binomial densities, we observe a substantial increase in the variance of the

likelihood estimate from Algorithm A when compared to the SPDK implementation, for

each value of M . The increase decreases rapidly when the variance of the individual-specific

effect σ2
µ increases. For the Student’s t densities the increase in the variance is smaller

and sometimes, for ν = 3, Algorithm A is more efficient than SPDK. These results are

only indicative since we can carry out these comparisons only for small panel dimensions.

However, the increase of SDM can be offset by increasing the number of draws M . Any

degree of accuracy can be achieved and given the large computational improvements, as

documented below, this seems a minor difficulty. We notice that SPDK is clearly not feasible

for even modest panel dimensions.

2.3 Likelihood evaluation times

A major improvement for our simulation based estimator is proposed in Mesters & Koopman

(2014, Section 3.2) where it is shown how large panel and time series data vectors can

be collapsed to much smaller dimensions. We investigate the gains in computing time by

simulating 100 data panels for each possible design given in Table 1. For each simulated data

panel, we evaluate the likelihood by Algorithm B as described in Section 1 with M = 1000.

We consider the standard implementation based on vector series yt and ȳi as well as the

collapsed implementation based on ylt and ȳli of Section 1. The average evaluation time for

the likelihood for the collapsed implementation and the ratio between the evaluation times

for the collapsed and standard implementations is presented in Table 3 for signal 1.b, 2.b

and 3.d. The reduction in evaluation times are of course the same for different parameter

values. The likelihood evaluation procedure based on the collapsed vectors is between 2 and

10 times faster compared to evaluation without collapsing the vectors. Most computational

gains are due to the collapse of panel dimension N for the sampling of time-varying effect ξ.

2.4 Parameter estimation results

We report the average bias and standard deviation of the parameter estimation results in

Tables 4 - 8 for all densities and signals. See Mesters & Koopman (2014, Section 4.4) for

further details.

15



M
S
ig

n
al

A
;

B
in

ar
y

B
;

B
in

om
ia

l
C

;
S
tu

d
en

t’
s
t

C
;

S
tu

d
en

t’
s
t

C
;

S
tu

d
en

t’
s
t

(ν
=

3)
(ν

=
5)

(ν
=

10
)

50
3.

a
[0

.0
03

,
0.

02
8

]
[0

.0
03

,
0.

06
1

]
[0

.1
70

,
0.

18
4

]
[0

.0
97

,
0.

11
3

]
[0

.0
50

,
0.

07
4

]
3.

b
[0

.0
05

,
0.

05
6

]
[0

.0
04

,
0.

07
7

]
[0

.1
75

,
0.

19
0

]
[0

.1
02

,
0.

12
2

]
[0

.0
53

,
0.

08
5

]
3.

c
[0

.0
11

,
0.

04
0

]
[0

.0
06

,
0.

06
8

]
[0

.1
89

,
0.

20
2

]
[0

.1
17

,
0.

13
2

]
[0

.0
61

,
0.

08
4

]
3.

d
[0

.0
11

,
0.

06
8

]
[0

.0
06

,
0.

08
4

]
[0

.1
97

,
0.

21
2

]
[0

.1
21

,
0.

14
5

]
[0

.0
63

,
0.

09
7

]
3.

e
[0

.0
49

,
0.

06
4

]
[0

.0
46

,
0.

08
5

]
[0

.1
96

,
0.

20
7

]
[0

.1
24

,
0.

13
8

]
[0

.0
65

,
0.

08
6

]
3.

f
[0

.0
50

,
0.

09
6

]
[0

.0
46

,
0.

10
5

]
[0

.2
57

,
0.

21
6

]
[0

.1
35

,
0.

15
2

]
[0

.0
67

,
0.

10
1

]
10

0
3.

a
[0

.0
02

,
0.

02
0

]
[0

.0
02

,
0.

04
2

]
[0

.1
36

,
0.

14
0

]
[0

.0
71

,
0.

08
4

]
[0

.0
34

,
0.

05
2

]
3.

b
[0

.0
03

,
0.

04
0

]
[0

.0
03

,
0.

05
0

]
[0

.1
39

,
0.

13
8

]
[0

.0
76

,
0.

08
5

]
[0

.0
37

,
0.

05
6

]
3.

c
[0

.0
07

,
0.

02
7

]
[0

.0
04

,
0.

04
5

]
[0

.1
57

,
0.

15
7

]
[0

.0
89

,
0.

10
0

]
[0

.0
43

,
0.

06
0

]
3.

d
[0

.0
08

,
0.

04
4

]
[0

.0
04

,
0.

05
6

]
[0

.1
58

,
0.

15
4

]
[0

.0
92

,
0.

10
1

]
[0

.0
44

,
0.

06
5

]
3.

e
[0

.0
33

,
0.

04
3

]
[0

.0
31

,
0.

05
6

]
[0

.1
65

,
0.

16
1

]
[0

.0
98

,
0.

10
7

]
[0

.0
47

,
0.

06
3

]
3.

f
[0

.0
34

,
0.

06
1

]
[0

.0
31

,
0.

07
1

]
[0

.1
69

,
0.

15
9

]
[0

.1
01

,
0.

10
8

]
[0

.0
48

,
0.

06
8

]
10

00
3.

a
[0

.0
01

,
0.

00
6

]
[0

.0
01

,
0.

01
4

]
[0

.0
47

,
0.

04
9

]
[0

.0
24

,
0.

02
6

]
[0

.0
12

,
0.

01
6

]
3.

b
[0

.0
01

,
0.

01
0

]
[0

.0
01

,
0.

01
6

]
[0

.0
48

,
0.

04
9

]
[0

.0
25

,
0.

02
7

]
[0

.0
12

,
0.

01
7

]
3.

c
[0

.0
02

,
0.

00
8

]
[0

.0
01

,
0.

01
4

]
[0

.0
58

,
0.

06
1

]
[0

.0
31

,
0.

03
2

]
[0

.0
15

,
0.

01
7

]
3.

d
[0

.0
03

,
0.

01
1

]
[0

.0
01

,
0.

01
7

]
[0

.0
58

,
0.

06
0

]
[0

.0
32

,
0.

03
5

]
[0

.0
15

,
0.

01
9

]
3.

e
[0

.0
11

,
0.

01
4

]
[0

.0
10

,
0.

01
8

]
[0

.0
62

,
0.

06
3

]
[0

.0
35

,
0.

03
5

]
[0

.0
16

,
0.

01
8

]
3.

f
[0

.0
12

,
0.

02
0

]
[0

.0
10

,
0.

02
3

]
[0

.0
70

,
0.

06
3

]
[0

.0
35

,
0.

03
8

]
[0

.0
18

,
0.

01
9

]

T
ab

le
2:

W
e

p
re

se
n
t

th
e

st
an

d
a
rd

d
ev

ia
ti

o
n

s
of

th
e

M
on

te
C

ar
lo

li
k
el

ih
o
o
d

es
ti

m
at

or
fo

r
th

e
p

ro
p

o
se

d
im

p
o
rt

an
ce

sa
m

p
le

r
(1

)
an

d
th

e
st

an
d

ar
d

S
P

D
K

im
p

o
rt

a
n

ce
sa

m
p

le
r

(1
8
).

T
h

e
re

su
lt

s
p

re
se

n
te

d
ar

e
[s

ta
n

d
ar

d
d

ev
ia

ti
on

es
ti

m
at

o
r

(1
8)

,
st

an
d

a
rd

d
ev

ia
ti

o
n

es
ti

m
at

o
r

(1
)]

.
T

h
e

st
a
n

d
ar

d
d

ev
ia

ti
on

s
a
re

co
m

p
u

te
d

as
d

is
cu

ss
ed

in
S

ec
ti

on
2.

1.
T

h
e

p
ro

p
os

ed
es

ti
m

at
or

(1
)

is
im

p
le

m
en

te
d

u
si

n
g

th
e

im
p

o
rt

an
ce

d
en

si
ti

es
g
(ξ
|y
l ;
µ̂

)
an

d
g
(µ
|y
l ;
ξ̂)

,
w

h
ic

h
a
re

b
as

ed
o
n

th
e

co
ll

ap
se

d
p

an
el

s.
T

h
e

p
an

el
si

ze
s

ar
e
N

=
10

an
d
T

=
10

.

16



N = 100 N = 50 N = 100 N = 250

T = 50 T = 100 T = 100 T = 250

A. Binary
1.b [0.286, 0.635] [0.281,0.532] [0.584,0.568] [3.387,0.594]
2.b [0.334, 0.169] [0.369,0.164] [0.665,0.161] [3.705,0.160]
3.d [0.591, 0.172] [0.607,0.178] [1.240,0.210] [9.688,0.223]

B. Binomial
1.b [0.184,0.733] [0.178,0.675] [0.361,0.702] [2.165,0.692]
2.b [0.207,0.143] [0.226,0.146] [0.409,0.145] [2.359,0.155]
3.d [0.386,0.180] [0.401,0.187] [0.852,0.187] [7.006,0.308]

C. Student’s t
1.b [0.115,0.657] [0.111,0.590] [0.228,0.621] [1.339,0.597]
2.b [0.191,0.100] [0.207,0.102] [0.379,0.102] [2.129,0.098]
3.d [0.663,0.164] [0.797,0.222] [1.692,0.221] [11.504,0.280]

Table 3: Average likelihood evaluation time for the collapsed likelihood implementation (left in
seconds) and the average ratio between the the collapsed and standard implementations of the
likelihood evaluation as discussed above (the average is over 100 panels). The reduction is achieved
by sampling from µ(i) and ξ(i) from g(ξ|yl; µ̂) and g(µ|yl; ξ̂) instead of from g(ξ|y; µ̂) and g(µ|y; ξ̂),
respectively. The signals are taken as in Table 1. For each model the likelihood is evaluated as
discussed in Section 1 and by using M = 1000 samples from the importance densities. For the
Student’s t density the 5 degrees of freedom were used.

3 Weights empirical studies

In Figure 10 we present the diagnostic tests for the weights pertaining to the empirical

studies. The weights are computed as discussed in Mesters & Koopman (2014, Section 4.2).
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Code N T γ β σµ h ση

A.1.a. 100 50 -0.003 0.059 0.003 0.039 -0.006 0.059

50 100 -0.007 0.059 -0.001 0.038 -0.002 0.056

100 100 -0.008 0.047 -0.001 0.026 0.002 0.041

250 250 0.002 0.017 -0.001 0.012 0.004 0.024

A.1.b. 100 50 0.001 0.076 0.001 0.038 -0.001 0.084

50 100 -0.009 0.062 -0.001 0.038 -0.001 0.101

100 100 -0.008 0.051 -0.001 0.027 0.004 0.074

250 250 0.000 0.018 -0.002 0.011 0.008 0.044

A.1.c. 100 50 0.001 0.113 0.002 0.045 -0.019 0.230

50 100 -0.003 0.094 -0.005 0.049 -0.008 0.352

100 100 -0.003 0.067 -0.000 0.038 0.022 0.203

250 250 0.003 0.026 0.000 0.013 0.015 0.133

A.2.a. 100 50 -0.006 0.052 -0.000 0.038 -0.039 0.333 -0.021 0.053

50 100 0.003 0.045 0.004 0.036 -0.106 0.353 -0.009 0.053

100 100 -0.003 0.042 0.000 0.025 -0.020 0.188 -0.005 0.035

250 250 0.001 0.014 -0.002 0.011 -0.004 0.097 0.000 0.013

A.2.b. 100 50 0.002 0.057 -0.002 0.036 -0.038 0.114 -0.009 0.059

50 100 -0.004 0.062 0.003 0.033 -0.021 0.070 0.001 0.041

100 100 -0.005 0.051 -0.000 0.026 -0.025 0.070 0.004 0.034

250 250 0.001 0.018 -0.002 0.011 -0.008 0.028 0.001 0.013

A.3.a. 100 50 -0.003 0.061 0.001 0.039 0.003 0.055 -0.026 0.290 -0.012 0.053

50 100 -0.008 0.063 -0.002 0.039 -0.009 0.056 -0.007 0.263 -0.009 0.055

100 100 0.006 0.041 0.005 0.031 -0.006 0.044 -0.049 0.227 0.002 0.038

250 250 0.000 0.020 -0.000 0.010 -0.003 0.024 -0.005 0.090 -0.002 0.015

A.3.b. 100 50 -0.004 0.072 0.001 0.036 -0.002 0.057 -0.057 0.127 0.001 0.042

50 100 -0.006 0.065 -0.004 0.041 -0.012 0.058 -0.032 0.085 -0.001 0.038

100 100 0.004 0.045 0.004 0.032 -0.004 0.043 -0.034 0.081 0.002 0.037

250 250 -0.001 0.019 -0.000 0.010 -0.004 0.024 -0.007 0.035 -0.001 0.016

A.3.c. 100 50 -0.002 0.070 0.003 0.039 -0.003 0.091 -0.031 0.311 -0.014 0.050

50 100 -0.013 0.074 -0.006 0.043 -0.016 0.100 -0.002 0.280 -0.012 0.058

100 100 0.007 0.045 0.004 0.032 -0.007 0.073 -0.032 0.234 -0.001 0.042

250 250 -0.001 0.021 -0.000 0.011 -0.005 0.047 -0.010 0.093 -0.001 0.015

A.3.d. 100 50 -0.003 0.076 0.002 0.037 -0.004 0.094 -0.064 0.131 0.002 0.046

50 100 -0.008 0.078 -0.005 0.045 -0.022 0.104 -0.044 0.095 0.001 0.043

100 100 0.005 0.048 0.004 0.032 -0.010 0.074 -0.036 0.080 -0.001 0.038

250 250 -0.000 0.020 -0.001 0.010 -0.006 0.043 -0.009 0.037 -0.001 0.015

A.3.e. 100 50 0.004 0.100 0.004 0.046 -0.028 0.271 -0.027 0.379 -0.033 0.096

50 100 -0.019 0.100 -0.001 0.052 -0.055 0.303 -0.059 0.357 -0.015 0.073

100 100 -0.003 0.061 0.003 0.035 -0.021 0.234 -0.040 0.325 -0.019 0.067

250 250 0.002 0.029 0.001 0.013 -0.021 0.138 -0.019 0.112 -0.000 0.018

A.3.f. 100 50 -0.001 0.102 0.008 0.049 -0.018 0.273 -0.126 0.216 0.009 0.069

50 100 -0.008 0.104 -0.005 0.050 -0.055 0.301 -0.091 0.144 0.005 0.083

100 100 -0.000 0.064 0.002 0.039 -0.032 0.245 -0.035 0.089 -0.005 0.054

250 250 0.001 0.030 -0.000 0.012 -0.026 0.141 -0.014 0.041 -0.000 0.018

Table 4: Simulation results for Binary dynamic panel data models.
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N T γ β σµ h ση

B.1.a. 100 50 0.000 0.010 0.001 0.018 -0.001 0.041

50 100 -0.000 0.012 -0.001 0.017 -0.007 0.050

100 100 0.000 0.007 0.002 0.014 0.002 0.043

250 250 -0.000 0.003 -0.001 0.005 0.000 0.020

B.1.b. 100 50 0.001 0.012 0.003 0.018 0.000 0.077

50 100 -0.001 0.014 -0.001 0.018 -0.014 0.097

100 100 0.000 0.008 0.003 0.013 0.001 0.082

250 250 -0.000 0.004 -0.000 0.006 0.000 0.039

B.1.c. 100 50 0.002 0.019 0.003 0.026 -0.001 0.231

50 100 -0.000 0.016 -0.002 0.023 -0.042 0.309

100 100 -0.000 0.011 0.001 0.017 0.010 0.259

250 250 -0.001 0.005 -0.000 0.008 0.001 0.122

B.2.a. 100 50 -0.001 0.010 0.000 0.017 -0.045 0.168 -0.006 0.027

50 100 -0.001 0.009 0.001 0.018 -0.036 0.146 -0.002 0.025

100 100 0.001 0.006 0.001 0.015 -0.032 0.123 -0.000 0.021

250 250 -0.000 0.003 -0.001 0.005 0.001 0.061 -0.000 0.009

B.2.b. 100 50 -0.001 0.012 -0.001 0.018 -0.032 0.079 -0.003 0.029

50 100 -0.002 0.010 0.002 0.018 -0.023 0.068 -0.002 0.024

100 100 0.001 0.008 0.002 0.014 -0.025 0.053 0.001 0.022

250 250 -0.000 0.003 -0.001 0.005 -0.007 0.026 0.001 0.010

B.3.a. 100 50 0.002 0.012 0.001 0.020 -0.008 0.040 -0.025 0.178 -0.005 0.027

50 100 0.002 0.011 0.002 0.023 -0.005 0.047 -0.031 0.164 -0.000 0.025

100 100 0.000 0.008 0.001 0.014 0.002 0.038 -0.034 0.129 -0.000 0.020

250 250 0.000 0.003 0.001 0.006 -0.000 0.024 0.002 0.065 -0.001 0.009

B.3.b. 100 50 0.003 0.012 -0.001 0.023 -0.011 0.037 -0.042 0.092 -0.000 0.030

50 100 0.002 0.013 0.002 0.021 -0.009 0.047 -0.019 0.056 0.002 0.027

100 100 -0.000 0.009 0.002 0.014 -0.000 0.037 -0.026 0.064 -0.001 0.021

250 250 0.000 0.003 0.001 0.005 -0.001 0.024 -0.007 0.031 -0.001 0.010

B.3.c. 100 50 0.002 0.014 0.000 0.022 -0.011 0.073 -0.029 0.179 -0.004 0.029

50 100 0.003 0.014 0.001 0.022 -0.010 0.098 -0.045 0.167 -0.001 0.026

100 100 0.001 0.009 0.000 0.015 0.003 0.076 -0.038 0.131 -0.003 0.021

250 250 0.000 0.003 0.000 0.006 -0.002 0.048 0.003 0.066 -0.001 0.010

B.3.d. 100 50 0.003 0.015 0.001 0.023 -0.014 0.072 -0.048 0.101 -0.001 0.031

50 100 0.002 0.014 0.001 0.020 -0.017 0.095 -0.025 0.063 0.001 0.028

100 100 0.000 0.009 0.001 0.015 0.001 0.075 -0.028 0.064 -0.002 0.022

250 250 0.000 0.004 0.000 0.006 -0.003 0.045 -0.009 0.033 -0.001 0.010

B.3.e. 100 50 0.002 0.018 0.005 0.028 -0.013 0.224 -0.034 0.207 -0.005 0.037

50 100 0.005 0.020 -0.001 0.027 -0.021 0.300 -0.045 0.200 -0.005 0.037

100 100 0.002 0.013 0.000 0.019 0.002 0.225 -0.035 0.160 -0.005 0.025

250 250 0.000 0.004 0.000 0.007 -0.008 0.142 0.000 0.073 -0.002 0.010

B.3.f. 100 50 0.003 0.017 0.004 0.028 -0.021 0.225 -0.068 0.107 0.002 0.039

50 100 0.005 0.020 0.001 0.026 -0.031 0.304 -0.040 0.071 0.002 0.033

100 100 0.002 0.011 0.000 0.020 -0.000 0.215 -0.047 0.080 -0.002 0.027

250 250 0.000 0.005 0.001 0.007 -0.007 0.142 -0.012 0.034 -0.001 0.010

Table 5: Simulation results for Binomial dynamic panel data models.
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N T γ β σµ h ση ν

C.1.a. 100 50 -0.001 0.008 0.003 0.008 0.012 0.035 0.028 0.034

50 100 -0.001 0.006 -0.004 0.012 0.011 0.054 0.018 0.050

100 100 0.000 0.007 0.001 0.007 -0.002 0.030 0.014 0.027

250 250 0.001 0.001 0.001 0.002 0.004 0.016 -0.002 0.008

100 50 0.000 0.008 0.003 0.008 0.040 0.076 0.028 0.034

C.1.b. 50 100 -0.001 0.006 -0.004 0.012 0.024 0.104 0.018 0.051

100 100 0.000 0.007 0.001 0.007 -0.002 0.054 0.014 0.027

250 250 0.001 0.001 0.001 0.002 0.007 0.032 -0.002 0.008

C.1.c 100 50 0.000 0.008 0.003 0.008 0.122 0.224 0.028 0.035

50 100 -0.001 0.006 -0.004 0.012 0.075 0.305 0.018 0.051

100 100 -0.000 0.006 0.001 0.007 -0.000 0.153 0.014 0.027

250 250 0.001 0.001 0.001 0.002 0.021 0.096 -0.002 0.008

C.2.a. 100 50 0.001 0.005 -0.004 0.013 0.030 0.122 0.003 0.025 0.007 0.045

50 100 -0.001 0.008 0.004 0.007 -0.040 0.138 0.005 0.013 0.025 0.033

100 100 -0.000 0.007 -0.002 0.007 -0.030 0.093 -0.003 0.014 0.011 0.032

250 250 0.001 0.001 0.001 0.002 -0.005 0.051 0.000 0.007 -0.004 0.007

C.2.b. 100 50 0.001 0.006 -0.003 0.014 -0.007 0.036 0.003 0.025 0.010 0.044

50 100 -0.001 0.008 0.004 0.007 -0.019 0.044 0.005 0.014 0.024 0.033

100 100 -0.000 0.007 -0.002 0.007 -0.021 0.043 -0.004 0.013 0.011 0.031

250 250 0.001 0.001 0.001 0.002 -0.003 0.031 -0.000 0.006 -0.004 0.007

C.3.a. 100 50 0.003 0.006 -0.000 0.013 -0.002 0.050 -0.046 0.211 -0.006 0.029 0.024 0.045

50 100 0.002 0.005 -0.001 0.013 0.003 0.075 -0.032 0.117 -0.003 0.017 0.021 0.043

100 100 -0.001 0.006 0.003 0.008 0.000 0.030 0.010 0.067 -0.009 0.017 0.018 0.031

250 250 0.000 0.001 0.001 0.003 0.004 0.015 0.014 0.062 -0.002 0.007 -0.003 0.008

C.3.b. 100 50 0.003 0.006 -0.000 0.013 0.006 0.046 -0.088 0.155 -0.002 0.030 0.017 0.046

50 100 0.002 0.005 -0.001 0.012 -0.003 0.073 -0.044 0.084 -0.003 0.013 0.019 0.042

100 100 -0.001 0.006 0.003 0.008 -0.001 0.030 -0.019 0.042 -0.008 0.016 0.017 0.031

250 250 0.000 0.001 0.001 0.003 0.004 0.015 -0.008 0.030 -0.001 0.008 -0.003 0.008

C.3.c. 100 50 0.003 0.006 -0.000 0.013 0.020 0.093 -0.041 0.209 -0.006 0.029 0.017 0.046

50 100 0.002 0.005 -0.001 0.013 0.004 0.148 -0.032 0.114 -0.003 0.017 0.021 0.043

100 100 -0.001 0.006 0.003 0.008 0.003 0.056 0.011 0.064 -0.009 0.017 0.018 0.031

250 250 0.000 0.001 0.001 0.003 0.009 0.032 0.013 0.061 -0.002 0.007 -0.003 0.008

C.3.d. 100 50 0.003 0.006 -0.000 0.013 0.017 0.095 -0.089 0.154 -0.002 0.030 0.017 0.046

50 100 0.002 0.005 -0.001 0.012 -0.006 0.140 -0.045 0.083 -0.003 0.013 0.020 0.043

100 100 -0.001 0.006 0.002 0.008 0.002 0.055 -0.025 0.045 -0.008 0.017 0.017 0.031

250 250 0.000 0.001 0.001 0.003 0.008 0.024 -0.009 0.031 -0.001 0.008 -0.003 0.008

C.3.e. 100 50 0.004 0.006 -0.000 0.013 0.069 0.285 -0.044 0.207 -0.006 0.029 0.017 0.046

50 100 0.002 0.004 -0.001 0.013 0.008 0.431 -0.033 0.117 -0.003 0.017 0.021 0.043

100 100 -0.200 0.000 -1.000 0.000 -3.000 0.000 -0.300 0.000 -0.200 0.000 -3.000 0.000

250 250 -0.200 0.000 -1.000 0.000 -3.000 0.000 -0.300 0.000 -0.200 0.000 -3.000 0.000

C.3.f. 100 50 -0.200 0.000 -1.000 0.000 -3.000 0.000 -0.900 0.000 -0.200 0.000 -3.000 0.000

50 100 -0.200 0.000 -1.000 0.000 -3.000 0.000 -0.900 0.000 -0.200 0.000 -3.000 0.000

100 100 -0.200 0.000 -1.000 0.000 -3.000 0.000 -0.900 0.000 -0.200 0.000 -3.000 0.000

250 250 -0.200 0.000 -1.000 0.000 -3.000 0.000 -0.900 0.000 -0.200 0.000 -3.000 0.000

Table 6: Simulation results for Student’s dynamic panel data models with ν = 3.
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N T γ β σµ h ση ν

C.1.a. 100 50 0.002 0.010 -0.002 0.010 -0.014 0.047 0.286 0.347

50 100 -0.004 0.008 -0.001 0.014 0.004 0.045 0.135 0.274

100 100 -0.001 0.005 -0.003 0.010 -0.010 0.036 0.140 0.159

250 250 0.000 0.003 -0.000 0.003 0.002 0.022 0.028 0.067

C.1.b. 100 50 -0.001 0.010 -0.001 0.010 -0.007 0.105 0.286 0.348

50 100 -0.004 0.008 -0.001 0.014 0.008 0.091 0.136 0.275

100 100 -0.001 0.005 -0.003 0.010 -0.012 0.067 0.141 0.159

250 250 0.000 0.003 -0.000 0.003 0.007 0.044 0.026 0.067

C.1.c. 100 50 -0.001 0.009 -0.001 0.010 -0.008 0.321 0.284 0.349

50 100 -0.004 0.008 -0.001 0.014 0.021 0.279 0.138 0.274

100 100 -0.001 0.004 -0.003 0.010 -0.020 0.195 0.140 0.159

250 250 0.000 0.003 -0.000 0.003 0.019 0.131 0.029 0.067

C.2.a. 100 50 -0.003 0.008 -0.001 0.013 -0.025 0.157 0.004 0.021 0.059 0.234

50 100 0.002 0.009 -0.003 0.012 -0.031 0.100 0.001 0.024 0.209 0.295

100 100 -0.001 0.005 -0.003 0.009 0.095 0.061 -0.004 0.024 0.070 0.134

250 250 0.000 0.003 0.000 0.003 -0.006 0.075 -0.002 0.010 0.013 0.063

C.2.b. 100 50 -0.004 0.009 0.002 0.014 -0.027 0.058 0.004 0.025 0.068 0.232

50 100 0.002 0.008 -0.002 0.012 -0.028 0.052 0.003 0.027 0.205 0.295

100 100 -0.001 0.005 -0.003 0.009 0.015 0.037 -0.001 0.020 0.069 0.133

250 250 0.000 0.003 0.000 0.003 0.000 0.021 -0.003 0.010 0.012 0.065

C.3.a. 100 50 -0.005 0.008 0.002 0.007 -0.009 0.037 -0.069 0.178 0.003 0.027 0.083 0.306

50 100 -0.001 0.011 0.003 0.007 0.000 0.056 -0.073 0.175 -0.008 0.017 0.079 0.282

100 100 -0.001 0.005 -0.000 0.009 -0.004 0.034 -0.044 0.069 0.009 0.019 0.080 0.138

250 250 -0.000 0.002 -0.000 0.005 0.006 0.017 -0.003 0.046 -0.002 0.010 0.015 0.062

C.3.b. 100 50 -0.006 0.008 0.001 0.008 -0.008 0.037 -0.036 0.076 0.008 0.025 0.112 0.299

50 100 -0.001 0.010 0.003 0.007 -0.004 0.056 -0.003 0.051 -0.005 0.019 0.080 0.283

100 100 -0.001 0.005 -0.000 0.010 -0.006 0.034 -0.041 0.076 0.011 0.022 0.081 0.138

250 250 -0.000 0.002 -0.000 0.005 0.005 0.017 -0.005 0.028 -0.001 0.011 0.015 0.063

C.3.c. 100 50 -0.006 0.008 0.001 0.008 -0.011 0.066 -0.064 0.194 0.004 0.027 0.115 0.304

50 100 -0.001 0.011 0.003 0.007 0.003 0.115 -0.076 0.172 -0.008 0.017 0.081 0.283

100 100 -0.001 0.005 -0.000 0.009 -0.003 0.064 -0.048 0.066 0.008 0.019 0.082 0.138

250 250 -0.000 0.002 -0.000 0.005 0.012 0.036 -0.004 0.046 -0.002 0.010 0.015 0.062

C.3.d. 100 50 -0.006 0.008 0.001 0.008 -0.016 0.067 -0.034 0.076 0.008 0.025 0.114 0.300

50 100 -0.001 0.010 0.002 0.007 -0.005 0.115 -0.008 0.065 -0.005 0.019 0.082 0.285

100 100 -0.001 0.005 -0.000 0.010 -0.007 0.063 -0.049 0.075 0.010 0.022 0.082 0.138

250 250 -0.000 0.002 -0.000 0.005 0.011 0.035 -0.006 0.028 -0.001 0.011 0.015 0.063

C.3.e. 100 50 -0.006 0.008 0.001 0.008 -0.032 0.188 -0.072 0.189 0.004 0.027 0.114 0.305

50 100 -0.001 0.010 0.003 0.007 0.011 0.358 -0.078 0.171 -0.008 0.017 0.083 0.286

100 100 -0.002 0.005 -0.000 0.009 0.000 0.182 -0.048 0.066 0.008 0.019 0.083 0.140

250 250 -0.000 0.002 -0.000 0.005 0.034 0.108 -0.005 0.045 -0.002 0.010 0.017 0.064

C.3.f. 100 50 -0.006 0.007 0.001 0.008 -0.045 0.189 -0.044 0.081 0.008 0.025 0.113 0.301

50 100 -0.001 0.010 0.002 0.007 -0.004 0.361 -0.012 0.067 -0.005 0.019 0.084 0.286

100 100 -0.002 0.005 -0.000 0.010 -0.006 0.180 -0.060 0.075 0.010 0.021 0.082 0.139

250 250 -0.000 0.002 -0.000 0.005 0.031 0.106 -0.009 0.027 -0.001 0.011 0.015 0.064

Table 7: Simulation results for Student’s dynamic panel data models with ν = 5.
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N T γ β σµ h ση ν

C.1.a. 100 50 -0.005 0.011 0.001 0.015 -0.016 0.042 1.053 1.085

50 100 -0.005 0.009 0.006 0.012 0.000 0.043 0.130 0.982

100 100 -0.001 0.006 -0.004 0.008 -0.011 0.034 1.025 0.527

250 250 0.000 0.003 0.001 0.004 0.006 0.024 0.241 0.295

C.1.b. 100 50 -0.006 0.011 0.001 0.015 -0.013 0.078 1.145 1.048

50 100 -0.004 0.009 0.006 0.012 -0.008 0.073 0.141 0.992

100 100 -0.001 0.006 -0.004 0.008 -0.025 0.068 1.036 0.524

250 250 0.000 0.003 0.001 0.004 0.011 0.048 0.242 0.296

C.1.c. 100 50 -0.005 0.011 0.001 0.015 -0.031 0.221 1.177 1.057

50 100 -0.004 0.009 0.006 0.012 -0.045 0.196 0.145 0.999

100 100 0.000 0.006 -0.004 0.008 -0.085 0.209 1.041 0.523

250 250 0.000 0.003 0.001 0.004 0.032 0.142 0.243 0.297

C.2.a. 100 50 -0.001 0.008 0.007 0.012 -0.039 0.194 -0.009 0.021 -0.164 0.806

50 100 -0.006 0.011 0.001 0.015 -0.048 0.101 -0.002 0.021 0.684 0.959

100 100 -0.002 0.006 -0.002 0.009 -0.009 0.101 -0.004 0.021 0.560 0.744

250 250 0.000 0.003 0.000 0.004 -0.021 0.057 0.001 0.009 0.137 0.306

C.2.b. 100 50 -0.002 0.009 0.009 0.012 -0.035 0.087 -0.007 0.024 -0.295 0.841

50 100 -0.006 0.011 0.001 0.014 0.000 0.026 -0.001 0.021 0.658 0.963

100 100 -0.002 0.006 -0.002 0.009 -0.009 0.047 -0.003 0.022 0.575 0.744

250 250 0.000 0.003 0.000 0.004 -0.014 0.033 -0.001 0.009 0.136 0.303

C.3.a. 100 50 -0.007 0.013 0.001 0.018 0.013 0.040 0.025 0.112 0.010 0.019 0.290 1.058

50 100 -0.008 0.012 0.001 0.018 0.011 0.055 -0.039 0.074 0.009 0.021 0.210 1.036

100 100 -0.000 0.005 0.005 0.006 -0.006 0.038 -0.041 0.155 -0.005 0.015 0.700 0.609

250 250 0.000 0.003 -0.000 0.002 0.001 0.023 0.007 0.075 -0.000 0.011 0.132 0.297

C.3.b. 100 50 -0.008 0.013 0.000 0.018 0.019 0.038 -0.024 0.059 0.006 0.029 0.194 1.069

50 100 -0.008 0.012 0.001 0.018 0.003 0.057 -0.035 0.058 0.009 0.025 0.214 1.040

100 100 -0.000 0.004 0.005 0.006 -0.009 0.037 -0.015 0.030 -0.003 0.009 0.686 0.600

250 250 0.000 0.003 -0.000 0.002 0.000 0.024 -0.015 0.033 0.001 0.011 0.132 0.298

C.3.c. 100 50 -0.008 0.013 0.001 0.018 0.042 0.072 -0.018 0.095 0.008 0.021 0.217 1.079

50 100 -0.008 0.012 0.001 0.018 0.021 0.102 -0.044 0.076 0.009 0.021 0.211 1.028

100 100 0.000 0.005 0.005 0.006 -0.014 0.075 -0.045 0.152 -0.006 0.015 0.706 0.608

250 250 0.000 0.003 -0.000 0.002 0.003 0.043 0.004 0.075 -0.000 0.010 0.133 0.298

C.3.d. 100 50 -0.007 0.013 0.000 0.018 0.035 0.072 -0.025 0.062 0.006 0.029 0.215 1.073

50 100 -0.008 0.012 0.001 0.018 0.010 0.109 -0.036 0.058 0.009 0.025 0.216 1.033

100 100 0.000 0.004 0.005 0.006 -0.019 0.075 -0.017 0.030 -0.003 0.009 0.701 0.589

250 250 0.000 0.003 -0.000 0.002 0.000 0.046 -0.014 0.033 0.001 0.011 0.133 0.299

C.3.e. 100 50 -0.006 0.012 0.001 0.018 0.117 0.213 -0.026 0.093 0.007 0.021 0.229 1.076

50 100 -0.008 0.011 0.001 0.018 0.056 0.296 -0.045 0.076 0.008 0.021 0.210 1.023

100 100 0.001 0.005 0.005 0.006 -0.051 0.227 -0.048 0.151 -0.006 0.015 0.709 0.607

250 250 0.000 0.003 -0.000 0.002 0.011 0.126 0.001 0.076 -0.001 0.010 0.133 0.299

C.3.f. 100 50 -0.006 0.011 0.000 0.018 0.107 0.207 -0.052 0.094 0.005 0.029 0.224 1.070

50 100 -0.008 0.011 0.001 0.018 0.057 0.300 -0.055 0.053 0.010 0.025 0.210 1.028

100 100 0.001 0.004 0.005 0.006 -0.052 0.229 -0.033 0.028 -0.003 0.009 0.705 0.586

250 250 0.000 0.003 -0.000 0.002 0.002 0.129 -0.017 0.034 0.001 0.011 0.127 0.297

Table 8: Simulation results for Student’s dynamic panel data models with ν = 10.
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Figure 10: Diagnostic checks for the empirical studies. The t-test statistics correspond to the
estimated models presented for: (i) the union choice of male, (ii) the crime rates of families and
(iii) economic growth rates. All tests are implemented as discussed in Section 2.1.
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