
TI 2012-008/4 
Tinbergen Institute Discussion Paper 

 
Modified Efficient Importance Sampling using 
State Space Methods  
 
 
Siem Jan Koopman1  
Rutger Lit1  
Thuy Minh Nguyen2 

 

 
 

 
 
 
1  Faculty of Economics and Business, VU University Amsterdam, and Tinbergen Institute, the 
Netherlands; 
2  Deutsche Bank, London, United Kingdom.
 



 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University 
Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the 
ambition to support innovative research and offer top quality academic education in core areas of 
finance. 

DSF research papers can be downloaded at: http://www.dsf.nl/ 
 
Duisenberg school of finance 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 8579 
 
 



Modified Efficient Importance Sampling

using State Space Methods∗

Siem Jan Koopman(a,b), Rutger Lit (a) and Thuy Minh Nguyen(c)

(a)Department of Econometrics, VU University Amsterdam &

Tinbergen Institute (b)CREATES, Aarhus University, Denmark

(c)Deutsche Bank, London

Abstract

A successful construction of an importance density for nonlinear non-Gaussian state

space models is crucial when Monte Carlo simulation methods are used for likelihood

evaluation, signal extraction of dynamic latent factors and forecasting. The method of

efficient importance sampling is successful in this respect but we show that it can be

implemented more conveniently using standard Kalman filter and smoothing methods.

We further obtain computational gains by simulating directly from the signal equation

rather than simulating from the usually higher dimensional state equation. Our results

provide some new insights but they primarily lead to a more simple and fast method

for efficient importance sampling. In a simulation study we provide some evidence of

the computational gains. Our new methods are illustrated for a stochastic volatility

model with a Student’s t distribution.
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1 Introduction

For the modelling of an observed time series y1, . . . , yn, we consider a parametric model that

we formulate conditionally on a dynamic latent factor or a time-varying parameter vector

αt, for time index t = 1, . . . , n. The conditional model for the observations is given by

yt|αt
ind∼ p(yt|αt;ψ), t = 1, . . . , n, (1)

where
ind∼ is notation for serially independently distributed, ψ is an unknown and fixed

parameter vector, and p(yt|αt;ψ) is an observation density that is possibly non-Gaussian

and may represent a nonlinear relation between yt and αt. The density p(yt|αt;ψ) is for a

random variable yt that is conditional on the latent random variable αt and is a function

of parameter vector ψ. Conditional on the sequence α1, . . . , αn, the observations y1, . . . , yn

are serially independently distributed. The time-varying parameters in αt can represent

different features of the model including mean, variance and regression effects that may not

be constant over time. Different dynamic specifications for the parameters in αt can be

adopted. In our analysis, the conditional observation density and the dynamic model for αt

must be specified and both may depend on the fixed parameter vector ψ.

When (i) the observation density for yt conditional on αt is Gaussian, (ii) the relation

between yt and αt is linear and (iii) the dynamic model for αt is linear and Gaussian, our time

series modelling framework reduces to the linear Gaussian state space model as discussed

and reviewed, for example, in Durbin and Koopman (2012, Part I). In this framework, we

can rely on the celebrated Kalman filter and its related smoothing method for the signal

extraction of αt, the evaluation of the likelihood function for a specific value of ψ and the

forecasting of yt. These methods provide minimum mean squared error (MMSE) estimates

for αt and MMSE forecasts for yt under correct model specification. Such optimal properties

for estimates produced by the Kalman filter methods are not obtained when we depart from

one of the three given assumptions above. The resulting nonlinear non-Gaussian state space

models require other methods to obtain the optimal estimates. In almost all cases of practical

interest, we require numerical methods which often pose various computational challenges.

For example, to evaluate the likelihood function for a nonlinear non-Gaussian state space
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model, we cannot use the Kalman filter or a related analytical filter. We need to evaluate the

high-dimensional integrals of the likelihood function directly using numerical methods. In

this paper we focus on Monte Carlo methods, in particular on importance sampling methods.

The general ideas of importance sampling are established in statistics and econometrics,

see Kloek and van Dijk (1978), Ripley (1987), and Geweke (1989). Importance sampling

techniques for state space models have been explored by Danielsson and Richard (1993),

Shephard and Pitt (1997), Durbin and Koopman (1997), So (2003) and Jungbacker and

Koopman (2007). A textbook treatment is given by Durbin and Koopman (2012, Part II).

The performance of the Monte Carlo estimation method relies on the successful construction

of an importance density. Several methods for designing an importance density for time

series modelling have been proposed. For example, Shephard and Pitt (1997) and Durbin

and Koopman (1997) adopt an importance density based on the mode of the conditional

density.

In this paper we consider the efficient importance sampling (EIS) method of Liesenfeld

and Richard (2003), Richard and Zhang (2007) and Jung, Liesenfeld, and Richard (2011)

where the sampling is based on a global approximation of the original model. We show

that EIS can be implemented using standard Kalman filter methods. It leads to a simple

and fast procedure for efficient importance sampling. We discuss how our modified efficient

importance sampling (MEIS) procedure is related to the procedure of Shephard and Pitt

(1997) and Durbin and Koopman (1997), hereafter referred to as SPDK. It is shown by

Koopman, Lucas, and Scharth (2014) that similar modifications can also be used for the

introduction of numerical integration methods in importance sampling.

The remainder of the paper is organized as follows. In Section 2 we briefly introduce our

generalized time-varying parameter model. In Section 3 we introduce our new MEIS method

by reviewing the EIS method for constructing the importance density and show how the EIS

method can be implemented using state space methods. In Section 4 we discuss parameter

estimation, signal extraction and forecasting. The simulation study presented in Section 5

provides the evidence of the computational efficiency gains. In Section 6 we apply our new

methodology to four time series of financial returns which are analysed on the basis of the

stochastic volatility model with a Student’s t density. The empirical results are of interest

generally when analyzing volatilities in stock markets. Section 7 concludes.
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2 A generalized time-varying parameter model

The dynamic model specification under consideration is given by the observation density

p(yt|αt;ψ) as introduced in (1) and with the stochastically time-varying parameter vector

αt. The linear Gaussian dynamic process for αt is given by

αt+1 = dt + Ttαt +Rtηt, ηt
ind∼ N(0, Qt), α1 ∼ N(a1, Q0), (2)

where the elements of the transition matrix Tt, the selection matrix Rt, and the variance

matrices Qt and Q0 are known except that some elements have a possible dependence on

parameter vector ψ, for t = 1, . . . , n. The disturbances ηt are normally and independently

distributed and do not depend on the normally distributed initial state vector α1. All

stochastic and non-stochastic variables have appropriate dimensions and the dimensions will

only be given when it is necessary. The observation yt is typically a scalar but the methods

presented in Section 3 are also applicable for a vector of observations yt. Illustrations of

special cases of our general modelling framework are given below.

2.1 Signal plus heavy-tailed noise model

When the time series observations yt are randomly contaminated by noise with large shocks,

we may wish to remove the noise from the signal and to model the noise explicitly by a

heavy-tailed density. We then may consider the model

yt = Zt(αt) + εt, εt
ind∼ τ(0, σ2, ν), t = 1, . . . , n, (3)

where signal function Zt(·) is fixed and known, and may also depend on the parameter

vector ψ, the stochastically time-varying state vector αt is specified in (2) and τ(µ, σ2, ν)

is the Student’s t density with mean µ, variance σ2 and degrees of freedom ν. The model

clearly fits in our general framework with observation equation (1) given by

p(yt|αt;ψ) = τ(θt, σ
2, ν), θt = Zt(αt), t = 1, . . . , n,

where θt is the signal. Other heavy tailed densities for εt can also be considered.
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A well-known example of a signal plus noise model is the basic structural time series

model of Harvey (1989) in which the univariate time series yt can be decomposed into trend,

seasonal and noise components,

yt = µt + γt + εt,

where µt is the trend component, γt is the seasonal component, and both are elements of the

state vector αt. The dynamic specifications of the two components can be formulated jointly

in the form of (2). The signal for this model is linear and is given θt = Zt(αt) = µt + γt

for t = 1, . . . , n. When the noise component εt is normally distributed, the time series

analysis, including the maximum likelihood estimation of ψ, the signal extraction of θt (or,

additionally, µt and γt) and the forecasting of yt can be based on the Kalman filter and related

methods. However, when the noise εt is non-Gaussian as in (3), the resulting estimates of

the Kalman filter have no longer optimal properties. For such cases, we adopt importance

sampling methods.

2.2 Stochastic volatility model

A time series of financial returns is often subject to clusters of volatility changes which

can effectively be modelled by a dynamic process for the variance. A basic version of the

stochastic volatility model for a time series of returns yt is given by

yt = µ+ exp(
1

2
θt)εt, θt = Zt(αt), εt

ind∼ N(0, σ2), t = 1, . . . , n, (4)

where µ is a constant, the signal θt represents the time-varying log-variance of yt, and εt

is the normally distributed noise term. The specification for θt can be formulated as in

the previous illustration. However, a more appropriate formulation for the signal is the

stationary process

Zt(αt) =

p∑
j=1

αjt, αj,t+1 = φjαjt + ηjt, (5)

where αjt is the jth element of αt with autoregressive coefficient 0 < φj < 1, and ηjt is the jth

element of ηt, for j = 1, . . . , p, and where αt and ηt are specified as in (2), for t = 1, . . . , n. It

follows that the transition matrix Tt and the variance matrix Qt in (2) are diagonal matrices,

for t = 1, . . . , n, with their jth diagonal elements equal to φj and σ2
η,j, for j = 1, . . . , p. The
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conditional observation density (1), in logs, for this stochastic volatility model is given by

log p(yt|θt;ψ) = −1

2
log(2π σ2)− 1

2
θt −

1

2σ2
exp(−θt)(yt − µ)2, t = 1, . . . , n.

The stochastic volatility model can be extended in many ways. For example, leverage effects

can be introduced by having dependence between εt and ηjt, for j = 1, . . . , p. Also, heavy-

tailed density functions can be considered for the noise term εt. We refer to Shephard (2005)

for extensive discussions on stochastic volatility models.

2.3 Time-varying model for counts

Time series of counts can be modelled by the Poisson density with the intensity parameter as

a function of the time-varying signal θt that we can specify as (1) and (2). The observation

log-density function is then given by

log p(yt|αt;ψ) = yt log θt − θt − log(yt!), θt = Zt(αt), t = 1, . . . , n, (6)

where the signal θt is defined in the same way as in the earlier illustrations. Other densi-

ties from the exponential family can also be considered such as the Binomial distribution,

the negative Binomial distribution and the Skellam distribution (difference of two Poisson

variables).

3 Modified efficient importance sampling

We discuss the EIS and MEIS methods by considering likelihood evaluation. For a discussion

about other applications in which MEIS plays an important role including signal extraction,

maximum likelihood estimation of ψ and forecasting of future observations yt we refer to

Section 4.

The likelihood function of the model (1) and (2) for the observed vector y = (y′1, . . . , y
′
n)′

and as a function of parameter vector ψ is given by

L(y;ψ) =

∫
p(y, α;ψ) dα =

∫
p(y|α;ψ)p(α;ψ) dα, (7)
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where α = (α′1, . . . , α
′
n)′. Analytical expressions for the typically high-dimensional integral

are only available in specific cases. An example is the linear Gaussian state space model

for which the Kalman filter can be used to evaluate the likelihood value for a given value of

ψ. Numerical evaluation is usually dismissed because of the high dimensional vector α. A

Monte Carlo evaluation of the likelihood function is often explored as a feasible alternative.

A basic version of a Monte Carlo estimate of (7) is

L̂(y;ψ) =
M∑
i=1

p(y|α(i);ψ), α(i) ∼ p(α;ψ), (8)

where α(i) refers to the ith simulated sample of α that is generated from the unconditional

density p(α;ψ) with i = 1, . . . ,M . The standard law of large numbers (LLN) insists that

L̂(y;ψ) converges to L(y;ψ) as M →∞. Since the simulation of α has no reference to data

vector y, the efficiency of the estimate is very low and we need M to be extremely large.

An efficient Monte Carlo method for the evaluation of integrals such as (7) is based on

importance sampling techniques. Simulation-based methods are explored in statistics for

different models and purposes. We will review importance sampling methods in the context

of time series models. It is useful to express the likelihood function (7) in terms of individual

time series observations. Given the serial independence properties for the observations yt

conditional on αt and for the disturbances ηt, we have

L(y;ψ) =

∫ [ n∏
t=1

p(yt|αt;ψ)p(αt|αt−1;ψ)

]
dαt, (9)

with p(α1|α0;ψ) = p(α1;ψ). We also have p(αt|αt−1;ψ) = p(ηt−1;ψ) = N(0, Qt−1) for

t = 1, . . . , n.

3.1 Importance density

For an introduction to Monte Carlo simulation methods and in particular the technique of

importance sampling, we refer to Ripley (1987). To evaluate (9) via importance sampling,

we introduce the importance density based on the linear Gaussian joint density g(y, α;ψ)

with properly defined mean vector and variance matrix. The dependence of ψ originates
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from our model (1) and (2). We adopt the decomposition g(y, α;ψ) = g(y|α;ψ) g(α;ψ) and

have

g(y|α;ψ) =
n∏
t=1

g(yt|αt;ψ), g(α;ψ) = p(α;ψ) =
n∏
t=1

p(αt|αt−1;ψ) =
n∏
t=1

p(ηt−1;ψ),

where ηt−1
ind∼ N(0, Qt−1), for t = 1, . . . , n. Since the dynamic specification for the state

vector in (2) is linear and Gaussian, the equality g(α;ψ) = p(α;ψ) is valid. The Gaussian

observation density can be expressed by

g(yt|αt;ψ) = exp

(
at + btθt −

1

2
ctθ

2
t

)
, t = 1, . . . , n. (10)

where θt = Zt(αt) represents the signal and with Zt(αt) being the link function that connects

the observation yt with the state vector αt. Examples of link functions for the signal θt are

presented in the illustrations of Section 2. It follows that the variables bt and ct are functions

of the observations y1, . . . , yn and parameter vector ψ for t = 1, . . . , n. The constant at

ensures that g(yt|αt;ψ) integrates to unity and hence it is a deterministic function of bt and

ct. An effective importance sampler is obtained by selecting appropriate values for bt and ct

for t = 1, . . . , n. The design of the importance sampler is elegantly reduced to a choice for

bt and ct that determine the mean and variance implied by g(yt|αt;ψ).

The importance density g(yt|αt;ψ) can alternatively be expressed in terms of constructed

variable xt = bt/ct and the linear and Gaussian model

xt = θt + ut, ut
ind∼ N

(
0,

1

ct

)
, t = 1, . . . , n, (11)

which has the conditional observation log-density function

log g(xt|αt;ψ) = −1

2
log 2π +

1

2
log ct −

1

2
(xt − θt)2 ct

for t = 1, . . . , n. The artificial variable xt is defined as xt = bt/ct and we can substitute it
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into the observation log-density to obtain

log g(xt|αt;ψ) = −1

2
log 2π +

1

2
log ct −

1

2
(bt/ct − θt)2 ct

= at + btθt −
1

2
ctθ

2
t ,

where the constant at collects all terms that are not associated with θt and is given by

at = −1

2

(
log 2π − log ct + b2t/ct

)
.

It follows immediately that

log g(y|α;ψ) =
n∑
t=1

log g(yt|αt;ψ) =
n∑
t=1

log g(xt|αt;ψ) =
n∑
t=1

(
at + btθt −

1

2
ctθ

2
t

)
,

where it is assumed that xt is modelled by (11) for t = 1, . . . , n. This is a key result for the

developments below. It implies that the analysis concerning g(y, α;ψ) = g(y|α;ψ)g(α;ψ)

can be based on the model (11) for which we can use the Kalman filter and related methods.

3.2 Likelihood evaluation via importance sampling

The actual importance density for the evaluation of (7) is chosen as

g(α|y;ψ) = g(y|α;ψ) g(α;ψ) / g(y;ψ),

where g(α;ψ) = p(α;ψ). The likelihood function (7) with the importance sampling density

incorporated is given by

L(y;ψ) =

∫
p(y|α;ψ)p(α;ψ)

g(α|y;ψ)
g(α|y;ψ) dα.

After some minor manipulations, we can express the likelihood function as

L(y;ψ) = g(y;ψ)

∫ [ n∏
t=1

w(yt, αt;ψ)

]
g(α|y;ψ) dα, w(yt, αt;ψ) =

p(yt|αt;ψ)

g(yt|αt;ψ)
, (12)

where w(yt, αt;ψ) is referred to as the importance weight, for t = 1, . . . , n.
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The evaluation of the likelihood function by means of importance sampling takes place

by simulating state vectors from the importance density g(α|y;ψ) which we denote by

α(i) =
(
α
(i) ′
1 , . . . , α(i) ′

n

)′
∼ g(α|y;ψ), i = 1, . . . ,M,

where vector α(i) is independently drawn for i = 1, . . . ,M . Since we can represent g(y, α;ψ)

by the linear Gaussian state space model (11) and (2), we can simulate α from the conditional

state density g(α|y;ψ) via the simulation smoothing method; see, for example, Fruhwirth-

Schnatter (1994), Carter and Kohn (1994), de Jong and Shephard (1995) and Durbin and

Koopman (2002). Given the simulated realisations α(i), for i = 1, . . . ,M , the likelihood

function is computed by

L̂(y;ψ) = g(y;ψ)M−1
M∑
i=1

n∏
t=1

wit, wit = w(yt, α
(i)
t ;ψ). (13)

Some practical issues on computing L̂(y;ψ) for the purpose of estimating parameters are

discussed in Section 4.1. It can be expected that the Monte Carlo estimate (13) is more

efficient than the estimate (8) since we simulate α
(i)
t with a reference to the data vector y.

3.3 Implementation of modified efficient importance sampling

Here we introduce our modified efficient importance sampling method. It is based on the

efficient importance sampling of Richard and Zhang (2007) but we show that the method can

be implemented using the simulation smoothing method. Hence we obtain a computationally

fast and more convenient implementation of efficient importance sampling for time series

models.

The values for bt and ct, with t = 1, . . . , n, need to be determined before the calculation of

(13) can start. Here we follow Richard and Zhang (2007) and adopt their efficient importance

sampling method. They propose to choose bt and ct such that the criterion

It =

∫
λ2t (yt, αt;ψ)p(yt, αt;ψ) dαt, λt(yt, αt;ψ) = logw(yt, αt;ψ)− λ̄t, (14)

is minimized for each t separately and where λ̄t is the normalizing constant such that the
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expectation of λt with respect to the true model p(yt, αt;ψ) is zero. We therefore interpret

It as the variance of the logged importance weight function with respect to p(yt, αt;ψ). We

notice that the variables bt and ct determine g(yt|αt;ψ) that is part of w(yt, αt;ψ) and hence

of λt(yt, αt;ψ). The function It cannot be evaluated analytically for the same reason as the

likelihood function (7) cannot be evaluated analytically. Hence we follow the same approach

of introducing the importance density g(αt|y;ψ). The criterion to be minimized can then be

expressed as

It =

∫
λ2t (yt, αt;ψ)

p(yt, αt;ψ)

g(αt|y;ψ)
g(αt|y;ψ) dαt

∝ g(y;ψ)

∫
λ2t (yt, αt;ψ)

p(yt|αt;ψ)

g(yt|αt;ψ)
g(αt|y;ψ) dαt

∝ I∗t ,

where

I∗t =

∫
λ2t (yt, αt;ψ)w(yt, αt;ψ)g(αt|y;ψ) dαt. (15)

The statements above are valid since bt and ct only have an impact on yt and θt = Zt(αt),

they have no impact on yj and θj = Zj(αj) with j 6= t. Also, we have

g(αt|y;ψ) ∝ g(yt|αt;ψ)g(αt;ψ),

with g(αt;ψ) = p(αt;ψ). Hence the minimization of It with respect to (bt, ct) is equivalent to

the minimization of I∗t . The evaluation and minimization of I∗t takes place via importance

sampling. We minimize

Î∗t = M−1
M∑
i=1

λ2t (yt, α
(i)
t ;ψ)w(yt, α

(i)
t ;ψ),

with respect to (bt, ct), where α
(i)
t is obtained by sampling from g(α|y;ψ). This minimization

of Î∗t leads to the weighted least squares solution. In case θt = Zt(αt) is a scalar, we can

define the regression coefficient vector βt = (a∗t , bt, ct)
′ where a∗t is the intercept and can be
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regarded as a deterministic function of bt and ct. The minimum is then obtained at

β̂t =

(
M∑
i=1

witvitv
′
it

)−1 M∑
i=1

witvitpit, (16)

where wit is defined in (13) and where

vit = (1, θ
(i)
t ,−1

2
θ
(i) 2
t )′, pit = log p(yt|θ(i)t ;ψ), θ

(i)
t = Zt(α

(i)
t ),

for t = 1, . . . , n. The sampling of α
(i)
t from g(αt|y;ψ) requires applying the simulation

smoother on the model g(y, α;ψ) = g(y|α;ψ)p(α;ψ) that we typically represent by the

model (11) and (2). However, observation equation (11) requires values for bt and ct, for

t = 1, . . . , n, which we want to establish via the least squares solution (16). Since the

Gaussian kernel of the log-density log g(y|α;ψ) acts effectively as a second order Taylor

approximation to log p(y|α;ψ), around some value of θt, we can carry out the minimization

iteratively as follows. We set values for b1, . . . , bn and c1, . . . , cn initially. A search for good

starting values can be conducted but in many cases of practical interest, any set of initial

values work sufficiently well. Next we simulate θ
(i)
t by means of simulation smoothing applied

to the linear Gaussian model (11) and (2), based on the current set of values for (bt, ct) with

t = 1, . . . , n. A new set of values can be obtained from (16). This iterative scheme continues

until some level of convergence is obtained. It is assumed that at each iteration when samples

are generated from g(α|y;ψ) using a new set of values for (bt, ct) with t = 1, . . . , n, the same

random numbers are used for computing α(i) so that a smooth convergence process takes

place. The random numbers can be saved on the computer or they can be generated by

using the the same random seed.

The MEIS implementation can be summarized in algorithmic form as follows:

(i) Set k = 1 and set values for βkt = (a∗t , bt, ct)
′ for t = 1, . . . , n.

(ii) Construct the linear Gaussian state space model (11) for xt = bt/ct based on βkt ;

simulate θ
(i)
1 , . . . , θ

(i)
n , for i = 1, . . . ,M , with θ

(i)
t = Zt(α

(i)
t ), by means of a simulation

smoothing algorithm where the seed of the random number generator is the same for

every iteration k.
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(iii) Set βk+1
t = β̂t, for t = 1, . . . , n, as obtained from the regression (16) using the simulated

values θ
(i)
1 , . . . , θ

(i)
n , for i = 1, . . . ,M , from the previous step.

(iv) If ||(βk+1
t − βkt )� βkt ||∞ < ε, for t = 1, . . . , n and some threshold value ε, the algorithm

has converged and the algorithm can be terminated; else set k = k + 1 and return to

step (ii) and (iii). � denotes the Hadamard division (point wise division).

3.4 A comparison with EIS

Our proposed modification of the efficient importance sampling method, the MEIS method,

is clearly different than the original EIS method although the objective function is the same.

The key insight that we explore is the representation of g(y, α;ψ) by the linear Gaussian

state space model (11) and (2) for the constructed variable xt. This allows us to treat the EIS

method on the basis of the computationally efficient Kalman filter and its related smoothing

methods including the simulation smoother.

Richard and Zhang (2007) have proposed the minimization of (14) and have provided the

solution (16). The key difference is how the draws α
(i)
t are generated. In their implementation

of EIS, they adopt an approximate backwards scheme, starting from t = n towards t = 1,

and need to track an integration constant so that each density at time t integrates to unity.

We circumvent this time-consuming process since we interpret the density as a well-defined

model for xt and apply the simulation smoothing method of Durbin and Koopman (2002)

for computing the draws α
(i)
t , for t = 1, . . . , n, directly.

Another key development of our MEIS method is that the simulations are based on the

signal vector θt, this in contrast to EIS where the simulations are with respect to the state

vector αt. In many empirical models of interest, the state vector is typically of a higher

dimension than the signal vector which has the same dimension of yt. We therefore expect

that in many studies, our implementation will gain computational efficiency. We emphasize

here that in situations where the dimension of the state vector is lower than that of the signal

vector we simply base our simulations on the state vector so that we can always obtain draws

with the least computational effort.
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4 Nonlinear non-Gaussian state space analysis

In Section 3.2 we have shown how the likelihood function can be evaluated by the method

of importance sampling. In this section we briefly illustrate other applications of (modified)

efficient importance sampling and provide the details for an effective implementation.

4.1 Maximum likelihood estimation of ψ

The maximum likelihood estimate (MLE) of parameter vector ψ can be simply obtained via

a numerical optimization method. Quasi-Newton methods are often used for this task. It

may be clear that analytical expressions for the MLE are not available in almost all cases.

A number of numerical issues need to be addressed before the actual maximization of

the likelihood function can take place. We evaluate the likelihood function as a Monte Carlo

estimate. The use of different sets of random values for generating the importance draws of

αi, with i = 1, . . . ,M , leads clearly to different estimates of the likelihood function L(y;ψ).

Since numerical optimization methods require smooth functions, we evaluate the likelihood

functions using the same set of random values. In other words, the same “seed” of the

random number generator is taken for each likelihood evaluation. The likelihood is then a

smooth function of ψ only.

In practice, the log-likelihood function is maximized. However, the log of the estimate

(13) is not equal to the estimate of the log-likelihood function. The bias in the log of the

estimate can be approximately corrected on the basis of a second-order Taylor expansion.

We therefore maximize the bias-corrected log-likelihood estimate

`̂(y;ψ) = log L̂(y;ψ) +
1

2M
w̄−2s2w, s2w = (M − 1)−1

M∑
i=1

(wi − w̄)2,

where `(y;ψ) = logL(y;ψ), wi =
∏n

t=1wit and w̄ = M−1∑M
i=1wi; see Durbin and Koopman

(1997) for more details.

The bias-corrected log-likelihood estimate can be expressed as

`̂(y;ψ) = log g(y;ψ) + log w̄ +
1

2M
w̄−2s2w, (17)
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The computation of wi, log w̄ and w̄−2s2w requires modifications for a numerically feasible

and stable implementation. Define

ai = logwi =
n∑
t=1

log p(yt|α(i)
t ;ψ)− log g(yt|α(i)

t ;ψ), ā = M−1
M∑
j=1

aj,

for i = 1, . . . ,M . The computation of ai and ā is numerically stable. However, the compu-

tation of wi = exp(ai) can lead to numerical overflow problems whereas the computation of

ui = exp(ai− ā) is numerical stable. It follows that wi = exp(ā)ui. After some further minor

manipulations, it can be shown that

log w̄ = ā+ log ū, and w̄−2s2w = ū−2s2u,

where

ui = exp(ai − ā), ū = M−1
M∑
i=1

ui, s2u = (M − 1)−1
M∑
i=1

(ui − ū)2. (18)

The bias-corrected log-likelihood estimate (17) is computed in a numerically feasible manner

using these results.

4.2 Signal extraction: estimation of state and signal vectors

The estimation of αt is based on the evaluation of the integral

α̃ =

∫
αp(α|y;ψ) dα.

We have argued that also the evaluation of such integral in a computational efficient way

can be carried out by efficient importance sampling. The construction of a Monte Carlo

estimate for α̃ is based on

α̃ =

∫
α [p(α|y;ψ) / g(α|y;ψ)] g(α|y;ψ) dα

= [g(y;ψ) / p(y;ψ)]

∫
αw(y, α;ψ)g(α|y;ψ) dα, (19)
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since g(α;ψ) = p(α;ψ), where

w(y, α;ψ) =
p(y|α;ψ)

g(y|α;ψ)
=

n∏
t=1

w(yt, αt;ψ), (20)

with w(yt, αt;ψ) as defined in (12). The density p(y;ψ) reflects the likelihood function (12)

and its substitution in (19) leads to the equation

α̃ =

∫
αw(y, α;ψ)g(α|y;ψ) dα∫
w(y, α;ψ)g(α|y;ψ) dα

.

The two integrals can be evaluated by Monte Carlo simulation. The estimate of α̃ is then

given by ̂̃α =

∑M
i=1 α

(i)wi∑M
i=1wi

,

where wi =
∏n

t=1wit with wit defined as in (13) and where both α(i) and wi are based on the

draws from the importance density, that is

α(i) ∼ g(α|y;ψ), i = 1, . . . ,M.

The draws are obtained by using the method of efficient importance sampling described in

Section 3.3. The nominator and denominator are typically computed by using the same

random numbers and therefore we can base the estimate on normalized weights, that is

̂̃α =
M∑
i=1

α(i)w∗i , w∗i =
wi∑M
k=1wk

.

The signal is a function of the state vector, we have θt = Zt(αt) and θ = Z(α) where

Z(α) = [Z1(α1)
′, . . . , Zn(αn)′]′. Using the same arguments as above, the estimate of θ is

given by

θ̃ =

∫
θw(y, α;ψ)g(α|y;ψ) dα∫
w(y, α;ψ)g(α|y;ψ) dα

,

and we evaluate it via the efficient importance sampling method to obtain

̂̃θ =
M∑
i=1

Z(α(i))w∗i ,
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where the normalized weight w∗i is defined as above. These arguments are also valid for any

other known function of α, see also Durbin and Koopman (2000).

4.3 Forecasting

Forecasting requires the estimation of the state vector αt at a time period t after n, that

is t > n. The same principles of signal extraction can be applied. We denote the forecast

of αn+j by α̃n+j, for j = 1, 2, . . ., and we compute it by importance sampling methods. It

follows that

α̃n+j =

∫
αn+jp(α

+|y;ψ) dα+, j = 1, 2, . . . ,

where α+ = (α′ , αn+1 , . . . , αn+j)
′. We notice that p(y|α+;ψ) = p(y|α;ψ) and g(y|α+;ψ) =

g(y|α;ψ) since the future states αn+1, . . . , αn+j do not affect y. Similarly as in (19), we then

have

α̃n+j = [g(y;ψ) / p(y;ψ)]

∫
αn+jw(y, α;ψ)g(α+|y;ψ) dα+, j = 1, 2, . . . ,

with w(y, α;ψ) defined in (20). The forecast estimate is then obtained as for signal extraction

via importance sampling and is given by

̂̃αn+j =
M∑
i=1

α
(i)
n+jw

∗
i , w∗i =

wi∑M
k=1wk

, j = 1, 2, . . . .

The computation of the draws α
(i)
n+j ∼ g(αn+j|y;ψ), for j = 1, 2, . . ., is facilitated by the

simulation smoothing algorithm. It requires the extension of the data vector y with missing

values for the time periods n+ 1, . . . , n+ j to obtain the draws from g(α+|y;ψ) as required;

see Durbin and Koopman (2012, Chapter 4). The forecasting of signal and observations

vectors is carried out in a similar way. Observations forecasts can then be based on the

signal forecasts.
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5 Simulation study

Before we can discuss the computational gains that can be obtained by simulating draws

from the signal θt rather than the state αt we first have to verify that the EIS and MEIS

methods have roughly the same simulation efficiency. This can partly be verified by looking

at the variance of the importance sampling weights ω(yt, αt;ψ) as given in (12) or by the

variance of the de-meaned importance weights s2u in (18). We notice that ω(yt, αt;ψ) and

s2u of EIS and MEIS should theoretically be reasonably close to each other because of the

same objective function in (14). We also expect parameter estimates and standard errors of

both methods to be reasonably close to each other. To provide some simulation evidence of

the claims above we present the results of a simulation study. We consider the stochastic

volatility model with multiple volatility factors of Section 2.2 where we replace the Gaussian

density p(εt) of equation (4) by the t-distribution to obtain a stochastic volatility model

with heavier tails. Since we have E(yt|θt) = µ and Var(yt|θt) = exp(θt), it follows that the

log-density is given by

log p(yt|θt) = constant− 1

2
[θt + (ν + 1) log(1 + κt)] , κt = exp(−θt)

(yt − µ)2

ν − 2
, (21)

where, constant = log Γ(ν
2

+ 1
2
) − log Γ(ν

2
) − 1

2
log [(ν − 2)π]. We let the signal consist of

the sum of the individual state elements as specified in (5). In the case of p = 2, we can

associate the first state element with long-run dependence and the second state element with

short-run dependence, see for example Durham and Gallant (2002). The p× 1 state vector

αt = (α1,t, . . . , αp,t)
′ as defined in (2) has p× p constant over time system matrices given by

T =


φ1 0 0

0
. . . 0

0 0 φp

 , Q =


σ2
η,1 0 0

0
. . . 0

0 0 σ2
η,p

 , (22)

with |φi| < 1 and σ2
η,i > 0 for i = 1, . . . , p. The model is identified by imposing φ1 > . . . > φp.

For more information about the sum of autoregressive and moving average processes, we refer

to Granger and Morris (1976). This dynamic specification in the context of the stochastic

volatility model (21) is also adopted by Koopman and Scharth (2013).
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We have simulated S = 500 return series of length n = 5000 with true values of ψ as

presented in Table 1 where the value of µ in (21) is fixed at 0. After simulation, estimates of ψ

are obtained from the simulated series for the SPDK method and the EIS and MEIS methods

as described in Section 3. All calculations are carried out in the Ox computing language

of Doornik (2007) and the additional SsfPack which is a set of C routines for Kalman filter

and related methods, see Koopman, Shephard, and Doornik (2008). We notice that the

implemented routines in Ox make callbacks to C for its matrix computations but it does

not do this if “for loops” are used. Therefore, we programmed time consuming for loops of

the EIS method in C to provide an honest comparison in speed between all three methods.

For SPDK and MEIS we used the simulation smoother of Durbin and Koopman (2002) to

obtain draws from the signal θt while for EIS the draws from the state αt were obtained

by implementing the methods described in Jung et al. (2011). The maximum likelihood

estimates of the parameter vector ψ are obtained by the BFGS algorithm where the starting

values were set to 90% of the true parameter values as given in Table 1.

Table 1: We report values of ψ that are used for simulating time series of returns with t-distributed error
terms. For each method (SPDK, EIS, MEIS) and for each state dimension p we simulate S = 500 return
series of length n = 5000. The estimation results are presented in Table 2. The sum of the variance of the
state components is kept constant for all p (column 8) which means that the individual variances of the
states do vary with p.

p φ1 φ2 φ3 σ2η,1 σ2η,2 σ2η,3
∑p

i=1 σ
2
η,i ση,1 ση,2 ση,1 ν

1 0.98 - - 0.0225 - - 0.0225 0.15 - - 10
2 0.60 0.98 - 0.0169 0.0056 - 0.0225 0.13 0.0748 - 10
3 0.50 0.90 0.99 0.0121 0.0064 0.0040 0.0225 0.11 0.0800 0.0632 10

We present the results of our first simulation study in Table 2. We can conclude from

the table that the simulation efficiency of EIS and MEIS are comparable as can be seen by

comparing the variance of the de-meaned importance weights s2u and the sample standard

errors of the parameter estimates. This is an important result because if EIS would have

produced a more efficient importance density then our claim of being more computationally

efficient would have been less strong.

Although SPDK is much faster and the mean of the parameter estimates are often com-

parable to EIS and MEIS, the method is not a good candidate in this setting because of

the (much too high) variance of the importance sampling weights. We show in a second
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Table 2: We report results of the simulation study in which S = 500 time series of length n = 5000 are
simulated from the Student’s t as given by equation (21). After simulation, estimates of ψ are obtained for
three methods (SPDK, EIS, MEIS). Details of the simulation study are as follows; the computations are
carried out on a i7-2600, 3.40 GHz desktop PC using one core. The EIS and MEIS method are initialized by
3 SPDK iterations. The convergence criterion of all three methods is set to 10−3 and the algorithms converge
most of the time in 4− 6 iterations. One likelihood evaluation is based on M = 100 draws. Starting values
are set to 90% of the true parameter values as given in Table 1. ν̄, φ̄p and σ̄η,p, p = 1, 2, 3, are the means
of the estimated parameters. s̄2u denotes the mean of the variance of the importance sampling weights, i.e.
1
S

∑500
i=1 s

2
u. The numbers in parenthesis are the sample standard errors of the estimates. Time in the last

column is the average computing time (in seconds) it took to maximize the log-likelihood.

n = 5000 p φ̄1 φ̄2 φ̄3 σ̄η,1 σ̄η,2 σ̄η,3 ν̄ s̄2u time

SPDK 1 0.98 - - 0.15 - - 10.29 213.84 14.34
(0.01) - - (0.02) - - (1.71) (551.20) (1.25)

2 0.54 0.98 - 0.11 0.08 - 10.56 1.63E+05 63.00
(0.13) (0.01) - (0.09) (0.02) - (2.15) (3.55E+06) (19.68)

3 0.44 0.80 0.99 0.11 0.06 0.06 10.89 2.04E+07 178.95
(0.13) (0.14) (0.01) (0.10) (0.06) (0.02) (2.99) (3.67E+08) (94.40)

EIS 1 0.98 - - 0.15 - - 10.34 0.52 148.17
(0.01) - - (0.02) - - (1.76) (0.24) (13.76)

2 0.56 0.98 - 0.130 0.08 - 10.84 0.20 417.73
(0.11) (0.01) - (0.10) (0.02) - (2.68) (0.63) (152.50)

3 0.47 0.81 0.99 0.12 0.06 0.06 11.13 0.80 1440.52
(0.07) (0.09) (0.01) (0.10) (0.05) (0.05) (2.90) (2.26) (748.87)

MEIS 1 0.98 - - 0.15 - - 10.35 0.64 145.5
(0.01) - - (0.016) - - (1.77) (0.38) (19.85)

2 0.55 0.98 - 0.113 0.075 - 10.71 0.23 415.58
(0.13) (0.01) - (0.096) (0.018) - (2.43) (0.62) (143.92)

3 0.43 0.80 0.99 0.14 0.06 0.06 12.31 0.76 1351.78
(0.13) (0.13) (0.01) (0.13) (0.06) (0.02) (5.06) (3.07) (750.52)

simulation experiment the effect of a poorly fitting importance density on parameter and

likelihood estimates. The effect of a high variance in the importance weights is presented

in Table 3. Here, we simulated one data set of length n = 5000 from the Student’s t as

given by equation (21) and estimated ψ a 100 times where each time a different random seed

is used. This procedure allows us to investigate the sensitivity of the methods to random

numbers. Needless to say we expect better performances for methods with a low variance in

the importance weights. This is confirmed by the sample standard errors of the parameter

estimates and likelihood estimate as presented in Table 3. The sample standard error of

the average likelihood value is 18 times larger for SPDK compared to both EIS and MEIS.
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Table 3: We report the sensitivity of the three methods to random numbers. We learn from the sample
standard errors that the EIS and MEIS perform much better in terms of precision.

n = 5000 p φ̄1 φ̄2 σ̄η,1 σ̄η,2 ν̄ s̄2u L(y;ψ)

SPDK 2 0.569 0.978 0.172 0.085 8.76 1.62E+07 -7245.480
(0.090) (0.001) (0.056) (0.002) (0.67) (1.12E+08) (0.734)

EIS 2 0.598 0.978 0.134 0.084 8.35 0.113 -7246.021
(0.000) (0.000) (0.000) (0.000) (0.005) (0.022) (0.040)

MEIS 2 0.598 0.978 0.133 0.084 8.35 0.110 -7246.024
(0.000) (0.000) (0.000) (0.000) (0.005) (0.020) (0.039)

MEIS is faster than EIS for the state dimensions considered in Table 2, however, not much

faster. EIS becomes computationally less efficient for p > 1 since more computations are

necessary to draw state vectors for increasing state vector dimensions. We expect difference

in computation time between EIS and MEIS to become larger if state dimensions increase

further than the dimensions used in our first experiment. Therefore we compared the time

to calculate the likelihood for increasingly larger state vectors and increasing time series

length in Table 4. The table clearly shows that the computational gains are small for small

dimensions of the state vector but they become significant as the dimension of the state or

the length of the time series increases. The irregularities in some patterns of the fractions

as n or p increases are due to our efficient computer implementations using multiple core

platforms. We therefore take the reported fractions as indicative.

Given the computational savings and the convenient state space representation of MEIS

we regard MEIS as a viable candidate for non-Gaussian state space models, especially when

the dimension of the state vector and/or the time series length increase.

Table 4: We report the fraction t(EIS)/t(MEIS) where t(x) is the time in seconds for method x to calculate
the likelihood, for different state dimensions p and different time series lengths n.

p \n 100 200 1000 5000 10000 40000

1 1.00 1.00 1.43 1.06 1.00 1.46
2 1.00 1.00 1.50 1.05 1.01 1.43
4 1.00 1.00 1.16 1.08 1.12 1.42
8 1.00 1.26 2.25 1.53 1.62 2.19
16 2.10 3.21 1.71 2.09 2.10 2.66
32 2.37 2.87 4.46 2.89 3.46 3.67
64 4.04 3.11 5.24 4.36 4.19 7.13
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Figure 1: Daily financial returns from 7 October 2004 up to 6 October 2014 (ten years) for the S&P100 stock
index and the stocks Ford, Bank of America (BAC) and IBM, all traded at the New York Stock Exchange
and based on close prices.

6 Volatility measurement from daily stock returns

To investigate whether our modified efficient importance sampling method has relevance

in an empirical study with the purpose of measuring time-varying volatility in daily stock

returns, we consider the stochastic volatility model (4) with Student’s t density (21) and

log-volatility signal (5), in short the SV-t model. It is the same model specification that is

used in our Monte Carlo study of the previous section. We first estimate the parameters φj

and ση,j, for j = 1, . . . , p from (5) or (22), and ν from (21), simultaneously by maximum

likelihood. Then we extract log-volatility θt as specified in (5) using the SV-t model with

estimated parameters.

In our empirical study we consider four daily stock returns, the S&P100 composite index

and three key U.S. firms (Ford, Bank of America and IBM) which are all traded at the

New York Stock Exchange (NYSE). The time series are obtained from Yahoo Finance and

our ten-year sample is from 7 October 2004 up to 6 October 2014 (T = 2500). The four

stock return series are graphically displayed in Figure 1. Each return series are modelled
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by the SV-t model with p = 1, 2, 3 in order to investigate whether log-volatility can be

decomposed into long-term and short-term dynamics. The estimated parameters for the two

SV-t specifications and for the four return series are reported in Table 5 together with the

maximized log-likelihood function values and the corresponding Akaike (AIC) information

criterion.

The parameters of the SV-t model specifications with p = 1, 2, 3 have all been estimated

without any numerical problem for all considered series in this study. We have also shortened

and lengthened the time series sample but numerical errors have not been encountered. The

results provide some interesting insights. Although we have found some evidence for the de-

composition of the log-volatility into two autoregressive components of different persistency

levels, we have not found much evidence for more than two log-volatility components. In

terms of smallest AIC values, the stock returns of Ford and Bank of America appear to favor

two log-volatility components in the SV-t model while the daily volatilities in S&P100 and

IBM returns appear to be best modelled by a single autoregressive component. In the case

of Ford and Bank of America, the first component is highly persistent as φ1 is virtually equal

to unity while the second component is less but still highly persistent. We therefore can in-

terpret the first component as long-term volatility while the second component is short-term

volatility. The implied unconditional variances of the two log-volatility components indicate

that most of the variation is explained by the first component. We have also computed the

Schwarz’ Bayesian (BIC) information criterion together with the AIC. The BIC points to

single component log-volatilities for all four stock return series. Hence our empirical evidence

of a decompostion of log-volatility into multiple components is not very strong. Finally we

have found that the SV-t model with p = 3 is difficult to justify empirically, also because it

appears to be harder to estimate the model parameters.

The estimated log-volatilities from the SV-t model with p = 2 and for the four return

series are presented in Figure 2. The log-volatility signal estimates are computed using the

MEIS procedure for which the details are presented in Section 4.2. The signal estimates

are very similar, or in some cases virtually indistinguishable, amongst SV-t models with

p = 1, p = 2 or p = 3. We display the three volatility signal estimates for the firms Ford,

Bank of America and IBM in three separate plots and, in each of them, together with the

S&P100 volatility signal estimate. From these plots we can easily compare between the
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Table 5: We report the estimation results for the parameters of the SV-t model and for the return series of
the S&P100 stock index and the stocks Ford, Bank of America (BAC) and IBM as displayed in Figure 1.
The SV-t model is given by (4) with Student’s t density (21) and log-volatility signal (5) with p = 1, 2, 3.
The estimate of parameter vector ψ is obtained using our MEIS method after the initialization of 3 SPDK
iterations. The computations are carried out on a i7-2600, 3.40 GHz desktop PC using one core. Each
likelihood evaluation is based on M = 100 draws. The maximized log-likelihood values are reported together
with the AIC information criterion.

p φ̄1 φ̄2 φ̄3 σ̄η,1 σ̄η,2 σ̄η,3 ν Log-L AIC

S&P100 1 0.990 - - 0.149 - - 8.918 -3289.66 6585.3
2 0.990 0.878 - 0.148 0.019 - 8.959 -3289.65 6589.3
3 0.990 0.990 0.227 0.149 0.000 0.00049 8.942 -3289.65 6593.3

FORD 1 0.998 - - 0.103 - - 6.858 -5492.96 10991.9
2 0.999 0.883 - 0.063 0.243 - 9.261 -5485.49 10981.0
3 0.999 0.884 0.534 0.063 0.241 0.0420 9.258 -5485.48 10985.0

BAC 1 0.998 - - 0.125 - - 8.511 -5124.38 10254.8
2 0.998 0.868 - 0.103 0.190 - 10.508 -5122.39 10254.8
3 0.998 0.878 0.528 0.102 0.184 0.0427 10.484 -5122.36 10258.7

IBM 1 0.985 - - 0.139 - - 6.702 -3890.47 7786.9
2 0.994 0.939 - 0.072 0.167 - 7.120 -3888.72 7787.4
3 0.994 0.933 0.554 0.075 0.170 0.0309 7.176 -3888.71 7791.4

individual volatility pattern of the firm and the one of the market as represented by the

S&P100 index. We learn from Figure 2 that the stock volatility patterns of both Ford and

IBM are generally in common with the market. It is interesting that the same applies to

Bank of America (BAC) until the financial crisis has started. At the heighth of the financial

crisis in 2009 the BAC volatility has been higher than the S&P100 volatility. During the

aftermath of the financial crisis up to recently, the BAC volatility have remained relatively

high.

7 Conclusions

We have presented a new modification of the efficient importance sampling (EIS) method

for the analysis of nonlinear non-Gaussian state space models which include a wide range

of time series models of interest. For the original EIS method of Richard and Zhang (2007)

the construction of the importance density relies on an iterative method for which at each

step simulation samples of the state vector needs to computed. The simulation of the state
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Figure 2: Estimated log-volatilities from 7 October 2004 up to 6 October 2014 (ten years) for the S&P100
stock index and the stocks Ford, Bank of America and IBM, based on the SV-t model given by (4) with
Student’s t density (21) and log-volatility signal (5) with p = 2.

vectors in the EIS method can become computationally involved and not straightforward

when models require a large state vector with time-varying parameters. In the modified

efficient importance sampling (MEIS) we construct the same importance density based on

a similar simulation method. However, we show that the EIS method can also fully rely on

computationally efficient Kalman filter and smoothing methods. The modification therefore

leads to a fast efficient importance sampling method, especially for large state dimensions.

The details of this development have been documented in this paper. We further show in

a Monte Carlo study that the computational gains can be substantial for larger time series

length and state dimensions. To show that our method also has relevance in an empirical

study, we analyze the volatility patterns in four U.S. stock return series and we comment on

our findings.
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