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Conditional probabilities for Euro area sovereign default risk

Abstract

We propose a novel empirical framework to assess the likelihood of joint and conditional

failure for Euro area sovereigns. Our model is based on a dynamic skewed-t copula

which captures all the salient features of the data, including skewed and heavy-tailed

changes in the price of CDS protection against sovereign default, as well as dynamic

volatilities and correlations to ensure that failure dependence can increase in times of

stress. We apply the framework to Euro area sovereign CDS spreads from 2008 to

mid-2011. Our results reveal significant time-variation in risk dependence and con-

siderable spill-over effects in the likelihood of sovereign failures. We also investigate

distress dependence around a key policy announcement by Euro area heads of state on

May 9, 2010, and demonstrate the importance of capturing higher-order time-varying

moments during times of crisis for the correct assessment of interacting risks.

Keywords: sovereign credit risk; higher order moments; time-varying parameters; fi-

nancial stability.

JEL classifications: C32, G32.



1 Introduction

The Eurozone debt crisis raises the issue of measuring and monitoring interconnected sovereign

credit risk. In this paper we construct a novel empirical framework to assess the likelihood of

joint and conditional failure for Euro area sovereigns. This new framework allows us to esti-

mate marginal, joint, and conditional probabilities of sovereign default from observed prices

for credit default swaps (CDS) on sovereign debt. We define failure as any credit event that

would trigger a sovereign CDS contract. Examples of such failures are the non-payment of

principal or interest when it is due, a forced exchange of debt into claims of lower value, or

a moratorium or official repudiation of the debt. Unlike marginal probabilities, conditional

probabilities of sovereign default cannot be obtained from raw market data alone, but instead

require a proper joint modeling framework. Our methodology is novel in that our probability

assessments are derived from a multivariate framework based on a dynamic Generalized Hy-

perbolic (GH) skewed-𝑡 density that naturally accommodates all relevant empirical features

of the data, such as skewed and heavy-tailed changes in individual country CDS spreads, as

well as time variation in their volatilities and dependence. Moreover, the model can easily

be calibrated to match current market expectations regarding the marginal probabilities of

default, similar to for example Segoviano and Goodhart (2009) and Huang, Zhou, and Zhu

(2009).

We make four main contributions. First, we provide estimates of the time variation in

Euro area joint and conditional sovereign default risk using a new model and a 10-dimensional

data set of sovereign CDS spreads from January 2008 to June 2011. For example, we estimate

the conditional probability of a default on Portuguese debt given a Greek failure to be around

30% at the end of our sample. We report similar conditional probabilities for other countries.

At the same time, we infer which countries are more exposed than others to certain credit

events.

Second, we analyze the extent to which parametric modeling assumptions matter for such
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joint and conditional risk assessments. Perhaps surprisingly, and despite the widespread use

of joint risk measures to guide policy decisions, we are not aware of a detailed investigation

of how different parametric assumptions matter for joint and conditional risk assessments.

We therefore report results based on a dynamic multivariate Gaussian, symmetric-𝑡, and

GH skewed-𝑡 (GHST) specification. The distributional assumptions turn out to be most

important for our conditional assessments, whereas simpler joint failure probability estimates

are less sensitive to the assumed dependence structure. In particular, and much in line with

Forbes and Rigobon (2002), we show that it is important to account for the different salient

features of the data, such as non-zero tail dependence and skewness when interpreting time-

varying volatilities and increases in correlations in times of stress.

Third, our modeling framework allows us to investigate the presence and severity of

market implied spill-overs in the likelihood of sovereign failure. Specifically, we document

spill-overs from the possibility of a Greek failure to the perceived riskiness of other Euro

area countries. For example, at the end of our sample we find a difference of about 25%

between the one-year conditional probability of a Portuguese default given that Greece does

versus that Greece does not default. This suggests that the cost of debt refinancing in some

European countries depends to a considerable extent on developments in other countries.

Fourth, we provide an in-depth analysis of the impact on sovereign joint and conditional

risks of a key policy announcement on May 9, 2010. On this day, Euro area heads of state

announced a comprehensive rescue package to mitigate sovereign risk conditions and per-

ceived risk contagion in the Eurozone. The rescue package contained the European Financial

Stability Facility (EFSF), a rescue fund, and the ECB’s Securities Markets Program (SMP),

under which the central bank can purchase government bonds in secondary markets. This

event study shows how our model can be used to disentangle market assessments of joint and

conditional probabilities. In particular, for May 9, 2010 we find that market perceptions of

joint sovereign default risk have decreased, while market perceptions of conditional sovereign
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default risk have increased at the same time. From a risk perspective, our joint approach is

in line with for example Acharya, Pedersen, Philippon, and Richardson (2010) who focus on

financial institutions: bad outcomes are much worse if they occur in clusters. What seems

manageable in isolation may not be so if the rest of the system is also under stress. While

adverse developments in one country’s public finances could perhaps still be handled with

the support of the remaining healthy countries in the Eurozone, the situation may quickly

become untenable if one, two, or more countries are already in distress. Relevant questions

regarding joint and conditional sovereign default risks would be hard if not impossible to

answer without an empirical model such as the one proposed in this paper.

The literature on sovereign credit risk has expanded rapidly and branched off into different

fields. Part of the literature focuses on the theoretical development of sovereign default

risk and strategic default decisions; see for example Guembel and Sussman (2009) or Yue

(2010). Another part of the literature tries to disentangle the different priced components of

sovereign credit risk using asset pricing methodology, including the determination of common

risk factors across countries; see for example Pan and Singleton (2008), Longstaff, Pan,

Pedersen, and Singleton (2011), or Ang and Longstaff (2011). Finally, there is a line of

literature that investigates the link between sovereign credit risk, country ratings, and macro

fundamentals; see for example Haugh, Ollivaud, and Turner (2009), Hilscher and Nosbusch

(2010), or DeGrauwe and Ji (2012).

Our paper primarily relates to the empirical literature on sovereign credit risk as proxied

by sovereign CDS spreads and focuses on spill-over risk as perceived by financial markets.

We take a pure time-series perspective instead of assuming a specific pricing model as in

Longstaff, Pan, Pedersen, and Singleton (2011) or Ang and Longstaff (2011). The advantage

of such an approach is that we are much more flexible in accommodating all the relevant em-

pirical features of CDS changes given that we are not bound by the analytical (in)tractability

of a particular pricing model. This appears particularly important for the data at hand. In
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particular, our paper relates closely to the statistical literature for multiple defaults, such as

for example Li (2001), Hull and White (2004) or Avesani, Pascual, and Li (2006). These pa-

pers, however, typically build on a Gaussian or sometimes symmetric Student 𝑡 dependence

structure, whereas we impose a dependence structure that allows for non-zero tail depen-

dence, skewness, and time variation in both volatilities and correlations. Our approach

therefore also relates to an important strand of literature on modeling dependence in high

dimensions, see for example Demarta and McNeil (2005), Christoffersen, Errunza, Jacobs,

and Langlois (2011), Oh and Patton (2012), and Engle and Kelly (2009), as well as to a

growing literature on observation-driven time varying parameter models, such as for exam-

ple Patton (2006), Harvey (2010), and Creal, Koopman and Lucas (2011, 2012). Finally,

we relate to the CIMDO framework of Segoviano and Goodhart (2009). This is based on a

multivariate prior distribution, usually Gaussian or symmetric-𝑡, that can be calibrated to

match marginal risks as implied by the CDS market. Their multivariate density becomes

discontinuous at so-called threshold levels: some parts of the density are shifted up, others

are shifted down, while the parametric tails and extreme dependence implied by the prior

remain intact at all times. Our model does not have similar discontinuities, while it allows

for a similar calibration of default probabilities to current CDS spread levels as Segoviano

and Goodhart (2009).

The remainder of the paper is set up as follows. Section 2 introduces the conceptual

framework for joint and conditional risk measures. Section 3 introduces the multivariate

statistical model for failure dependence. The empirical results are discussed in Section 4.

Section 5 concludes.

2 Conceptual framework

In a corporate credit risk setting, the probability of failure is often modeled as the probability

that the value of a firm’s assets falls below the value of its debt at (or before) the time
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when the debt matures, see Merton (1974) and Black and Cox (1976). To allow for default

clustering, the default processes of individual firms can be linked together using a copula

function, see for example McNeil, Frey, and Embrechts (2005). In a sovereign credit risk

setting, a similar approach can be adopted, though the interpretation has to be slightly

altered given the different nature of a sovereign compared to a corporate default. Rather

than to consider asset levels falling below debt values, it is more convenient for sovereign

credit risk to compare costs and benefits of default, see for example Calvo (1988). Default

costs may arise from losing credit market access for some time, obstacles to conducting

international trade, difficulties in borrowing in the domestic market, etc., while default

benefits include immediate debt relief.

To accommodate this interpretation, we introduce a variable 𝑣𝑖𝑡 that triggers default if

𝑣𝑖𝑡 exceeds a threshold value 𝑐𝑖𝑡. The variable 𝑣𝑖𝑡 captures the time-varying changes in the

difference between the perceived benefits and cost of default for sovereign 𝑖 at time 𝑡. Since

a cost, or penalty, can always be recast in terms of a benefit, we incur no loss of generality

if we focus on a model with time-varying benefits of default and fixed costs, or vice versa,

see Calvo (1988). The 𝑣𝑖𝑡s, 𝑖 = 1, . . . , 𝑛, are linked together via a Generalized Hyperbolic

Skewed Student’s 𝑡 (GHST) copula,

𝑣𝑖𝑡 = (𝜍𝑡 − 𝜇𝜍)𝐿̃𝑖𝑡𝛾 +
√
𝜍𝑡𝐿̃𝑖𝑡𝜖𝑡, 𝑖 = 1, . . . , 𝑛, (1)

where 𝜖𝑡 ∈ ℝ𝑛 is a vector of standard normally distributed risk factors, 𝐿̃𝑡 is an 𝑛×𝑛 matrix

of risk factor sensitivities, and 𝛾 ∈ ℝ𝑛 is a vector controlling the skewness of the copula.

The random scalar 𝜍𝑡 ∈ ℝ+ is assumed to be an inverse-Gamma distributed risk factor that

affects all sovereigns simultaneously, where 𝜍𝑡 and 𝜖𝑡 are independent, and 𝜇𝜍 = E[𝜍𝑡]. The

GHST model can be further generalized to the GH model by assuming a generalized inverse

Gaussian distribution for 𝜍𝑡, see McNeil et al. (2005). The current simpler GHST model,

however, already accounts for all the empirical features in the CDS data at hand, including
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skewness and fat tails.

Default dependence in model (1) stems from two sources: common exposures to the

normally distributed risk factors 𝜖𝑡 as captured by the time-varying matrix 𝐿̃𝑡; and a common

exposure to the scalar risk factor 𝜍𝑡. The former captures spillover effects throught the

correlations, while the latter captures such effects through the tail-dependence of the copula.

To see this, note that if 𝜍𝑡 is non-random, the first term in (1) drops out of the equation

and there is zero tail dependence. Conversely, if 𝜍𝑡 is large, all sovereigns are affected at the

same time, making joint defaults of two or more sovereigns more likely.

The probability of default 𝑝𝑖𝑡 of sovereign 𝑖 at time 𝑡 is given by

𝑝𝑖𝑡 = Pr[𝑣𝑖𝑡 > 𝑐𝑖𝑡] = 1− 𝐹𝑖(𝑐𝑖𝑡) ⇔ 𝑐𝑖𝑡 = 𝐹−1
𝑖 (1− 𝑝𝑖𝑡), (2)

where 𝐹𝑖(⋅) is the cumulative distribution function of 𝑣𝑖𝑡. In our case, 𝐹𝑖(⋅) is the univariate
GHST distribution, which follows directly from the mean-variance mixture construction in

equation (1). Our main interest, however, is not in the marginal default probability 𝑝𝑖𝑡,

but rather in the joint default probability Pr[𝑣𝑖𝑡 > 𝑐𝑖𝑡 , 𝑣𝑗𝑡 > 𝑐𝑗𝑡] or the conditional default

probability Pr[𝑣𝑖𝑡 > 𝑐𝑖𝑡 ∣ 𝑣𝑗𝑡 > 𝑐𝑗𝑡], for 𝑖 ∕= 𝑗. The (market implied) marginal default

probabilities are typically estimated directly from CDS market data under a number of

simplifying assumptions. We follow this practice. First, we fix the recovery rate at a stressed

level of 𝑟𝑒𝑐𝑖 = 25% for all countries and use the 6 months LIBOR rate as the discount rate

𝑟𝑡. We assume that the premium payments occur continuously, such that the standard CDS

pricing formula as in for example Hull and White (2000) simplifies and can be inverted to

extract the market-implied probability of default 𝑝𝑖𝑡. The relation is given by

𝑝𝑖𝑡 =
𝑠𝑖𝑡 × (1 + 𝑟𝑡)

1− 𝑟𝑒𝑐𝑖
, (3)

where 𝑠𝑖𝑡 is the CDS spread for sovereign 𝑖 at time 𝑡, and 𝑟𝑡 is our discount rate; see also
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Brigo and Mercurio (2006, Chapter 21) and Segoviano and Goodhart (2009).

Given our market implied estimates of the default probabilities, we can make use of our

multivariate model in (1) to infer the magnitude and time-variation in joint and conditional

default probabilities. To do this, we proceed in two simple steps. In the first step, we

estimate the dependence structure in (1) from observed CDS data as explained in Section 3,

and we infer the threshold values 𝑐𝑖𝑡 by inverting the univariate GHST distributions using

our market implied estimates of the default probabilities. In the second step, we then use

the calibrated thresholds 𝑐𝑖𝑡 and the estimated dependence structure of the 𝑣𝑖𝑡s to simulate

joint and conditional default probabilities. We show in Section 4 how the combination of

marginal default probilities calibrated to current CDS spread levels with the time-varying

copula structure in (1) can lead to new insights into sovereign credit spread spillovers.

3 Statistical model

3.1 Generalized Autoregressive Score dynamics

As mentioned in Section 2, we use sovereign CDS spreads to estimate the time-varying de-

pendence structure in (1) and to calibrate the model’s marginal default probabilities through

equation (3). The statistical model, therefore, closely follows the set-up of the previous sec-

tion while allowing for time variation in the parameters using the Generalized Autoregressive

Score dynamics of Creal, Koopman, and Lucas (2012).

We assume that we observe a vector 𝑦𝑡 ∈ ℝ𝑛, 𝑡 = 1, . . . , 𝑇 , of changes in sovereign CDS

spreads for sovereign 𝑖 = 1, . . . , 𝑛, where

𝑦𝑡 = 𝜇+ 𝐿𝑡𝑒𝑡, (4)

with 𝜇 ∈ ℝ𝑛 a vector of fixed unknown means, and 𝑒𝑡 a GHST distributed random variable

with zero mean, 𝜈 degrees of freedom, skewness parameter 𝛾, and covariance matrix I. To
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ease the notation, we set 𝜇 = 0 in the remaining exposition. For 𝜇 ∕= 0, all derivations go

through if 𝑦𝑡 is replaced by 𝑦𝑡 − 𝜇. The density of 𝑦𝑡 is denoted by

𝑝(𝑦𝑡; Σ̃𝑡, 𝛾, 𝜈) =
𝜈

𝜈
2 21−

𝜈+𝑛
2

Γ(𝜈
2
)𝜋

𝑛
2 ∣Σ̃𝑡∣ 12

⋅
𝐾 𝜈+𝑛

2

(√
𝑑(𝑦𝑡) ⋅ (𝛾′𝛾)

)
𝑒𝛾

′𝐿̃−1
𝑡 (𝑦𝑡−𝜇̃𝑡)

𝑑(𝑦𝑡)
𝜈+𝑛
4 ⋅ (𝛾′𝛾)−

𝜈+𝑛
4

, (5)

𝑑(𝑦𝑡) = 𝜈 + (𝑦𝑡 − 𝜇̃𝑡)
′Σ̃−1

𝑡 (𝑦𝑡 − 𝜇̃𝑡), (6)

𝜇̃𝑡 = − 𝜈

𝜈 − 2
𝐿̃𝑡𝛾, (7)

where 𝜈 > 4 is the degrees of freedom parameter, 𝜇̃𝑡 is the location vector, and Σ̃𝑡 = 𝐿̃𝑡𝐿̃
′
𝑡 is

the scale matrix,

𝐿̃𝑡 = 𝐿𝑡𝑇, (8)

(𝑇 ′𝑇 )−1 =
𝜈

𝜈 − 2
I +

2𝜈2

(𝜈 − 2)2(𝜈 − 4)
𝛾𝛾′, (9)

and 𝐾𝑎(𝑏) is the modified Bessel function of the second kind. The matrix 𝐿𝑡 characterizes

the time-varying covariance matrix Σ𝑡 = 𝐿𝑡𝐿
′
𝑡. We consider the standard decomposition

Σ𝑡 = 𝐿𝑡𝐿
′
𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡, (10)

where 𝐷𝑡 is a diagonal matrix containing the time-varying volatilities of 𝑦𝑡, and 𝑅𝑡 is the

time-varying correlation matrix.

The fat-tailedness and skewness of the CDS data 𝑦𝑡 creates challenges for standard dy-

namic specifications of volatilities and correlations, such as standard GARCH or DCC type

dynamics, see Engle (2002). In the presence of fat tails, large absolute observations 𝑦𝑖𝑡 occur

regularly even if volatility is not changing rapidly. If not properly accounted for, such obser-

vations lead to biased estimates of the dynamic behavior of volatilities and correlations. The

Generalized Autoregressive Score (GAS) framework of Creal, Koopman, and Lucas (2012) as

applied in Zhang, Creal, Koopman, and Lucas (2011) to the case of GHST distributions pro-
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vides a coherent approach to deal with such settings. The GAS model creates an explicit link

between the distribution of 𝑦𝑡 and the dynamic behavior of Σ𝑡, 𝐿𝑡, 𝐷𝑡, and 𝑅𝑡. In particular,

if 𝑦𝑡 is fat-tailed, observations that lie far outside the center automatically have less impact

on future values of the time-varying parameters in Σ𝑡. The same holds for observations in the

left-hand tail if 𝑦𝑡 is left-skewed. The intuition for this is that the score dynamics attribute

the effect of a large observation 𝑦𝑡 partly to the distributional properties of 𝑦𝑡 and partly

to a local increase of volatilities and/or correlations. The estimates of dynamic volatilities

and correlations thus become more robust to incidental influential observations, which are

prevalent in the CDS data used in our empirical analysis. We refer to Creal, Koopman, and

Lucas (2011) and Zhang, Creal, Koopman, and Lucas (2011) for more details.

We assume that the time-varying covariance matrix Σ𝑡 is driven by a number of unob-

served dynamic factors 𝑓𝑡, or Σ𝑡 = Σ(𝑓𝑡) = 𝐿(𝑓𝑡)𝐿(𝑓𝑡)
′. The number of factors coincides

with the number of free elements in Σ𝑡 in our empirical application later on, but may also be

smaller. The dynamics of 𝑓𝑡 are specified using the GAS framework for GHST distributed

random variables and are given by

𝑓𝑡+1 = 𝜔 +

𝑝−1∑
𝑖=0

𝐴𝑖𝑠𝑡−𝑖 +

𝑞−1∑
𝑗=0

𝐵𝑗𝑓𝑡−𝑗; (11)

𝑠𝑡 = 𝒮𝑡∇𝑡, (12)

∇𝑡 = ∂ ln 𝑝(𝑦𝑡; Σ̃(𝑓𝑡), 𝛾, 𝜈)/∂𝑓𝑡, (13)

where ∇𝑡 is the score of the GHST density with respect to 𝑓𝑡, Σ̃(𝑓𝑡) = 𝐿(𝑓𝑡)𝑇𝑇
′𝐿(𝑓𝑡)′, 𝜔 is

a vector of fixed intercepts, 𝐴𝑖 and 𝐵𝑗 are appropriately sized fixed parameter matrices, 𝒮𝑡

is a scaling matrix for the score ∇𝑡, and 𝜔 = 𝜔(𝜃), 𝐴𝑖 = 𝐴𝑖(𝜃), and 𝐵𝑗 = 𝐵𝑗(𝜃) all depend

on a static parameter vector 𝜃. Typical choices for the scaling matrix 𝒮𝑡 are the unit matrix
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or inverse (powers) of the Fisher information matrix ℐ𝑡−1, where

ℐ𝑡−1 = E [∇𝑡∇′
𝑡∣ 𝑦𝑡−1, 𝑦𝑡−2, . . .] .

For example, 𝒮𝑡 = ℐ−1
𝑡−1 accounts for the curvature in the score ∇𝑡.

For appropriate choices of the distribution, the parameterization, and the scaling matrix,

the GAS model (11)–(13) encompasses a wide range of familiar models such as the (mul-

tivariate) GARCH model, the autoregressive conditional duration (ACD) model, and the

multiplicative error model (MEM); see Creal, Koopman, and Lucas (2012) for more exam-

ples. Details on the parameterization Σ𝑡 = Σ(𝑓𝑡), 𝐷𝑡 = 𝐷(𝑓𝑡), and 𝑅𝑡 = 𝑅(𝑓𝑡), and the

scaling matrix 𝒮𝑡 used in our empirical application can be found in the appendix.

Using the GHST specification in equation (5), the appendix shows that

∇𝑡 = Ψ′
𝑡𝐻

′
𝑡vec

(
𝑤𝑡 ⋅ 𝑦𝑡𝑦′𝑡 − Σ̃𝑡 −

(
1− 𝜈

𝜈 − 2
𝑤𝑡

)
𝐿̃𝑡𝛾𝑦

′
𝑡

)
, (14)

where 𝑤𝑡 is a scalar weight function that decreases in the Mahalanobis distance of 𝑦𝑡 from

its center 𝜇̃𝑡 as defined in (6). The matrices Ψ𝑡 and 𝐻𝑡 are time-varying, parameterization

specific and depend on 𝑓𝑡, but not on the data. Due to the presence of 𝑤𝑡 in (14), observations

that are far out in the tails receive a smaller weight and therefore have a smaller impact

on future values of 𝑓𝑡. This robustness feature is directly linked to the fat-tailed nature of

the GHST distribution and allows for smoother correlation and volatility dynamics in the

presence of heavy-tailed observations (i.e., 𝜈 < ∞).

For skewed distributions (𝛾 ∕= 0), the score in (14) shows that positive CDS changes have

a different impact on correlation and volatility dynamics than negative ones. As explained

earlier, this aligns with the intuition that CDS changes from for example the left tail are

less informative about changes in volatilities and correlations if the (conditional) observa-

tion density is itself left-skewed. For the symmetric Student’s 𝑡 case, we have 𝛾 = 0 and
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the asymmetry term in (14) drops out. If furthermore the fat-tailedness is ruled out by

considering 𝜈 → ∞, one can show that the weights 𝑤𝑡 tend to 1 and that ∇𝑡 collapses to

the intuitive form for a multivariate GARCH model, ∇𝑡 = Ψ′
𝑡𝐻

′
𝑡vec(𝑦𝑡𝑦

′
𝑡 − Σ𝑡).

3.2 Parameter estimation

The parameters of the dynamic GHST model can be estimated by standard maximum like-

lihood procedures as the likelihood function is known in closed form using a standard pre-

diction error decomposition. The joint estimation of all parameters in the model, however,

is rather cumbersome. Therefore, we split the estimation in two steps relating to (i) the

marginal behavior of the coordinates 𝑦𝑖𝑡 and (ii) the joint dependence structure of the vector

of standardized residuals 𝐷−1
𝑡 𝑦𝑡. Similar two-step procedures can be found in Engle (2002),

Hu (2005), and other studies that are based on a multivariate GARCH framework.

In the first step, we estimate a dynamic GHST model for each series 𝑦𝑖𝑡 separately using

a GAS(1,1) dynamic specification with 𝑝 = 𝑞 = 1 and taking our time-varying parameter

𝑓𝑡 as the log-volatility log(𝜎𝑖𝑡). The skewness parameter 𝛾𝑖 is also estimated for each series

separately, while the degrees of freedom parameter 𝜈 is fixed at a pre-determined value.

This restriction ensures that the univariate GHST distributions are the marginal distribu-

tions from the multivariate GHST distribution and that the model is therefore internally

consistent.

In the second step, we consider the standardized data 𝑧𝑖𝑡 = 𝑦𝑖𝑡/𝜎̂𝑖𝑡, where 𝜎̂𝑖𝑡 are obtained

from the first step. Using 𝑧𝑡 = (𝑧1𝑡, . . . , 𝑧𝑛𝑡)
′, we estimate a multivariate dynamic GHST

model using again a GAS(1,1) dynamic specification. The GHST distribution in this second

step has mean zero, skewness parameters 𝛾𝑖, 𝑖 = 1, . . . , 𝑛, as estimated in the first step,

the same pre-determined value for 𝜈, and covariance matrix cov(𝑧𝑡) = 𝑅𝑡 = 𝑅(𝑓𝑡), where

𝑓𝑡 contains the spherical coordinates of the choleski decomposition of the correlation matrix

𝑅𝑡; see the appendix for further details.
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The advantages of the two-step procedure for computational efficiency are substantial,

particularly if the number 𝑛 of time series considered in 𝑦𝑡 is large. The univariate models

of the first step can be estimated at low computational cost. Using these estimates, the uni-

variate dynamic GHST models are used as a filter to standardize the individual CDS spread

changes. In the second step, only the parameters that determine the dynamic correlations

remain to be estimated.

4 Empirical application: Euro area sovereign risk

4.1 CDS data

We compute joint and conditional probabilities of failure for a set of ten countries in the

Euro area. We focus on sovereigns that have a CDS contract traded on their reference bonds

since the beginning of our sample in January 2008. We select ten countries: Austria (AT),

Belgium (BE), Germany (DE), Spain (ES), France (FR), Greece (GR), Ireland (IE), Italy

(IT), the Netherlands (NL) and Portugal (PT). CDS spreads are available for these countries

at a daily frequency from January 1, 2008 to June 30, 2011, yielding 𝑇 = 913 observations.

The CDS contracts have a five year maturity. They are denominated in U.S. dollars and

therefore do not depend on foreign exchange risk concerns should a European credit event

materialize. Such contracts are also far more liquidly traded than their Euro denominated

counterparts. All time series data are obtained from Bloomberg. We prefer CDS spreads to

bond yield spreads as a measure of sovereign default risk since the former are less affected

by liquidity and flight-to-safety issues, see for example Pan and Singleton (2008) and Ang

and Longstaff (2011). In addition, our CDS series are likely to be less affected than bond

yields by the outright government bond purchases that might have taken place under the

Securities Markets Program during the second half of our sample, see Section 4.5 below.

The use of CDS data to estimate market implied failure probabilities means that our
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propability estimates combine physical failure probabilities with the price of sovereign default

risk. As a result, our risk measures constitute an upper bound for an investor worried about

loosing money due to a joint sovereign failure. This has to be kept in mind when interpreting

the empirical results later on. Estimating failure propabilities directly from observed defaults,

however, is impossible in our context, as OECD defaults are not observed over our sample

period. Even if such defaults would have been observed, they would not have allowed us to

perform the detailed empirical analysis in the current section on the dynamics of joint and

conditional failure probabilities.

Table 1 provides summary statistics for daily de-meaned changes in these ten CDS

spreads. All time series have significant non-Gaussian features under standard tests and

significance levels. In particular, we note the non-zero skewness and large values of kurtosis

for almost all time series in the sample. All series are covariance stationary according to

standard unit root (ADF) tests.

4.2 Marginal and joint risk

We model the CDS spread changes with the framework explained in Section 3 based on the

dynamic GHST sprecification (11). We consider three different choices for the parameters,

corresponding to a Gaussian, a Student-𝑡, and a GHST distribution, respectively. We treat

the degrees of freedom parameter 𝜈 as a robustness parameter; compare Franses and Lucas

(1998). This implies we fix the degrees of freedom at 𝜈 = 5 rather than estimating it. The

advantage of such an approach is that it further simplifies the estimation process, while

retaining many of the robustness features of model (11). In particuar, fixing 𝜈 at 𝜈 = 5

may seem high at first sight given some of the high kurtosis values in Table 1. The value is

small enough, however, to result in a substantial robustification of the results via the weights

𝑤𝑡 in (14), both in terms of likelihood evaluation as well as in terms of the volatility and

correlation dynamics.

Figure 1 plots estimated volatility levels for the three different models along with the
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squared CDS changes. The assumed statistical model (Gaussian, Student-𝑡, GHST) directly

influences the volatility estimates. The volatilities from the univariate Gaussian models

repeatedly seem to be too high. The thin tails of the Gaussian distribution imply that

volatility increases sharply in response to a jump in the CDS spread, see for example the

Spanish CDS spread around April 2008, and many countries around Spring 2010. In par-

ticular, the magnitude of the increase in volatility appears too large when compared to the

subsequent squared CDS spread changes. The volatility estimates based on the Student-𝑡

and GHST distribution change less abruptly after incidental large changes than the Gaus-

sian ones due to the weighting mechanism in (14). The results for the Student-𝑡 and GHST

are very similar and in line with the subsequent squared changes in CDS spreads. Some

differences are visible for the series that exhibit significant skewness, such as the time series

for Greece, Spain, and Portugal.

Table 2 reports the parameter estimates for the ten univariate country-specific models. In

all cases, volatility is highly persistent, i.e., 𝐵 is close to one. Note that the parameterization

of our score driven model is different than that of a standard GARCH model. In particular,

the persistence is completely captured by 𝐵 rather than by 𝐴 + 𝐵 as in the GARCH case.

Also note that 𝜔 sometimes takes on negative values. This is natural as we define 𝑓𝑡 to be

the log-volatility rather than the volatility itself.

Next, we estimate the dynamic correlation coefficients for the standardized CDS spread

changes. Given 𝑛 = 10, there are 45 different elements in the correlation matrix. Figure 2

plots the average correlation, averaged across 45 time varying bivariate pairs, for each model

specification. As a robustness check, we benchmark each multivariate model-based estimate

to the average over 45 correlation pairs obtained from a 60 business days rolling window.

Over each window we use the same pre-filtered marginal data as for the multivariate model

estimates.

If we compare the correlation estimates across the different specifications, the GHST
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Figure 2: Average correlation over time
Plots of the estimated average correlation over time, where averaging takes place over 45 estimated correlation

coefficients. The correlations are estimated based on different parametric assumptions: Gaussian, symmetric

𝑡, and GH Skewed-𝑡 (GHST). The time axis runs from March 2008 to June 2011. The corresponding rolling

window correlations are each estimated using a window of sixty business days of pre-filtered CDS changes.

The bottom-right panel collects four series for comparison.
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model matches the rolling window estimates most closely. Rolling window and GHST cor-

relations are low in the beginning of the sample at around 0.3 and increase to around 0.75

during 2010 and 2011. In the beginning of the sample the GHST-based average correlation

is lower than that implied by the two alternative specifications. The pattern reverses in the

second half of the sample. This result is in line with correlations that tend to increase during

times of stress.

The correlation estimates vary considerably over time across all model specifications

considered. Estimated dependence across Euro area sovereign risk increases sharply for

the first time around September 15, 2008, on the day of the Lehman failure, and around

September 30, 2008, when the Irish government issued a blanket guarantee for all deposits

and borrowings of six large financial institutions. Average GHST correlations remain high

afterwards, around 0.75, until around May 10, 2010. At this time, Euro area heads of state

introduced a rescue package that contained government bond purchases by the ECB under

the so-called Securities Markets Program, and the European Financial Stability Facility,

a fund designed to provide financial assistance to Euro area states in economic difficulties.

After an eventual decline to around 0.6 towards the end of 2010, average correlations increase

again towards the end of the sample.

The parameter estimates for volatility and correlations are shown in Table 2. Unlike the

raw sample skewness, the estimated skewness parameters are all positive, indicating a fatter

right tail of the distribution of CDS changes. The negative raw skewness may be the result of

several influential outliers. These are accommodated in a model specification with fat-tails.

4.3 Joint probabilities of Eurozone financial stress

This section reports marginal and joint risk estimates that pertain to Euro area sovereign

default. First, Figure 3 plots estimates of CDS-implied probabilities of default (pd) over a

one year horizon based on (3). These are directly inferred from CDS spreads, and do not

depend on parametric assumptions regarding their joint distribution. Market-implied pd’s
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range from around 1% for Germany and the Netherlands to above 10% for Greece, Portugal,

and Ireland at the end of our sample.

The top panel of Figure 4 tracks the market-implied probability of two or more failures

among the ten Euro area sovereigns in the portfolio over a one year horizon. The joint

failure probability is calculated by simulation, using 50,000 draws at each time 𝑡. This simple

estimate combines all marginal and joint failure information into a single time series plot

and reflects the deterioration of debt conditions since the beginning of the Eurozone crisis.

The overall dynamics are roughly similar across the different distributional specifications.

The probability of two or more failures over a one year horizon, as reported in Figure

4, starts to pick up in the weeks after the Lehman failure and the Irish blanket guarantee

in September 2008. The joint probability estimate peaks in the first quarter of 2009, at

the height of the Irish debt crisis, then decreases until the third quarter of 2009. It is

increasing since then until the end of the sample. The joint probability decreases sharply,

but only temporarily, around the May 10, 2010 announcement of the the European Financial

Stability Facility and the European Central Bank’s intervention in government debt markets

starting at around the same time. We come back to this later.

In the beginning of our sample, the joint failure probability from the GHST model is

higher than that from the Gaussian and symmetric-𝑡 model. This pattern reverses towards

the end of the sample, when the Gaussian and symmetric-𝑡 estimates are slightly higher

than the GHST estimate. Towards the end of the sample, the joint probability measure is

heavily influenced by the possibility of a credit event in Greece and Portugal. The CDS

changes for each of these countries are positively skewed, i.e., have a longer right tail. As

the crisis worsens, we observe more frequent positive and extreme changes, which increase

the volatility in the symmetric models more than in the skewed setting. Higher volatility

translates into higher marginal risk, or lower estimated default thresholds. This explains the

(slightly) different patterns in the estimated probabilities of joint failures.
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Table 1: CDS descriptive statistics
The summary statistics correspond to daily changes in observed sovereign CDS spreads for ten Euro area

countries from January 2008 to June 2011. Mean, Median, Standard Deviation, Minimum and Maximum

are multiplied by 100. Almost all skewness and excess kurtosis statistics have 𝑝-values below 10−4, except

the skewness parameters of France and Ireland.

Mean Median Std.Dev. Skewness Kurtosis Minimum Maximum
Austria 0.00 0.00 0.05 1.07 18.74 -0.27 0.42
Belgium 0.00 0.00 0.04 0.33 8.29 -0.21 0.27
Germany 0.00 0.00 0.02 0.41 7.98 -0.09 0.10
Spain 0.00 0.00 0.08 -0.71 18.47 -0.79 0.50
France 0.00 0.00 0.02 0.14 6.38 -0.11 0.11
Greece 0.00 -0.02 0.30 -0.31 46.81 -3.64 2.91
Ireland 0.00 -0.01 0.12 0.02 9.13 -0.79 0.55
Italy 0.00 0.00 0.07 -0.82 25.54 -0.77 0.45
Netherlands 0.00 0.00 0.02 1.62 19.59 -0.10 0.24
Portugal 0.00 -0.01 0.13 -2.60 51.49 -1.85 0.74
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2008 2009 2010 2011
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2008 2009 2010 2011
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0.015 Germany 
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0.015 France 

2008 2009 2010 2011
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2008 2009 2010 2011
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Italy 

2008 2009 2010 2011
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0.02 Netherlands 

2008 2009 2010 2011
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Figure 3: Implied marginal failure probabilities from CDS markets
The risk neutral marginal probabilities of failure for ten Euro area countries extracted from CDS markets.

The time axis is from January 2008 to June 2011.
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Table 2: Model parameter estimates
The table reports parameter estimates that pertain to three different model specifications. The sample

consists of daily changes from January 2008 to June 2011. The degree of freedom parameter 𝜈 is set to five

for the 𝑡 distributions. Parameters in 𝛾 are estimated in the marginal distributions.

AT BE DE ES FR GR IE IT NL PT Correlation

Gaussian

𝐴 0.06 0.10 0.08 0.15 0.11 0.12 0.08 0.11 0.08 0.16 0.02
(0.00) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.00)

𝐵 0.99 0.98 0.97 0.94 0.97 0.99 0.96 0.99 0.97 0.99 0.96
(0.00) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01)

𝜔 -0.03 -0.07 -0.14 -0.18 -0.12 0.00 -0.09 0.00 -0.11 0.00 1.00
(0.01) (0.02) (0.03) (0.02) (0.03) (0.00) (0.01) (0.00) (0.03) (0.00) (0.00)

𝑡

𝐴 0.28 0.30 0.35 0.39 0.40 0.42 0.30 0.34 0.26 0.36 0.01
(0.07) (0.31) (0.31) (0.18) (0.68) (0.00) (0.22) (0.17) (0.04) (0.04) (0.00)

𝐵 0.99 0.98 0.95 0.98 0.96 0.98 0.99 0.98 0.97 0.99 0.99
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

𝜔 0.07 0.05 -0.07 0.09 0.00 0.14 0.09 0.08 -0.02 0.11 1.01
(0.38) (1.62) (2.03) (0.79) (4.14) (0.00) (0.84) (0.82) (0.28) (0.15) (0.01)

GHST

𝐴 0.13 0.15 0.21 0.16 0.22 0.17 0.14 0.16 0.16 0.15 0.01
(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.00)

𝐵 0.99 0.98 0.93 0.98 0.95 0.97 0.98 0.98 0.96 0.98 0.99
(0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

𝜔 -0.04 -0.08 -0.29 -0.05 -0.18 -0.05 -0.05 -0.05 -0.18 -0.05 1.05
(0.02) (0.03) (0.07) (0.03) (0.05) (0.02) (0.02) (0.03) (0.05) (0.02) (0.01)

𝛾 0.11 0.17 0.04 0.12 0.12 0.35 0.22 0.10 0.06 0.29 -
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) -
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Figure 4: Probability of two or more failures
The top panel plots the time-varying probability of two or more failures (out of ten) over a one-year hori-

zon. Estimates are based on different distributional assumptions regarding marginal risks and multivariate

dependence: Gaussian, symmetric-𝑡, and GH skewed-𝑡 (GHST). The bottom panel plots model-implied

probabilities for 𝑛∗ sovereign failures over a one year horizon, for 𝑛∗ = 0, 1, 2, 3.
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The bottom panel in Figure 4 plots the probability of a pre-specified number of failures.

The lower level of our GHST joint failure probability in the top panel of Figure 4 towards

the end of the sample is due to the higher probability of no defaults in that case. Altogether,

the level and dynamics in the estimated measures of joint failure from this section do not

appear to be very sensitive to the precise model specification.

4.4 Spillover measures: What if . . . failed?

This section investigates conditional probabilities of failure. Such conditional probabilities

relate to questions of the “what if?” type and reveal which countries may be most vulnerable

to the failure of a given other country. We condition on a credit event in Greece to illustrate

our general methodology. We pick this case since it has by far the highest market-implied

probability of failure at the end of our sample period. To our knowledge, this is the first

attempt in the literature on evaluating the spill-over effects and conditional probability of

sovereign failures. Clearly, conditioning on a credit event is different from conditioning on

incremental changes in other countries’ risks, see Caceres, Guzzo, and Segoviano (2010) and

Caporin, Pelizzon, Ravazzolo, and Rigobon (2012).

Figure 5 plots the conditional probability of default for nine Euro area countries if Greece

defaults. We distinguish four cases, i.e., Gaussian dependence, symmetric-𝑡, GHST, and

GHST with zero correlations. The last experiment is included to disentangle the effect of

correlations and tail dependence, see our discussion below equation (1). Regardless of the

parametric specification, Ireland and Portugal seem to be most affected by a Greek failure,

with conditional probabilities of failure of around 30%. Other countries may be perceived as

more ‘ring-fenced’ as of June 2011, with conditional failure probabilities below 20%. The level

and dynamics of the conditional estimates are sensitive to the parametric assumptions. The

conditional default probability estimates are highest in the GHST case. The symmetric-

𝑡 estimates in turn are higher than those obtained under the Gaussian assumption. The

bottom right panel of Figure 5 demonstrates that even if the correlations are put to zero, the
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GHST still shows extreme dependence due to the mixing variable 𝜍𝑡 in (1). The correlations

and mixing construction thus operate together to capture the dependence in the data.

Figure 6 plots the pairwise correlation estimates for Greece with each of the remaining

nine Euro area countries. The estimated correlations for the GHST model are higher than

for the other two models in the second half of the sample. This is consistent with the

higher level of conditional probabilities of default in the GHST case compared to the other

distributional assumptions, as discussed above for Figure 4. Interestingly, the dynamic

correlation estimates of Euro area countries with Greece increased most sharply in the first

half of 2009. These are the months before the media attention focused on the Greek debt

crisis, which was more towards the end of 2009 up to Spring 2010.

Figure 7 plots the difference between the conditional probability of failure of a given

country given that Greece fails and the respective conditional probability of failure given

that Greece does not fail. We refer to this difference as a spillover component or contagion

effect as the differences relate to the question whether CDS markets perceive any spillovers

from a potential Greek default to the likelihood of other Euro area countries failing. The

level of estimated spillovers are substantial. For example, the difference in the conditional

probability of a Portuguese failure given that Greece does or does not fail, is about 25%. The

spillover estimates do not appear to be very sensitive to the different parametric assumptions.

In all cases, Portugal and Ireland appear the most vulnerable to a Greek default since around

mid-2010.

The conditional probabilities can be scaled by the time-varying marginal probability of

a Greek failure to obtain pairwise joint failure risks. These joint risks are increasing towards

the end of the sample and are higher in 2011 than in the second half of 2009. Annual joint

probabilities for nine countries are plotted in Figure 8. For example, the risk of a joint failure

over a one year horizon of both Portugal and Greece, as implied by CDS markets, is about

10% at the end of our sample.
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Figure 5: Conditional probabilities of failure given that Greece fails
Plots of annual conditional failure probabilities for nine Euro area countries given a Greek failure. We

distinguish estimates based on a Gaussian dependence structure, symmetric-𝑡, GH skewed-𝑡 (GHST), and a

GHST with zero correlations.
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Figure 6: Dynamic correlation of Euro area countries with Greece
The time-varying bivariate correlation pairs for nine Euro area countries and Greece. The correlation es-

timates are obtained from the ten-dimensional multivariate model with a Gaussian, symmetric-𝑡, and GH

skewed-𝑡 (GHST) dependence structure, respectively.
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Figure 7: Risk spillover components
The difference between the (simulated) probability of failure of 𝑖 given that Greece fails and the probability

of failure of 𝑖 given that Greece does not fail. The underlying distributions are multivariate Gaussian,

symmetric-𝑡, and GH skewed-𝑡 (GHST), respectively.
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Figure 8: Joint default risk with Greece
The time-varying probability of two simultaneous credit events in Greece and a given other Euro area country.

The estimates are obtained from a multivariate model based on a Gaussian, symmetric-𝑡, and GH skewed-𝑡

(GHST) density, respectively.
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4.5 Event study: the May 9, 2010 rescue package and risk depen-
dence

During a weekend meeting on May 8–9, 2010, Euro area heads of state ratified a comprehen-

sive rescue package to mitigate sovereign risk conditions and perceived risk contagion in the

Eurozone. This section analyses the impact of the resulting simultaneous announcement of

the European Financial Stability Facility (EFSF) and the ECB’s Securities Markets Program

(SMP) on Euro area joint risk and conditional risk as implied by our empirical model. We

do so by comparing CDS-implied risk conditions closely before and after the announcement

of May 9, 2010.

The agreed upon rescue fund, the European Financial Stability Facility (EFSF), is a

limited liability company with an objective to preserve financial stability of the Euro area by

providing temporary financial assistance to Euro area member states in economic difficulties.

Initially committed funds were 440bn Euro. The announcement made clear that EFSF funds

can be combined with funds raised by the European Commission of up to 60bn Euro, and

funds from the International Monetary Fund of up to 250bn Euro, for a total safety net up

to 750bn Euro.

A second key component of the May 9, 2010 package consisted of the ECB’s government

bond buying program, the SMP. Specifically, the ECB announced that it would start to

intervene in secondary government bond markets to ensure depth and liquidity in those

market segments that are qualified as being dysfunctional. These purchases were meant

to restore an appropriate transmission of monetary policy actions targeted towards price

stability in the medium term. The SMP interventions were almost always sterilized through

additional liquidity-absorbing operations.

The joint impact of the May 9, 2010 announcement of the EFSF and SMP as well as of

the initial bond purchases on joint risk estimates can be seen in the top panel of Figure 4.

The figure suggests that the probability of two or more credit events in our sample of ten

28



countries decreases from about 7% to approximately 3% before and after the May 9, 2010

announcement. Figure 3 indicates that marginal risks decreased considerably as well. The

graphs also suggest that these decreases were temporary. The average correlation plots in

Figure 2 do not suggest a wide-spread and prolonged decrease in dependence. Instead, there

seems to be an up-tick in average correlations. Overall, the evidence so far suggest that

the announcement of the policy measures and initial bond purchases may have substantially

lowered joint risks, but not necessarily through a decrease in joint dependence.

To further investigate the impact on joint and conditional sovereign risk from actions

communicated on May 9, 2010 and implemented shortly afterwards, Table 3 reports model-

based estimates of joint and conditional risk. We report our risk estimates for two dates,

Thursday May 6, 2010 and Tuesday May 11, 2011, i.e., two days before and after the an-

nounced change in policy. The top panel of Table 3 confirms that the joint probability of a

credit event in, say, both Portugal and Greece, or Ireland and Greece, declines from 4.8% to

2.1% and 3.0% to 1.7%, respectively. These are large decreases in joint risk. For any country

in the sample, the probability of that country failing simultaneously with Greece or Portugal

over a one year horizon is substantially lower after the May 9, 2010 policy announcement

than before.

The bottom panel of Table 3, however, indicates that the decrease in joint failure prob-

abilities is generally not due to a decline in failure dependence, ‘interconnectedness’, or

‘contagion’. Instead, the conditional probabilities of a credit event in for example Greece or

Ireland given a credit event in Portugal increases from 77% to 81% and from 45% to 56%,

respectively. Similarly, the conditional probability of a credit event in Belgium or Ireland

given a credit event in Greece increases from 10% to 13% and from 24% to 26%, respectively.

As a bottom line, based on the initial impact of the two policy measures on CDS prices,

our analysis suggests that the two policies may have been perceived to be less of a ‘firewall’ or

‘ringfence’ measure, i.e., intended to lower the impact and spread of an adverse development
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Table 3: Joint and conditional failure probabilities
The top and bottom panels report model-implied joint and conditional probabilities of a credit event for a

subset of countries, respectively. For the conditional probabilities Pr(𝑖 failing ∣ 𝑗 failed), the conditioning

events 𝑗 are in the columns (PT, GR, DE), while the events 𝑖 are in the rows (AT, BE, . . . , PT). Avg

contains the averages for each column.

Joint risk, Pr(𝑖 and 𝑗 failing)

Thu May 6, 2010 Tue May 11, 2010

PT GR DE PT GR DE

AT 1.1% 1.1% 0.4% 0.7% 0.7% 0.3%

BE 1.4% 1.3% 0.5% 0.8% 0.9% 0.3%

DE 1.0% 1.0% 0.7% 0.7%

ES 2.9% 2.9% 0.6% 1.4% 1.6% 0.4%

FR 1.1% 1.0% 0.5% 0.8% 0.8% 0.3%

GR 4.8% 0.7% 2.1% 0.5%

IR 2.8% 3.0% 0.6% 1.5% 1.7% 0.4%

IT 2.7% 2.7% 0.6% 1.3% 1.4% 0.4%

NL 1.0% 0.9% 0.4% 0.7% 0.7% 0.3%

PT 4.4% 0.7% 2.0% 0.5%

Avg 2.1% 2.0% 0.6% 1.1% 1.2% 0.4%

Conditional risk, Pr(𝑖 failing ∣ 𝑗 failed)

Thu May 6, 2010 Tue May 11, 2010

PT GR DE PT GR DE

AT 18% 8% 53% 26% 11% 47%

BE 22% 10% 61% 31% 13% 52%

DE 16% 8% 27% 10%

ES 47% 23% 74% 56% 24% 68%

FR 18% 8% 61% 29% 11% 56%

GR 77% 92% 81% 82%

IR 45% 24% 75% 56% 26% 66%

IT 43% 21% 72% 51% 21% 60%

NL 17% 7% 52% 29% 11% 55%

PT 35% 87% 29% 78%

Avg 34% 16% 70% 43% 17% 63%
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should it actually occur. Markets perceived the measures much more as a means to affect the

probability of individual adverse outcomes downwards, but without decreasing dependence.

These findings are robust to, for example, alternative choices for the degrees of freedom

parameter 𝜈 in the copula, and different choices for the expected recovery rate in case of

defaults.

5 Conclusion

We have proposed a novel empirical framework to assess the likelihood of joint and con-

ditional failure for Euro area sovereigns. Our methodology is novel in that our joint risk

measures are derived from a multivariate framework based on a dynamic Generalized Hy-

perbolic skewed-𝑡 (GHST) density that naturally accommodates skewed and heavy-tailed

changes in marginal risks as well as time variation in volatility and multivariate dependence.

When applying the model to Euro area sovereign CDS data from January 2008 to June 2011,

we find significant time variation in risk dependence, as well as considerable spillover effects

in the likelihood of sovereign failures. We also documented how parametric assumptions,

including assumptions about higher order moments, matter for joint and conditional risk

assessments. Using the May 9, 2010 new policy measures of the European heads of state,

we illustrated how the model contributes to our understanding of market perceptions about

specific policy measures.
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Appendix: the dynamic GH skewed-𝑡 (GHST) model

The Generalized Autoregressive Score model of Creal et al. (2011, 2012) for the GH skewed-𝑡
(GHST) density (5) adjusts the time-varying parameter 𝑓𝑡 at every step using the scaled score of
the density at time 𝑡. This can be regarded as a steepest ascent improvement of the parameter
using the local (at time 𝑡) likelihood fit of the model. Under the correct specification of the model,
the scores form a martingale difference sequence.

We partition 𝑓𝑡 as 𝑓𝑡 = (𝑓𝑣
𝑡 , 𝑓

𝑐
𝑡 ) for the (diagonal) matrix 𝐷2

𝑡 = 𝐷(𝑓𝑣
𝑡 )

2 of variances and corre-
lation matrix 𝑅𝑡 = 𝑅(𝑓 𝑐

𝑡 ), respectively, where Σ𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 = Σ(𝑓𝑡). We set 𝑓𝑣
𝑡 = ln(diag(𝐷2

𝑡 )),
which ensures that variances are always positive, irrespective of the value of 𝑓𝑣

𝑡 . For the correlation
matrix, we use the hypersphere transformation also used in Creal et al. (2011) and Zhang et al.
(2011). This ensures that 𝑅𝑡 is always a correlation matrix, i.e., positive semi-definite with ones on
the diagonal. We set 𝑅𝑡 = 𝑅(𝑓 𝑐

𝑡 ) = 𝑋𝑡𝑋
′
𝑡, with 𝑓 𝑐

𝑡 as a vector containing 𝑛(𝑛− 1)/2 time-varying
angles 𝜙𝑖𝑗𝑡 ∈ [0, 𝜋] for 𝑖 > 𝑗, and

𝑋𝑡 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑐12𝑡 𝑐13𝑡 ⋅ ⋅ ⋅ 𝑐1𝑛𝑡
0 𝑠12𝑡 𝑐23𝑡𝑠13𝑡 ⋅ ⋅ ⋅ 𝑐2𝑛𝑡𝑠1𝑛𝑡
0 0 𝑠23𝑡𝑠13𝑡 ⋅ ⋅ ⋅ 𝑐3𝑛𝑡𝑠2𝑛𝑡𝑠1𝑛𝑡
0 0 0 ⋅ ⋅ ⋅ 𝑐4𝑛𝑡𝑠3𝑛𝑡𝑠2𝑛𝑡𝑠1𝑛𝑡
...

...
...

. . .
...

0 0 0 ⋅ ⋅ ⋅ 𝑐𝑛−1,𝑛𝑡
∏𝑛−2

ℓ=1 𝑠ℓ𝑛𝑡
0 0 0 ⋅ ⋅ ⋅ ∏𝑛−1

ℓ=1 𝑠ℓ𝑛𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A1)

where 𝑐𝑖𝑗𝑡 = cos(𝜙𝑖𝑗𝑡) and 𝑠𝑖𝑗𝑡 = sin(𝜙𝑖𝑗𝑡). The dimension of 𝑓 𝑐
𝑡 thus equals the number of correlation

pairs.
As implied by equation (13), we take the derivative of the log-density with respect to 𝑓𝑡, and

obtain

∇𝑡 =
∂vech(Σ𝑡)

′

∂𝑓𝑡

∂vech(𝐿𝑡)
′

∂vech(Σ𝑡)

∂vec(𝐿̃𝑡)
′

∂vech(𝐿𝑡)

∂ ln 𝑝𝐺𝐻(𝑦𝑡∣𝑓𝑡)
∂vec(𝐿̃𝑡)

(A2)

= Ψ′
𝑡𝐻

′
𝑡

(
𝑤𝑡(𝑦𝑡 ⊗ 𝑦𝑡)− vec(Σ̃𝑡)− (1− 𝜈

𝜈 − 2
𝑤𝑡)(𝑦𝑡 ⊗ 𝐿̃𝑡𝛾)

)
(A3)

= Ψ′
𝑡𝐻

′
𝑡vec

(
𝑤𝑡𝑦𝑡𝑦

′
𝑡 − Σ̃𝑡 − (1− 𝜈

𝜈 − 2
𝑤𝑡)𝐿̃𝑡𝛾𝑦

′
𝑡

)
, (A4)

Ψ𝑡 = ∂vech(Σ𝑡)/∂𝑓
′
𝑡, (A5)

𝐻𝑡 = (Σ̃−1
𝑡 ⊗ Σ̃−1

𝑡 )(𝐿̃𝑡 ⊗ I)
(
(𝑇 ′ ⊗ I𝑛)𝒟0

𝑛

) (ℬ𝑛 (I𝑛2 + 𝒞𝑛) (𝐿𝑡 ⊗ I𝑛)𝒟0
𝑛

)−1
, (A6)

𝑤𝑡 =
𝜈 + 𝑛

2 ⋅ 𝑑(𝑦𝑡) −
𝑘′(𝜈+𝑛)/2

(√
𝑑(𝑦𝑡) ⋅ 𝛾′𝛾

)
√
𝑑(𝑦𝑡)/𝛾′𝛾

, (A7)

where 𝑘′𝑎(𝑏) = ∂ ln𝐾𝑎(𝑏)/∂𝑏 is the derivative of the log modified Bessel function of the second kind,
𝒟0

𝑛 is the the duplication matrix vec(𝐿) = 𝒟0
𝑛vech(𝐿) for a lower triangular matrix 𝐿, 𝒟𝑛 is the

standard duplication matrix for a symmetric matrix 𝑆 vec(𝑆) = 𝒟𝑛vech(𝑆), ℬ𝑛 = (𝒟′
𝑛𝒟𝑛)

−1𝒟′
𝑛,

and 𝒞𝑛 is the commutation matrix, vec(𝑆′) = 𝒞𝑛vec(𝑆) for an arbitrary matrix 𝑆. For completeness,
we mention that 𝐿̃𝑡 = 𝐿𝑡𝑇 , Σ̃𝑡 = 𝐿̃𝑡𝐿̃

′
𝑡, and

(𝑇 ′𝑇 )−1 =
𝜈

𝜈 − 2
I +

2𝜈2

(𝜈 − 2)2(𝜈 − 4)
𝛾𝛾′.

To scale the score ∇𝑡, Creal, Koopman, and Lucas (2012) propose the use of powers of the
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inverse information matrix. The information matrix for the GHST distribution, however, does not
have a tractable form. Therefore, we scale by the information matrix of the symmetric Student’s 𝑡
distribution,

𝒮𝑡 =
{
Ψ′(I⊗ 𝐿̃−1

𝑡 )′[𝑔𝐺− vec(I)vec(I)′](I⊗ 𝐿̃−1
𝑡 )Ψ

}−1
, (A8)

where 𝑔 = (𝜈 + 𝑛)(𝜈 + 2 + 𝑛), and 𝐺 = E[𝑥𝑡𝑥
′
𝑡 ⊗ 𝑥𝑡𝑥

′
𝑡] for 𝑥𝑡 ∼ N(0, I𝑛). Zhang et al. (2011)

demonstrate that this results in a stable model that outperforms alternatives such as the DCC if
the data are fat-tailed and skewed.

Using the dynamic GH model for the individual CDS series, we first estimate the parameters
for the 𝑓𝑣

𝑡 process. Applying equations (A4) to (A7) in the univariate setting, we compute the 𝑓𝑣
𝑡 s

and use them to filter the data. The time varying factor for country 𝑖’s volatility follows as

𝑓𝑣
𝑖,𝑡+1 = 𝜔𝑣

𝑖 + 𝑎𝑣𝑖 𝑠
𝑣
𝑖,𝑡 + 𝑏𝑣𝑓𝑣

𝑖,𝑡, (A9)

with 𝑎𝑣𝑖 and 𝑏𝑣𝑖 scalar parameters corresponding to the 𝑖th series.
Next, we estimate the parameters for the 𝑓 𝑐

𝑡 process using the filtered data 𝑦𝑖𝑡/ exp(𝑓
𝑣
𝑖𝑡/2).

Assuming the variances are constant (𝐷𝑡 = 𝐼𝑛), the covariance matrix Σ𝑡 is equivalent to 𝑅𝑡.
The matrix Ψ𝑡 should only contain the derivative with respect to 𝑅𝑡. The dynamic model can be
estimated directly as explained above. For parsimony, we follow a similar parameterization of the
dynamic evolution of 𝑓 𝑐

𝑡 as in the DCC model and assume

𝑓 𝑐
𝑡+1 = 𝜔𝑐 +𝐴𝑐𝑠𝑐𝑡 +𝐵𝑐𝑓 𝑐

𝑡 , (A10)

where 𝐴𝑐, 𝐵𝑐 ∈ ℝ are scalars, and 𝜔𝑐 is an 𝑛(𝑛 − 1)/2 vector. To reduce the number of parame-
ters in the maximization, we obtain 𝜔𝑐 from the hypersphere transformation of the unconditional
correlation matrix of the transformed data. All remaining parameters are estimated by maximum
likelihood. Inference is carried out by taking the negative inverse Hessian of the log likelihood at
the optimum as the covariance matrix for the estimator.
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