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Abstract

Experts can rely on statistical model forecasts when creating their own forecasts.

Usually it is not known what experts actually do. In this paper we focus on three

questions, which we try to answer given the availability of expert forecasts and

model forecasts. First, is the expert forecast related to the model forecast and

how? Second, how is this potential relation influenced by other factors? Third,

how does this relation influence forecast accuracy?

We propose a new and innovative two-level Hierarchical Bayes model to an-

swer these questions. We apply our proposed methodology to a large data set of

forecasts and realizations of SKU-level sales data from a pharmaceutical com-

pany. We find that expert forecasts can depend on model forecasts in a variety of

ways. Average sales levels, sales volatility, and the forecast horizon influence this

dependence. We also demonstrate that theoretical implications of expert behavior

on forecast accuracy are reflected in the empirical data.

Keywords: model forecasts; expert forecasts; forecast adjustment; Bayesian

analysis; endogeneity
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1 Introduction

In many forecasting situations there are two forecasts available. First, a statistical

model is used to produce a model forecast, which is based on available (past) data

and possibly other variables. Second, an expert creates an expert forecast. Usually it

is assumed that an expert first looks at the model-based forecast and then decides to

make an adjustment and, if so, decides on the size of the adjustment.

The literature on judgmental adjustments to model forecasts is extensive and grow-

ing, in particular due to the fact that more detailed factual data become available. Most

literature focuses on the quality improvement or deterioration caused by the adjust-

ments. In theory, judgmental adjustments by experts could make expert forecasts more

accurate than model-based forecasts. One of the main justifications for judgmental ad-

justment is that experts can recognize rare events that might influence the variable

under consideration but that are too irregular to be incorporated in statistical models

(Goodwin, 2000).

A few of the earlier studies on forecast adjustment using actual case study data are

Mathews and Diamantopoulos (1986, 1989, 1990, 1992, 1994), Diamantopoulos and

Mathews (1989) and Blattberg and Hoch (1990). In general, these authors conclude

that forecast adjustments lead to more accurate forecasts on average. More recent

work by Fildes et al. (2009), and research based on macroeconomic data in for exam-

ple McNees (1990) and Turner (1990), also indicates that in general expert adjustments

improve forecasting accuracy. However, all studies suggest that there is room for fur-

ther improvement. For example, Fildes et al. (2009) find that for only three out of

the four investigated companies judgmental adjustments increased accuracy on aver-

age. Furthermore, the above studies all document a general tendency towards making

positive adjustments.

There are also studies which report that expert forecasts are not necessarily better

than model forecasts. In an extensive study, in which adjusted forecasts made by dif-

ferent managers are analyzed, Franses and Legerstee (2010) document that managers
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do not deteriorate forecast accuracy at best, but that often model forecasts outperform

the expert-adjusted forecasts. Franses and Legerstee (2011b) show that similar results

hold for a range of different forecast horizons. These two studies, and also Sanders

(1992) and Fildes and Goodwin (2007), suggest that model-based forecasts may need

less adjustment and that experts perhaps put too much weight on their own contribu-

tion.

In sum, in theory, expert-adjusted forecasts should outperform model-based fore-

casts and in some cases they appear to do so. However, there is also evidence that

experts can reduce the forecast quality of model-based forecasts. These conflicting

findings trigger the natural question: what is it exactly that the experts do? And, how

does this behavior result in improvement or deterioration of forecast accuracy?

Although some recent studies have tried to answer these questions, there is no study

that takes all possible expert behavior into account. For example, Fildes et al. (2009)

and Trapero et al. (2010) focus on positive versus negative adjustments and on the size

of the adjustments when they evaluate what kind of forecast adjustments generate more

accurate forecasts. But what if experts do not look at the model forecasts at all? In that

case they are not making (positive or negative) adjustments and there is no relationship

between model and expert forecasts at all. If this is the case, how should we evaluate

forecast accuracy? Boulaksil and Franses (2009) used a questionnaire to find out what

experts do with the model forecasts and how they create final forecasts. Interestingly,

part of the experts state that they do not look at the model forecast before they create a

forecast themselves. The empirical results in Franses and Legerstee (2009) emphasize

the possibility that model forecasts are only partially taken into account in creating the

expert forecasts.

This leads to the next natural question: what would be optimal for experts to do?

How should they optimally incorporate the model forecasts in the final forecasts? A

structured discussion of this issue is absent from the current literature on this subject.

We believe it is important though, as insight into optimal behavior can guide methods

to evaluate and improve forecasts.

2



In this paper, we therefore focus on the following three questions which we address

given the availability of model forecasts, expert forecasts and realizations: (a) Is the

final expert forecast related to the model forecast and how? (b) How is this relation

influenced by other factors? (c) How does this relation influence forecast accuracy? In

this paper we rely on theoretical arguments and we match these with actual data using

a model that is new to the literature.

Central to our approach is the relation

EF = α + βMF + I, (1)

where EF is the final forecast of the expert, MF is the statistical model forecast and

I is what we will call the intuition of the expert. This equation will turn out to be key

to understanding and analyzing expert forecasts. As we will argue, estimating the pa-

rameters of this relation provides an answer to the first research question. Interesting

cases are when α is close to 0 and β is close to 1, indicating that the expert closely

follows the model forecasts, and when α and/ or β deviate from these values consid-

erably. Besides the values of these parameters, it is also interesting to examine the

relation between intuition I and the model forecasts. Are there any factors influencing

the model forecasts that also influence through I? If this is the case, one could have

evidence for double counting, a phenomenon also described in Bunn and Salo (1996).

Relating α and β to various factors can provide an answer to our second research

question. For these factors one can think of characteristics of the realized data, R, like

the average size and volatility of R, and of personal characteristics of the expert. It is

here where we shall introduce our two-level hierarchical Bayes model.

Finally, relating to research question three, we show that the values of α and β,

the correlation between I and R, and the correlation between I and MF influence

forecast accuracy of EF . We provide theoretical arguments and we hold that against

our empirical data.

As we have actual data for individual forecasters for various variables and various

forecast horizons, we propose a two-level Hierarchical Bayes model. Its first level is
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an extended version of (1) whereas the second level consists of equations that relate

the parameters in (1) to characteristics of the variable being forecasted, of the forecasts

and of the experts. Furthermore, we take into account the possible endogeneity of the

model forecasts in (1), that is, potential correlation between MF and I , which slightly

complicates parameter estimation.

For our case study we use a large data set containing model forecasts and expert

forecasts of different experts for stock keeping unit (SKU) level sales data of various

medical products. We document that values for α and β differ substantially across

products and experts. Factors such as average sales level, sales volatility, and forecast

horizon appear to influence the size of α and β. We also draw conclusions on the

optimal values for α and β in terms of forecast accuracy. As such, our study is the first

to relate expert behavior with expert performance using non-experimental data.

The remainder of the paper is structured as follows. In the next two sections we

formulate the hypotheses which are the starting point of our data analysis and which

follow from theory and previous research. In Section 4 we describe the models that we

develop to test the hypotheses. Section 5 describes the data and the results of our case

study. The final section concludes.

2 Modeling expert behavior

What is it that experts do with model forecasts when they create their own forecasts

and how is this behavior influenced by other factors? We discuss these two questions,

where we assume that there are no records available of this behavior, and hence that

we have to use the actual forecasts and realizations to answer the questions.

Although most that we put forward in this section is true for any kind of forecasts

from experts, we focus in this section on forecasts for SKU-level sales data as this

matches our empirical illustration.
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2.1 What do experts do with model forecasts?

To refine notation, we define the relation between expert forecasts and model forecasts

as

EFt+h|t = α + βMFt+h|t + It+h|t, (2)

where EFt+h|t is the expert forecast created at origin t for t+h, where h is the forecast

horizon,MFt+h|t is the model forecast created at the same origin, for the same variable

and with the same forecast horizon and where It+h|t is the intuition of the expert at

origin t. We assume that for all t, E[It+h|t] = 0, where E is the expectation operator.

In later sections we describe and estimate a model for which (2) is our main building

block, where we assume availability of EFt+h|t and MFt+h|t for t = 1, 2, ..., T .

One typical situation captured by this model is when α = 0 and β = 1. This

can be seen as the benchmark situation, in which the expert closely follows the model

forecasts. On average over time, if the model forecasts increase (decrease) the expert

forecasts increase (decrease) by the same amount. The expert forecasts are on aver-

age not higher nor lower than the model forecasts (they are unbiased like the model

forecasts) and the only differences between model forecasts and expert forecasts are

captured by the intuition of the expert It+h|t. It+h|t covers factors that influence the

expert forecasts otherwise than model forecasts. In this situation a forecaster closely

follows the model forecasts and apparently trusts the model forecasts, but might decide

to increase or decrease the model forecasts based on factors captured in It+h|t.

A second interesting variant of (2) is when α 6= 0 and β = 1. Although the expert

still follows the model closely, the expert forecasts are on average higher (α > 0) or

lower (α < 0) than the model forecasts. Thus there is a constant deviation from the

model forecasts. The general level of expert forecasts is thus different than that of the

model forecasts. A potential reason for constant deviation might be that the expert

has another loss function than used by the model (which is typically mean squared

error loss). For example, the expert might believe that underpredicting is worse than

overpredicting.
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If α = 0, but 0 < β < 1, the relation between model forecasts and expert forecasts

is less strong than when β = 1. A change in the next model forecast dampens the

expert forecast in the same direction (on average). The expert feels that the model

forecasts move in the right direction but not to the right extent and this results in

0 < β < 1. At the same time, as α = 0 and E[It+h|t] = 0 and assuming the variable

to be forecasted is always positive2, the expert forecasts are on average lower than the

model forecasts.

If α = 0 and β > 1, the expert reacts excessively to the model forecasts. On

average, the expert forecasts move in the same direction as the model forecasts, but the

expert has reasons to believe that the model generally underestimates the trend in the

data. As α = 0, and E[It+h|t] = 0, and the variable to be forecasted is always positive,

the expert forecasts are on average higher than the model forecasts.

Finally, an extreme variant of (2) appears when β = 0. Here, the expert does not

consider the model forecast at all and the expert forecasts are determined by other fac-

tors. In this situation, expert forecasts do not entail judgmental adjustments to model-

based forecasts, as the expert gives his or her own independently created forecasts.

The expert forecast is equal to the intercept plus intuition.

Of course, there are other variants, like when α > 0 and 0 < β < 1. Here

the expert forecasts do not necessarily deviate from the model forecasts (they might

on average approximately be the same). The expert only partially follows the model

forecasts, and uses corrections via the intercept.

In sum, expression (2) encompasses many of the possible expert forecasting prac-

tices and it is a good starting point for our analysis. It would now be interesting if there

is any empirical evidence of the values of α and β. Recently, more data sets have be-

come available containing statistical model forecasts and expert forecasts. Boulaksil

and Franses (2009) showed with a questionnaire that 50% of the responding man-

agers do not rely on the model forecasts when they create their final forecasts. This

2For our SKU-level sales data this is in general the case.
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suggests that β is smaller than 1, or, stated differently, closer to 0. In Franses and

Legerstee (2009) the parameters in model (2) are estimated using SKU-sales data and

it is reported that β is close to 0.4, on average, and there is a large variety of potential

estimated values.

Fildes et al. (2009) and Mathews and Diamantopoulos (1986) show that often the

differences between expert forecasts and model forecasts are positive. Fildes et al.

(2009) find for their one-step-ahead forecasts of SKU-sales more positive than negative

adjustments and they also find that the upward adjustments tend to lead to final expert

forecasts that overpredict. Franses and Legerstee (2011a) show that for forecasts with

horizons ranging from one to twelve months there are more positive adjustments than

negative adjustments. This might capture the preference of a manager to overpredict

in order to prevent being out of stock and thus that managers may have a loss function

different than that of the model forecasts. If we relate these findings to (2), we could

state that for many experts α is larger than 0, that β is different from 1, or both.

If β < 1, as is frequently observed, then the observed upward adjustments imply

that α is often larger than 0. Even if there would not be an upward bias in the expert

forecasts, a positive α makes sense in case of a β smaller than 1, in order to prevent a

downward bias in the final forecasts, assuming that the model forecasts are unbiased.

To summarize, we put forward the following two hypotheses

Hypothesis 1

a. Often β 6= 1 in (2).

b. When β 6= 1, often β < 1 in (2).

Hypothesis 2

a. Often α 6= 0 in (2).

b. When α 6= 0, often α > 0 in (2).
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2.2 What causes β 6= 1 and α 6= 0?

Now that we have an idea about what it is that experts could do with model forecasts

and what they might often do, we can look for factors that determine this behavior.

From the questionnaire results reported in Boulaksil and Franses (2009) we learn

that managers are quite confident about their own ability to forecast and that they lack

confidence in the model forecasts. As products with large sales volumes might be

more important to a manager and as predictions for near-by sales are probably more

important because of their urgency, the manager might put even less trust in the model

in these situations. Boulaksil and Franses (2009) also find that recent volatile sales

figures decreases the trust by managers in the model and they feel the need to make

even more adjustments, which thus would result in an even lower value for β. Fildes

et al. (2009) investigate if judgmental forecasts improve the forecast accuracy when

sales volume volatility is high, but they find evidence of the opposite. These authors

suggest that volatile series are more difficult to forecast, but with Boulaksil and Franses

(2009) we would argue that it can also be due to excessive adjustment. We therefore

hypothesize the following

Hypothesis 3 The probability that β in (2) deviates away from 1 towards 0 in-

creases when

a. the mean of a target variable is higher;

b. a target variable fluctuates more;

c. the forecast horizon decreases.

When a manager wants to prevent being out of stock, then higher average sales

volumes and more volatility increases the size of forecast adjustments. Furthermore,

Franses and Legerstee (2011a) show that adjustments are more often upwards than

downwards for all forecast horizons, but that this is most prominent for shorter hori-

zons. Hence, we conjecture that
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Hypothesis 4 The probability that α in (2) deviates away from 0 increases when

a. the mean of a target variable is higher;

b. a target variable fluctuates more;

c. the forecast horizon decreases.

In Section 4 we propose an econometric model with which can put these hypothe-

ses to a test.

2.3 Experts’ intuition

When the managers do not trust the model forecasts and make their own forecasts, it

is quite likely that there are factors which influence both model forecasts and expert

forecasts. Managers have stated in the questionnaire reported in Boulaksil and Franses

(2009) that they include recent sales figures as input to their forecast adjustments, even

though they know that recent sales figures are also covered by the statistical model

forecasts. This is in accordance with the lab findings of Goodwin and Fildes (1999),

which is that experts do not only look at special events for their adjustments, but they

also consider past data. As these past (sales) data are usually also the input for the

models used to create the model forecasts, the result would be a correlation between

MFt+h|t and It+h|t in (2), or stated differently E(MFt+h|tIt+h|t) 6= 0. So, our final

hypothesis about expert forecasting behavior is

Hypothesis 5 MF is often endogenous in (2), meaning E[MFt+h|tIt+h|t] 6= 0.

Note that MF being endogenous (and thus not exogenous) has two important im-

plications. First of all, it tells us something about what the experts do. It shows that

experts use the same information as the model forecasts, possibly in the same way, but

more likely in another way. The result could amount to double counting, or at least to

an inefficient use of information, especially when the model forecasts are optimal in

processing that same information.
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The second implication of the endogeneity of MF in (2) has to do with parameter

estimation. It is well known that Ordinary Least Squares (OLS) results in an incon-

sistent estimate of β if MF is endogenous, see Heij et al. (2004, p. 396-418). This

may result in incorrect conclusions about what it is that experts do with model fore-

casts. For example, it may seem that there is a strong relation between EF and MF

with β ≈ 1, while in fact the expert does not look at the model forecasts at all, but

simply uses the same factors as input for his or her forecasts as the statistical model

used when creating the model forecasts. How to deal with this estimation issue is dis-

cussed in Section 4. Before we turn to our econometric model, we first discuss various

implications of expert behavior on forecast accuracy.

3 Theoretical implications for accuracy

In this section we demonstrate the theoretical link between the behavior of the experts

and their forecasting accuracy. To our knowledge this has never been done before in

the literature.

To study the implications of deviating from the benchmark α = 0 and β = 1,

we need to propose a loss function to evaluate forecast accuracy. We propose to con-

sider a variant of the well-known and often used root mean squared prediction error

(RMSPE), and this variant is the expected squared prediction error (ESPE) defined

by

ESPE = E[(Rt+h − EFt+h|t)2], (3)

where EFt+h|t is as defined before and where Rt+h is the realization at t+h. This loss

function is chosen for convenience, and also because it gives implementable optimality

results for α, β and I , as the managers only have expected values of sales instead

of realized values when they create their forecasts. The conclusions obtained in this

section with this loss function can be generalized to other loss functions, such as the

mean squared prediction error (MSPE), theRMSPE and the difference between the
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(R)MSPE of the model and that of the expert (D(R)MSPE).

If (2) is substituted in (3) we obtain

ESPE = E[(Rt+h − α− βMFt+h|t)
2] + E[I2

t+h|t]

− 2E[((Rt+h − βMFt+h|t)It+h|t], (4)

where we have used that E[It+h|t] = 0. The expert can influence three factors of the

ESPE, and these are α, β and It+h|t. For each of these we will discuss the optimal

values of α, β and It+h|t that minimize ESPE, and how deviations from the optimal

values will influence this ESPE.

3.1 Optimal settings

For ease of derivation, at first we assume that MF is exogenous in (2) and thus that

E[MFt+h|tIt+h|t] = 0. Later on we will relax this assumption.
∂ESPE
∂α

= 0 gives the value for α that minimizes ESPE, and that is the OLS

estimate of the constant term in equation (2) given by

αopt = E[Rt+h]− βE[MFt+h|t]. (5)

∂ESPE
∂β

= 0 and then substituting it with the optimal value for α in (5) gives the optimal

value for β, that is,

βopt =
E[MFt+h|tRt+h]− E[MFt+h|t]E[Rt+h]

E[MF 2
t+h|t]− E[MFt+h|t]2

=
Cov[MFt+h|t, Rt+h]

V[MFt+h|t]
, (6)

where Cov means covariance and V denotes variance. Under the condition that the

model forecasts are unbiased relative to expected realizations, thus E[MFt+h|t] =

E[Rt+h|t], we see that the more E[MFt+h|tRt+h] differs from E[MF 2
t+h|t], the more

βopt differs from 1. However, under the additional condition that E[MFt+h|tRt+h] =

E[MF 2
t+h|t], we obtain that βopt = 1 and αopt = 0. We could call this addi-

tional condition the relative unbiasedness of the model forecasts. What this rela-

tive unbiasedness means is perhaps most easily understood by looking at the estima-

tors of E[MFt+h|tRt+h] and E[MF 2
t+h|t], which are

∑
MFt+h|tRt+h and

∑
MF 2

t+h|t,
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where the summations
∑

run over a sample of data. The condition is not met if∑
MFt+h|tRt+h −

∑
MF 2

t+h|t < 0, which occurs when MF is larger than R espe-

cially for the larger MF , or if
∑
MFt+h|tRt+h−

∑
MF 2

t+h|t > 0, which occurs when

MF is smaller than R especially for the larger MF .

To get more insight into this relative unbiasedness we consider an example. Sup-

pose we have only two observations (T = 2), with realizations R2 = 5 and R3 = 15

and we have two different sets (marked with superscripts) of one-month-ahead model

forecasts, namely {MF 1
2|1 = 10,MF 1

3|2 = 10} and {MF 2
2|1 = 11,MF 2

3|2 = 9}.

The first set of model forecasts is unbiased and relatively unbiased, as
∑
Rt+h =∑

MFt+h|t and
∑
MFt+h|tRt+h =

∑
MF 2

t+h|t. The second set of model fore-

casts is unbiased, but not relatively unbiased, because
∑
MFt+h|tRt+h = 190 and∑

MF 2
t+h|t = 202. We see now that deviations of MF from R have more weight

for larger MF . If
∑
MFt+h|tRt+h −

∑
MF 2

t+h|t < 0, a value for β smaller than 1

is optimal and if
∑
MFt+h|tRt+h −

∑
MF 2

t+h|t > 0, a value for β larger than 1 is

optimal (see (6)).

Finally, let us look at the influence of It+h|t on ESPE. Remember that we re-

stricted I and MF to be uncorrelated. Although it is impossible to derive for It+h|t

what its optimal value is, we can see from (4) that adding intuition is only beneficial

for reducing the expected forecast error if R and I are positively correlated (see the

negative sign before the third right-hand-side element). To be more precise, it should

hold that

2Cov[Rt+hIt+h|t] > V[It+h|t], (7)

which means that the covariance between R and I should be larger than half the vari-

ance of I . However, we restricted I and MF to be uncorrelated and we might assume

a strong correlation between R and MF . The stronger the last two are related, the

harder it is for I and R to be correlated, while maintaining the exogeneity of MF

in (2). Note that this conclusion supplements the conclusion of Blattberg and Hoch

(1990, pp. 890-891), who state that combinations between model and expert forecasts
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will be more accurate than the model or expert forecasts separately if the intuition of

the expert is related to the true values.

If we relax the exogeneity assumption that E[MFt+h|tIt+h|t] = 0, matters get more

complicated. Working in the same way as for the case of exogenous model forecasts,

we find the following value of α that minimizes ESPE:

αopt = E[Rt+h]− βE[MFt+h|t], (8)

which is the same as before, and the following value of β that minimizes ESPE:

βopt =
E[MFt+h|tRt+h]− E[MFt+h|t]E[Rt+h]− E[MFt+h|tIt+h|t]

E[MF 2
t+h|t]− E[MFt+h|t]2

=
Cov[MFt+h|t, Rt+h]− Cov[MFt+h|tIt+h|t]

V[MFt+h|t]
, (9)

which is different than before. If we assume the model forecasts to be unbiased and

relatively unbiased we obtain

αopt =
Cov[MFt+h|tIt+h|t]

V[MFt+h|t]
E[MFt+h|t], (10)

βopt = 1−
Cov[MFt+h|tIt+h|t]

V[MFt+h|t]
. (11)

We can see that the optimal value of β is now negatively correlated with the covariance

between MF and I . The higher the correlation, the lower βopt should be, and vice

versa. This is intuitively understandable, as a high covariance between MF and I

and a high β (equal to 1 or higher) would result in double counting. In that case the

expert fully takes the model forecasts into account, but also lets the final forecasts be

influenced by the same factors that determine the model forecasts.

At the same time, a higher covariance between MF and I should result in a higher

value for α because of a lower value for β. As E[It+h|t] = 0, α should in this case be

different from 0 to make the expert forecasts unbiased.

The question now is: how beneficial is it for the expert to relate intuition to the

model forecasts and to what extent? If we look at (4), our initial idea could be that a

high correlation between R and I and a low, preferably negative, correlation between
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MF and I is best for expert forecast accuracy. Assuming unbiased and relatively

unbiased model forecasts this would result in a βopt larger than 1 and a negative αopt.

However, the gains in forecast accuracy achieved when I is positively related to R

and when it is negatively related to MF are offset by the second term in (4), that is, a

higher variance of I increases the forecast error. Furthermore, the moreR andMF are

related, the harder it is to let I be positively correlated withR and negatively correlated

with MF .

If R and MF are not that strongly related, it might be best to choose It+h|t in

such a way that it corrects for the mistakes that the model forecasts make, thus to let

factors that wrongly influence MF negatively influence I . This results in a negative

correlation between I and MF and a positive correlation between I and R. In that

case β should be larger than 1.

In short, we have to take a closer look at the last two terms in (4). We observe that

adding intuition is only beneficial if

2E[(Rt+h − βMFt+h|t)It+h|t] > V[It+h|t]. (12)

Hence, a necessary condition is that intuition is positively correlated with (Rt+h −

βMFt+h|t), which implies that E[Rt+hIt+h|t] > βE[MFt+h|tIt+h|t]. Thus for β = 1,

the correlation between intuition and realization has to be larger than the correlation

between intuition and model forecast.

3.2 Implications and hypotheses

Before we summarize the above in a set of statements we define the following condi-

tions:

E[Rt+h] = E[MFt+h|t], (13)

E[MFt+h|tRt+h] = E[MF 2
t+h|t]. (14)

Furthermore, we generalize the above results to the difference between the ESPE of

the model and that of the expert (DESPE), as usually the interest is in deterioration or
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improvement of the expert forecasts over the model forecasts. If we obtain a minimum

value ofESPE for particular values of α, β and It+h|t, we also obtain an optimal value

of DESPE, meaning that (for given model forecasts) DESPE is at its maximum

value.

Statements In order to have maximum improvement in expected forecast ac-

curacy of EF over MF it has to hold in (2) that,

a. α = 0, β = 1, and (7) is met for It+h|t, assuming that (13) and (14) are met

and that E[MFt+h|tIt+h|t] = 0;

b. α is as in (10), β as in (11), and (12) is met for It+h|t, if (13) and (14) are

met, but possibly E[MFt+h|tIt+h|t] 6= 0;

c. α is as in (8), β as in (9), and (12) is met for It+h|t, if (13) and (14) are not

met and possibly E[MFt+h|tIt+h|t] 6= 0.

Note that (7) and (12) are minimum requirements for intuition to be beneficial and

for DESPE to be optimal.

Any deviation from the optimal values for α and β and from (12) results in higher

prediction errors for EF , where the amount of loss of precision depends on the inter-

action between α, β and It+h|t. For example, in case β is larger than 1, and the model

forecasts are unbiased, relatively unbiased (conditions (13) and (14) are met) and ex-

ogenous in (2), it is optimal that α is smaller than 0. Furthermore, in that case, the

correlation between the intuition of the expert and the realized values should be even

larger than when β equals 1.

Although the described behavior is theoretically the behavior that generates the

most accurate forecasts, it is questionable whether an expert can act according to the

statements (a) to (c) in practice. The interactions between the various determinants

of forecast accuracy, especially when taking into account the possibility that the con-

ditions are not met, are quite complex. Furthermore, for a given set of actual model

forecasts it might be assumed that conditions (13) and (14) are met approximately and

thatR andMF are strongly related in general. Therefore we put forward the following
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simpler hypothesis:

Hypothesis 6 The improvement in expected forecast accuracy of EF over that

of MF increases when in (2)

a. α is 0 or α gets closer to 0;

b. β is 1 or β gets closer to 1;

c. the correlation between MF and I decreases;

d. the correlation between I and R increases.

For a given data set, for which we do not have reasons to doubt that the conditions

as defined in (13) and (14) are met, it might be interesting to test Hypothesis 6.

4 Empirical models

In this section we will explain in detail how a (non-trivial) econometric model can

be constructed to validate the components of Hypothesis 6. We first consider expert

behavior and then its link with forecast accuracy.

4.1 Model of expert behavior

In this section we propose a model to estimate what the experts do with the model

forecasts and which factors influence this behavior. It is a two-level Hierarchical Bayes

model, for which the parameters can be estimated using panel data, consisting of model

forecasts and expert forecasts for different products and for different time periods.

To meet the typical data format in practice, and also to reduce notational burden, we

now introduce a slightly different notation. LetEFi,t denote the expert forecast created

in period t for case i, where i covers products and forecast horizons. Furthermore,

MFi,t is the model forecast created in that same period, for that same product and

with the same forecast horizon. Let Ti be the number of observations for product and

forecast horizon denoted with i, which can take a maximum value of T . There are
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N product-horizon combinations and thus time series. See Appendix A for a more

detailed explanation of the data format. Using this notation we can then write (2) as

EFi,t −MFi,t = α∗i + β∗iMFi,t + εi,t, (15)

with εi,t ∼ N(0, σ2
ε,i). Note that β∗i in this model associates with β − 1 in (2) and α∗i

with α in (2). This expression constitutes the first level of our model.

To correctly estimate the parameters and to see which factors influence α∗i and β∗i

over t, we add a second level to the model. As α∗i = 0 and β∗i = 0 are the special

benchmark cases in the behavior of experts and the forecast accuracy related to it, we

take these as our starting point.

Let zi be a vector containing explanatory variables such as mean and volatility of

the variable being forecasted, we can expand the model with

α∗i =

0 if Pi = 1

α†i = z′iγα + ξi if Pi = 0,

(16)

and

β∗i =

0 if Si = 1

β†i = z′iγβ + ηi if Si = 0,

(17)

with ξi ∼ N(0, σ2
ξ ) and ηi ∼ N(0, σ2

η). Pi and Si are unobserved variables which can

take values 1 and 0. With Pr[Pi = 1] = κi and Pr[Si = 1] = λi, we assume that there

is an unconditional probability of size κi that α∗i = 0 and that there is an unconditional

probability of λi that β∗i = 0. Stated differently, with a probability of κi times λi

the expert forecasts of case i follow the model forecasts closely and match with the

benchmark situation as described in Section 2.1. If α∗i differs from 0 it equals α†i which

is then conditional normally distributed and which depends linearly on the variables in

zi. If β∗i differs from 0 it equals β†i which is also conditional normally distributed and

which also depends linearly on the variables in zi, but with other parameters (γβ).

If we consider qi and wi to be unobserved random variables, we use the following
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conditional probabilities:

Pi =

1 if qi = z′iψα + νi > 0

0 if qi = z′iψα + νi ≤ 0,

(18)

and

Si =

1 if wi = z′iψβ + ωi > 0

0 if wi = z′iψβ + ωi ≤ 0,

(19)

with νi ∼ N(0, 1) and ωi ∼ N(0, 1). Stated differently, the probabilities that Pi = 1

(α∗i = 0) and that Si = 1 (β∗i = 0) are defined as a probit model with zi as explanatory

variables. We can also write this as

κi =

∫ ∞
0

φ(qi; z
′
iψα, 1)dqi, (20)

and

λi =

∫ ∞
0

φ(wi; z
′
iψβ, 1)dwi, (21)

where φ(·; c1, c2) is the probability density function (pdf) of a normal distribution with

mean c1 and variance c2. Thus, the variables in zi are related to α†i and β†i , but also to

the probabilities that α∗i = 0 and that β∗i = 0. Although we use for all four relations the

same zi here, it is of course also possible to use different sets of explanatory variables.

Equations (16), (17), (20) and (21) constitute the second level of our model.

Sofar we have assumed that the error terms in our basic equation (15) are unre-

lated to the model forecasts, and thus that the model forecasts are exogenous. It is

however very well possible that there is correlation between these two components, as

explained in Section 2.3. If this problem is ignored we might find values for β∗i that

are inconsistent. To account for possible endogeneity in the first equation we therefore

add the following component to the model, that is,

MFi,t = µi + δiVi,t + ζi,t, (22)

with Vi,t an instrumental variable. Now we have (εi,t, ζi,t)
′ ∼MN(0,Ωi), where εi,t is

from (15) and where MN(0,Ωi) is the bivariate normal distribution with mean 0 for
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both variables and with covariance matrix Ωi (which is a 2 × 2 matrix). If there is no

correlation between εi,t and ζi,t, or, stated differently, Ωi(1, 2) = Ωi(2, 1) = 0, there is

no endogeneity.

Taking everything together, the full final model now reads as

EFi,t −MFi,t = α∗i + β∗iMFi,t + εi,t, (23)

MFi,t = µi + δiVi,t + ζi,t, (24)

α∗i =

0 if Pi = 1

α†i = z′iγα + ξi if Pi = 0

(25)

β∗i =

0 if Si = 1

β†i = z′iγβ + ηi if Si = 0,

(26)

Pi =

1 if qi = z′iψα + νi > 0

0 if qi = z′iψα + νi ≤ 0,

(27)

Si =

1 if wi = z′iψβ + ωi > 0

0 if wi = z′iψβ + ωi ≤ 0.

(28)

The first two equations are the first level of the model in which the difference between

EF andMF is linked toMF and where possible endogeneity ofMF is incorporated.

The second level of the model is given by the other four equations, where the param-

eters of the first level are linked to potentially explanatory variables. The benchmark

case α∗i = 0 and β∗i = 0 has a key position in this model.

To estimate the posterior results of the parameters of this model, namely

θ = ({β†i }Ni=1, {α
†
i}Ni=1, {µi}Ni=1, {δi}Ni=1, γ

′
α, γ

′
β, ψ

′
α, ψ

′
β, {Ωi}Ni=1, σ

2
ξ , σ

2
η), the Markov

Chain Monte Carlo (MCMC) methodology, and in particular Gibbs sampling, is used.

Technical details on this sampler are presented in Appendix B. We are especially in-

terested in the values of parameters {β†i }Ni=1, {α†i}Ni=1, γα, γβ , ψα, ψβ and {Ωi}Ni=1, as

these represent the behavior of the experts and how this behavior is governed by other

factors.
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4.2 Evaluating forecasts

The estimated parameters of the model in the previous section can be used to test

Hypotheses 1 to 5 about the behavior of experts. However, we are also interested in

what the experts should do, which is the subject of the Statements and Hypothesis 6.

As the Statements follow straightforwardly from optimization of the forecast accuracy

target function there is no need to test it. However, the rules to follow according to

these statements are quite complex and therefore Hypothesis 6 comprises a simpler set

of rules to follow. To test the validity of Hypothesis 6 we need one additional model

which we propose in this subsection. In this model we use a measure of the forecast

precision of the expert as compared to the forecast precision of the model and relate

this with variables as mentioned in Hypothesis 6.

LetDRMSPEi be the improvement in root mean squared prediction error ofEFi,t

over MFi,t, thus

DRMSPEi =

√
1

Ti

∑
(Ri,t −MFi,t)2 −

√
1

Ti

∑
(Ri,t − EFi,t)2. (29)

We use this criterium instead of DSPE to reduce variability. With the regression

model

DRMSPEi = r′iϑ+ ιi, (30)

it is possible to test which factors influence forecast improvement.

First of all, we want to test if α∗ = 0 indeed increases forecast improvement, as

compared to cases where α∗ 6= 0. This is the first part of Hypothesis 6a. We also want

to test if, assuming that α∗ is different from 0, a smaller value of α∗ in absolute sense is

beneficial to the forecast improvement (second part of Hypothesis 6a). Therefore, we

consider the estimates of Pi and the estimates of |α†i (1− Pi)| as explanatory variables

in (30), where we use the posterior means for Pi and α†. We call the first variable in

the remainder of this paper ‘No intercept’ and following Hypothesis 6a we expect this

variable to have a positive effect. The second variable is called ‘Size intercept’ and

following Hypothesis 6b we expect this variable to have a negative effect.

20



To test if β∗ = 0 (or β in (2) equals 1) increases forecast improvement compared

to β∗ 6= 0 (first part of Hypothesis 6b), we add the posterior mean for Si. The second

part of Hypothesis 6b, namely that a larger absolute value of β∗ decreases forecast

improvement, is tested by using the estimates of |β†i (1−Si)| as an explanatory variable,

where we again use the posterior mean for Si and we use the posterior mean for β†i .

These variables will carry the labels ‘Relation MF’ and ‘Size relation MF’ and we

expect the first variable to have a positive effect and the second variable to have a

negative effect.

Hypothesis 6c states thatDRMSPE increases if the correlation betweenMF and

I decreases. To test this we use ρΩ,i = Ωi(1, 2)/
√

Ωi(1, 1)Ωi(2, 2) as an explanatory

variable, where we use the posterior mean for Ωi, label ρΩ,i ‘Endogeneity’, and we

expect a parameter with a negative value.

Finally, by including in (30) ρεR,i = corr(εi,t, Ri,t) Hypothesis 6d is considered.

That is, the correlation between the estimated errors of (15) and the realized values

of the variable of interest is used to see if correlation between the expert intuition

and the true values increases the forecasts. The errors of (15), εi,t, are estimated as

EFi,t −MFi,t − α†i (1− Pi)− β
†
i (1− Si)MFi,t, using the posterior means for α†i , β

†
i ,

Pi and Si. The variable ρεR,i is labeled ‘Intuition’ in the remainder of the paper and

following Hypothesis 6d we expect it to have a positive effect in (30).

Concluding, we have for (30) the set of six explanatory variables

r′i = [1, Pi, |α†i (1− Pi)|, Si, |β
†
i (1− Si)|, ρΩ,i, ρεR,i]. (31)

See Table 1 for an overview of the variables in ri, the names of the variables and for

the hypothetical sign of the parameters in (30) following Hypothesis 6.
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Table 1: A summary of the variables in ri in model (30) and their hypothetical effect on DRMSPE

as denoted in (29) according to Hypothesis 6.

Hypothetical

Name Variable effect

No intercept Pi +

Size intercept |α†i (1− Pi)| −

Relation MF Si +

Size relation MF |β†i (1− Si)| −

Endogeneity ρΩ,i −

Intuition ρεR,i +

5 Empirical results

To illustrate the usefulness of our two models we make use of an extensive panel data

set. The data set covers SKU-level sales data and is described in detail in the next

subsection. In Subsections 5.2 and 5.3 the results of our analysis are discussed.

5.1 Data set

For our case study we use monthly sales data of a large pharmaceutical company.

The company has its headquarters in The Netherlands, and has local offices in various

countries. The company uses an automated statistical package to create forecasts using

lagged sales figures as the only input. Each month model selection and parameter

estimation are updated, whereby the package uses techniques such as Box-Jenkins and

Holt-Winters. These model forecasts are then sent to the managers in the local offices,

after which they quote their own forecasts.

We have at our disposal model forecasts, manager forecasts and actual sales figures

for November 2004 through November 2006, with for 1-step-ahead forecasts a maxi-
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mum of 25 triplets per product (medicine), for 2-step-ahead forecasts a maximum of

24 triplets and so on. We have a total of 7250 time series for 1167 different products

in 7 different categories, sold in 36 countries. For each series, two observations are

lost, because of the instrumental variable we used (see below). Therefore, for each

series we have a minimum of 10 observations, a maximum of 23 observations and the

forecast horizon ranges from 1 to 7 months.

In the notation of Appendix A and Table A.1 this means that we have N = 7250,

J = 1167 and the maximum of Hj for j = 1, .., 1167 is 7. Because there is one man-

ager per country responsible for the expert forecasts, we have M = 36. Furthermore,

t = 1 corresponds with the month October 2004 and T corresponds with October 2006

(forecast origin).

As an instrumental variable in (22) we need a variable that correlates with the

model forecasts, but not with the expert forecasts, see, for example, Heij et al. (2004,

p. 396-418). The instrumental variable Vi,t that we use is Ri,t−(h+1) −MFi,t−(h+1),

where Ri,t−(h+1) concerns case i in month t − (h + 1) and MFi,t−(h+1) is the asso-

ciated model forecast.3 So, as instrumental variable we use the most recent forecast

error of the model forecast that has the same forecast horizon and that is known at

the moment of forecast creation. Franses and Legerstee (2009) show that this variable

often does not correlate much with the difference between model forecasts and expert

forecasts. Because we do think it correlates with model forecasts (because of the way

model forecasts are created), we believe that expert forecasts and this instrument are

not strongly correlated.

The variables that we use as explanatory variables in (16), (17), (20) and (21) and

included in vector zi are average sales volume, sales volatility and dummy variables

for the forecast horizon. We also include dummy variables for the country (and by that

for the manager responsible for forecasting) and dummy variables for the category of

3We use the same notation as in Appendix A. Thus for MF the second subscript indicates in which

period the forecasts are created. In case ofR the second subscript indicates in which period the forecasts

are created to which the realization belongs, thus it is the realization of period t− 1.
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a product.

The optimal values for α and β depend on conditions (13) and (14) as defined in

Section 3, which are conditions on the bias and relative bias of the model forecasts.

Furthermore, the more the conditions are not met, the less likely it is that Hypothesis

6 is true. Therefore, it is first useful to find out to what extent these conditions are met

for our data. To get insight into this we tested for each case i if there is a significant

difference between the mean of MF and the mean of R (condition (13)) and if there

is a significant difference between the mean of MF times R and the mean of MF 2

(condition (14)). For this, we used the common small-sample test for comparing two

population means as described in Wackerly et al. (2002). We find that condition (13)

is rejected in about 17% of the cases and condition (14) in 6% of the cases, where

we use a 5% significance level. The test requires the samples to be drawn from a

normal distribution. According to the Jarque-Bera test, the hypotheses of normality

are not rejected in only 61% of the cases. In again around 17% of these cases (for

which both null hypotheses of normality are not rejected) condition (13) is rejected at

the 5% significance level. To test the second condition, both the MF times R sample

and the MF 2 sample need to be drawn from a normal distribution. Here, according

to the Jarque-Bera test, the hypotheses of normality are not rejected in 53% of the

cases and in around 7% of these cases (for which both null hypotheses of normality

are not rejected) condition (14) is rejected at the 5% significance level. Thus although

the normality assumption does not always hold, we can state with fair confidence that

condition (13) holds in about 83% of the cases and condition (14) holds in about 93%

of the cases.

5.2 Expert Behavior

To estimate the parameters of the model described in Section 4.1 we generate 80,000

iterations of the Gibbs sampler as described in Appendix B. The first 40,000 iterations

are used as burn-in sample, and of the last 40,000 iterations every 10th draw is retained
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and used to calculate mean and standard deviation of the draws. Iteration plots are

inspected to check for convergence and are available upon request.

The probability that β∗ = β − 1 = 0 is varying, which can be seen from the

histogram in Figure 1 showing the posterior means for Si for i = 1, ..., N . The largest

group of cases (2254) has a probability of less than 0.1 that β∗i = 0. All the other

cases have probabilities that are equally spread between 0.1 and 1. 2718 cases have

a probability higher than 0.5, indicating that in less than 40% of the cases β in (2) is

likely to be close to 1.

Figure 1: Histogram of posterior means for Si in (19), for i = 1, ..., N .

Figure 2 shows a histogram of the posterior means for β†i for which the posterior

mean for Si < 0.5 and for which the posterior mean for−1 < β†i < 1. The smallest β†i

is estimated as -1.14 and the largest is 1.5, but only 11 of the estimated β†i are below

-1 and only 17 above 1. In the remainder of this section, we use I[Si < 0.5]β†i as

estimated β∗i and I[Pi < 0.5]α†i as estimated α∗i , where I[·] is an indicator function

which takes a value 1 if the expression between brackets is true and 0 otherwise and

with posterior means for Si, β
†
i , Pi and α†i . We find that 2406 of the 4532 β∗i values, that

are estimated to be different from 0, are positive. Thus although part a of Hypothesis
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1 seems to hold for this data set, part b of this Hypothesis is not supported: β is often

different from 1, but when it is different from 1, it is just as likely smaller than 1 than it

is larger than 1. However, we do see a fatter tail to the left than to the right: β is more

often much lower than 1 than much higher than 1. Finally, note that β is not often

close to 0, indicating that almost all managers producing forecasts in this data set look

at the model forecasts to some extent.

Figure 2: Histogram of posterior means for β†i in (17) for which the posterior mean for Si < 0.5, the

posterior mean for β†i > −1 and the posterior mean for β†i < 1, for i = 1, ..., N .

Figure 3 shows a histogram of posterior means for Pi for i = 1, ..., N . We see that

the probability that α∗ = α = 0 is often very high. In only 1030 of the 7250 cases

the probability is lower than 0.5 and in 5469 cases it is higher than 0.9. Thus, part a of

Hypothesis 2 does not seem to hold: not often is α 6= 0 and is there a constant bias in

the expert forecasts as compared to the model forecasts.
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Figure 3: Histogram of posterior means for Pi in (18), for i = 1, ..., N .

Figure 4 shows a histogram of posterior means for α†i for the cases for which the

posterior mean for Pi < 0.5 and for which the posterior mean for −200 < α†i < 4000.

The smallest estimated α†i is -609.39 and the largest is 228587.73. Only 2 estimated

α†i ’s are smaller than -200, but still 135 are larger than 4000. Thus, looking at the

histogram and at the values not included in the histogram, we can conclude that the

estimated α†i ’s are strongly positively skewed. Only in 44 of the cases is the estimated

α negative, supporting part b of Hypothesis 2: when α is different from 0, it is often

positive.

We observe that the first two hypotheses (1 and 2) are only partly validated. But

to what extent are the expert forecasts positively biased, as is often found in previous

research (see Section 2.1)? This is the case when α∗ is larger than 0, while β∗ is 0 or

also larger than 0, or when β∗ is larger than 0, while α∗ equals 0. We find that in only

2516 cases this seems to hold, which is a little over one third of the cases.
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Figure 4: Histogram of posterior means for α†i in (16) for which the posterior mean for Pi < 0.5 and

the posterior mean for −200 < α†i < 4000, for i = 1, ..., N .

To see if the deviations of β∗ from 0 follow the rules that hypothetically optimize

the forecast improvement of EF over MF , we calculate the correlation between the

posterior mean for β∗i and βi,opt =
Cov[MFi,t,Ri,t]−Cov[MFi,tIi,t]

V [MFi,t]
for i = 1, ..., N . In Sec-

tion 3 we derived that the optimal value of βi is given by this fraction in (9). We obtain

a positive correlation of 0.11.

To get more insights, we also counted how often the posterior mean for β∗ is posi-

tive while (Cov[MFi,t, Ri,t]−Cov[MFi,tIi,t]) > V [MFi,t] plus how often the posterior

mean for β∗ is negative while (Cov[MFi,t, Ri,t] − Cov[MFi,tIi,t]) < V [MFi,t]. This

appears to occur in 37% of the cases. The exact opposite is true in only 25% of the

cases. Thus, according to (9), in 25% of the cases β∗ has the wrong sign, while 37%

has the correct sign. The remaining 2719 cases have a probability of 50% or higher

that β∗ = 0. For those cases, the difference between βi,opt and 1 is on average 0.69,

and βi,opt varies between −51.25 and 27.94 with a standard deviation of 1.80. For the

complete data set these values are 0.77 (average difference from 1), −51.25 (mini-

mum), 33.13 (maximum) and 1.89 (standard deviation). This all gives the impression
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that there are managers who recognize when β should be different from 1 and in which

direction it should be different.

Table 2: Posterior means (and standard deviations) for the parameters in the second level of the model

about expert behavior, described in Subsection 4.1. Columns 2 to 5 contain the posterior means for part

of γα, ψα, γβ , and ψβ , respectively.

Variable κ α† λ β†

c 0.821 -35.361 -0.454 -0.061

(0.124) (4.501) (0.154) (0.019)

R -2.142e-05 0.592 -8.969e-06 -2.164e-06

(3.868e-06) (2.616e-04) (2.897e-06) (3.777e-07)

Vol(R) 2.077e-04 -0.354 4.477e-05 1.224e-05

(2.997e-05) (0.002) (1.664e-05) (2.188e-06)

Hor 2 -0.085 1.304 -0.030 -0.002

(0.095) (2.638) (0.101) (0.013)

Hor 3 -0.164 1.189 -0.061 -0.014

(0.094) (3.168) (0.102) (0.014)

Hor 4 -0.036 5.039 -0.131 -0.005

(0.095) (2.875) (0.104) (0.013)

Hor 5 -0.106 6.126 -0.181 -0.021

(0.095) (2.685) (0.108) (0.013)

Hor 6 -0.206 5.635 -0.368 -0.031

(0.100) (2.838) (0.115) (0.014)

Hor 7 -0.169 2.585 -0.557 -0.024

(0.102) (2.994) (0.121) (0.013)

We also formulated hypotheses (3 and 4) about factors that might influence the

value of α and β. To find out to what extent these hypotheses are valid for our data,

we have to take a look at the posterior means for the parameters in the second level of

29



the model, that is, γα, γβ , ψα, ψβ . Part of the estimated coefficients can be found in

Table 2. First of all, we see support for part a of Hypothesis 4, that is, the average size

of sales is positively related with α in (2). We find very strong posterior evidence that

both the probability that α∗ is different from 0 and the level of α† increase with the

average size of sales.

We see that sales volatility has an opposite effect. The higher the volatility, the

lower the probability that α∗ differs from 0 and the lower the value of α†. For both

effects there is very strong posterior evidence. This contradicts part b of Hypothesis 4,

as we expected that more volatile sales would make a manager to overpredict in order

to prevent running out of stock.

Furthermore, we see that forecasts with a horizon of 2 to 7 months have on average

a lower probability that α∗ equals 0 as compared to forecasts with a horizon of just 1

month, with the horizon of 6 months having the lowest estimated coefficient. We also

see a parabolic effect of the forecast horizon on α†, with the highest α† for forecasts

for 5 and 6 months ahead. Although this seems to contradict part c of Hypothesis 4,

for this data these results are perfectly explainable. The management of the firm from

which we use the forecasting and sales figures informed us that the 6-month horizon

is an important planning horizon. This importance probably results in a suboptimal

value for α.

For β we find a significantly negative effect of average sales volume on the prob-

ability that β∗ is 0 and also a significantly negative relation between average sales

volume and β†, both supporting Hypothesis 3a. However, we have to keep in mind

that Hypothesis 3 was based on Hypothesis 1b stating that β† would be smaller than

0, and that this hypothesis has already been shown to be incorrect: β† is often larger

than 0. Thus, as long as β† is smaller than 0, it moves in the expected direction when

average sales volume increases, but when β† is larger than 0, it moves in the same, but

now unexpected direction. We calculated the average of (β†i )
2 differentiated to each

of the variables in zi to see if the variables had an influence on β†i moving away or

towards 0, but found only insignificant results. This confirms that the found relations
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are robust to a change of sign of β†i .

An increase in the volatility of sales results in a higher probability that β∗ equals 0

and in an increase in β†. As with the influence on α, this is not in line with what we

hypothesized.

Finally, we see that the longer the forecast horizon the smaller the probability that

β∗ = 0 and that β† is smallest for a forecast horizon of 6 months. This is in line with

part c of Hypothesis 3, again modified for this data set, because the 6-month horizon

is an important planning horizon.

The dummy variables for countries (and thus managers) and for medicine cate-

gories included in zi are often significantly related to the four dependent variables4.

Thus, on the basis of these results specific managers can be addressed when their α

and/or β values are not optimal for (part of) their forecasts and can be given feedback.

We are also interested in the correlation between MF and I in (2). Hypothesis 5

stated that expert forecasts are often related to external factors which are also related

to the model forecasts (endogeneity of MF in (2)). With Hypothesis 6 we stated that

a lower or more negative correlation between MF and I in (2) might be beneficial

to forecast accuracy. In order to evaluate the correlation between MF and I of the

expert forecasts we first have to address two issues. First, we need to know if the

instrument, which is the most recent model forecast error known at the moment of

forecast creation, is a relevant instrument. We find that in more than 70% of the cases

the posterior mean for δ in (22) is significantly different from 0, so we can conclude

that we used a fairly relevant instrument.

Second, we need to know if the instrument is a valid instrument, that is, is it un-

related to expert forecasts? To that extent, we calculate the correlation between the

estimated error terms in the first level of the model, εi,t, and the instrument. We find

that the correlation in 2451 cases is < −0.3 and in 572 cases is > 0.3. Thus, the

estimated β†i might be over- or underestimated and this might give a false impression

4The estimated coefficients for these dummy variables are not shown here, but are available upon

request.
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on what it is the managers do. However, it is hard to find a better instrumental variable

for this data set and the validity is certainly not completely rejected.

Figure 5: Histogram of posterior means for ρΩ,i, correlation between εi,t in (23) and ζi,t in (24), for

i = 1, ..., N .

The endogeneity in (2) can now be measured by the correlation in the posterior

mean for Ωi, that is, by the posterior mean for ρΩ,i = Ωi(1, 2)/
√

Ωi(1, 1)Ωi(2, 2) for

all i. The estimated correlations are depicted in Figure 5. The result is surprising. We

might expect positive correlations, indicating that factors influencing model forecasts

influence the expert forecasts in the same way, resulting in double counting. However,

we mainly find negative correlations (in almost 90% of the cases). This would mean

that factors influencing the level of model forecasts have an opposite effect on expert

forecasts. In Hypothesis 6c we stated that such a negative correlation would benefit the

forecast improvement of the expert forecasts over that of the model forecasts. In sum,

it seems that the experts are properly adjusting model forecasts, but to what extent this

is useful will be discussed in the next section.

32



Figure 6: Histogram of the correlations between realized sales Ri,t and the posterior mean for εi,t

from (15), for i = 1, ..., N .

Finally, it might be interesting to take a look at the correlation between the esti-

mated error terms of the first level of the model, εi,t, and realized sales, as we have

seen that this influences the forecast accuracy too. A histogram of these correlations

can be found in Figure 6. The correlations are pretty much symmetrically centered

around 0, with just a little more positive correlations than negative. This time, it would

be preferred that the correlations is positive, see equation (4) and Hypothesis 6. How-

ever, the more model forecasts and realized values are related, the more difficult it is

to add intuition to the model forecasts that is negatively related to model forecasts and

positively related to the realized values. As we almost always see a negative endo-

geneity, this might explain why we also often see a negative relation between realized

values and intuition. Probably the managers too often wrongly correct the model fore-

casts using factors also influencing these model forecasts, resulting in intuition I being

negatively correlated with the realized values R.
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5.3 Forecast Evaluation

In Table 3 we give the estimated coefficients of model (30). First of all, we see that

an expert who produces forecasts with α = 0, β = 1 and no correlation between the

residuals in (2) and the model forecasts and between the residuals in (2) and realized

sales, performs on average better than the model. This can be seen from the sum of

the estimated constant c and the estimated coefficients for the variables No intercept

and Relation MF being positive. An expert who produces forecasts with α different

from 0, β different from 1, but not larger than approximately 1.51 or smaller than

approximately 0.49 and the correlations equal to 0, produces on average less accurate

forecasts than the model. These values for the variables, that is, No intercept, Relation

MF, Endogeneity and Intuition equal to 0, Size intercept positively valued and Size

relation MF smaller than 0.51, multiplied by the estimated coefficients and summed

up together with the estimated constant c, result in a negative DRMSPE.

Table 3: Estimated coefficients of the forecast evaluation model (30). Coefficients that are significantly

different from 0 at the 5%-level are indicated by ‘*’.

Estimated

Variable coefficient

c -454.136*

No intercept 46.071

Size intercept -0.067*

Relation MF 459.968*

Size relation MF 887.618*

Endogeneity -345.276*

Intuition 830.285*

A decrease in the probability that α = α∗ = 0 or in the probability that β∗ = 0

(equivalent to β = 1) both decrease on average the forecast accuracy of the expert fore-
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casts as compared to the model forecasts. This confirms parts a and b of Hypothesis 6.

Furthermore, we see a significantly negative coefficient for the size of the parameter

α† which supports the second part of Hypothesis 6a.

The fifth estimated coefficient is not in line with Hypothesis 6b. According to

this estimated coefficient, β† moving away from 0 results on average in an increasing

DRMSPE. Note however, that the variable ‘Size relation MF’ has to be larger than

0.518 in order to make up for the loss in accuracy due to S 6= 1. DRMSPE is on

average approximately 460 higher for S = 1 than for S = 0, ceteris paribus, and

only when |β†i (1 − Si)| > 0.518 is this same level of forecast accuracy improvement

achieved. Of the 7250 cases, this happens only 139 times (looking at posterior means

for the parameters), which is in less than 2% of the cases, thus in general it is still more

beneficial to have β = 1 than β 6= 1.

The fact that values of β further away from 1 result in more accurate forecasts as

compared to model forecasts than values of β closer to 1, has probably to do with the

correlation between the optimal β and the bias and relative bias in model forecasts and

the endogeneity of the model forecasts in (2). This is confirmed by the fact that we

found a positive correlation between the optimal value of βi and the estimated β∗i in

the previous section.

The next two estimated coefficients, corresponding to the correlation of intuition

with model forecasts and of intuition with realized values, have the expected signs

again. Hypotheses 6c and 6d get support as we find that a lower correlation between

MF and I increases the forecast accuracy of expert forecasts and a higher correla-

tion between intuition and realized sales increases the forecast accuracy of the expert

forecasts.

Recall though from Section 3 that it is probably hard to achieve both a negative (or

lower) correlation between intuition and model forecasts and a positive (or higher) cor-

relation between intuition and realized values, as model forecasts and realized values

should be strongly related. Therefore we are interested to see how often the intuition

of the expert increases the forecast accuracy relative to the model forecasts. According
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to the model this is the case when the sum of the variables Endogeneity and Intuition

both multiplied by its estimated coefficient is positive. We find this to be true in 77%

of the cases.

We can also look at (12), where we presented the theoretical condition under which

intuition improves forecast accuracy. To test how often this is the case for our data we

use 2[Cov(Ri,t, εi,t)−βCov(MFi,t, εi,t)] > Var(εi,t) for all i, with posterior means for

εi,t. We find that only in 953 cases this inequality holds, and thus only in approximately

13% of the cases is intuition helpful in improving forecast accuracy.

We can conclude, at least for this data set, that the rules to follow for an expert

formulated in Hypothesis 6 are a bit too simple and general. There seem to be experts

who do recognize the situations in which the model forecasts are (relatively) biased

and who are able to correct, at least partly, this bias. But, on average, an expert who

does follow the rules formulated in Hypothesis 6 does perform better than the model

and there are not many experts able to improve on the performance of this set of rules

by choosing alternative values for α and β. Furthermore, it seems hard to improve the

model forecasts by adding intuition.

6 Conclusions

Expert forecasts, created once statistical model forecasts are available, are quite often

discussed in the literature, but still not much is known about how expert forecasts are

created. Often the expert forecasts are analyzed on their forecasting performance with-

out a proper analysis of what it is the experts actually did. In this paper we formulated

hypotheses about the behavior of experts and about the impact of that behavior on

forecast accuracy. We proposed a model to find out how expert forecasts are created

in relation to model forecasts and to find out which factors influence this behavior.

We proposed a novel and innovative two-level Hierarchical Bayes model in which we

also take into account that the model forecasts might be endogenous. The observed

behavior could then be linked to forecasting performance.
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We applied this model to a large data set consisting of model and expert forecasts

and realizations of SKU-level sales data. The results for our data set were interesting

and sometimes quite surprising. We found that in about one third of our expert fore-

casts there is a structural upward bias. There might be a bias in expert forecasts as

compared to model forecasts, but at first it is unclear whether this is because the expert

adds to the model forecasts or because the expert does not look at the model forecasts

and creates own independent forecasts. We found that in approximately 37% of the

cases there is a one-to-one relation between model forecasts and expert forecasts. In

50% of the remaining cases the expert reacts excessively to the model forecasts and in

the other 50% of the remaining cases the expert only partially takes the model forecasts

into account, if at all.

The intercept and the coefficient in the linear relation between expert forecasts and

model forecasts were significantly influenced by factors such as average sales volume,

sales volatility and forecasting horizon.

We furthermore found that the experts often take other factors into account that

also influence the model forecasts. However, often this makes the expert forecasts to

deviate in the opposite direction than that the model forecasts were influenced. Thus,

we often find endogeneity of the model forecasts, or, to be more precise, a negative cor-

relation between the model forecasts and the error terms in the linear relation between

expert forecasts and model forecasts. Finally, we found different kinds of relations

between the intuition of the experts (other factors than model forecasts influencing the

expert forecasts) and the realized sales values.

Theoretically, when the model forecasts are unbiased and relative unbiased as com-

pared to the realized values (see Section 3), then expert forecasts which are related

to model forecasts in a linear relation with coefficient equal to 1 and intercept equal

to 0, would be most accurate as long as intuition and model forecasts are unrelated.

However, we find in our data set that the conditions for this (unbiasedness and rela-

tive unbiasedness of the model forecasts) are not always met, and that some experts

are probably able to recognize this and correct for it. Furthermore, as soon as endo-
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geneity of the model forecasts is introduced (correlation between intuition and model

forecasts), things get more complicated and it is harder to draw straightforward con-

clusions about the optimal values of the coefficients and of the correlation between the

residuals and model forecasts and of the correlation between the residuals and realized

values. In general, experts who follow some simple rules, which optimize forecast

performance under optimal circumstances, outperform the model forecasts in our data

set. However, some experts who deviate from these rules, especially those for which

β is further away from 1 and for which the error terms are negatively related to the

model forecasts, also perform very well. We found that this has probably to do with

the fact that these experts have to deal with poor model forecasts.

There are three main challenges in this area of research. The first is to apply the

techniques described in this paper to other data sets. Our results are interesting and

very informative, but are limited to the sales data of one company. It would be worth-

while using (sales) data from other companies or from other research areas, such as

macroeconomics, to see if our results extend to other situations too.

The second challenge is to find and use appropriate instruments to deal with the

endogeneity of model forecasts. Although we seemed to have done a pretty good job

in our data set, the instrument we used is probably not perfect and this might influence

the conclusions that we have drawn. In new research the most difficult task, besides

finding a useful data set, is probably to find appropriate instruments.

Finally, in many forecasting situations only expert forecasts are available to the re-

searcher and no model forecasts. It would be interesting to investigate ways to retrieve

these model forecasts from the available data.
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Appendices

A Typical data format

In this appendix we describe the data format as assumed in Section 4 and which is

typical for forecast practices in which we have forecasts for multiple time periods and

multiple variables. The data as described and used in Section 5 also follow this format.

Let X be a general notation for the variables MF (model forecast), EF (expert fore-

cast) and R (realized value). After cleaning up the data set (in which for example all

forecasts for which no realizations are available are removed) the typical data format

for X is as in Table A.1.

The first four columns give the characteristics of X in the columns after that. The

first column indicates which expert m receives the model forecasts and creates the

expert forecasts. In case X = R it indicates which expert created the expert forecasts

for the realizations in that row. In total there are M experts.

The second column indicates for which variable (possibly product) the forecasts are

created or to which variable (product) the realized values belong. Although different

experts might produce forecasts, for example, for the same product in, for example,

different geographical area’s, we gave these variables a different index number j for

the different experts and we analyze them as different variables. Thus, for a given

forecast horizon (column 3) each variable number is unique and that variable is being

forecasted by only one specific expert. Furthermore, the variables might be grouped

into different (product) groups. This would result in an extra column with an index

indicating to which group the variable belongs, but we did not depict such a column

in Table A.1. The first expert is responsible for J1 variables and in total there are J

variables being forecasted.

The third column shows for X = MF and X = EF for which forecast horizon

the forecasts are created and forX = R for which forecast horizon the belonging fore-

casts are created. Hj denotes the longest forecast horizon for product j. For different
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products, the largest forecast horizon might be different. Thus for the first product H1

might be 7, while for the second product H2 might be 5.

The fourth column sums up the information in the first three columns by a unique

index number and indicates the cases. One case is one of the time series, thus one line

in the table, and encompasses the forecasts and the realizations of those forecasts for

which the expert forecasts are created by one and the same expert and for which the

forecasts are created for one and the same product and over one and the same forecast

horizon. The index i is an integer between 1 and N , the total number of cases.

Columns 5 to T + 4 give the forecasts as created in period t or the realizations

belonging to those forecasts, thus the realizations in period t+ h. Thus the first entry,

X1,1, gives the model forecast or expert forecast created in period t = 1 for period 2 or

for X = R it gives the realized value of period 2. The entry below that, X2,1 gives the

model forecast or expert forecast created in period t = 1 for period 3 or for X = R it

gives the realized value of period 3. For the table with X = R the rows with different

h, but the same j contain the same values, but in different columns. Thus the second

row in Table A.1 is the same as the first row, but the entries are shifted one column to

the left and the third row is the same as the second row, but again the entries are shifted

one column to the left and so on.

The maximum number of observations for a case is T , but as we have missing

observations for some i, this results in Ti observations for case i.

Finally, note that the matrix with the values for the instrumental variable V as in

(22) has the same format as for EF , MF and R. Vi,t is the instrumental variable value

for MFi,t, where Vi,t for our case study is as described in Section 5.1.

B Parameter estimation

In this appendix we describe the method used to estimate the parameters of the two-

level Hierarchical Bayes model described in Section 4.1. The Markov Chain Monte

Carlo methodology is used, in particular, the Gibbs sampling technique in combination

44



with data augmentation.

Model parameters sampled are θ = ({β†i }Ni=1, {α
†
i}Ni=1, {µi}Ni=1, {δi}Ni=1, γ

′
α, γ

′
β, ψ

′
α,

ψ′β, {Ωi}Ni=1, σ
2
ξ , σ

2
η). The latent variables Pi, Si, qi and wi, i = 1, ..., N are sampled

alongside with the model parameters.

We apply in this appendix the more general notation yi,t for EFi,t and xi,t for

MFi,t. Furthermore, let yi be a Ti × 1 vector (yi,1, ..., yi,Ti)
′ with a similar definition

for xi and vi.

To derive the likelihood function, we first consider the density function of the data

yi = {yi,t}Tit=1 and xi = {xi,t}Tit=1 given Pi, Si and θ:

fkl,i = f(yi, xi|Pi = k, Si = l, θ) =

Ti∏
t=1

Φ(yi,t, xi,t|mkl,i,t,Ωi) (32)

where Φ is the multivariate normal density function, k and l can take values 0 and 1,

mkl,i,t is the mean vector when Pi = k and Si = l and Ωi is the covariance matrix. We

have

m11,i,t = (xi,t, µi + δivi,t)
′

m01,i,t = (α†i + xi,t, µi + δivi,t)
′

m10,i,t = (xi,t + β†i xi,t, µi + δivi,t)
′

m00,i,t = (α†i + xi,t + β†i xi,t, µi + δivi,t)
′. (33)

The complete data likelihood is then

f({yi}Ni=1, {xi}Ni=1, {Pi}Ni=1, {Si}Ni=1|θ) =
N∏
i=1

(f11,iκiλi)
PiSi

(f01,i(1− κi)λi)(1−Pi)Si(f10,iκi(1− λi))Pi(1−Si)

(f00,i(1− κi)(1− λi))(1−Pi)(1−Si)φ(αi|z′iγα, σ2
ξ )φ(βi|z′iγβ, σ2

η), (34)

with φ the normal density function.

We impose flat priors on most parameters. For the covariance of εi,t and ζi,t,

thus for Ωi, we use an inverted Wishart prior with prΩ,sh = 1 degree of freedom
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and scale parameter prΩ,sc = 100 ∗ I2, where Im denotes an m-dimensional iden-

tity matrix. For σ2
ξ and σ2

η , we use an inverted Gamma-2 prior with shape parameter

prσ2
ξ ,sh

= prσ2
η ,sh

= 1 and scale parameters prσ2
ξ ,sc

= 0.001 and prσ2
η ,sc

= 1. Fi-

nally, for ψα and ψβ we impose normal priors with mean 0 and covariance matrix

prψα = prψα = 4Ig, where g is the number of variables in zi. These priors are imposed

to improve the performance of the algorithm and to reduce the number of iterations

needed for convergence, but the influence of these priors on the posterior distribution

is only marginal.

B.1 Sampling of Pi and Si

The full conditional posterior distribution of Pi for i = 1, ..., N is given by

Pr[Pi = 1|θ, data] =
κi(f11,i + f10,i)

κi(f11,i + f10,i) + (1− κi)(f01,i + f00,i)
, (35)

and hence we can sample Pi from a Bernoulli distribution with parameters n = 1 and

p = Pr[Pi = 1|θ, data]. Si can also be sampled from a Bernoulli distribution with

n = 1, but with p = Pr[Si = 1|θ, data], where

Pr[Si = 1|θ, data] =
λi(f11,i + f01,i)

λi(f11,i + f01,i) + (1− λi)(f10,i + f00,i)
. (36)

B.2 Sampling of qi and wi

The full conditional posterior distribution of qi is

qi|θ, data ∼

N(z′iψα, 1)I[qi > 0] if Pi = 1

N(z′iψα, 1)I[qi ≤ 0] if Pi = 0,

(37)

which is in both cases the pdf of a truncated normal distribution. The inverse CDF

technique is used to sample qi. The sampling of wi is analogous to the sampling of qi,

but then with ψβ instead of ψα, with wi instead of qi and with Si instead of Pi.
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B.3 Sampling of ψα and ψβ

To sample ψα, we notice that conditional on {zi}Ni=1 and on the sampled {qi}Ni=1 we

have qi = z′iψα + νi, with νi ∼ N(0, 1). Thus, ψα can be sampled from a multi-

variate normal distribution with mean (
∑N

i=1 z
′
iz
′
i + pr−1

ψα
)−1(

∑N
i=1 ziqi) and variance

(
∑N

i=1 ziz
′
i + pr−1

ψα
)−1. Following the same line of thought, ψβ can be sampled from

a multivariate normal distribution with mean (
∑N

i=1 z
′
iz
′
i + pr−1

ψβ
)−1(

∑N
i=1 ziwi) and

variance (
∑N

i=1 ziz
′
i + pr−1

ψβ
)−1.

B.4 Sampling of µi and δi

To derive the full conditional posterior of µi and δi, we need to take into account that

(εi,t, ζi,t)
′ ∼MN(0,Ωi). We therefore write,

xi,t = µi + δivi,t + ρ(yi,t − α†i (1− Pi)− xi,t − β
†
i xi,t(1− Si)) + ei,t, (38)

with ρ = σεζ,i/σ
2
ε,i and ei,t ∼ N(0, σ2

e,i), where σ2
e,i = σ2

ζ,i − σ2
εζ,i/σ

2
ε,i. Now µi and

δi can be sampled from a multivariate normal distribution with mean (X̃ ′iX̃i)
−1(X̃ ′iỹi)

and covariance σ2
e,i(X̃

′
iX̃i)

−1, where X̃i is the Ti × 2 matrix containing the constant

and vi and ỹi is the vector containing for every t in i ỹi,t = xi,t− ρ(yi,t−α†i (1−Pi)−

xi,t − β†i xi,t(1− Si)).

B.5 Sampling of Ωi

Conditional on the other parameters, the covariance matrix Ωi can be sampled from

an inverted Wishart distribution with scale parameter
∑Ti

t=1(εi,t, ζi,t)
′(εi,t, ζi,t) + prΩ,sc

and degrees of freedom Ti + prΩsh, with εi,t = yi,t−α†i (1−Pi)−xi,t−β
†
i xi,t(1−Si)

and with ζi,t = xi,t − µi − δivi,t.

B.6 Sampling of γα and γβ

We have α†i = z′iγα + ξi, ∀Pi = 0 and with ξi ∼ N(0, σ2
ξ ). Thus, γα

can be sampled from a multivariate normal distribution with mean (
∑N

i=1 ziz
′
i(1 −
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Pi))
−1(
∑N

i=1 ziα
†
i (1− Pi)) and variance σ2

ξ (
∑N

i=1 ziz
′
i(1− Pi))−1. Similarly, we have

β†i = z′iγβ + ηi, ∀Si = 0, with ηi ∼ N(0, σ2
η). Thus, γβ can be sampled from a multi-

variate normal distribution with mean (
∑N

i=1 ziz
′
i(1− Si))−1(

∑N
i=1 ziβ

†
i (1− Si)) and

variance σ2
η(
∑N

i=1 ziz
′
i(1− Si))−1.

B.7 Sampling of σ2ξ and σ2η

Conditional on the data and the other parameters, σ2
ξ has an inverted Gamma-2 dis-

tribution with scale parameter
∑N

t=1 ξ
2
i (1 − Pi) + prσ2

ξ ,sc
and degrees of freedom∑N

i=1(1 − Pi) + prσ2
ξ ,sh

, where we define ξi = α†i − z′iγα. To sample σ2
ξ , we use

that ∑N
t=1 ξ

2
i (1− Pi) + prσ2

ξ ,sc

σ2
ξ

∼ χ2

(
N∑
i=1

(1− Pi) + prσ2
ξ ,sh

)
. (39)

The sampling of σ2
η is analogous to the sampling of σ2

ξ . Thus we have, conditional on

the other parameters and data,∑N
i=1 η

2
i (1− Si) + prσ2

η ,sc

σ2
η

∼ χ2

(
N∑
i=1

(1− Si) + prσ2
η ,sh

)
, (40)

where ηi = β†i − z′iγβ .

B.8 Sampling of α†i

To sample α†i we consider ∀Pi = 0,

yi,t = α†i + xi,t + β†i xi,t(1− Si) + ρ(xi,t − µi − δivi,t) + ei,t, (41)

with ρ = σεζ,i/σ
2
ζ,i and ei,t ∼ N(0, σ2

e,i), where σ2
e,i = σ2

ε,i − σ2
εζ,i/σ

2
ζ,i. Now we

consider, again ∀Pi = 0,

σ−1
e,i (yi,t − xi,t − βixi,t(1− Si)− ρ(xi,t − µi − δivi,t)) = σ−1

e,i α
†
i + σ−1

e,i ei,t

σ−1
ξ z′iγα = σ−1

ξ α†i + σ−1
ξ ξi (42)

48



Hence we have created a linear regression model with unit variances which can be

written in vector notation

B = Aα†i + d, (43)

with d ∼ N(0, I) and where

B = (σ−1
e,i (yi,1 − xi,1 − βixi,1(1− Si)− ρ(xi,1 − µi − δivi,1),

σ−1
e,i (yi,2 − xi,2 − βixi,2(1− Si)− ρ(xi,2 − µi − δivi,2), ...,

σ−1
e,i (yi,Ti − xi,Ti − βixi,Ti(1− Si)− ρ(xi,Ti − µi − δivi,Ti),

σ−1
ξ z′iγα)′

A = (σ−1
e,i , σ

−1
e,i , ..., σ

−1
e,i , σ

−1
ξ )′. (44)

Hence ∀Pi = 0, α†i can be sampled from a normal distribution with mean

(A′A)−1(A′B) and variance (A′A)−1.

∀Pi = 1 we sample α†i from a normal distribution with mean z′iγα and variance σ2
ξ .

B.9 Sampling of β†i

To sample β†i we consider ∀Si = 0,

yi,t = α†i (1− Pi) + xi,t + β†i xi,t + ρ(xi,t − µi − δivi,t) + ei,t, (45)

with ρ and ei,t as defined above for the sampling of α†i . Now the sampling of β†i is

analogous to the sampling of α†i . So we consider ∀Si = 0,

σ−1
e,i (yi,t − α†i (1− Pi)− xi,t − ρ(xi,t − µi − δivi,t)) = β†i (σ

−1
e,i xi,t) + σ−1

e,i ei,t

σ−1
η z′iγβ = σ−1

η β†i + σ−1
η ηi, (46)

and we have created a linear regression model with unit variances again and β†i can be

sampled from a normal distribution.

Again, ∀Si = 1 we sample β†i from a normal distribution with mean z′iγβ and variance

σ2
η .
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