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Backtesting Value-at-Risk Using Forecasts for Multiple

Horizons, a Comment on the Forecast Rationality Tests of

A.J. Patton and A. Timmermann1
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Abstract

Patton and Timmermann (2011, “Forecast Rationality Tests Based on

Multi-Horizon Bounds”, Journal of Business & Economic Statistics, forth-

coming) propose a set of useful tests for forecast rationality or optimality

under squared error loss, including an easily implemented test based on a re-

gression that only involves (long-horizon and short-horizon) forecasts and no

observations on the target variable. We propose an extension, a simulation-

based procedure that takes into account the presence of errors in parameter

estimates. This procedure can also be applied in the field of ‘backtesting’

models for Value-at-Risk. Applications to simple AR and ARCH time series

models show that its power in detecting certain misspecifications is larger than

the power of well-known tests for correct Unconditional Coverage and Condi-

tional Coverage.
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1 Introduction

Forecast rationality under squared error loss implies various bounds on second mo-

ments of the forecasts across different horizons. For example, the mean squared

forecast error should be non-decreasing in the horizon. Patton and Timmermann

(2011) propose rationality tests based on such restrictions, including interesting new

tests that can be conducted without having data on the target variable; that is,

these tests can be performed by checking only the ‘internal consistency’ of the ‘term

structure’ of forecasts.

One of their novel tests that is easily implemented and that performs well in

Monte Carlo simulations (in the sense that the actual size is equal to the nominal

size and that the power is high) considers the hypothesis of optimal forecast revision

in the context of a linear regression of the most recent forecast on the long-horizon

forecast and the sequence of interim forecast revisions. That is, it considers the

following regression

Ŷt|t−1 = α̃+ β̃H Ŷt|t−H +
H−1∑
j=2

β̃j

(
Ŷt|t−j − Ŷt|t−j−1

)
+ vt, (1)

where the null hypothesis of ‘rationality’ or ‘optimal revision’ corresponds to the

hypothesis

H0 : α̃ = 0 ∩ β̃2 = . . . β̃H = 1. (2)

Note that the time of the variable to be predicted is ‘fixed’ at time t, while the

regressors are the forecasts for this time t ‘running backwards’, made at time t− 1

to t−H.

For a simple interpretation of the hypothesis, we rewrite the optimal revision

regression (1) as

Ŷt|t−1 − Ŷt|t−2 = α̃+ γ̃H Ŷt|t−H +
H−1∑
j=2

γ̃j

(
Ŷt|t−j − Ŷt|t−j−1

)
+ vt, (3)

2



with γ̃h ≡ β̃h−1 (h = 2, . . . , H). In (3) the null hypothesis of ‘rationality’ or ‘optimal

revision’ obviously corresponds to the hypothesis

H0 : α̃ = 0 ∩ γ̃2 = . . . γ̃H = 0. (4)

One of the attractive properties of this test proposed by Patton and Timmermann

(2011) is that it has a clear intuitive interpretation: under the null hypothesis of

‘no expected forecast correction’ the last update of the forecast, Ŷt|t−1 − Ŷt|t−2, does

not need to correct a bias of Ŷt|t−2 (α̃ = 0), or the previous updates Ŷt|t−j − Ŷt|t−j−1

(γ̃j = 0 for j = 2, . . . , H − 1), or the long-horizon forecast Ŷt|t−H (γ̃H = 0).

In this paper we address several points. Our main point is to exploit the fact

that no actually observed target variable is required and to extend the analysis of

Patton and Timmermann to the case of risk measures such as Value-at-Risk and

Expected Shortfall for which we never observe the true value. The tests can also be

used for volatility or variance measures.

The remainder of this paper is organized as follows. In Section 2 we propose an

extension of the optimal revision test of Patton and Timmermann (2011), a novel

simulation based procedure for testing the validity of a model for forecasting Value-

at-Risk. We introduce two versions of the test: (i) for both the validity of the model

and the estimated parameters, and (ii) for the validity of the model allowing for

estimation errors in the parameters. We show that the test may involve highly non-

Gaussian errors, in which case our simulation based testing procedure still performs

well. Applications to simple AR and ARCH time series models show that its power

in detecting certain misspecifications is larger than the power of well-known tests for

correct Unconditional Coverage and Conditional Coverage. In section 3 we present

the issues that one encounters when applying the test to an in-sample window of data

for which the model is estimated. Remarks about Bayesian testing of inequalities

can be found in Section 4. Section 5 concludes.
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2 Backtesting Value-at-Risk using forecasts for mul-

tiple horizons: a test for optimal revision

Consider the following example in which the target variable evolves according to a

stationary AR(2) process

Yt = ϕ0 + ϕ1 Yt−1 + ϕ2 Yt−2 + εt, εt ∼ iidN(0, σ2) (5)

with ϕ0 = 0, ϕ1 = 0.5, σ2 = 1. For ϕ2 we consider several values: ϕ2 = 0.0, 0.1, 0.2, 0.3.

We estimate a simple AR(1) model, (5) with ϕ2 = 0. We simulate 1000 data sets of

1500 observations, where the first 1000 in-sample observations are used for (OLS)

estimation of the parameters θ = (ϕ0, ϕ1, σ
2)′ and the last 500 out-of-sample obser-

vations are used for evaluation of Value-at-Risk forecasts. Define V aR95%
t|t−h as the

5% quantile of the predicted distribution of Yt at time t− h (h = 1, 2, . . .):

V aR95%
t|t−h = Ŷt|t−h + σ̂Φ−1(0.05) with Ŷt|t−h = ϕ̂0

1− ϕ̂h
1

1− ϕ̂1

+ ϕ̂h
1 Yt−h.

These V aR95%
t|t−h take the role of Ŷt|t−h in (3), which thus becomes:

V aR95%
t|t−1−V aR95%

t|t−2 = α̃+ γ̃H V aR95%
t|t−H +

H−1∑
j=2

γ̃j

(
V aR95%

t|t−j − V aR95%
t|t−j−1

)
+ vt. (6)

Our null hypothesis is not

H0: forecast rationality or optimality under squared error loss (7)

but

H0: the estimated model for VaR prediction is correct. (8)

That is, we use the test regression (6) without requiring the assumption of squared

error loss. The price for this is that, to the best of our knowledge, one generally has to

use simulation from the assumed model to generate the distribution of the F-statistic

for the null hypothesis in (4). However, for the AR(1) model with i.i.d. N(0, σ2)
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errors, the errors in (6) are given by vt = ϕ1εt−1 ∼ i.i.d. N(0, ϕ2
1 σ

2), so that under

H0 the F-statistic has its standard F-distribution. Since σ̂Φ−1(0.05) is constant,

applying the optimal revision regression test to V aR95%
t|t−h amounts to the test for

Ŷt|t−h.

Results for the test (with H = 3) are presented in the first column of Table

1. Even if the AR(1) model is true (ϕ2 = 0.0), then the percentage of rejections

(at a nominal size of 5%) is 11.6% (with a numerical standard error of 1.0%). The

obvious reason is that there are errors in the parameter estimates. The Monte Carlo

simulation by Patton and Timmermann (2011) (with nominal size of 10%) does not

suffer from this phenomenon, as they assume that the process and its parameter

values are known to forecasters.

If we want to test for the validity of the model, taking into account the presence

of errors in parameter estimates, then we must adapt (i.e. increase) the critical value.

We propose the following method:
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Procedure for optimal revision testing taking into account errors in pa-

rameter estimates:

step 1. Compute parameter estimates θ̂ in model for observed time series y (e.g. AR(1)

model with θ = (ϕ0, ϕ1, σ
2)′); generate forecasts (1, 2, . . . , H steps ahead);

compute F-statistic F (y) in optimal revision regression;

step 2. Simulate N (e.g. N = 1000) data series y(i) (i = 1, . . . , N) – with same num-

ber of observations as observed time series y – from estimated model with

parameters θ̂;

step 3. Compute parameter estimates θ̂(i) for each simulated data series y(i) (i =

1, . . . , N);

step 4. Generate forecasts (1, 2, . . . , H steps ahead) for each estimated model with

parameters θ̂(i) and data y(i) (i = 1, . . . , N);

step 5. Compute F-statistic F (y(i)) (i = 1, . . . , N) in optimal revision regression for

each set of forecasts from step 4;

step 6. Compare F (y) with the desired percentile of the sample of F-statistics under

H0 F (y(i)) (i = 1, . . . , N) from step 5.

Results for this adapted test (with H = 3) are in the second column of Table

1. For ϕ2 = 0 the percentage of rejections (at a nominal size of 5%) is 4.6% (with

a numerical standard error of 0.7%), so that we have no evidence that the size is

distorted.

In order to assess the power of the test, we compare the performance to the

well-known Unconditional Coverage (UC) and Conditional Coverage (CC) tests for
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the 95% and 99% Value-at-Risk; see Kupiec (1995) and Christoffersen (1998). In

this example, for the optimal revision regression the test results are the same for

each 100(1 − α)% Value-at-Risk with α ∈ (0, 1). The percentage of rejections for

ϕ2 = 0.1, 0.2, 0.3 is clearly larger for the optimal revision regression than for the UC

and CC tests. Intuitively, this makes sense, since the optimal revision regression uses

a large set of forecasts for multiple horizons, whereas the UC and CC tests are only

based on the limited information in the set of 0/1 variables that indicate whether

the predicted Value-at-Risk is exceeded by the actual observation. The nominal

size for the UC and CC tests is chosen somewhat larger than 5%, as the discrete

distributions of the test statistics do not allow for an exact nominal size of 5%. The

nominal size is 5.4% and 5.0% (5.3% and 6.4%) in the UC and CC tests for the

95% VaR (99% VaR). The critical values for the UC and CC tests are computed by

simulating 100000 series of i.i.d. 0/1 variables under H0, as the asymptotically valid

χ2 distributions may be rather poor approximations in finite samples, especially for

the CC test.

Next, consider the example in which the target variable evolves according to a sta-

tionary ARCH(2) process

Yt = εt
√

σ2
t εt ∼ iidN(0, 1)

σ2
t = ϕ0 + ϕ1 Y

2
t−1 + ϕ2 Y

2
t−2 (9)

with ϕ0 = 0.5 and ϕ1 = 0.5. For ϕ2 we consider several values: ϕ2 = 0.0, 0.1, 0.2, 0.3.

We estimate a simple ARCH(1) model, (9) with ϕ2 = 0. Again, we simulate 1000

data sets of 1500 observations, where the first 1000 in-sample observations are used

for estimation of the parameters ϕ0, ϕ1 and the last 500 out-of-sample observations
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are used for evaluation of Value-at-Risk forecasts

V aR95%
t|t−h =

√
σ̂2
t|t−h Φ

−1(0.05) with σ̂2
t|t−h = ϕ̂0

1− ϕ̂h
1

1− ϕ̂1

+ ϕ̂h
1 Y 2

t−h.

Applying the optimal revision regression test to V aR95%
t|t−h (or any other 100(1−α)%

VaR with α ∈ (0, 1)) amounts to the test for the standard deviation
√

σ̂2
t|t−h. In this

case we cannot even use the critical value from the standard F-distribution for the

first, ‘strict’ optimal revision test (of validity of the model including the parameter

values) for two reasons. First, the regressors in (6) may even have small explanatory

power for the regressand if the model is correct. For example, in the ARCH(1) model

the regressors have no explanatory power for the regressand in test regression (3)

for the variance σ̂2
t|t−h, but since the VaR is proportional to the standard deviation√

σ̂2
t|t−h this is not necessarily true. Second, the errors vt in the optimal revision

regression (6) can be substantially non-Gaussian, having a negatively skewed and

fat-tailed distribution. The histogram in the top panel of Figure 1 shows the nega-

tive skewness of the distribution of the errors vt for one data set simulated from the

ARCH(1) model. This skewness is caused by the negative skewness of the distribu-

tion of the regressand (V aR95%
t|t−1 − V aR95%

t|t−2) in (6); the latter is illustrated by the

histogram in the middle panel. The bottom panel shows the reason for the negative

skewness of (V aR95%
t|t−1−V aR95%

t|t−2): V aR95%
t|t−2 is more ‘moderate’ than V aR95%

t|t−1, since

V aR95%
t|t−2 is closer to the unconditional VaR. Therefore V aR95%

t|t−1 is sometimes much

more negative than V aR95%
t|t−2, whereas it is often slightly less negative. The result is

a distribution of (V aR95%
t|t−1 − V aR95%

t|t−2) that has a positive mode and substantially

negative skewness. The small differences between the histograms of the errors vt

and the dependent variable (V aR95%
t|t−1 − V aR95%

t|t−2) reflect that the regressors in (6)

have small explanatory power for the regressand, even though the ARCH(1) model is

correct. For these reasons, the actual size may be much larger than the nominal size

if we would use the critical value from the F-distribution (e.g. an actual size larger

than 50% for a nominal size of 5%). Therefore we require simulation for the critical
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value in both versions of the optimal revision test. There is also heteroskedasticity

for which we use Weighted Least Squares (WLS), assuming var(vt) proportional to

var(yt−1) (which seems to be a usable approximation). The aim of WLS is to increase

the power of the test; the computation of the critical value by simulation already

takes care of the size.

In the first test (of validity of the model including the parameter values) we per-

form the procedure without step 3, using the ‘true’ parameters θ̂ (instead of θ̂(i))

of our simulated data series in steps 4 and 5. Results are in Table 2. Again, the

percentage of rejections of the first optimal revision test is larger than 5% for ϕ2 = 0,

reflecting the effect of errors in parameter estimates. For the second optimal revision

test we do not have evidence that the actual size deviates from 5%. The optimal

revision test again has greater power than the UC and CC tests.

In the optimal revision regression test in the AR(1) model a very wrong value of

σ̂ cannot be detected, since the value of σ̂ does not affect the F-statistic. The UC

and CC tests can detect this, which stresses that the optimal revision regression test

should preferably be used in addition to different tests.
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Table 1: Estimated AR(1) model for simulated data from AR(2) model: percent-

age of rejections (size or power) at 5% nominal size in optimal forecast revision

regression test, and tests for unconditional coverage (UC) and conditional coverage

(CC) of Value-at-Risk forecasts. Results are computed for 1000 simulated data sets.

Numerical standard errors are given between parentheses.

ϕ2 95% VaR (or 99% VaR) 95% VaR 99% VaR

optimal forecast revision (H = 3) UC CC UC CC

H0 : model is H0 : model is

correct correct

including allowing for H0 : model is correct including estimated parameters

estimated estimation error

parameters in parameters

0.0 0.116 (0.010) 0.046 (0.007) 0.080 (0.009) 0.084 (0.009) 0.081 (0.009) 0.088 (0.009)

0.1 0.490 (0.016) 0.315 (0.015) 0.101 (0.010) 0.090 (0.009) 0.077 (0.008) 0.085 (0.009)

0.2 0.979 (0.005) 0.934 (0.008) 0.105 (0.010) 0.113 (0.010) 0.078 (0.008) 0.080 (0.009)

0.3 1.000 (0.000) 0.999 (0.001) 0.148 (0.011) 0.161 (0.012) 0.097 (0.009) 0.098 (0.009)
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Table 2: Estimated ARCH(1) model for simulated data from ARCH(2) model: per-

centage of rejections (size or power) at 5% nominal size in optimal forecast revision

regression test, and tests for unconditional coverage (UC) and conditional coverage

(CC) of Value-at-Risk forecasts. Results are computed for 1000 simulated data sets.

Numerical standard errors are given between parentheses.

ϕ2 95% VaR (or 99% VaR) 95% VaR 99% VaR

optimal forecast revision (H = 3) UC CC UC CC

H0 : model is H0 : model is

correct correct

including allowing for H0 : model is correct including estimated parameters

estimated estimation error

parameters in parameters

0.0 0.081 (0.009) 0.049 (0.007) 0.087 (0.009) 0.068 (0.008) 0.074 (0.008) 0.084 (0.009)

0.1 0.175 (0.012) 0.111 (0.010) 0.104 (0.010) 0.084 (0.009) 0.083 (0.009) 0.092 (0.009)

0.2 0.386 (0.015) 0.295 (0.014) 0.145 (0.011) 0.112 (0.010) 0.103 (0.010) 0.111 (0.010)

0.3 0.495 (0.020) 0.438 (0.016) 0.197 (0.013) 0.160 (0.012) 0.127 (0.011) 0.132 (0.011)
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Figure 1: Simulated data set from ARCH(1) model: histograms of error terms vt [top

panel] and regressand (V aR95%
t|t−1 − V aR95%

t|t−2) [middle panel] in optimal revision test

regression (6); graph of simulated data yt in out-of-sample period (dots), together

with V aR95%
t|t−1 (grey line) and V aR95%

t|t−2 (black line) [bottom panel].



3 The optimal revision test for an in-sample win-

dow

If we apply the optimal revision regression test to an in-sample window for which the

model has been estimated, then a ‘generated regressor/regressand problem’ implies

that the F-statistic does not have the standard F-distribution under H0, even if the

errors vt are normally distributed. For example, in the AR(1) model we have:

Ŷt|t−1 = ϕ̂0 + ϕ̂1 Yt−1,

Ŷt|t−2 = ϕ̂0

(
1 + ϕ̂1

)
+ ϕ̂2

1 Yt−2,

Ŷt|t−1 − Ŷt|t−2 = ϕ̂1

(
Yt−1 − ϕ̂0 − ϕ̂1 Yt−2

)
.

That is, Ŷt|t−1 − Ŷt|t−2 equals ϕ̂1 times the OLS residual, which is obviously per-

pendicular to the AR(1) model’s regressors, the constant term 1, and Yt−2, if we

estimate the optimal revision regression (with H = 2) for the same window as the

parameters ϕ0, ϕ1. Then the estimated coefficients ( ˆ̃α and ˆ̃γ2) and F-statistic are

exactly equal to 0 for any data series. This reflects that in general the critical values

should be smaller if one applies the optimal revision regression test to an in-sample

window (or a window that has overlap with an in-sample window).
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4 Bayesian testing of inequalities corresponding

to forecast rationality

Bayesian inference may be a useful alternative for testing inequalities of (co)variances

or coefficients, which is the focus of alternative tests proposed by Patton and Tim-

mermann (2011), especially for small or moderate data samples. Advantages are

that no asymptotic approximations need to be used, and that one does not require

‘complicated’ asymptotic distributions under H0. A disadvantage is that one needs

an explicit model for the distribution, but this may anyway be required for reli-

able inference in finite samples. We intend to investigate this possibility in further

research, simulating from the involved (possibly highly non-elliptical) target distri-

butions by the methods of Hoogerheide, Kaashoek and Van Dijk (2007), Hoogerheide

and Van Dijk (2010) and Hoogerheide, Opschoor and Van Dijk (2011).

5 Final remarks

Summarizing, Patton and Timmermann (2011) have proposed a set of interesting

and useful tests for forecast rationality or optimality under squared error loss, includ-

ing an easily implemented test based on a regression that only involves (long-horizon

and short-horizon) forecasts and no observations on the target variable. We have

discussed an extension, a simulation-based procedure that takes into account the

presence of errors in parameter estimates. This procedure can also be applied in

the field of ‘backtesting’ models for Value-at-Risk. Applications to simple AR and

ARCH time series models show that its power in detecting certain misspecifications

is larger than the power of well-known tests for correct Unconditional Coverage and

Conditional Coverage.
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