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Price competition on graphs

Adriaan R. Soetevent∗

University of Amsterdam (ASE) and Tinbergen Institute

August 11, 2011

Abstract

This paper extends Hotelling’s model of price competition with quadratic transportation
costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any
given graph, conditional on prices and firm locations. These graph models of price competi-
tion may lead to spatial discontinuities in firm-level demand. I show that the existence result
of D’Aspremont et al. (1979) does not extend to simple star graphs and I conjecture that
this non-existence result holds more generally for all graph models with two or more firms
that cannot be reduced to a line or circle.

JEL classification: D43, L10, R12
Keywords: spatial competition, Hotelling, graphs.

1 Introduction

Firms face two opposing incentives in the decision where to locate relative to competitors. A

location close to one’s competitors maximizes the opportunities to capture one’s competitors’

consumers, but at the same time, little spatial or product differentiation increases price com-

petition among firms. Hotelling (1929) introduced a stylized linear model of spatial (product)

differentiation to analyze which of these is the dominant force.1 The current paper general-

izes Hotelling’s line model of spatial (product) differentiation to graphs. For markets with two

∗Universiteit van Amsterdam, Amsterdam School of Economics/AE/IO, Roetersstraat 11, 1018 WB Ams-
terdam, The Netherlands, Ph: +31 - (0) 20 - 525 73 51; a.r.soetevent@uva.nl. Support by the Netherlands
Organization for Scientific Research under grant 457-07-010 is gratefully acknowledged. We The study benefited
from comments by Robert Adams, Nicholas Economides, Pim Heijnen, Jeroen Hinloopen, Stephen Martin and
participants at the IIOC 2011.

1D’Aspremont et al. (1979) show the invalidity of Hotelling’s original claim that with transportation cost
linear with respect to distance, firms tend to minimally differentiate. They demonstrate that, in a model with
transportation cost quadratic in distance, a price equilibrium solution exists for any pair of locations and firms
maximally differentiate. Irmen and Thisse (1998) conclude that, despite differences in modeling assumptions, the
outcome of most theoretical models is that firms seek to differentiate in order to avoid price competition. They
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competing firms and transportation cost quadratic in distance, I present an algorithm that cal-

culates firm-specific demand as a function of the firms’ prices and conditional on their position

in the graph. In other words, for any structure of lines and intersections that one can draw on a

piece of paper and the position of the firms on this structure, the algorithm will give firm-level

demand. The constructed graphs may be as arbitrary as the patterns of released sticks in the

game of Pick-up sticks, after the isolated sticks have been removed. Consumers are assumed to

be uniformly distributed on the graph’s edges. The line model with quadratic transportation

cost as studied by D’Aspremont et al. (1979) arises as a special case.

The prime motivation for this extension is that in reality, firms cannot locate just anywhere

on a plane but are constrained by zoning, geography and roads. As a result, observations of

clustering by firms in physical space are not the exclusive result from firm conduct but may as

well reflect the structure of the product space. Recent empirical studies acknowledge this and use

techniques from spatial statistics to develop measures of spatial clustering that correct for this

(Picone et al., 2009).2 To the best of my knowledge, no theoretical models exist that evaluate

what price profit-maximizing firms would choose on a graph, conditional on their own location

and those of competitors. Throughout this paper, firm’s location will be taken exogenous. That

is, I focus on the second stage of the two-stage game with firms competing in prices in the second

stage after having chosen their location in the first stage.

In Section 2, I develop general notation to analyze this type of problem. It is unavoidable

that the notation is somewhat unwieldy because one needs to keep track of the shortest path

from each consumer to each of the firms. I will illustrate with simple examples every concept

that is introduced. Section 3 presents for a market with two competing firms a formal algorithm

that calculates firm-specific demand as a function of posted prices, given the firms position

in the graph for a market with two competing firms. Implementation of this algorithm into

software code allows one to numerically evaluate for any given graph and firm position a firm’s

best-response to the price charged by the other firm.3

Importantly, a number of standard results do not carry over from the unit interval to graph

however show that when the analysis is extended from one-dimensional to multi-dimensional characteristics space
while upholding the quadratic transportation costs, firms only maximally differentiate in a single dimension and
thus Hotelling was “almost right”.

2The presented graphs are best interpreted as models of differentiation in physical space but interpretations
as models of differentiation in product space may be possible.

3The Matlab code together with documentation is available at the project’s web site, www.tinyurl.com/

pcgraphs. The main program PCGraphs.m calculates for any given graph and firm locations in a number of
iterations the best price-response of one firm given the price charged by its competitor.
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models of price competition. First, when transportation costs are quadratic (as I will assume

throughout), spatial discontinuities in firm-level demand may occur. That is, consumer’s with a

preference for firm i’s product are surrounded by consumers with a preference for its competi-

tor’s product. Second, in contrast to D’Aspremont et al. (1979), the assumption of quadratic

transportation cost no longer is a sufficient condition for the existence of a Nash equilibrium in

pure strategies.4

In Section 4, two theorems are derived on the existence of pure- and mixed-strategy price

equilibria. The first theorem says that for arguably the simplest extension of the line model, the

“Hotelling line with a junction” (a K1,3 graph), there always exist firm location configurations

for which the price competition game does not possess a noncooperative equilibrium in pure

strategies. I compare this result with a the non-existence result in Varian (1980) and argue that

the market context and line of proof is different here. This non-existence result is the main

reason for not endogeneizing firm locations.5 I will conjecture that for every graph with at least

one node with degree 3, firms can always be located such that no equilibrium price solution

exists. The second theorem states that every two-firm graph model of price competition has

a mixed-strategy equilibrium for any configuration of firm locations. The latter theorem is a

straightforward extension of Dasgupta and Maskin (1986b, Theorem 3) who have proven this

for the line model.

The paper is related to studies on pricing on networks that have appeared, like Bloch and

Querou (2009). These studies however locate firms and consumers at nodes, following the

modeling methodology common in social network analysis. In particular, the edges in these

models are “void”: they are not inhabited by a density of consumers but only serve the purpose of

connecting two nodes. The graphs presented here are fundamentally different because consumers

are assumed uniformly distributed along the nodes and edges of the graph.6 This is in the spirit

of Hotelling’s line model, Salop’s (1979) circular model and Von Ungern-Sternberg’s (1991)

4The assumption of quadratic transportation cost, where disutility rises more than proportional with distance
is often thought to be more appropriate in models where “distance” is not interpreted as a physical distance
but proxies for the difference between the characteristics of the product bought and the most preferred variety.
Within the current model, non-linear transportation costs may however reflect increased search cost: the greater
the distance between the consumer and the firm, at the more crossroads the consumer has to take the right turn
to reach the firm.

5See Osborne and Pitchik (1987) for the complexity of characterizing the mixed strategy equilibria even
in the original Hotelling model with travel cost proportional to distance. Implementing the first-stage is also
computationally difficult because in each step one has to evaluate the profits associated with infinite number of
possible locations for firm i, conditional on the position of its competitors.

6Commuting behavior of consumers is not considered, see Claycombe and Mahan (1991); Raith (1996) for
theoretical contributions and Houde (forthcoming) for a state-of-the-art empirical study.
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pyramid model. As a consequence, I need to introduce a considerable amount of new notation.

A number of papers (Mills and Lav, 1964; Eaton and Lipsey, 1976; Greenhut, Hwang and

Ohta, 1976; Holahan and Schuler, 1981) have studied location choice and price competition

on two-dimensional spatial markets with constant transport cost per unit distance and free

entry. The starting point of this literature is the well-known result first asserted by Lösch

(1954) and formally proven by Bollobás and Stern (1972) that, conditional on every consumer

in the plane being served and constant transport cost per unit distance, a division of market

demand into hexagons is socially optimal. Subsequent contributions have questioned whether

the hexagonal configuration is the unique equilibrium when the number of firms is given and

the extent to which this configuration results under free entry.7 These studies have in common

that consumers are assumed uniformly distributed over a plane. Instead, the current paper is

concerned with studying the generic properties of spatial models of product competition with

consumers uniformly distributed along the edges of a given graph. I do not study which firm

configurations result under entry for any particular (class of) graphs.

I limit attention to the situation with two firms and quadratic transportation cost but con-

ceptually, the analytical approach can be extended in a straightforward manner to cover situ-

ations with non-quadratic cost and multi-firm competition. In fact, as in the pyramid model

in Von Ungern-Sternberg (1991), graphs/network structures easily allow for multi-firm compe-

tition. The difference with the model by Von Ungern-Sternberg is that no analytical solutions

are available for less stylized graphs.

2 Model and notation

Consider a static noncooperative two-stage game with n single-store firms located on a graph.

Consumers are uniformly distributed on the graph. In the first stage, firms choose a location on

the graph, in the second stage each firms chooses price given location.

Let V denote the set of vertices (or nodes) and E the set of edges. G = (V,E) is a connected

graph and points in G are denoted by ω ∈ G, Points ω are two-dimensional vectors. The set

of all points is denoted as Ω = {ω : ω ∈ G}. Let d : Ω × Ω → <+ represent a real valued

weight function representing the distance between two points ω and ω′ in G. Individual edges

are denoted as eu,v = (u, v) with u ∈ V , v ∈ V with u and v the endvertices of the edge. Since

7Eaton and Lipsey (1976) demonstrate that without entry and/or exit, next to the hexagonal configuration,
equilibrium configurations of squares and rectangles can occur but that the rectangular lattice seems most robust
to entry.
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the graph is undirected, the edges are unordered: eu,v = ev,u; in what follows we take u < v.

An edge represents the set of all points ω ∈ G between u and v, that is,

eu,v = {ω ∈ G : ω = λu+ (1− λ)v; for λ ∈ [0, 1]}.

In this formula, we use the two-dimensional vector representation of u and v. The function

d(eu,v) gives the length of edge eu,v. A path P0,k is a sequence e0,1v1 . . . ek−1,k with no repeated

vertex.

Firms and consumers can locate not only at vertices but also at any point of an edge. This

is a notable difference with other graph-theoretic applications in economics which necessitates

considerable extra notation. Firm i is denoted as fi, i = 1, 2. If fi is located at point ω ∈ eu,v,

we refer to eu,v as the home edge of fi and denote it as efi . If two firms are located at the same

edge, efi = efj .

Distances Determine the distance dv,fi of each vertex v ∈ V to each of the firms fi and let

Cfi = {v ∈ V |dv,fi = min
j
dv,fj} for all i ∈ {1, 2, . . . , n}.

That is, Cfi is the set of vertices which are at least as close to firm i than to any of the other

firms. Note that Cfi ∩ Cfj is not necessarily empty, that is, vertices may belong to more than

one set Cfi .
8

Shortest Paths Denote the different shortest paths (numbered m = 1, 2, . . .M) between

any two locations ω, ω′ ∈ G as PSm
ω,ω′ . For simplicity, we do not index PS with m when the

shortest path between two points is unique, i.e. M = 1. The shortest path PSω,ω′ is of the form

ω(ω − v0)e0,1v1 . . . ek−1,k(vk − ω′)ω′, where ω − v0 denotes the line segment of the home edge

that connects ω with the first vertex in PSω,ω′ . The difference between edges and line segments

is that edges always connect two vertices whereas line segments can connect any two points ω

and ω′ conditional on ω, ω′ ∈ eu,v for u, v ∈ V . Line segments are thus always a subset of a

particular edge with its adjacent vertices. We write:

eω′,ω′′ = {ω ∈ G : ω = λω′ + (1− λ)ω′′; λ ∈ [0, 1]},
8Note that this set in general does not coincide with the set of vertices served by a particular firm.
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with eω′,ω′′ being an edge when ω′ and ω′′ are both vertices and a line segment otherwise. Let

V (PSω,ω′) be the set of all vertices included in PSω,ω′ , except possibly ω and ω′ themselves if

they happen to be a vertex. We will denote the shortest path distance between ω and ω′ with

d(PSω,ω′). v ∈ Cfi if and only if PSv,fi ≤ P
S
v,fj

for all j.

2.1 Change Points

The function V 1(PSω,ω′ , V ) gives the vertex in the set V that is encountered first (excluding ω

itself in case ω is a vertex) when moving along the shortest path from ω to ω′ for any ω, ω′ ∈ Ω.

In particular, V 1(PSω,fi , V ) gives the endpoint of the home edge of ω that is part of PSω,fi and

V 1(PSω,fi , V ) = ∅ if ω and fi are on the same edge. It is important to note that for two consumers

ω and ω′ both on edge e, it is possible that V 1(PSω,fi , V ) 6= V 1(PSω′,fi , V ) for one or more values

of i. This means that the shortest path from ω to fi uses one endpoint of e and the shortest

path from ω′ to fi the other. To account for this, we introduce the concept of change points.

Definition 1 A location at line segment eω,ω′ is a change point to firm i, denoted ciω,ω′, if for

the consumer located at ciω,ω′ there exist two different shortest paths PS1

ciu,v ,fi
and PS2

ciu,v ,fi
with

d(PS1

ci
ω,ω′ ,fi

) = d(PS2

ci
ω,ω′ ,fi

)

such that

V 1(PS1

ci
ω,ω′ ,fi

, V ) 6= V 1(PS2

ci
ω,ω′ ,fi

, V ). (1)

That is, for a change point, there exist two shortest paths travel to fi that differ in the first vertex

encountered (not including the change point when this is a vertex itself) when traveling from

the change point to fi. For example, in Figure 1, ω is a change point with respect to fi because

there are two shortest paths differing in the first vertex encountered (v and v′, respectively)

when moving from ω to fi. In contrast, although there are different shortest paths from point

d to fi, d is not a change point because for all these shortest paths, the first vertex encountered

when moving from d to fi is the same, namely ω. Three lemma’s regarding the existence of

change points follow from this definition.

Lemma 1 Each firm has at most one change point ciu,v per line segment eω,ω′ \ {ω, ω′}.

Proof: All proofs are contained in the Appendix.
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Figure 1: In graph G = (V,E), ω is a change point with respect to fi whereas point d is not.

The lemma explicitly limits attention to the interior of line segments; line segments equal to an

edge including their endpoints may inhabit multiple change points with respect to a particular

firm, one in its interior and potentially one at each of the vertices u and v. Figure 2 gives an

example. Line segment eω,ω′ has two change points with respect to firm i: from the interior

change point ciω,ω′ , there are two shortest paths to firm i (each with distance 13), one over vertex

ω and the other over vertex ω′. The second change point is ciω at vertex ω; at this vertex that

there two different shortest paths to fi each with distance 9, one over vertex ω∗ and the other

over vertex ω
′′
. Lemma 1 provides an upper bound for the number of change points one has to

search for: in a graph with n firms and m edges, the number of change points will never exceed

nm.

Figure 2: Example graph with multiple change points at line segment eω,ω′ .
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Lemma 2 If line segment eω,ω′ contains a change point ciω,ω′ with respect to fi, then fi 6∈ eω,ω′.

Lemma 2 implies that there is always at least one vertex between a change point of a firm and

the firm itself, which ensures that the function V 1(·) in equation (1) is always defined for change

points.9

Lemma 3 Presence of Change Points

A line segment eω,ω′ has a change point with respect to firm i

a. in its interior if and only if

fi 6∈ eω,ω′ ∧ |d(PSω,fi)− d(PSω′,fi)| < d(eω,ω′), and

b. at one of its endpoints, say ω, if and only if there exist vertices v and v′ such that

d(PSω,fi)− d(PSv,fi) = d(eω,v) ∧ d(PSω,fi)− d(PSv′,fi) = d(eω,v′) ∧

|d(PSv,fi)− d(PSv′,fi)| = |d(eω,v)− d(eω,v′)|.

The first part of Lemma 3 simply states that there is a change point with respect to firm i at

the interior of a line segment eω,ω′ if and only if the difference in shortest path distance to firm

i at the endpoints ω and ω′ is less than the length of eω,ω′ . The second part states that an

endpoint ω of a line segment is a change point if and only if two vertices (other than ω if ω is

a vertex itself) can be found such that for each of these vertices, the shortest distance from the

vertex to firm i plus the distance from the vertex to ω equals the shortest path distance from

ω to the firm and, moreover, the absolute difference in the distance from the vertices to ω must

equal the absolute difference in shortest path distance from the vertices to fi.

Figure 3 provides an illustration. The line segment ev,v′ contains a change point in its interior

because for ω = v and ω′ = v′ the conditions under a) are satisfied. This change point is located

at u and any line segment on ev,v′ with u as one of its endpoints, e.g. eu,u′ in Figure 3, satisfies

conditions b). It is also instructive to see that ω̃ cannot be a change point for two reasons. First,

according to part a) of Lemma 3, the edge ev,v∗ cannot have a change point on its interior.10

Second, for the point ω̃ and vertices v and v′, the third condition in part b) of Lemma 3 is not

satisfied (but the first two are). Lemma 3 is particularly useful because, for ω and ω′ vertices

9The fact that the edge at which a firm located will never contain a change point with respect to that firm
further limits the potential number of change points to n(m− 1).

10|d(PS
v,fi

)− d(PS
v∗,fi)| = |5− 2| = 3! < d(ev,v∗) = 3.
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Figure 3: Illustration of Lemma 3.

of graph G, it gives the necessary and sufficient conditions for the presence of change points in

terms of edge lengths and shortest path distances between individual vertices and firms.

For line segments eω,ω′ with a change point ci with respect to firm i, the distance to firm i is

by definition increasing when moving towards ci and decreasing when moving away from ci. For

line segments eω,ω′ without change point ci ∈ eω,ω′ \ {ω, ω′}, it is also useful to know whether

the distance to firm i is increasing or decreasing when moving from ω to ω′. To this end, we

write

diω,ω′ = +1 if d(ω̂, fi)− d(ω̃, fi) > 0 ∀ ω̃, ω̂ ∈ eω,ω′ s.t. d(ω, ω̃) < d(ω, ω̂), and

diω,ω′ = −1 if d(ω̂, fi)− d(ω̃, fi) < 0 ∀ ω̃, ω̂ ∈ eω,ω′ s.t. d(ω, ω̃) < d(ω, ω̂).

Thus diω,ω′ = +1 (−1) if the distance to firm i is increasing (decreasing) when moving from ω

to ω′.

3 Firm-level demand

Shortest paths and change points are all based on distances and are as such exogenous. The

position of marginal consumers instead is dependent on the prices charged by the firms and as a

consequence endogenous to the model. Denote the utility a consumer located at point ω derives

from buying at firm i by U(ω, d(ω, fi),p) with p an n × 1 price vector. I follow D’Aspremont,

Gabszewicz and Thisse (1979) and assume nonlinear transportation cost. That is, we consider

9



the utility function

U(ω, d(ω, fi),p) = V − cd(ω, fi)
α − pi, with α > 1, (2)

where c denotes the importance of transportation cost and V is assumed large enough such that

all consumers ω ∈ Ω will buy in equilibrium. If a consumer buys at all, she will purchase one

unit of the good. This leads to the following general quantity demanded for firm i as a function

of prices p and conditional on firm locations:

qi(p) = {ω : ω ∈ G(V,E), U(ω, d(ω, fi), p) ≥ U(ω, d(ω, fj),p) ∀j 6= i}.

The remaining part of this paper limits attention to the case with two firms (i, j ∈ {1, 2}).

To derive demand for each individual firm, we need to identify the position of the marginal

consumers who are indifferent between buying at either firm for given prices. Since we con-

sider graphs, in most cases there are multiple marginal consumers which complicates matters

compared to D’Aspremont, Gabszewicz and Thisse (1979). Denote with Sfi be the set of line

segments served by firm i, conditional on prices pj , j = 1, 2. Sfi∩Sfj is not necessarily an empty

set. Let S =
⋃
i Sfi . The derivation on firm level demand thus boils down to determining Sfi ,

for all firms i.

The algorithm we introduce determines in a systematic and computationally efficient way

the position of all marginal consumers at graph G and thereby firm level demand conditional

on prices and location. The algorithm divides graph G into different, mutually exclusive, line

segments eω,ω′ \ {ω′} which do not contain a change point except possibly at the point of origin

ω. The algorithm uses the following straightforward principle:

Proposition 4 Consider the line segment eω,ω′, suppose that ω ∈ Sfi and that there are no

change points with respect to firm i and j on eω,ω′ \ {ω, ω′}.

• If ω 6∈ Sfj , eω,ω′ \ {ω} contains at most one consumer y indifferent between buying from

firm i and buying from firm j only if

a (diω,ω′ = +1) ∧ (djω,ω′ = −1);

b (diω,ω′ = +1) ∧ (djω,ω′ = +1) ∧ (ω ∈ Cfj ) ∧ (ω 6∈ Cfi);

c (diω,ω′ = −1) ∧ (djω,ω′ = −1) ∧ (ω 6∈ Cfj ) ∧ (ω ∈ Cfi);

– In all other cases, eω,ω′ \ {ω} does not inhabit an indifferent consumer.
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• If ω ∈ Sfj , consumers on eω,ω′ \ {ω} are indifferent between buying from either firm if and

only if

(diω,ω′ = djω,ω′) ∧ (ω ∈ Cfi) ∧ (ω ∈ Cfj ).

Otherwise,

eω,ω′ \ {ω} ∈ Sfi ∧ eω,ω′ \ {ω} 6∈ Sfj if


diω,ω′ = −1 ∧ djω,ω′ = +1, or

diω,ω′ = djω,ω′ = +1 ∧ ω ∈ Cfi ∧ ω 6∈ Cfj , or

diω,ω′ = djω,ω′ = −1 ∧ ω 6∈ Cfi ∧ ω ∈ Cfj .

eω,ω′ \ {ω} 6∈ Sfi ∧ eω,ω′ \ {ω} ∈ Sfj if


diω,ω′ = +1 ∧ djω,ω′ = −1, or

diω,ω′ = djω,ω′ = +1 ∧ ω 6∈ Cfi ∧ ω ∈ Cfj , or

diω,ω′ = djω,ω′ = −1 ∧ ω ∈ Cfi ∧ ω 6∈ Cfj .

The condition that ω ∈ Sfi and ω 6∈ Sfj implies that ω itself is not the location of a marginal

consumer. In situation (a), the transportation cost to buy from firm i is increasing when moving

from ω to ω′ whereas the transportation cost to buy from firm j is decreasing. In situation (b),

the distance to both firm i and firm j is increasing when moving from ω to ω′ but because

the point of departure ω is closer to firm j and transportation costs are assumed quadratic,

transportation cost to buy from firm i is increasing more rapidly than transportation cost to

buy from firm j.11 The opposite holds in the third situation. Here the distance to both firm i

as firm j is decreasing when moving from ω to ω′ but since the point of departure ω is closer to

firm i and transportation costs are a quadratic function of distance, transportation cost to buy

from firm j is decreasing more rapidly than transportation cost to buy from firm i.

In all three cases (a) to (c) the implication is that there may exist a point y ∈ eω,ω′ such

that consumers to the left of y (i.e. those closer to ω than consumer y) prefer buying from firm

i whereas those to the right of y will buy from firm j, eω,y ∈ Sfi and ey,ω′ ∈ Sfj , with y the

marginal consumer indifferent between buying from either firm i or firm j:

U(y, d(y, fi),p) = U(y, d(y, fj),p).

In case there is no indifferent consumer y ∈ eω,ω′ , all consumers at the line segment will buy

from firm i, that is: eω,ω′ ∈ Sfi .

The second part of the proposition states that if the point of departure ω is itself the location

of an indifferent consumer, all consumers located at line segment eω,ω′ will be indifferent too

if and only if ω is at equidistance from both firms and these shortest path distances are either

11This holds more general for any α > 1.
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both increasing or both decreasing when moving from ω to ω′: eω,ω′ ∈ Sfi ,∈ Sfj . In all other

cases, consumers on the line segment have a strict preference for buying from one of the firms.

If the distance to one of the firms is decreasing when moving from ω to ω′ while it is increasing

for the other firm, consumers prefer to buy from the firm the distance to which is decreasing.

If the distance to both firms is decreasing (increasing) when moving from ω to ω′, consumers

prefer to buy from the firm whose distance to the source vertex is largest (smallest).

We have the following corollary for line segments eω,ω′ with ω ∈ Sfi that contain a change

point with respect to firm j 6= i.

Corollary 5 Let line segment eω,ω′ contain a change point c with respect to fj, ω ∈ Sefi and

ω ∈ Cfi.

If ω 6∈ Sfj , eω,c ∈ Sfi.

If ω ∈ Sfj , consumers on eω,c \ {ω} are indifferent between buying from either firm if and

only if (diω,ω′ = +1) ∧ (ω ∈ Cfi) ∧ (ω ∈ Cfj ).

The corollary tells us that for a line segment eω,ω′ with ω served exclusively by firm i, all

consumers located between ω and change point cj with respect to firm j will prefer buying

from firm i to buying from firm j. The second part gives conditions for these consumers to be

indifferent, given that consumers at point ω are indifferent. We now continue with the algorithm

which determines demand given firms’ locations and prices.

3.1 The demand algorithm for two firms

In what follows, consumers at edge or line segment eω,ω′ indifferent between buying from either

firm i or j are denoted as yi,jω,ω′ and the position of a change point at eω,ω′ with respect to firm j

is denoted as cjω,ω′ . With yfi,fj we denote the indifferent consumer located (if anywhere) along

the shortest path between firm i and j, and with yfi (yfj ) the indifferent consumer located (if

anywhere) on a part of the home edge of firm i (j) not included in the shortest path.

Given a graph G = (V,E) and given the position of firms 1 and 2 in G, first calculate

• The shortest path PSv,v′ for all unordered pairs of vertices (v, v′) ∈ V ;12

12The Floyd-Warshall algorithm (see e.g. Bertsekas, 1991, p. 82-83) calculates the shortest path from each
vertex to each other vertex. PS

v,v′ minimizes
∑

p∈P d(p) among all paths connecting v and v′.
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• the shortest path PSf1,f2 connecting f1 and f2;

• for all vertices v ∈ V and firms i = 1, 2 whether v ∈ Cfi ;

• for each edge eu,v ∈ E whether it inhabits any change points civ and ciu,v, i = 1, 2.

In the first step, the location of the marginal consumer (if any) along the shortest path

between firms f1 and f2 is determined. This gives us an initial set S of locations for which

we know by which firm each point is served.13 In each subsequent step, this set is expanded

by adding to S all edges which have at least one endpoint, say ω, in S. This is repeated until

S = G. Note that the algorithm does not terminate before S = G whenever G is a connected

graph. Because ω is in S, we know for this source vertex to which firm(s) it is closest and by

which firm(s) the point is served and we can apply Proposition 4 and Corollary 5 from which

firm each consumer at eω,ω′ will buy. The demand algorithm reads as follows:

FIRM LEVEL DEMAND ALGORITHM

0. Set S0
fi

= ∅ ∀i. S0 =
⋃
i S

0
fi

.

1. Let t = 1. Consider all edges eu,v such that eu,v ∈ PSf1,f2 ∨ eu,v = ef1 ∨ eu,v = ef2 .

a. Determine whether yf1,f2 ∈ PSf1,f2 , yf1,f2 ∈ ef1 or yf1,f2 ∈ ef2 , if any. This determines

for each consumer ω ∈ PSf1,f2 whether ω ∈ S1
fi

or ω 6∈ S1
fi

for all firms i.

b. For i = 1, 2:

i if efi does not inhabit a change point with respect to firm 3− i, yf1,f2 determines

for each consumer ω ∈ efi whether ω ∈ S1
fj

or ω 6∈ S1
fj

for all firms j.

ii if efi inhabits a change point with respect to firm 3− i, subdivide the edge in the

line segments efi,c1fi
, and ec1fi ,v

, with v the vertex of efi that does not belong to

PSf1,f2 . Determine for each of these line segments eu,v the location of an indifferent

consumer yi,ju,v (if any) using Proposition 4. This determines for each consumer

ω ∈ eu,v whether ω ∈ S1
fi

or ω 6∈ S1
fi

for all firms i.

13Note that there can be change points at PS
f1,f2

, but these can only occur at the vertices because by the
definition of a shortest path, the distance to firm i must always increase when one moves over PS

f1,f2
towards f2.

For this reason, these change points are irrelevant in determining firm level demand from consumers at PS
f1,f2

.
An example is a graph in the form of a kite with firm 2 located at the rope and firm 1 at the top of the kite. This
graph has a change point with respect to firm 1 at the vertex where the rope is attached to the kite. Firms can
also have a change point on the part of the home edge of the other firm that does not belong to the shortest path.
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c. S1 = S0 ∪
(⋃

i S
1
fi

)
.

2. Set t = t+ 1. Consider all edges eu,v with eu,v \ {u, v} 6∈ St−1 and u ∈ St−1.

a. If eu,v does not contain a change point, determine the location of yi,ju,v (if any) using

Proposition 4. This determines for each consumer ω ∈ eu,v whether ω ∈ Stfi or ω 6∈ Stfi
for all firms i.

b. If eu,v inhabits k ≥ 1 change points, subdivide the edge in the line segments e
u,c

i1
u,v

,

e
c
i1
u,v ,c

i2
u,v
, . . . , e

c
ik−1
u,v ,c

ik
u,v

, e
c
ik
u,v ,v

and perform step 2a for each line segment separately

by considering first e
u,c

i1
u,v

, then e
c
i1
u,v ,c

i2
u,v

and so on until e
c
ik
u,v ,v

.

c. St = St−1 ∪
(⋃

i S
t
fi

)
.

3. Repeat step 2 until S = G.

3.2 Example

Consider the simple graph G = (V,E) depicted in Figure 4 with the locations of firm 1 and

2 denoted by f1 and f2. Consumers are uniformly distributed along the edges and vertices of

the graph and face quadratic transportation cost. In this graph, e1,2 is the home edge of firm

1 and e3,4 is the home edge of firm 2. PSf1,f2 = (f1 − v2)e2,3v3(v3 − f2); V (PSf1,f2) = {v2, v3};

Cf1 = {1, 2, 6, 8, 9} and Cf2 = {3, 4, 5, 7, 10}. For the moment, suppose that firm 1 charges a

price p1 = 20 and firm 2 a price p2 = 10.

Figure 4: Example graph G = (V,E) with uniformly distributed consumers and two firms f1
and f2. Edge lengths in italics.

For the consumer located at point x, PSx,f1 = x− v2v2− f1 and PSx,f2 = x− v5v3v3− f2, thus

V 1(PSx,f1) = {2} and V 1(PSx,f2) = {5}

14



The change points for firm 1 and firm 2 are depicted in Figure 5. Firm 1 has four change

points: c12,6 at edge e2,6; c
1
3,5 at edge e3,5, c

1
7,10 at edge e7,10 and c17 at vertex 7. For example, at

point c17, the distance to firm 1 via vertex 4 and 5 are equal. Firm 2 also has four change points:

c21,6, c
2
2,5, c

2
5,7 and c27,10.

Figure 5: Change points and shortest path between f1 and f2 in graph G = (V,E).

Figure 6: Illustration of the subsequent steps of the demand algorithm, conditional on p1 = p2.
Consumers located at the dashed lines buy from firm 2, consumers at the dotted lines buy from
firm 1.
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Step 1 First we determine from which firm the consumers along PSf1,f2 buy. This situation is

akin to the problem analyzed by D’Aspremont et al. (1979): if the marginal consumer yf1f2 is

located at PSf1,f2 , consumers on the path P [f1, y
f1
f2

) prefer buying from firm 1 and those on the

path P (yf1f2 , f2] prefer buying from firm 2; if yf1f2 6∈ P
S
f1,f2

and d
y
f1
f2
,f1
< (>)d

y
f1
f2
,f2

, all consumers

will buy from firm 2 (firm 1). Figure 6 shows the position of the marginal consumer yf1f2 in the

example graph along the shortest path between the two firms, given that p1 = p2. When firms

charge the same price, the marginal consumer is naturally located midway between firm 1 and

2. We have:

• e1,2, e2,3, e3,y1,2 ∈ S1
f1

and e
y1,23,4 ,4

∈ S1
f2

and S1 = S0 ∪
(⋃

i S
1
fi

)
.

Step 2 – Iteration 1 There are seven edges with one of their endpoints in S1: e1,8, e1,6, e2,6,

e2,5, e3,5, e4,7 and e4,10. First consider the edge e1,8 with vertex 1 as one of its endpoints. This

edge does not have change points and vertex v1 ∈ Sf1 , v1 6∈ Sf2 . Because (d1v1,v8 = +1)∧(d2v1,v8 =

+1) and v1 ∈ Cf1 ∧ v1 6∈ Cf2 , Proposition 4 states that edge e1,8 does not contain an indifferent

consumer. For this reason, e1,8 ∈ S2
f1

. Next consider edge e1,6 which contains a change point

c21,6 with respect to firm 2. The edge is therefore split in the line segments v1− c21,6 and c21,6−v6.

For the first line segment, (d1
v1,c11,6

= +1)∧ (d2
v1,c21,6

= +1) and demand on this segment thus falls

to firm 1 according to Proposition 4. For the second segment, (d1
c11,6,v2

= +1) ∧ (d2
c21,6,v2

= −1)

and this segment thus may contain a consumer indifferent between buying from either firm 1

or 2. It however turns out that there is not, such that c21,6 − v6 ∈ S2
f1

. Next consider edge e2,6.

Vertex 2 ∈ Sf1 and 6∈ Sf2 . Edge e2,6 contains a change point c12,6 with respect to firm 1 and we

subdivide the edge into the line segments v2 − c12,6 and c12,6 − v6. Both v2 and c12,6 ∈ Cf1 and

6∈ Cf2 . Since (d1
v2,c12,6

= +1)∧ (d2
v2,c22,6

= +1) and (d1
c12,6

, v6 = −1)∧ (d2
c22,6,v6

= +1), Proposition 4

says that neither segment contains an indifferent consumer, such that e2,6 ∈ S1
f1

. Results for the

remaining four edges are summarized below:

e2,5 v2 ∈ Sf1 ,∈ Cf1 and 6∈ Sf2 , 6∈ Cf2 . One change point c22,5; subdivision into line segments

v2− c22,5 and c22,5−v5. (d5
v2,c22,5

= +1)∧ (d2
v2,c22,5

= +1), no indifferent consumer at v2− c22,5.

(d1
c22,5,v6

= +1) ∧ (d2
c22,5,v6

= −1). There is a potential indifferent consumer at c22,5 − v6

according to Proposition 4(a). Calculation shows that this consumer yv6
c22,5

indeed exists.

Thus v2 − yv6c22,5 ∈ S
2
f1

and yv6
c22,5
− v6 ∈ S2

f1

e3,5 v3 ∈ Sf2 ,∈ Cf2 and 6∈ Sf1 , 6∈ Cf1 . One change point c13,5; subdivision into line segments
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v3− c13,5 and c13,5−v5. (d5
v3,c13,5

= +1)∧ (d2
v3,c13,5

= +1), no indifferent consumer at v3− c13,5.

(d1
c13,5,v5

= −1) ∧ (d2
c13,5,v5

= +1). There is a potential indifferent consumer at c22,5 − v6

according to Proposition 4(a). Calculation shows that this consumer does not exist. Thus

e3,5 ∈ S2
f2

.

e4,7 By similar reasoning as for e1,8, no indifferent consumers along this edge and e4,7 ∈ S2
f2

.

e4,10 Idem.

See the upper right panel of Figure 6 for an illustration.

Step 2 – Iteration 2 The remaining edges e6,9, e5,7 and e7,10 are added in the next iteration

(t = 3) of step 2. It turns out that for the posted prices, none of them contains an indifferent

consumer. The bottom left panel of Figure 6 shows firm level demand for both firms in this

case.

3.3 Spatial discontinuities in firm level demand

In situations where firms charge the same price and the entire market is covered, each consumer

buys at the firm to which she is closest and an individual firm’s customers are simply the agents

who are closer to this firm than to any other firm. As Figure 6 shows, a firm’s customers base is

a connected group of agents. It is instructive to notice that when firms charge different prices,

this no longer has to hold and the spatial distribution of firm level demand may be less intuitive.

Figure 7 shows the case where p1 = 50 and p2 = 10. Compared to Figure 6, firm 1 now charges

a higher price and receives less demand as a result. Remarkably however, some consumers at

edge e2,5 prefer buying from firm 1, while being surrounded by consumers who have a preference

for firm 2’s product. The example thus gives the following result:

Result 6 The two-firm graph model of price competition may lead to spatial discontinuities in

firm level demand when transportation cost are quadratic.

The intuition behind this result is that although firm 2 is cheaper, these consumers are

closer to firm 1. Since distance enters quadratically in the utility function for these consumers

the difference in distance outweighs the price difference. For the other agents on e2,5, the price

difference outweighs the difference in distance. The possibility of observing spatial discontinuities

in an individual firm’s demand distinguishes price competition on graphs from the common line

and circular models like D’Aspremont et al. (1979) and Salop (1979).
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Figure 7: Illustration of spatial discontinuities in firm-level demand, p1 = 50; p2 = 10. Con-
sumers located at the dashed lines buy from firm 2, consumers at the dotted lines buy from firm
1.

4 Equilibrium existence

4.1 Pure strategy price equilibria

This section will illuminate the conditions that need to hold for a graph with given firm locations

to have a unique pure Nash-equilibrium in prices. I show by example that even with quadratic

transportation cost, there is no clear-cut relation between equilibrium existence and graph char-

acteristics such as the number of nodes or the degree of individual nodes. This motivates me to

introduce the concepts of demand plateaus and (un)shielded hinterlands that allow me to extend

the idea of “hinterlands” to graphs. It turns out that equilibrium existence is closely related to

the presence of unshielded hinterlands.

It is insightful to return to D’Aspremont et al. (1979) and to discuss the intuition behind

their result that the version of the price competition model with quadratic transportation costs

has a unique equilibrium in pure strategies whereas the model with linear transportation costs

as proposed by Hoteling (1929) has not. To this end, I introduce a distinction between shielded

and unshielded hinterlands.

Definition 2 Shielded Hinterland

The shielded hinterland of firm i is the set of consumers whose shortest path to any firm j 6= i

leads through the location of firm i.

This definition of shielded hinterland is what in most textbooks (e.g. Martin, 2002) is defined

(implicitly) as the hinterland for firm i. In the classic Hotelling line, depicted in Figure 8 (neglect
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node D for the moment), firm 1’s hinterland are the set of consumers located between endpoint

A and firm 1, and firm 2’s hinterland are the consumers between firm 2 and endpoint B. Firm

i can increase its hinterland by moving closer to its competitor but in doing so, the less this

opponent has to decrease price to capture (part of) the hinterland of firm i. However, with

quadratic transportation cost, the hinterland captured for a given price decrease is less than

with linear transportation cost.

Figure 8: The complete bipartite K1,2 graph: The Hotelling line.

Figure 9: The complete bipartite K1,3 graph: The Hotelling line with a junction.

In graph-theoretic terms, the Hotelling line as drawn in Figure 8 is a complete bipartite K1,2

graph, that is, a tree with one internal node and 2 leaves (edges).14 The most straightforward

extension of the Hotelling line is the K1,3 graph depicted in Figure 9, a star graph that more in-

formally can be described as a “Hotelling line with a junction”. To deal with graphs, I generalize

the definition of hinterland such that it also covers patches of consumers not necessarily behind

one firm as seen from the perspective of its competitor. It is useful to introduce the concept of

demand plateaus before giving the formal definition of these unshielded hinterlands.15

14A graph G is bipartite if its vertices can be divided into two classes H1 and H2 such that H1 ∩H2 = ∅ and
H1 ∪H2 = V (G) and every edge joins a vertex of H1 to a vertex of H2. A bipartite graph G is called a complete
bipartite graph is the graph contains all possible edges joining edges in the two distinct classes. Star graphs with
k + 1 nodes are complete bipartite graphs with k leaves and are also denoted as Sk. The star S3 (or K1,3) with
three edges is also called a claw. Because node D in Figure 8 serves no real purpose and can be left out, the
Hotelling line may as well be described as a K1,1 graph: two nodes joined by one edge. See e.g. Bollobás (1998)
for a formal treatment of graph theory.

15The name ‘plateau’ is inspired by the three-dimensional graphs with the difference in distance to firm 1 and
2 on the z-axis.
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Definition 3 Demand plateau

A demand plateau Ďij between firm i and j is a compact set of consumers each of whom has the

same difference in distance to firm i and firm j.

For a market with two firms, the difference in travel distance to firm 1 and 2 is the same all

consumers on the plateau, which means that once a firm has lowered price enough to make the

customer at one end of the plateau buy from him, only a relatively small further decrease is

needed to gain more market share at the plateau. In the extreme case of linear transportation

cost, when a firm undercuts enough to win one consumer of the plateau, the firm by definition

receives demand from all consumers of the plateau.

Definition 4 Unshielded hinterland

The unshielded hinterland of firm i consists of the union of the demand plateaus Ďik for which

the following two conditions hold:

i the consumers in demand plateau Ďik are at least as close to firm i than to any of the

other firms;

ii for all consumers in plateau Ďik, the shortest path to firm k does not lead through the

location of firm i.

The shielded hinterlands in Figure 8 are both examples of demand plateaus. In the case of a

line with two firms, the two definitions coincide as all hinterlands are also shielded hinterlands.

This does not hold for graphs. To see this consider the simple four-node graph in Figure 9

(ignore the Greek letters). The consumers on the line C−D are not a shielded but an unshielded

hinterland to firm 2: these consumers form a compact set, the difference in distance to the two

firms is the same for all consumers in the set and all consumers are closer to firm 2 than to firm

1, whereas their shortest path to firm 1 does not include the location of firm 2. The concept of

hinterland is generalized as follows:

Definition 5 Hinterland

The hinterland of firm i consists of the union of demand plateaus Ďik of which the consumers

are as least as close to firm i than to any of the other firms.

In other words, the hinterland of firm i consists of the union of its shielded and unshielded

hinterlands. In Figure 9, the hinterland of firm 2 are the consumers at line segment ef2,B and
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Figure 10: Four node structure with firms located at nodes with degree 3 (upper-left panel). The
upper right panel depicts the resulting price dynamics. The bottom panels shows equilibrium
firm level demand in two (bottom-left) and three dimensions (bottom right)

those located along edge eCD, but not the consumers at line segment eD,f2 . To reiterate, the

definition of hinterland conveys the idea that for firm 2, once it has lowered price far enough to

receive demand from the consumer at point D, it is relatively easy, and therefore attractive, to

try to capture all demand originating from the line C −D. The reason is that when one starts

at point f2, once one has reached point D and continues to travel along eCD, the distance to

firm 1 is no longer decreasing.16

It is easy to show by example that – given our formulation where consumers reside on the

edges – any attempt to relate equilibrium existence and price dynamics to general characteristics

of the graph (e.g. its connectivity and degree distribution) are doomed to be unfruitful. For

example, consider the four node structure in the upper-left panel of Figure 10. This graph is

16This property of hinterlands holds as well for models with non-quadratic transportation costs. In case of
linear transportation costs for example, when the consumers at point D buy from firm 2, all consumers along the
line eCD will buy from firm 2.
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Figure 11: Four node structure with firms located at nodes with degree 3 (upper-left panel). The
upper right panel depicts the resulting price dynamics. The bottom panels shows equilibrium
firm level demand in two (bottom-left) and three dimensions (bottom right)

complete, apart from the edge between nodes 2 and 4. Firms 1 and 2 are located at nodes 1

and 3, respectively. The other panels shows that, when firms follow a Markov alternating move

price adjustment process, prices converge to an unique equilibrium in a small number of steps

(p∗1 = p∗2 ≈ 11417). The bottom panels show that in equilibrium, demand is split between the

two firms and each firm earns about 11417/2 = 5508. In fact, the bottom-right panel of Figure 10

illustrates that this graph is very similar to the familiar Hotelling model with consumers on a unit

interval. Other than in the model discussed by D’Aspremont et al., consumers are non-uniformly

distributed but their density is somewhat higher towards the middle of the line.

Now consider the same graph but with the two firms located at nodes 2 and 4 (Figure 11).

In this case, there is no price equilibrium in pure strategies. The upper-right panel of this

Figure 11 shows that long periods of undercutting by relatively small amounts are followed by

a price hike. The reason is that, in this configuration of graph and firm locations, there is a
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considerable unshielded hinterland: the consumers located at the edge connecting nodes 1 and

3.17 For both firms, it is attractive to undercut the other firm to receive demand from these

consumers, until prices have decreased to the point that for one of the firms it is more attractive

to retreat and to raise prices. That the existence of a price equilibrium in pure strategies can

be elusive is also illustrated by the two pentagons in Figure 12. The only difference between

the two graphs is that the position of firm 1 in the right pentagon is somewhat closer to node

5. Whereas the first configuration has a pure-strategy price equilibrium, the second, almost

identical configuration has not.

D’Aspremont et al. (1979) have shown that in the linear Hotelling model, price equilibria

are not defined for some positions of the firms on the line (if they are too close), but that

these are defined for all possible firm locations when transportation costs are quadratic. The

examples above show that for graphs, imposing quadratic costs is not sufficient to guarantee

price equilibria in pure strategies.

We thus have that:

Result 7 In graph models of price competition, the assumption of quadratic transportation cost

is not sufficient for the existence of pure-strategy price equilibria.

Contrast this result with Economides (1986a) who shows that with consumers uniformly

distributed on the unit interval with utility described by (2), firms will in equilibrium maximally

differentiate whenever α ≥ 5/3.18 In the graph depicted in Figure 11, firms are maximally

differentiated (they cannot be further apart), α = 2 > 5/3, but no equilibrium exists. In

particular for K1,3 graph, the most straightforward extension of the Hotelling line (depicted in

Figure 9), one can prove the following:

Theorem 8 For every K1,3 graph, there exists a configuration of firm locations for which the

price competition game does not possess a pure-strategy Nash equilibrium.

Thus, the most minor graph-theoretic extension of the D’Aspremont et al. (1979) two-firm

line model with quadratic transportation costs is sufficient to lead to a non-existence result. The

proof shows that no pure-strategy equilibrium exists if all firms are at equidistance from the

junction and the longest edge is not inhabited by any of the firms. Consider Figure 9. Intuitively,

17All these consumers are at equidistance from firm 1 and 2, so this is an unshielded hinterland to both firm 1
and firm 2.

18For 1.26 < α < 5/3, equilibria in locations exist but the locations of the equilibria are strictly interior.
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Figure 12: Examples of a complete graph with five nodes (pentagon). In the panels left, the
distance between firm 1 and node 5 is 0.4 times the total length of edge e15. A price equilibrium
in pure strategies exists for this constellation (p∗1 ≈ 10479; p∗2 ≈ 9840). In the right panels, the
distance between firm 1 and node 5 is 0.2 times the total length of edge e15. In this situation,
no equilibrium exists, the reason being that the unshielded hinterland at edge e14 has increased
and has become the cause of an ongoing price war.
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the equidistance condition implies that all consumers along edge eCD will always flock to the

same supplier. As a result, competition will be heavy, but once prices are low, each firm will

find it in its interest to raise price to increase its profits. The result will probably hold for all

K1,q graphs with q > 2.

A brief comparison of this result with Varian’s non-existence result (1980, Proposition 2)

is appropriate. In Varian, the absence of symmetric price equilibria is due to the assumption

of declining average cost curves and the fact that a slight price cut by one of the stores leads

this store to capture all informed consumers. The behavior of these informed customers is akin

to the flocking of consumers along edge eCD to the firm charging the lowest price including

transportation cost. However, whereas in Varian’s model each firm receives an equal share of

uninformed consumers, firms in the current model may have asymmetric hinterlands and thus

different incentives to cut price to attract the “informed customers”. Other than in Varian’s

model, a noncooperative equilibrium in pure strategies may therefore exist unless the fraction

of informed customers – i.e. the length of eCD – is sufficiently large for firms to start a price

war. The proof essentially shows that in every K1,3 graph one can position the firms such that

this condition holds.19

I conjecture, but do not prove, that this result holds for all graph models of price competition

involving two or more firms:

Conjecture 9 For every graph G = (V,E) with a least one node having degree 3 or higher, there

exists a configuration of firm locations for which the price competition game does not possess a

pure-strategy Nash equilibrium.

The condition that at least of the graph’s has to be of degree 3 or higher rules out the structures

for which we know that they do have a pure-strategy equilibrium, such as the line and circle.

4.2 Mixed-strategy price equilibria

The unshielded hinterland causes demand discontinuities that lead to non-existence of equilibria

in pure strategies. However, for the model with two firms, mixed-strategy price equilibria do exist

because the profit functions πi(p1, p2) (i = 1, 2) are bounded and weakly lower semi-continuous

19In Economides (1986b), consumers are evenly distributed on a surface. He shows that demand and profit
functions are continuous for fairly general distance functions including the Euclidean metric but not for the block
metric. In our application, the distance between two points x and y is determined by the length of the shortest
path between these two points. That is, we cannot use a different distance function to remove the “thickness” of
consumers at the boundary to restore existence.
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in pi and
∑2

i=1 πi(p) is upper-semicontinuous (Dasgupta and Maskin, 1986a, Theorem 5). For

the model with two firms, we therefore have the following positive result, which essentially

extends Theorem 3 in Dasgupta and Maskin (1986b).

Theorem 10 The two-firm graph model of price competition has a mixed-strategy equilibrium

for all configurations of firm locations.

This theorem does not use the assumption of quadratic transportation cost. This implies

that the result extends to graph models where consumers face other forms of nonlinear or linear

transportation cost.

5 Summary and discussion

This paper is a first contribution to the analysis of graph models of price competition. The algo-

rithm introduced allows one to numerically evaluate firm-level demand and profits for all graphs

where consumers are uniformly distributed along the edges and face quadratic transportation

cost and where two firms compete in prices conditional on their location. One important phe-

nomenon for this type of models is that spatial discontinuities in demand may occur. The most

important result is that the existence result by D’Aspremont et al. (1979) for the K1,2 graph

does not extend to the K1,3 graph, arguably the most straightforward extension of the original

model.

I believe that the framework presented in this paper offers ample scope for future research.

Besides proving or falsifying the conjecture on the non-existence of pure-strategy price equilibria

for graphs, natural directions for further investigation include the analysis of markets with three

or more firms, issues related to endogenous entry and markets where consumers face non-linear,

but not necessarily quadratic transportation costs. Furthermore, whereas the present paper

presents numerical evaluations for a number of specific graphs, it is worthwhile to investigate

more systematically the relationship between graph characteristics, firm locations within the

graph and pricing equilibria. One of the results in D’Aspremont et al. (1979) is that for the

line model with linear transportation cost, pure-strategy equilibria exist if firms are far enough

apart. Are there classes of graphs for which a similar result can be obtained?

Another avenue for research is the study of the relationship between graph characteristics,

firm location and the occurrence and characteristics (length, amplitude, symmetry) of price

cycles. Theoretical Edgeworth cycles, first described by Edgeworth (1925) and given a solid

26



game-theoretic foundations by Maskin and Tirole (1988), are characterized by strongly asym-

metric periods of price cuts followed by a rapid price increase. Theoretically, Edgeworth price

cycles are most likely to occur in markets characterized by homogenous goods and extremely

price-sensitive consumers. Consistent with this, one particular market in which asymmetric price

cycles have been consistently found is the market for retail gasoline. Typically, these studies

start with the observation of price cycles in a certain market, verify whether or not the cycles

are asymmetric, and, conditional on finding asymmetries, look for the possible causes.20 Noel

(2009) for example decomposes asymmetric price cycles into a part that can be explained by

Edgeworth cycles and a part driven by other unknown sources. Less attention has been paid to

why some firms are cycling and other are not. Exceptions are Noel (2007a) and De Roos and

Katayama (2010) who use a Markov switching-regression model and allow for differences in the

price cycles of major firms and independents. The location of a firm on a given road network

relative the location of its competitors might be an important additional variable explaining the

occurrence and shape of these price cycles.

20These empirical studies give evidence for price cycles in the US (Castanias and Johnson, 1993; Lewis (forth-
coming); Lewis and Noel (forthcoming)), Canada (Noel, 2007a, 2007b; Eckert, 2003), Australia (Wang, 2009; De
Roos and Katayama, 2010). Bachmeier and Griffin, 2003 do not uncover asymmetric cycles.
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Appendix

Proof of Lemma 1

Suppose there are two different change points ciω,ω′ and c̃iω,ω′ at line segment eω,ω′ \{ω, ω′}. Then

there exist different shortest paths PS1

ci
ω,ω′ ,fi

and PS2

ci
ω,ω′ ,fi

, and PS1

c̃i
ω,ω′ ,fi

and PS2

c̃i
ω,ω′ ,fi

such that

d(PS1

ci
ω,ω′ ,fi

) = d(PS2

ci
ω,ω′ ,fi

) and d(PS1

c̃i
ω,ω′ ,fi

) = d(PS2

c̃i
ω,ω′ ,fi

) (A.1)

ω = V 1(PS1

ci
ω,ω′ ,fi

, V ) 6= V 1(PS2

ci
ω,ω′ ,fi

, V ) = ω′ (A.2)

and

ω = V 1(PS1

c̃i
ω,ω′ ,fi

, V ) 6= V 1(PS2

c̃i
ω,ω′ ,fi

, V ) = ω′. (A.3)

Since the change points are not identical, one of them, say ciω,ω′ , is closer to ω and c̃iω,ω′ is closer

to ω′. This implies that d(PS1

ci
ω,ω′ ,fi

) < d(PS1

c̃i
ω,ω′ ,fi

) and d(PS2

ci
ω,ω′ ,fi

) > d(PS2

c̃i
ω,ω′ ,fi

). This contradicts

(A.1) so ciω,ω′ and c̃iω,ω′ cannot both be change points.21

Proof of Lemma 2

The shortest distance between two points is the length of the line connecting the two points. If

fi ∈ eω,ω′ the shortest path distance from each point x ∈ eω,ω′ to fi is equal to the length of

the line segment ex,fi , d(ex,fi). For these x’s, there cannot exist two distinct shortest paths such

that d(PS1
x,fi

) = d(PS2
x,fi

) = d(ex,fi). In other words, none of the points x ∈ eω,ω′ can be a change

point with respect to fi.

Proof of Lemma 3

First I prove the necessity of the conditions for interior change points. From Lemma 2 we know

that if eω,ω′ contains a change point w.r.t. fi, it cannot contain fi itself. Suppose that c is a

change point for fi at the interior of eω,ω′ and that the distance from c to ω is ε > 0. From the

definition of change points, it follows that there exist shortest paths PS1
c,fi

and PS2
c,fi

such that

d(PS1
c,fi

) = d(PS2
c,fi

), V 1(PS1
c,fi
, V ) = ω and V 1(PS2

c,fi
, V ) = ω′.

Because

d(PS1
c,fi

) = d(PS2
c,fi

)⇔ d(PSω,fi) + ε = d(PSω′,fi) + [d(eω,ω′)− ε]

21Note that the change point ciω at the endpoint ω in Figure 2 would not satisfy equation (A.2).
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it follows that

|d(PSω,fi)− d(PSω′,fi)| = |d(eω,ω′)− 2ε| < d(eω,ω′).

Sufficiency follows from noting that when eω,ω′ contains no change point and fi 6∈ eω,ω′ , d(PSω′,fi) =

d(PSω,fi) + d(eω,ω′).

Next consider the presence of a change points on one of the endpoints of eω,ω′ , say ω. For ω

being a change point, it follows that there exist two shortest paths such that

V 1(PS1
ω,fi

, V ) 6= V 1(PS2
ω,fi

, V ).

Take v = V 1(PS1
ω,fi

, V ) and v′ = V 1(PS2
ω,fi

, V ). Because ω is a change point,

d(PS1
ω,fi

) = d(PS2
ω,fi

) = d(PSω,fi)

which implies

d(PS1
ω,fi

) = d(eω,v) + d(PSv,fi) = d(eω,v′) + d(PSv′,fi),

and thus the conditions in Lemma 3 are satisfied. This proves the necessity of the conditions.

To prove sufficiency suppose that ω is an endpoint of eω,ω′ but not a change point. According

to b), we know that there exist two vertices v and v′ adjacent to ω and that

d(PSω,fi) = d(eω,v) + d(PSv,fi) = d(eω,v′) + d(PSv′,fi). (A.4)

If ω is not a change point, it must hold that for one of these vertices, say v, there exists a point

ω∗ with

ω∗ = ω + λ(v − ω), with λ > 0,

such that

d(PSω∗,fi) > d(PSω,fi).

However, since ω∗ is closer to v than ω, it must also hold that d(eω∗,v) < d(eω,v). But this and

equation (A.4) together imply that

d(PSω∗,fi) = d(e∗ω, v) + d(PSv,fi) < d(PSω,fi)

and we arrive at a contradiction. Thus ω must be a change point.
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Proof of Proposition 4

From ω ∈ Sfi it follows that at point ω, the utility difference between buying from firm i and

buying from firm j 6= i is nonnegative:

∆U ≡ U(ω, d(ω, fi),p)− U(ω, d(ω, fj),p) = c[d(ω, fj)
α − d(ω, fi)

α] + (pj − pi) ≥ 0, (A.5)

with the difference equal to zero if and only if ω ∈ Sefj . Write d(ω, fj) = d(ω, fi) + z with z > 0

if and only if ω ∈ Cfi and ω 6∈ Cfj ; z < 0 if and only if ω 6∈ Cfi and ω ∈ Cfj , and z = 0 if and

only if ω ∈ Cfi and ω ∈ Cfj . By definition, for the location y ∈ eω,ω′ of a marginal consumer, it

has to hold that

∆U = c[d(y, f2)
α − d(y, f1)

α] + (p2 − p1) = 0. (A.6)

For ease of exposition, we denote by x ≥ 0 the distance between the points ω and y, x ≡ d(ω, y).

Figure 13: Examples of changes in utility when moving along eω,ω′

Given that no change points are present at the interior of eω,ω′ , we have one of the following

situations:

a. djω,ω′ = −1 and diω,ω′ = +1;

b. djω,ω′ = +1 and diω,ω′ = +1;

c. djω,ω′ = −1 and diω,ω′ = −1, or
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d. djω,ω′ = +1 and diω,ω′ = −1.

Figure 5 shows examples of each of the four cases.

Note that ∂d(y, fi)/∂x = diω,ω′ and ∂d(y, fj)/∂x = djω,ω′ such that the derivative of ∆U with

respect to x can be written as

∂∆U

∂x
= αc

[
d(y, fj)

α−1∂d(y, fj)

∂x
− d(y, fi)

α−1∂d(y, fi)

∂x

]
= αc

[
d(y, fj)

α−1djω,ω′ − d(y, fi)
α−1diω,ω′

]
.

Furthermore,

d(y, fj) = djω,ω′ · x+ d(ω, fj) = djω,ω′ · x+ d(ω, fi) + z

and

d(y, fi) = diω,ω′ · x+ d(ω, fi),

such that

d(y, fj)− d(y, fi) =
(
djω,ω′ − d

i
ω,ω′

)
x+ z. (A.7)

For situations a to d, we thus have

a. d(y, fj)− d(y, fi) = −2x+ z;

b and c. d(y, fj)− d(y, fi) = z;

d. d(y, fj)− d(y, fi) = 2x+ z.

Now first consider the case for which ω 6∈ Sfj , that is, the inequality in equation (A.5) is strict.

This implies that there can only be a marginal consumer y ∈ eω,ω′ if ∂∆U/∂x < 0. From equation

(A.7) it readily follows that when situation a obtains, ∂∆U/∂x is positive for all points y ∈ eω,ω′ .

For situation b (c), ∂∆U/∂x < 0 only if z < 0 (z > 0) and for situation d, ∂∆U/∂x < 0 does not

impose conditions on z. Since z < 0 (z > 0) if and only if ω 6∈ Cfi∧ω ∈ Cfj ) (ω ∈ Cfi∧ω 6∈ Cfj )).

In case ω ∈ Sfj , the point of departure is itself the location of a marginal consumer and

points on the interior of eω,ω′ are locations of marginal consumers if and only if ∂∆U/∂x for all

x ∈ [0, d(ω, ω′)]. That is, if and only if

diω,ω′ = djω,ω′ ∧ d(ω, fi) = d(ω, fj),

that is, the distance to either firm should be increasing or decreasing when moving along eω,ω′

from ω to ω′ and point ω is at equidistance from firm i and firm j: ω ∈ Cfi ∧ω ∈ Cfj . This may
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happen only in situations b and c. In situation a, eω,ω′ \ {ω} 6∈ Sfi and eω,ω′ ∈ Sfj ; in situation

d, eω,ω′ ∈ Sfi and eω,ω′ \ {ω} 6∈ Sfj . This completes the proof.

Proof of Corollary 5

Suppose ω ∈ Sfi , ω ∈ Cfi and eω,ω′ \ {ω} contains a change point c with respect to firm j. Then

djω,c = +1 on the line segment eω,c j eω,ω′ . None of the conditions in Proposition 4 is satisfied

and thus eω,ω′ does for inhabit a marginal consumer if ω 6∈ Sfj ; according to Proposition 4, for

ω ∈ Sfi , all consumers at eω,ω′ \ {ω} are indifferent between buying from either firm if and only

if diω,ω′ = djω,ω′ = +1 and ω ∈ Cfi and ω ∈ Cfj .

Proof of Theorem 8

Consider K1,3 graph as shown in Figure 9, with d(A, f1) = η, d(f1, D) = δ, d(D, f2) = ε,

d(f2, B) = θ and d(eCD) ≡ ξ. d(eAD) ≡ η + δ and d(eBD) ≡ ε + θ. The proof consists of

showing that for any value of dAD, dBD and d(eCD), there exists at least one configuration of

firm locations for which no equilibrium in pure strategies exist.

Assume without loss of generality that eCD is at least as long as the two other edges, i.e.

ξ ≥ d(eAD) and ξ ≥ d(eBD). Locate firm 1 at edge eAD and firm 2 at edge eBD each firm at

one of the other two edges. Furthermore, assume that ε ≥ δ > 0, that is: firm 1 is at least as

close to node D as firm 2.

First consider the decision problem for consumers located at vertices A–D:

• Consumers at vertex A are indifferent if p1 = p2 + c(δ + ε)2 + 2cη(δ + ε);

• consumers at vertex B are indifferent if p1 = p2 − c(δ + ε)2 − 2cθ(δ + ε);

• consumers at vertex C are indifferent if p1 = p2 + c(ε2 − δ2) + 2cξ(ε− δ) = p2 + z1 + z2;

• consumers at vertex D are indifferent if p1 = p2 + c(ε2 − δ2) = p2 + z1,

with z1 ≡ c(ε2 − δ2) and z2 ≡ 2cξ(ε− δ). Note that z1, z2 ≥ 0 iff. ε ≥ δ.

This implies that firm 1 receives zero demand if

p1 > p2 + cmax{(δ + ε)2 + 2η(δ + ε), ε2 − δ2 + 2ξ(ε− δ)}

and firm 2 receives zero demand if

p1 < p2 − c(δ + ε)2 − 2cθ(δ + ε),
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see Figure 14 for a graphical representation.

Figure 14: Proof Theorem 8. Market division into demand for firm 1 (dotted green lines) and
demand for firm 2 (solid red lines). The blue diamonds represent marginal consumers.

Figure 14 shows that demand for firm 1 falls to zero when consumers at vertex C (panel I)

or vertex A (panel II) become indifferent between buying from either firm. The first (second)

panel applies when ξ is relatively large (small) compared to η. Note that demand for firm 2

falls to zero once consumers at vertex B become indifferent (panel IV ); a situation as depicted

in panel V – with consumers at vertex B buying from firm 1 but firm 2 still receiving positive

demand from eCD – cannot occur because we assume that ε ≥ δ.

This implies that any equilibrium (p∗1, p
∗
2) must satisfy the condition

|p∗1 − p∗2| ≤ cmax{(δ + ε)2 + 2(δ + ε) max(η, θ), ε2 − δ2 + 2ξ(ε− δ)},

because otherwise, one of the two firms may gain from decreasing its price to the delivered price

of the other.

In the remaining part of the proof, I assume that (ε2− δ2) + 2ξ(ε− δ) ≤ (δ+ ε)2 + 2η(δ+ ε),

i.e. ξ ≤ ξ∗ ≡ (δ+ ε)(δ+ η)/(δ− ε). This condition – which is always satisfied for ε close enough

to δ – guarantees that a situation as in panel I of Figure 14 will not occur.
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In this case, the profit functions of firm 1 and 2 are given by:

π1(p1, p2) =



(ξ + η + δ + ε+ θ)p1 if p1 ≤ p2 − c(δ + ε)(δ + ε+ 2θ)(
ξ + η + p2−p1

2c(δ+ε) + δ+ε
2

)
p1 if p2 − c(δ + ε)(δ + ε+ 2θ) < p1 ≤ p2 + z1(

ξ + η + ε(p2−p1)
c(ε2−δ2) + δ + ε

)
p1 if p2 + z1 < p1 ≤ p2 + z1 + z2(

η + p2−p1
2c(δ+ε) + δ+ε

2

)
p1 if p2 + z1 + z2 < p1 ≤ p2 + c(δ + ε)(δ + ε+ 2η)

0 if p1 > p2 + c(δ + ε)(δ + ε+ 2η)

and

π2(p1, p2) =



1 if p2 < p1 − c(δ + ε)(δ + ε+ 2η)(
ξ + θ + p1−p2

2c(δ+ε) + δ+ε
2

)
p2 if p1 − c(δ + ε)(δ + ε+ 2η) ≤ p2 < p1 − z1 − z2(

θ + ε(p1−p2)
c(ε2−δ2)

)
p2 if p1 − z1 − z2 ≤ p2 < p1 − z1(

θ + p1−p2
2c(δ+ε) + δ+ε

2

)
p2 if p1 − z1 ≤ p2 < p1 + c(δ + ε)((δ + ε) + 2θ)

0 if p2 ≥ p1 + c(δ + ε)(δ + ε+ 2θ)

Suppose that (p∗1, p
∗
2) is an equilibrium and that p∗2 − c(δ + ε)(δ + ε + 2θ) < p∗1 ≤ p∗2 + z1.

Taking first order conditions for the relevant part of the profit functions gives us

p∗1 =
4

3
c(δ + ε)

[
ξ + η +

1

2
θ

]
+ c(δ + ε)2

p∗2 =
4

3
c(δ + ε)

[
θ +

1

2
(ξ + η)

]
+ c(δ + ε)2 (A.8)

This set of prices is within the given range if

p∗1 − p∗2 ≤ c(ε2 − δ2)⇔ 2(ξ + η − θ) ≤ ε− δ ⇔ ξ + dAD − dBD ≤ (ε− δ)/2. (A.9)

Such an equilibrium with firm 1 charging low prices, which corresponds to panel IV in

Figure 14, thus only occurs when ξ or η are relatively small or θ is relatively large. Intuitively,

these are situations for which firm 1 is very competitive because its shielded hinterland (η) is

small, firm 2 has a large shielded hinterland (θ) of itself and/or the unshielded hinterland (ξ) is

too small for firm 2 to warrant price cuts.

Now suppose that (p∗1, p
∗
2) is an equilibrium but that p∗2 + z1 < p∗1 ≤ p∗2 + z1 + z2, a situation

as in panel III. Again taking first order conditions for the relevant part of the profit functions

gives us

p∗1 =
2c

3ε

(
ξ + dAD +

1

2
(dBD + ε)

)
(ε2 − δ2)

p∗2 =
2c

3ε

(
1

2
(ξ + dAD) + dBD −

ε

2

)
(ε2 − δ2) (A.10)
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This set of prices is within the given range if

ξ + dAD − dBD ≤
6ξε

δ + ε
+ ε and ξ + dAD − dBD > 3ε. (A.11)

Intuitively, the likelihood of observing an equilibrium situation as in panel III, with demand at

eBC split between firm 1 and 2 is increasing with ξ.

Finally suppose that (p∗1, p
∗
2) is an equilibrium with p2+z1+z2 < p1 ≤ p2+c(δ+ε)(δ+ε+2η),

a situation depicted in panel II. Taking first order conditions for the relevant part of the profit

functions now yields

p∗1 =
4

3
c(δ + ε)

[
η +

1

2
(ξ + θ)

]
+ c(δ + ε)2

p∗2 =
4

3
c(δ + ε)

[
ξ + θ +

1

2
η

]
+ c(δ + ε)2 (A.12)

For this set of prices, p∗1 > p∗2 + z1 + z2 if and only if

ξ + dAD − dBD > 2ξ + (ε− δ) +
3ξ(ε− δ)
ε+ δ

(A.13)

Note that 0 < ξ+dAD−dBD < 2ξ because we have assumed that ξ ≥ dAD and ξ ≥ dBD. Now

take ε = δ > 0, that is, both firms are located at equidistance from vertex D. From the above

it is clear that for this configuration of firm locations, no price equilibrium in pure strategies

exists: the pairs (p∗1, p
∗
2) in (A.8) and (A.12) are not an equilibrium because the conditions (A.9)

and (A.13) are not satisfied when ε = δ and the pair (p∗1, p
∗
2) in (A.10) is not an equilibrium

because for ε = δ, p∗1 = p∗2 = 0 and each firm can strictly increase profits by slightly increasing

its price. This completes the proof.22

22As an example of a situation for which an equilibrium does exist, take ξ = 24, η = 5, δ = 1, ε = 2 and θ = 6,
such that dAD=6 and dBD = 8. In this case, condition (A.11) is satisfied, and (A.10) gives p∗1 = 35, and p∗2 = 22
with corresponding profits π1(p∗1, p

∗
2) = 1014 and π2(p∗1, p

∗
2) = 384.

35



References

Bachmeier, Lance J. and James M Griffin, “New Evidence on Asymmetric Gasoline Price Responses,”
Review of Economics and Statistics, August 2003, 85 (3), 772–776.

Bertsekas, Dimitri P., Linear Network Optimization: Algorithms and Codes, Cambridge, Massachusetts: MIT
Press, 1991.

Bloch, Francis and Nicolas Quérou, “Pricing in Networks,” working paper no. 2008-31, Ecole Polytechnique
2009.
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