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Abstract 
This paper analyzes the possibilities to relieve congestion using rewards instead of taxes, as well 
as combinations of rewards and taxes. The model considers a Vickrey-ADL model of bottleneck 
congestion with endogenous scheduling. With inelastic demand, a fine (time-varying) reward is 
equivalent to a fine toll, and to a continuum of combinations of time-varying tolls and rewards 
(including fine feebates). When demand is price sensitive, a reward becomes less attractive from 
the efficiency viewpoint, because it attracts additional users to the congested bottleneck. As a 
result, both the second-best optimal rate of participation in the scheme, and the relative 
efficiency that can be achieved with it, decreases when demand becomes more elastic. Our 
analytical and simulation results for coarse schemes suggest that a coarse reward is less effective 
than a coarse feebate, which is itself less effective than a coarse toll. The most efficient coarse 
system is the step toll, which is also allowed to be positive in the shoulder period.  
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1. Introduction 

Although the idea of road pricing has been around for a long time, and its popularity seems to 

be on the rise with successful introductions in cities like London, there still exists resistance 

against introducing a price for a commodity – access to public roads – that has been freely 

available for such a long time. As a result, there are many examples of road pricing proposals 

that do not survive the planning stage, and that are dropped for political reasons before 

implementation commences. Despite the clear economic case for marginal cost pricing, it may 

therefore be helpful to explore alternative possibilities to alleviate congestion, that are 

hopefully more appreciated by the public. An obvious possibility would be to think about the 

use of ‘rewards’ instead of tolls or ‘penalties’. Even though most economists would hasten to 

point out that positive marginal external costs would call for a positive Pigouvian tax, that 

subsidies may induce all sorts of perverse incentives, that taxes needed to raise revenues to 

finance rewards are likely to cause distortions elsewhere in the economy, and that a net 

reward is likely to attract additional users whereas a net reduction is desired, there may be 

reasons to consider rewards anyway. Ultimately, a reward system may be less effective and 

efficient in combating congestion than a tolling system, but if the latter is unfeasible for 

political reasons, a more relevant comparison is between a reward system and the absence of 

any control through financial incentives. Such considerations have been an important 

motivation for proposals for, for example, combinations of pricing and rationing (Daganzo, 

1995), revenue neutral ‘credit-based’ congestion pricing (Kalmanje and Kockelman, 2005), 

tradable driving permits (Verhoef, Nijkamp and Rietveld, 1997), exemptions from paying 

tolls (Daganzo and Garcia, 2000) and so-called Fast and Intertwined Regular (FAIR) lanes 

(De Corla-Souza, 2000). 

It is the purpose of the present paper to explore the possibilities of a reward system. 

We do so by studying various types of rewards in the context of the well-known bottleneck 

model (Vickrey, 1969; Arnott, de Palma and Lindsey, 1990, 1993). The idea for this paper 

originates from a Dutch policy experiment called ‘Spitsmijden’ (Avoiding the Peak), 

documented in for example Knockaert, Verhoef and Rouwendal (2009). The purpose of this 

experiment was to gain insight into the potential of positive financial incentives in the 

management of peak congestion. To that end, regular users of a given highway (the A12 

between Zoetermeer and The Hague) could earn rewards ranging from 3 to 7 Euros for 

avoiding it during the morning peak (7:30-9:30 am). Given that participation was voluntary, it 

is no surprise that relatively strong behavioural impacts from rewarding were found, with the 
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number of morning-peak camera registrations of participants’ cars roughly halved compared 

to pre- and post-measurements. Given that departure time adjustments were, by far, the most 

popular behavioural response to the incentive (roughly accounting for four-fifths of all 

adjusted trips), it seems very appropriate to use a dynamic model with endogenous departure 

time choice for the present paper. But because the remaining one-fifth of adjustments 

concerned alternatives such as public transport, we will be considering a bottleneck with a 

price-sensitive demand.  

Our analysis fits in a much wider literature on second-best road congestion pricing 

reviewed in, for example, Small and Verhoef (2007). Probably closest to our paper are earlier 

studies that looked into the efficiency of so-called ‘coarse tolls’ and ‘multi-step tolls’ in the 

bottleneck model, because we too will be considering toll and reward schemes that involve a 

limited number of discrete levels during the peak. Arnott, de Palma and Lindsey (1990, 1993) 

were the first to consider this type of problem, and found that the relative efficiency of such 

measures is above that of ‘uniform tolling’, which entails a constant toll level throughout the 

peak, but considerably lower than that of ‘fine’ tolling, where tolls can be adjusted smoothly 

over time. The welfare gains are around 50% for the coarse (single-step) toll, a result that was 

later confirmed by Chu (1999) in a more elaborate model. Quite intuitively, Laih (1994) 

showed that the efficiency of step-tolls increase with the number of steps. Xiao, Qian and 

Zhang (2009) explore coarse tolling with heterogeneous users, and find that this improves the 

relative efficiency of coarse tolling. An important aspect of dynamic equilibria with step tolls 

in the bottleneck model, already identified by Arnott, de Palma and Lindsey (1990, 1993), is 

that it entails mass departures in the second part of the peak, since the equilibrium condition 

of constancy of generalized prices over times requires that a discrete drop in the toll level is 

matched by a discrete increase in (expected) travel time. The implied mass departures 

complicate the analytical treatment of step tolls. 

The main difference with these earlier studies is our focus on rewards. More 

specifically, we will be looking at fine and coarse rewards, involving non-negative subsidies 

for all users; fine and coarse ‘feebates’, involving budget-neutral combinations of taxes and 

subsidies producing a zero net revenue for the regulator; and, as important references, fine 

and coarse tolls, involving non-negative taxes for all users. Given that congestion entails an 

external cost, one would expect that tolls outperform rewards and feebates in terms of 

efficiency. It is therefore not primarily the ranking of the different policies that we are most 

interested in, but rather their relative efficiency. Our analysis should thus give insight into the 
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circumstances under which feebates or rewards may offer a worthwhile alternative to tolling 

in the management of congestion; and if so, how the policy should be designed to maximize 

its efficiency. 

 The paper is organized as follows. In the next section we introduce the basic idea in an 

informal way. The context is a simple version of the bottleneck model with a homogeneous 

population of commuters. We will introduce the model and discuss the equivalence of fine 

tolling, fine feebates and fine rewards when demand is completely inelastic. In Section 3 we 

study the properties of fine schemes in the context of price sensitive demand. We will require 

that there be an equilibrium in terms of participation to the reward scheme, in the sense that 

participants and non-participants face equal generalized equilibrium prices. We derive, for the 

different policies, the optimal shares of the commuters that should participate in the system to 

maximize the social benefits, subject to this participation condition. Next, in Section 4, we 

move another step closer to policy experiments of the type described above, by considering 

coarse systems, where tolls or rewards change in discrete steps during the peak. Section 5 

concludes.  

 

2. The basic bottleneck model and some variants on fine tolling 

Our analysis in this section uses the basic bottleneck model, in which during the peak a 

homogeneous group of users of a given size N has to pass a bottleneck with given capacity s. 

The free-flow travel time is set equal to zero without loss of generality (given the other model 

assumptions), but a travel delay of Q(td)/s is incurred if at the moment td of joining the queue, 

its length is Q(td). As long as there is no queue and the inflow is below capacity s, there are no 

delays. We consider the following, conventional, cost function: 

     
(1) 

The Greek letters are positive parameters, with  denoting the ‘value of time’;  indicates the 

unit shadow cost of schedule delay early and  that of schedule delay late. T is the travel delay 

incurred in the queue before passing the bottleneck, t the arrival time at the bottleneck’s exit, 

and t* the preferred arrival time at which schedule delay costs are therefore zero.  

Equilibrium for this model is discussed in detail in for example Arnott, de Palma and 

Lindsey (ADL) (1990). They show that in the no-toll equilibrium, denoted with superscript 0, 

the equilibrium cost of the commuting trip is for all drivers equal to: 

c0   
N

s

 
  


N

s  
(2) 
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where the composite schedule delay cost parameter δ is introduced for notational 

convenience.1 The total social cost is therefore equal to C 0   N 2 / s . The peak hour starts at 

a moment that we will refer to as B  t*   /   N / s  and ends at    * / /E t N s    . 

At these moments, the queue has a zero length, and it is easily verified that the schedule delay 

costs at these two moments are both equal to  . /N s . The driver who passes at the desired 

arrival time t*, in contrast, incurs no schedule delay costs, but only travel delay costs because 

of time spent in the queue. For all other drivers, the cost is a combination of positive schedule 

delay costs and positive travel time costs. The dynamic equilibrium in the model is thus 

caused by a queue that first grows and then shrinks linearly, so as to make the generalized 

cost in (1) constant over time. 

ADL (1990) also show that the total cost can be reduced by 50% if a fine toll, that is a 

toll for which the value varies continuously over time, is introduced. The fine toll replicates 

the no-toll equilibrium pattern of travel delay costs and thus completely eliminates the queue 

and therefore all travel delay costs. It does so by substituting a monetary cost for the time 

cost. The crucial difference between both is that the time spent in the queue is a social loss, 

whereas the money paid as toll is merely a transfer. This creates the welfare gain from optimal 

pricing. 

From the perspective of the present paper, it is interesting to observe that ADL (1990) 

present the optimal fine toll  f t  as: 

 f (t) 
a  t*  t   if t  t*

a  t  t*  if t  t*







 

(3) 

for all t during the peak. Here a is a constant that should satisfy a    N / s  if the toll is not 

to be positive outside the peak. When the inequality applies strictly, this formula implies that 

the toll is negative, and hence a subsidy, for some t in the peak period. Indeed, if we choose 

a=0, the toll will be non-positive for all drivers. In other words: the fine toll may in fact be a 

reward for some drivers, or even for all. Braid (1996) observes that it is in fact second-best 

optimal for a time-varying toll to start and end as a net subsidy at a bottleneck with an 

                                                 
1 That is,  

 
  
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unpriced substitute.2 This is needed to achieve equalization of marginal costs at the two 

bottlenecks in that second-best optimum. 

 In the basic bottleneck model, the fine toll that is always non-negative, with 

a    N / s , is equivalent in its effects to a fine ‘toll’ that is always non-positive, with a = 

0. The latter will be referred to in this paper as a fine reward. Other values of a may also be 

chosen. One potentially interesting possibility is a fine ‘feebate’, which we define as a budget-

neutral fine toll that takes on positive as well as negative values and generates no net 

revenues. It requires a  1
2   N / s . 

The insensitivity of welfare with respect to a stems from the assumed perfect 

inelasticity of demand in this basic bottleneck model. It can be shown that the price paid by 

each driver is equal to the marginal social cost under fine tolling if a    N / s ,and this is 

the optimal choice if demand is price-sensitive.3  One would therefore also expect that the 

relative benefits of a reward system are smaller when demand is sensitive to the price. This 

motivates our choice for considering price-sensitive demand in the remainder of this paper. 

We will sometimes call this ‘elastic’ demand. Note that this term is sometimes used to denote 

an absolute elasticity above unity; in our paper it is used as a short-hand for price-sensitive 

demand that is not perfectly inelastic. 

 

3. Elastic demand, fine tolling and rewarding, and endogenous participation 

To analyze the situation in which demand is sensitive to the price, we postulate a downward 

sloping inverse demand function D(N) and define social surplus S as the difference between 

aggregate consumer benefit and the cost C(N) associated with using the bottleneck: 

S  D(x)dx
0

N

  C(N )  
(4) 

The number of users N is now endogenously determined by the generalized price p associated 

with passing the bottleneck, because in equilibrium: 

D(N)  p
 

(5) 

Now assume that fine tolls/rewards are set using (3). Such a toll scheme eliminates all 

queuing at the bottleneck, and implies that the average generalized cost per user (that is, net of 
                                                 
2 The substitute is a second bottleneck that suffers congestion too. 
3 Because optimal tolling eliminates queuing, the social cost becomes half the level in the no-toll equilibrium, 

and thus equals 1

2
   N 2 / s . The marginal cost is then   N / s , which is equal to the toll at t* and hence the 

generalized price for the person arriving at t* when a    N / s . Because the generalized price is equalized in 
the decentralized optimum, this optimal price level applies for all drivers. 
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tolls) equals 1
2   N / s . However, the policy maker is still free to set the generalized price 

by choosing the parameter a. Taking this into account, and realizing that the generalized price 

will be equal to a since the person arriving at t* will have neither travel delay nor schedule 

delay cost, and only faces a toll a, and the generalized price will be equal for all users in 

equilibrium, we write the Lagrangian: 

  D(x)dx
0

N

  1
2  

N 2

s
   a  D(N )   

(6) 

and derive the first-order conditions: 


N

 D(N )  
N

s
   D (N )  0

 
(7a) 


a

   0
 

(7b) 




 a  D(N )  p  D(N )  0
 

(7c) 

It follows from these conditions that a and hence p should equal   N / s , which implies a 

fine tolling system as defined by a    N / s . Other values of p are incompatible with the 

first-best situation. The fact that the first-best price is uniquely determined implies that the 

optimal toll is also uniquely determined. Clearly, a reward system is incompatible with a first-

best optimum when demand is price-sensitive. 

This does, of course, not imply that a reward system can only play a useful role when 

demand is completely inelastic. In many actual policy situations first-best situations are – for 

various reasons – not implementable and second-best measures are the only relevant policy 

instruments, but may still achieve substantial welfare gains. In our example, a reward system 

may be used to remove part of the users from the peak, and thus alleviate the congestion 

problem. To see how this can be done, consider Figure 1, which refers to a no-toll 

equilibrium. The duration of the rush hour in equilibrium is indicated by the line segment B–

E, which equals N/s. To see the potential usefulness of rewarding drivers, consider what 

happens if we could persuade a given number of drivers – to be denoted as NP, the number of 

‘participants’ to the rewarding scheme – not to use the bottleneck during the peak. The result 

is that the extent of the rush hour decreases, as the total number of commuters that wants to 

pass the bottleneck around time t* is now lower. The base of the triangle in Figure 1 would 

shrink, but the slopes of the two sides would remain unchanged. Graphically, the original 

triangle moves downward. What remains could be the dashed triangle indicated in Figure 1. 
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Since the height of this new triangle is smaller than that of the original one, the 

equilibrium cost of all remaining unrewarded drivers has gone down. If their demand is 

completely inelastic, the number of drivers passing the bottleneck in the peak is equal to N–

NP. If demand is elastic, there will be induced demand: additional drivers start using the 

bottleneck in the peak after the average cost decreases because some original participants 

have been removed. The downward shift of the triangle will of course be smaller when there 

is induced demand.  

 

 

Figure 1. Effect of removing some commuters from the rush hour 

 

Besides options such as changing mode or suppressing the trip altogether, rewarded drivers 

may pass the bottleneck outside the new peak period B–E. In fact, because the peak period 

has become shorter, there cannot be an equilibrium if none of the rewarding drivers would use 

that option: the generalized price for travelling just before B or after E would then be lower 

than the original price. If they do use the bottleneck, to minimize their schedule delay cost, 

they should be allowed to pass it right before B and after E. Because the capacity of the 

bottleneck does not change, all rewarded drivers could then pass the bottleneck during the two 

time intervals [B,B] and [E,E] when demand is perfectly inelastic. If demand is price-

sensitive and additional unrewarded drivers are attracted, some rewarded drivers have to pass 

the bottleneck before B or after E. This is illustrated in Figure 2. The rewarded ‘participants’ 

pass the bottleneck during the time intervals [B,B] and [E,E]. The absence of queuing by 

participants requires the reward to vary over time during these intervals in a way similar to the 

pattern of the toll for first-best pricing (i.e., the reward should fall at a rate  for early arrivals 
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and increase at a rate  for late arrivals). Time-invariant rewards will be considered later. 

There are no rewards, but time-varying travel delays, in the remaining peak period <B,E>. 

When induced demand increases the duration of this remaining peak period [B,E], 

average cost rises both for the unrewarded and for the rewarded drivers. This suggests that 

induced demand makes the reward system less efficient. To investigate this more formally, 

we derive the relevant cost functions. First observe that the average cost for the unrewarded 

drivers is identical to what it would be in a conventional bottleneck equilibrium with 

NN  N  NP  users: cN    NN / s . If we use fine rewarding for the participants, they only 

experience schedule delay costs, which are on average equal to cP 
1
2   NN  N / s . For 

both cost levels, the levels of use of course refer to traffic volumes in the new equilibrium. 

 

 

Figure 2. Equilibrium with time-varying rewards for passing the bottleneck early or late 

 

If participation in the reward system is voluntary and open to all, as we will assume, the 

equilibrium generalized prices must be equal for all users of the bottleneck. For non-

participants this price is equal to their average cost. For participants, the fine reward has to be 

equal, at each instant, to the difference between their schedule delay cost and the generalized 

price for non-participants, cN. Because the reward itself is a transfer and we ignore the cost of 

public funds, it is not part of the social cost C(NN , NP ) : 

 

C(NN , NP )  NN  cN  NP  cP

  
NN

2

s
 

N  NN  1
2  N  NN 
s

 1
2  

N 2  NN
2

s
 

(8) 

If demand is completely inelastic, maximization of social surplus is equivalent to minimizing 

social costs, and it is easily verified in (8) that in this case it is optimal to let all drivers 
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participate in the reward so that NN  0 . The time-varying reward then reproduces the first-

best outcome. Its time variation eliminates all queuing, and the associated below-optimal 

generalized price does not distort overall demand because of the perfect inelasticity. When 

demand is price-sensitive, in contrast, there is the induced-demand effect of rewarding to take 

into account, because the first-best optimality conditions of (7a) and (7b) can no longer be 

fulfilled. To see how this affects the second-best reward, we maximize social surplus by 

solving the Lagrangian: 

  D(x)dx 
0

N

 1
2  

N 2  NN
2

s
    

NN

s
 D(N )





  

(9) 

The constraint reflects that the generalized price will be equal for all drivers, and will amount 

to cN as derived above. The first-order conditions are as follows: 


N

 D(N ) 
N

s
   D (N )  0

 
(10a) 


NN

  
NN

s
  


s
 0

 
(10b) 




  
NN

s
 D(N)  0

 
(10c) 

where D  dD / dN . These first-order conditions imply that the relative numbers of non-

rewarded and rewarded drivers should be set such that: 

NN 
 s

 s  D (N )
N  NP 

 D (N )

 s  D (N )
N

 
(10d) 

This confirms our earlier conclusion that with perfectly inelastic demand ( ( )D N   ) all 

drivers should participate to maximize social surplus: it implies NN  0; NP  N . In contrast, 

with perfectly inelastic demand ( D (N )  0 ) no-one should participate: NN  N; NP  0 . The 

reason is that latent demand is then so strong that any attempt to decrease the number of 

drivers in the remaining peak hour is fully ineffective, as the number of newly attracted 

drivers is exactly equal to the number of removed ‘rewarded’ drivers. Hence there are no 

benefits from reduced congestion associated with removing some drivers from the peak, while 

there will be a social loss from subsidizing travel outside the peak period because it attracts 

drivers with a marginal benefit below the marginal social cost. The fine reward is then a 

completely ineffective instrument, and cannot produce any welfare gain. 

 For intermediate elasticities, we expect the relative efficiency of fine rewards to 

decrease with demand sensitivity, along with the second-best optimal share of rewarded 
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drivers as implied by (10d).  Figure 3 confirms this by depicting for a numerical example the 

relative efficiency of fine rewarding for various levels of demand elasticity (in the no-toll 

equilibrium) and for the full range of possible participation levels. The latter is indicated as 

π=NP/N along the horizontal axis. On the vertical axis, ω denotes the relative efficiency: the 

gain in social surplus with the reward system as a fraction of the surplus in the first best 

optimum. The results are obtained for a numerical specification with the following 

parameters: =7.5; =3.75; =15; N=9000; and s=3600. The implied ratios of utility 

parameters reflect the usual values (e.g., Small, 1982; Arnott, de Palma and Lindsey, 1993); 

the value for  when expressed in Euros is close (rounded) to the current “official” value in 

The Netherlands; and the implied peak duration of 2.5 (hours) seems reasonable for a 

morning peak bottleneck. The two parameters in the assumed linear demand function are 

chosen such that both the target level of N and the target demand elasticity are achieved in the 

base (unpriced) equilibrium. 

 

Figure 3. Relative efficiency (ω) of fine rewarding by participation rate (π) for various elasticities of 
demand in the no-toll equilibrium: –0.1 (red, solid), –0.2 (purple, large dashing), –0.4 (blue, medium 

dashing), and –0.8 (green, small dashing)  

 
The upper solid line in the Figure 3 shows that with a small absolute value of the elasticity, 

the efficiency of the reward system approaches that of the first-best situation:  approaches 1. 

It is also optimal to let almost all drivers participate in the reward system: the top of the curve 

is not far from =1. When demand is more elastic, represented by the lower lines, both the 

relative welfare gains and the optimal share of participants – the  for which a maximum  is 

reached – decrease. This confirms the conjecture that strong latent demand effects make a 

reward system less effective. Note that for the highest (absolute value of the) demand 
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elasticity, a reward system where more than 90% of the drivers participate in fact lowers 

welfare compared to the no-toll equilibrium. The adverse induced demand effect then 

outweighs the benefit of eliminating queuing for the rewarded drivers.  

 
4. Coarse rewards, feebates and tolls 

We now turn to consider a simpler but probably more realistic version of the reward system. 

This concerns a ‘coarse’ reward, that has the same value independent of the moment of 

driving – as long, of course, as it is outside some specified central peak period. Such a coarse 

reward is some sort of mirror image of the coarse toll considered by Arnott, de Palma and 

Lindsey (1990, 1993), which is a uniform toll that is levied during the central part of the peak 

period only, for instance between B and E in Figures 1 and 2, and zero outside that period – 

including the shoulders of the peak. The coarse reward, in contrast, is zero in the central part 

of the peak and positive in the shoulders. We will discuss the similarities and differences 

between the two systems below. In addition, we will consider what we will call the coarse 

‘feebate’, defined as a budget neutral combination of a coarse toll (in the central part of the 

peak) and reward (in the shoulders). Not surprisingly, we will find that the performance of 

this measure is between that of the coarse toll and the coarse reward. For completeness, we 

will also consider an unrestricted ‘step toll’, for which it is assumed that the peak is divided in 

three periods during which differentiated shoulder and central toll or reward levels can apply, 

but no constraints on the signs or values of these tolls or their net revenues have to be met. In 

other words, this is a benchmark regime, that gives the maximum achievable welfare when 

the peak is to be subdivided in three periods with constant toll or reward levels.  

 Because tolls are piecewise constant in the regimes considered in this section, queuing 

will remain existent in equilibrium, for the drivers in the shoulders (‘participants’ in the 

previous section) as well as in the central period (the non-participants).4 In all equilibria that 

we will consider, all drivers experience the same generalized prices, which is consistent with 

endogenous participation for a reward scheme. The costs of the two groups differ, and the 

difference in toll or reward levels is used to compensate for this difference, and to establish a 

market equilibrium. The only difference between the four regimes will be the way in which 

the cost difference is compensated for: through a reward given to the high-cost group, a 

coarse toll levied on the low-cost group, a toll difference between both groups (for the step 

toll), or a combination of a reward and a toll (for the feebate). 

                                                 
4 For notational convenience, we will continue to use the subscript P for users in the shoulders (think of pre- and 
post periods) and N for those in the central period. 
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 We start the discussion by emphasizing that, as explained by Arnott, De Palma and 

Lindsey (1990), equilibrium requires a mass departure at instant E , which leads to the 

sudden emergence of a queue at that moment. Only then is it possible that the generalized 

price just before E , when a higher toll or lower reward applies, is equal to the (expected) 

generalized price right after E . All travellers in the mass departure have the same probability 

of obtaining a particular place in the queue, so that all users who pass the bottleneck between 

E  and E  experience the same expected cost. The first one can pass the bottleneck at E , 

and experiences only a schedule delay cost equal to   E  t * . The final one passes at E , 

and therefore spends time E  E  in the queue, implying a generalized cost 

  E  E    E  t * . Because the realization of generalized cost rises linearly between 

these two instants, the expected travel cost of the users in the mass departure is the average of 

these extremes, and therefore equals 1
2    E  t *  1

2    E  E    E  t *   . 

 Throughout our analysis of coarse instruments we will assume . This is 

generally believed to be the more relevant case empirically for car traffic in the morning peak 

(e.g. Small, 1982; Arnott, de Palma and Lindsey, 1990, 1993). As pointed out by  Arnott, de 

Palma and Lindsey (1990) the relative size of α and γ is important in the analysis of coarse 

pricing because it affects the qualitative properties of the equilibrium. In particular, when 

, there will be users departing after the mass departure, joining the queue before it has 

fully dissipated and the departure time interval will not shift as it does with . 

 

 

Figure 4. Travel delay in the coarse systems 

In Figure 4, travel delay is pictured as a function of the time at which the bottleneck is passed. 

The solid line gives the original equilibrium, and the dashed line that with a coarse reward. 
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Since demand is price-sensitive and the generalized price decreases with a reward, the total 

duration of the peak increases. The dynamic user equilibrium condition implies that a queue 

will start growing at B . This queue will be completely resolved at B , because it is not 

optimal to let central users already depart when there is still a queue of early shoulder users. 

The queue for central users starts growing at B , and shrinking after t * , until it has resolved 

at E . At E , there next is the mass departure of participants, and depending on their place in 

the queue, there is again a positive waiting time. The user who passes at E  has both the 

longest travel time and the largest schedule delay late.  

We can now establish the generalized costs for the participants, cP, and non-

participants, cN, as functions of the numbers of drivers. These relations are: 

cN   
NN

s
with  

 
    

(11a) 

cP  cN  * 
NP

s
with  * 

  1
2     

  1
2      

(11b) 

Equation (11a) follows immediately from noting that the cost for the non-participants will be 

equal to the level that would apply in a conventional no-toll equilibrium with NN drivers; 

compare equation (2). Equation (11b) follows from solving the set of two equations that, first, 

defines the two periods of shoulder arrivals to be together sufficiently long to host these 

drivers, and secondly, that equates the (expected) generalized cost to be equal for early and 

late shoulder drivers: 

NP

s
 B  B  E  E 

 
(12a) 

  B  B  cN  1
2      E  E  cN  

(12b) 

Equations (12ab) can be solved to produce: 

B  B 
1
2     

  1
2     

NP

s  
(12c) 

Next, observe that cP is equal to the sum of cN and the additional schedule delay cost at B  

compared to B : 

cP  cN    B  B  (12d) 

Substitution of (12c) into (12d) then produces the desired result of (11b). Note that (11b) 

applies whenever the toll or reward levels in the shoulders, for the participants, are equalized 

for the early and late shoulders, as we will assume. It is therefore not an optimality condition 

that would only apply for optimized tolls or rewards. 
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It is clear from (11b) that the shoulder users have a higher generalized cost than the 

central users. User equilibrium requires that the generalized prices of both groups are equal; 

the difference in toll or reward levels should bridge the gap. That is, the net difference  

between toll and/or reward levels in the central versus the peak period should for all schemes 

be equal to: 

   * 
NP

s  
(13) 

In what follows, we apply these results to find the optimal numbers of users in the various 

systems. We do so by maximizing social surplus under the side-condition that the generalized 

price faced by all users will be the same. The exact formulation of this condition differs over 

the systems. 

 

Coarse reward 

A coarse reward attracts some users to the shoulder periods; the equilibrium generalized price 

will be equal to the generalized cost for central drivers. The Lagrangian is:5 

  D(x)dx 
0

N

  
N NN

s
  * 

N  NN 2
s

    
NN

s
 D(N )





  

(14) 

Note that the constraint is the same as in problem (9) with fine rewards. The first-order 

conditions are as follows: 


N

 D(N ) 
NN

s
 2  * 

N  NN

s
   D (N)  0

 
(15a) 


NN

  
N

s
 2  * 

N  NN

s
  


s
 0

 
(15b) 




  
NN

s
 D(N)  0

 
(15c) 

Equation (15c) can be substituted in (15a) to derive the second-best equilibrium expression 

for : 

 
2  * 

N  NN

s
 D (N )  

(15d) 

Recall that this shadow price should give the marginal impact on second-best optimized social 

surplus from a relaxation of the constraint; i.e., from an increase in the generalized price. With 

                                                 
5 The formulation for total cost in (14) follows after reorganization of NNcN + (N–NN)cP; note that we have 
substituted out NP=N–NN. 
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rewarding, this generalized price is below marginal social cost, so the shadow price is 

positive. The denominator shows that the shadow price decreases and approaches zero as 

demand becomes less elastic, and induced demand is consequently less distortive. The 

numerator shows that the shadow price decreases as fewer users are rewarded, capacity is 

higher, and the composite cost coefficient * is smaller. 

 Substitution of (15d) in (15b) reveals, after some manipulations, that the ratio of 

rewarded shoulder travelers to total use should amount to: 

NP

N
 1

2 

 *


 D

 / s  D  
(15e) 

The third term gives the ratio that was found for a fine reward, in (10d), and the interpretation 

is similar. In particular, the ratio approaches zero as demand approaches perfect elasticity, for 

the same reason as with a fine reward. The upper limit, which applies with perfectly inelastic 

demand, however, is now not a share of unity, as for the fine reward, but a share of 1
2  / * . 

This is the same share that Arnott, De Palma and Lindsey (1990) find for a coarse toll.6 This 

reflects that for perfectly inelastic demand, the coarse reward is as efficient as the coarse toll. 

The two instruments are then equally effective in affecting departure time choice, the only 

relevant margin of behaviour if there is no induced demand. The instruments should therefore 

be set in an similar way, the only difference being that the shoulder users now receive a 

subsidy that is equal to the tax that central users would pay in the coarse toll schedule. 

 Finally, the equilibrium value for the coarse reward  can be found by substitution of 

(15e) into (13). This produces: 

  1
2 

s


 D

 / s  D
N

 
(15f) 

For perfectly inelastic demand, this again simplifies to an expression that applies for the  

coarse toll of Arnott, De Palma and Lindsey (1990).7 Note that, given N, this level is equal to 

the average level of the fine toll. For perfectly elastic demand, the second-best optimal reward 

becomes zero. 

 

Coarse toll 

                                                 
6 Arnott, De Palma and Lindsey do not mention this share explicitly. But using their expressions for the coarse 
toll (their equation 14a), and the moments at which it is switched on (their 14c) and off (their 14d), this share can 
be computed, and it indeed turns out to be equal to the one in our equation (15e). 
7 See their equation (14a). 
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As mentioned, the coarse reward resembles the coarse toll, the difference being that in the 

former case a subsidy is given, whereas in the latter a tax applies. The coarse toll is therefore 

a natural reference for judging the performance of the coarse reward. Arnott, De Palma and 

Lindsey (1990) derive the second-best coarse toll for perfectly inelastic demand. In their later 

paper, Arnott, De Palma and Lindsey (1993) consider coarse tolling with price-sensitive 

demand, but they do not derive the corresponding second-best toll level analytically. To 

derive it, we solve a Lagrangian that is rather similar to the one in (14), the difference being 

that the generalized price will now be the generalized cost level incurred by the shoulder 

drivers, given in (11b), rather than the central drivers, given in (11a): 

  D(x)dx 
0

N

  
N NN

s
 * 

N  NN 2
s

    
NN

s
 * 

N  NN

s
 D(N )





  

(16) 

The first-order conditions are now: 


N

 D(N )   
NN

s
 2  * 

N  NN

s
  

 *

s
 D (N )






 0

 
(17a) 


NN

  
N

s
 2  * 

N  NN

s
  

   *

s
 0

 
(17b) 




  
NN

s
 * 

N  NN

s
 D(N )  0

 
(17c) 

Equations (17c) and (17a) imply the following second-best equilibrium expression for : 

 
 * 

N  NN

s
 *

s
 D (N )

 
(17d) 

For given levels of the right-hand side variables, this implies a lower shadow price than for 

the coarse reward in (15d): the numerator is now twice as small, whereas the denominator is 

larger. This lower shadow price reflects that the problem of induced demand is, for the coarse 

toll, smaller than for the coarse reward. But the shadow price is still positive, reflecting that 

an increase in the generalized price by raising the shoulder toll level (now zero) would raise 

welfare – see also the step toll below. 

Substitution of (17d) in (17b) shows that the ratio of shoulder travelers to total use 

should now amount to: 

NP

N
 1

2 

 *


 * / s  D

  * / 2s  D  
(17e) 
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For perfectly inelastic demand, we again find a share of 1
2  / * , which is again equal to the 

ratio implied by the results of Arnott, De Palma and Lindsey (1990) for a coarse toll and 

perfectly inelastic demand. This ratio is therefore the same as for the coarse reward with 

perfectly inelastic demand. However, when approaching perfect elasticity of demand, (17e) 

implies a positive ratio of  / (  *) , which for example equals ½ if    . This is in sharp 

contrast with the results for the coarse reward, where the share would approach zero. It 

reflects that the toll has a positive effect of discouraging users of the congested bottleneck, 

whereas the reward tends to attract users. Note that the ratio of  / (  *)  for perfectly 

elastic demand is equal to that of 1
2  / *  for perfectly inelastic demand when     (so that 

   * ).8   

 Finally, the equilibrium value for the coarse toll implied by (13) and (17e) is: 

  1
2 

s


 * / s  D

  * / 2s  D
N

 
(17f) 

Consistent with what was just said, this toll remains positive for a perfectly elastic demand, 

while the reward in (15f) becomes zero. Also note that for given right-hand side variables, the 

toll will certainly be larger than the subsidy as long as       * , a condition usually 

found and assumed to apply in reality (e.g., Small, 1982).  Under those conditions, the share 

in (17e) will also certainly exceed that in (15e). Note that this restriction    is more than 

sufficient. This confirms the intuitive expectation that the coarse toll is, in absolute terms, 

bigger than the coarse reward, because it does not attract additional users to an already 

congested facility. As anticipated, with perfectly inelastic demand, the toll is again equal to 

the level found by Arnott, De Palma and Lindsey (1990). 

 

Step toll 

The step toll is quite similar to the coarse toll just discussed, but allows a positive toll to be 

charged also in the shoulders. This shoulder toll may – and will – be different from the central 

toll. One may expect the step toll to be at least as efficient as the coarse toll, because the 

shoulder toll may be set at zero, which would make the two policies identical. The Lagrangian 

now becomes: 

                                                 
8 When   ,    * , and the ratio of shoulder travellers with perfectly elastic demand is smaller than that with 

perfectly inelastic demand. There does not seem to be a simple intuition behind these results.  
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  D(x)dx 
0

N

  
N NN

s
  * 

N  NN 2
s

    
NN

s
  * 

N  NN

s
  L  D(N )





  

(18) 

where L denotes the (“low”) shoulder toll.  The first-order conditions are now: 


N

 D(N )   
NN

s
 2  * 

N  NN

s
  

 *

s
 D (N )






 0

 
(19a) 


NN

  
N

s
 2  * 

N  NN

s
  

   *

s
 0

 
(19b) 




  
NN

s
 * 

N  NN

s
  L  D(N )  0

 
(19c) 


 L

   0
 

(19d) 

The shadow price  is now zero, reflecting that the generalized price and hence overall 

demand can be controlled perfectly using the shoulder toll level L. The zero shadow price 

reflects that, among the coarse schedules considered, this step toll is the most efficient: there 

is no binding constraint on the two toll levels (given the symmetric two-levels structure). 

 The ratio of shoulder users can be found after substituting (19d) into (19b): 

NP

N
 1

2 

 *  

(19e) 

Given that overall demand can now be controlled perfectly using L, it is no surprise that this 

ratio is the same as what was found for the coarse toll and the coarse reward above for 

perfectly inelastic demand.  There is now no reason to deviate from this ratio in an attempt to 

restrict demand.   

 Substitution of (19d) and (19c) into (19a) gives the level of the low toll: 

 L  
* 

NP

s
 1

2  
N

s  
(19f) 

Adding  then gives the (“high”) central toll H: 

H   
N

s  
(19g) 

The central toll is therefore twice as large as the shoulder toll. The shoulder toll is now equal 

to the average level of what the fine toll would be with N users, and the central toll is equal to 

its maximum. The total revenues from step tolling are therefore, for a given N, higher than 

those from fine tolling. 
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Feebate 

Finally, we consider the condition of a budget neutral combination of a toll τ that has to be 

paid by the central drivers, and a reward  that is received by the shoulder drivers. The 

revenues from the toll have to be equal to the expenditure on the reward, and (13) still applies, 

so we can find an expression for  as a function of N and NP: 

     * 
NP

s

   
NN

NP











   * 
NP

2

s N  
(20a) 

Adding cN
 
gives the generalized price in equilibrium: 

p   
NN

s
 * 

N  NN 2
s N

  
NN

s
 * 

N

s
 2 

NN

s


NN
2

s N




  

(20b) 

This means that the Lagrangian becomes: 

  D(x)dx 
0

N

  
N NN

s
 * 

N  NN 2
s

    
NN

s
 * 

N

s
 2 

NN

s


NN
2

s N





 D(N )







 

(21) 

The first-order conditions are now: 


N

 D(N ) 
NN

s
 2  * 

N  NN

s
  

 *

s
 1

NN
2

N 2






 D (N )







 0

 
(22a) 


NN

  
N

s
 2  * 

N  NN

s
  


s
 2 

 *

s
 2 

 * NN

s N





 0

 
(22b) 




  
NN

s
  * 

N

s
 2 

NN

s


NN
2

s N





 D(N )  0

 
(22c) 

Somewhat surprisingly, because the term between large brackets in (22b) is equal to –1/N 

times the term in front of the -term, the ratio of shoulder users can be found directly from 

(22b), independent of : 

NP

N
 1

2 

 *  

(22d) 

It is the familiar expression that we already found for perfectly inelastic demand, and for the 

step toll, and this reflects that the feebate is ineffective at addressing the problem of induced 

demand. That gives a somewhat different reason than for the step toll to aim for the cost-
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minimizing ratios of shoulder and central users without considering induced demand effects. 

The equilibrium expression for  is tedious for this regime, but again reflects that it will 

approach zero as demand approaches perfect inelasticity: 

 
 * N  N 2  NN

2 
 *  N 2  NN

2  D  s N 2  
(22e) 

Using (22d) and (20a) we can compute the following levels for  and : 

  1
2  

NP

s
 1

4 

s


 *

N
 

(22f) 

  1
2  

NN

s
 1

4 

s


2  *  
 *






N

 
(22g) 

Note that (22f) and (22g) imply that the difference in monetary prices between the shoulder 

and central periods is consistent with (22d) in the sense that it is again equal to the coarse toll 

level for inelastic demand: 

    1
2 

s
N

 
(22f) 

The reader may also verify that substitution of (22d) into (22f) confirms that (13) is satisfied. 

 

Numerical results 

It is clear from the above derivations that the main factor determining the relative 

performance of the four coarse schedules will be the elasticity of demand. We illustrate this in 

the context of the same numerical model as we used in the previous section. The results are 

summarized in Figures 5, 6 and 7. The horizontal axes of these figures give the absolute value 

of the elasticity of demand in the no-toll equilibrium. 
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Figure 5. Relative efficiency (ω) of step tolls (red, solid), coarse tolls (purple, large dashing), coarse 
feebates (blue, medium dashing), and coarse rewards (green, small dashing) by elasticity of demand 

(ε) in the no-toll equilibrium 
 

Figure 5 shows the relative efficiency, . Consistent with our analytical findings, the four 

coarse regimes are equally efficient when the price elasticity of demand in the original 

equilibrium is equal to 0. When demand becomes more elastic, the step toll becomes 

relatively more efficient, the relative efficiency of the coarse toll remains more or less 

unchanged, but the other two systems – which rely partly or completely on rewarding and 

therefore suffer from induced demand – become gradually less efficient. 

Figure 6 shows the optimal share of shoulder drivers in the four systems, NP/N. There 

is a large discrepancy between the systems that rely partly or completely on tolling, and the 

‘purest’ reward system. The optimal share of participants is clearly decreasing in the elasticity 

of demand for the latter system, whereas it remains rather constant in the other regimes. 

 

 

Figure 6. Second-best optimal share of “participants” (shoulder-period users) with step tolls (red, 
solid), coarse tolls (purple, large dashing), coarse feebates (blue, medium dashing), and coarse 

rewards (green, small dashing) by elasticity of demand (ε) in the no-toll equilibrium 
 

Finally, Figure 7 shows the optimal values of the tolls and rewards in the four regimes. Note 

that negative values in the Figure denote positive rewards. In the step toll, the optimal value 

of both tolls is slightly decreasing in the elasticity of demand. This is consistent with total use 

declining more strongly due to step tolling as demand becomes more elastic. The optimal 

reward decreases in magnitude when demand becomes more elastic, confirming our analytical 
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results. The coarse toll, and the toll and reward in the feebate regime, turn out to be rather 

insensitive to the elasticity of demand.  

 

 

Figure 7. Second-best optimal tolls (τ) and subsidies (σ, in negative quadrant) with step tolls (red, 
solid; upper curve is central peak and lower curve is shoulder), coarse tolls (purple, large dashing), 

coarse feebates (blue, medium dashing; upper curve is central peak and lower curve is shoulder), and 
coarse rewards (green, small dashing) by elasticity of demand (ε) in the no-toll equilibrium 

 

5. Conclusion 

This paper analyzed the possibilities to relieve bottleneck congestion by using rewards instead 

of – or in combination with – taxes. We have shown that with inelastic demand a fine (time-

varying) reward is equivalent to a fine toll, and to a continuum of combinations of time-

varying tolls and rewards (including fine feebates). When demand is price sensitive, a reward 

becomes less attractive from the efficiency viewpoint, because it attracts additional users to 

the congested bottleneck. As a result, both the second-best optimal rate of participation in the 

scheme, and the relative efficiency that can be achieved with it, was found to decrease when 

demand becomes more elastic. 

We also studied the properties of coarse schemes. Both our analytical and simulation 

results suggest that a coarse reward is less effective than a coarse feebate, which is itself less 

effective than a coarse toll. The most efficient coarse system is the step toll, which is also 

allowed to be positive in the shoulder period. These conclusions reflect that congestion entails 

an external cost, which should ideally be internalized. 

 Our analysis nevertheless suggests that a reward system can relieve congestion 

problems by persuading some drivers to pass the bottleneck earlier or later than others, who 

do not receive a reward. Especially in situations in which tolls are unusually unacceptable – 
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one may think of road works, bad weather forecasts or large scale sport events (such as the 

Olympic Games) a reward to stimulate people to avoid the peak may be more attractive to 

combat congestion than a toll. When demand is expected to be rather elastic, it may be 

preferable to look for possibilities to impose a feebate system, rather than a reward system. 

 Many potentially important aspects of a reward system have been left undiscussed in 

this paper. Heterogeneity among users – possibly in their preferred arrival time, but also in 

their shadow costs of travel delays and schedule delays – may be particularly important, as 

may be uncertainty about demand and the capacity of the bottleneck. These issues are left for 

future work. 
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