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Abstract

Even under antitrust enforcement, �rms may still form a cartel in an in�nitely-
repeated oligopoly model when the discount factor is su¢ ciently close to one. We
present a linear oligopoly model where the pro�t-maximizing cartel price converges to
the competitive equilibrium price as the discount factor goes to one. We then identify
a set of necessary conditions for this seemingly counter-intuitive result.
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1 Introduction

It is well-known that in an in�nitely-repeated oligopoly model, almost all prices, including the

monopoly price, can be sustained by trigger strategy pro�les as cartel prices for su¢ ciently

patient �rms. Since the monopoly price leads to the highest deadweight loss in social welfare,

the e¤ects of antitrust enforcement are often con�ned to the question whether enforcement

deters monopoly pricing, see e.g. Block et al. (1981) and Harrington (2005). Antitrust en-

forcement in practice is regarded as too weak to deter monopoly pricing. We investigate and

reexamine the latter conclusion by presenting a simple model where the pro�t-maximizing

cartel price converges to the competitive equilibrium price as the �rms become su¢ ciently pa-

tient. Because of its important policy implications for antitrust enforcement, we investigate

conditions for such a convergence result in a general in�nitely-repeated oligopoly model.

The model studied here is a repeated-game version of the dynamic model in Harrington

(2004, 2005), who extensively motivates most of the assumptions adopted in our model.

In particular, �nes (including other liabilities) and detection probabilities depend upon the

current and past prices, which makes Harrington�s model a dynamic game. In a steady state,

however, the equilibrium analysis in any period will only depend on the cartel price in the

current period. For explanatory reasons, we assume that detection probabilities and �nes

depend upon the current price only.

One crucial feature in our model is that the cartel may reestablish after it is detected and

prosecuted. Our approach uni�es two extreme treatments in the literature. On one extreme,

Harrington (2004, 2005) assumes that a cartel dissolves after it is caught and �ned. On

other extreme, Motta and Polo (2003) investigate notorious cartels, that will reestablish no

matter how many times it has been convicted. Here we assume that a cartel will reestablish

probabilistically in every period in which it is detected and �ned.

This note makes several contributions. First, the presence of probabilistic reestablishment

of the cartel requires di¤erent equilibrium conditions on sustainable cartel prices. In Section

2, we set up such a model with probabilistic reestablishment of the cartel and provide the
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corresponding equilibrium conditions. Section 3 is devoted to a linear Bertrand oligopoly

model with linear detection probabilities. The �ne is proportional to the �rms�illegal gains,

as suggested by the current US sentencing guidelines. We show that the pro�t-maximizing

cartel price converges to the competitive Bertrand equilibrium price as the discount factor

goes to one. In Section 4, we establish a set of necessary conditions for such a seemingly

counter-intuitive result in a general setup and provide intuition for this convergence.

2 The Model

Consider an in�nitely-repeated oligopoly model in the presence of antitrust enforcement.

In each period, �rms compete in prices and the antitrust authority (AA) investigates the

market. If the �rms collude, they will be caught and �ned with certain probability. Both

the probability of detection and the �ne depend on how serious the anti-trust violation is in

the current period.

Price competition in every period is modelled as a symmetric Bertrand game among

n � 2 �rms.1 Let �(p1; : : : ; pn) be a �rm�s per-period pro�t for prices p1; : : : ; pn 2 R+.

For convenience, let �(p) � �(p; : : : ; p) and �opt (p) � supp0 � (p0; p; : : : ; p) be a �rm�s pro�t

from a unilateral deviation against the cartel price p. Denote the symmetric competitive

(Nash) equilibrium price and the maximal collusive (or monopoly) price by pN and pM ,

respectively. As in Harrington (2004, 2005), we assume that �(p) is continuous and strictly

increasing in p 2 [pN ; pM) with a maximum at pM , �opt (p) is continuous, strictly increasing

and �opt (p) > �(p) > 0 for p 2
�
pN ; pM

�
. To further simplify the exposition, we normalize

the model such that �(pN) = 0 and interpret � (p) as the net pro�t above �
�
pN
�
.

As motivated by Harrington (2004, 2005), the detection probability depends upon the

cartel�s price setting and this re�ects that a higher cartel price might raise more suspicions

about cartel abuse and, therefore, makes detection (and conviction) more likely. If �rms

1Our analysis also applies to quantity competition oligopoly model with proper revision of detection
probability and �ne functions.
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collude at price p > pN , they will be detected with probability �(p) 2 [0; 1], which is

non-decreasing and di¤erentiable in p. By default, �(pN) = 0. We forego imposing right-

continuity of �(p) at p = pN to capture the situation of constant detection probabilities

for p > pN . As in Rey (2003), only current period�s misconduct is prosecuted. If the

�rms are found guilty, every �rm will have to pay the one-time �ne f(p) � 0, which is a

non-decreasing, di¤erentiable function on p 2 (pN ; pM ] that may not be right continuous at

p = pN to capture �xed �nes for p > pN . In order to avoid triviality of the model, we also

assume that F (p) � � (p) f(p) < � (p) for all p > pN . Note that �0(p) � 0 and f 0(p) � 0

imply that F 0(p) � 0. Also, 0 � limp#pN F (p) � limp#pN � (p) = 0 implies F (p) must be

continuous at p = pN even though � (p) or f(p) might not be right continuous.

There are two di¤erent treatments in the literature of how �rms behave after each con-

viction. In Harrington (2004, 2005), being caught once is su¢ cient to deter cartel activity

in the future. In Motta and Polo (2003), the economic sector is notorious for cartel activi-

ties despite many convictions. To unify these two di¤erent treatments, let  2 [0; 1] be the

probability that the �rms stop illegal activities after each conviction.  = 0 implies that

cartel is notorious implies, while  = 1 means the sector becomes competitive after the �rst

conviction of a cartel.

In the repeated game, every �rm has a common discount factor � 2 (0; 1) per period.

It is well-known that an in�nitely-repeated game, such as the model studied in this paper,

generally admits multiple equilibrium outcomes when the discount factor is su¢ ciently close

to one. We are interested in subgame perfect equilibria with the following modi�ed trigger

strategy pro�le to sustain a cartel price of p > pN : Firms collude at price p > pN in the �rst

period and continue to collude at price p as long as no �rm deviates in setting this price.

Any price deviation by any �rm leads to perpetual competition at price pN . Cartel will be

detected with probability �(p), after which the �rms continue to collude with probability 1�

in the following period and switch to perfect competition with probability  forever. Under

such a strategy pro�le, the present value of a �rm�s expected pro�t V (p; �) is determined
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recursively by

V (p; �) = � (p) + [1� �(p)] �V (p; �) + � (p) [(1� )�V (p; �)� f(p)] ;

which yields

V (p; �) =
� (p)� F (p)
1� � + �� (p) : (1)

Assuming that any price-deviating �rm will not be �ned, the equilibrium condition becomes

V (p; �) � �opt (p).2 We assume that V (p; �) is strictly log-concave on
�
pN ; pM

�
, which ensures

that V (p; �) has a unique maximum on
�
pN ; pM

�
that is a continuous function of � 2 (0; 1)

and other parameters. The pro�t-maximizing cartel price is then

pC(�) 2 argmax
p
V (p; �) subject to V (p; �) � �opt (p) : (2)

3 A Linear Bertrand Model

In this section, we show that the pro�t-maximizing cartel price can converge to the compet-

itive equilibrium price as the discount factor goes to one. Consider a homogeneous Bertrand

oligopoly model with linear demand 2� p and constant marginal costs of 0. Then, we have

� (p) =
1

n
p (2� p) , pN = 0, pM = 1, and �opt (p) = p (2� p) for all p 2 (pN ; pM ]:

The antitrust regulation is given by � (p) = �p with � > 0, and f (p) = k� (p), where the

�ne function re�ects the current practice in the US (see Harrington 2004, 2005). Note that

0 � F (p) < � (p) for all p 2 (0; 1] if 0 � �k < 1. Recall that p can be sustained as a cartel

price by our modi�ed grim trigger strategy pro�le if and only if V (p; �) � �opt (p), which

holds as long as [� (k + n)] p < 1. Note that this condition is independent of the discount

factor �. This condition ensures that any p that is su¢ ciently close to the competitive price

pN = 0 can be sustained as a cartel price for su¢ ciently large discount factors. This fact

con�rms the assertion of Harrington (2004, 2005) that the equilibrium conditions are always

non-binding for su¢ ciently large � < 1.
2Our analysis is still valid if a price-deviating �rm is �ned when the cartel is detected.
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With our modi�ed trigger strategy pro�le, a �rm�s value function is given by

V (p; �) =
1

n

(1� �kp) (2� p) p
1� � + ��p : (3)

Observe that V (p; �) is log concave in p 2 (0; 1] because

@2 lnV (p; �)

@p2
= � (�k)2

(1� �kp)2 �
1

(2� p)2
� 1

p2
+

(��)2

(1� � + ��p)2
� @2 lnV (p; 1)

@p2
< 0:

Because any price that is su¢ ciently close to the competitive price can be supported as a

cartel price, and as we will show, the pro�t-maximizing cartel price converges to the compet-

itive price, the constraint in (2) becomes nonbinding for su¢ ciently large �. Consequently,

for su¢ ciently large �, pC(�) is characterized by @V (p; �) =@p = 0, that is,

(2� 2p� 4�kp+ 3�kp2)(1� � + ��p)� ��(2p� p2 � 2�kp2 + �kp3) = 0: (4)

Denote lim�!1 p
C (�) = p̂. Taking the limit of (4) as � ! 1, and given � > 0, we have

2�kp̂3 � p̂2 � 2�kp̂2 = 0) p̂ = 0 and p̂ = 1 +
1

2k�
> 1:

Obviously, p̂ = 1 + 1
2k�

> pM cannot be the limit of pro�t-maximizing cartel price. Hence,

lim�!1 p
C (�) = 0 = pN , which is the main message of this paper.

To conclude this section, we demonstrate that the pro�t-maximizing cartel price pC (�)

is nonmonotonic in �. When the equilibrium condition in (2) is binding, pC(�) is the largest

price p 2 [0; 1] satisfying V (p; �) � �opt (p):

max p2[0;1] p, s.t.
1� �kp

n (1� � + ��p) � 1 ) pC(�) = min

�
1� n(1� �)
n�� + k�

; 1

�
;

which monotonically nondecreases in the discount factor � 2 (0; 1). When the equilibrium

condition in (2) is nonbinding, then pC(�) is the solution to (4) in [0; 1]. Generally speaking,

we cannot obtain the analytical solutions to (4). However, when k� = 1=2, (4) simpli�es to

(2� p)
�
���p2 � 3

2
(1� �) p+ 5 (1� �)

�
= 0

) pC(�) =

q
9
4
(1� �)2 + 20�� (1� �)� 3

2
(1� �)

2��
;
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Figure 1: The pro�t-maximizing cartel price pC (�).

which decreases in � 2 (0; 1) and converges to the competitive equilibrium price pN = 0

as � goes to 1. Figure 1 illustrates that the pro�t-maximizing cartel price is nonmonotonic

with respect to the discount factor �. When � is small enough, only the competitive price

can be the equilibrium price. On the other hand, when the discount factor � is su¢ ciently

close to 1, the equilibrium condition is nonbinding so (4) characterizes the pro�t-maximizing

cartel price (which decreases in �). For an intermediate range of discount factors, the pro�t-

maximizing cartel price is determined by the equilibrium condition, and increases in �. It is

worthwhile to note that as the discount factor increases, the set of equilibrium prices grows,

yet the pro�t-maximizing cartel price decreases to the competitive price eventually.

4 Conditions for Convergence

To establish our convergence result, we �rst need to make sure whether all p that are suf-

�ciently close to the competitive price can be supported by the modi�ed trigger strategy

pro�les described in Section 2 for su¢ ciently large � 2 (0; 1).

Proposition 1 If there exists " > 0 such that

�(p) > � (p)
�
f (p) + �opt (p)

�
for all p 2

�
pN ; pN + "

�
; (5)

then any p 2 [pN ; pN + ") can be sustained in equilibrium for all � 2 [�0; 1) for some �0 < 1.
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Proof. Observe that p = pN can always be sustained in equilibrium for all � 2 (0; 1).

(5) implies that for all p 2 (pN ; pN + "), �(p) � F (p) > � (p)�opt (p). Because V (p; �) is

continuous in �, there exists some �0 < 1 such that for all � 2 [�0; 1),

V (p; �) =
�(p)� F (p)
1� � + ��(p) � �

opt (p) ;

which means that p 2 [pN ; pN + ") can be sustained in equilibrium for all � 2 [�0; 1).

Note that � (p) f (p) < � (p) implies (5) for notorious cartels, i.e.  = 0. For other ,

such as  = 1, the more restrictive (5) is needed to guarantee sustainable cartel prices above

pN . It is straightforward to verify that the linear model presented in Section 2 satis�es (5).

Proposition 1 asserts that the equilibrium condition will not be binding for su¢ ciently

large � 2 (0; 1) whenever pC (�) converges to pN as � goes to one. Consequently, pC (�)

maximizes V (p; �) for su¢ ciently large � 2 (0; 1). The next proposition provides necessary

conditions for such convergence:

Proposition 2 Under (5) and �0 (p) > 0 for all p 2 (pN ; pN + "),

if lim
�!1

pC (�) = pN , then either �0(pN) = lim
p#pN

F 0(p) or lim
p#pN

�(p) = 0: (6)

Proof. If lim�!1 p
C (�) = pN , then Proposition 1 implies that the equilibrium condition

in (2) is not binding when � is su¢ ciently close to 1. Consequently, there exists a �00 2 [�0; 1)

such that for all � 2 [�00; 1), we have V 0(pC (�)) = 0, or

�
1� � + ��(pC (�))

� �
�0(pC (�))� F 0(pC (�))

�
= �

�
�(pC (�))� F (pC (�))

�
�0(pC (�)); (7)

where the �rst term on the left-hand side and the last two terms on the right-hand side

are positive. If �0(pC (�)) = 0, then (7) reduces to �0(pC (�)) = F 0(pC (�)), which implies

that pC (�) is independent of � 2 [�00; 1). So for lim�!1 p
C (�) = pN , it is necessary that

pC (�) = pN for all � 2 [�00; 1), i.e. �0(pN) = limp#pN F
0(p). Otherwise, i.e. �0(pC (�)) > 0,

by limp#pN [�(p)� F (p)] = 0, taking the limit of (7) as � ! 1 yields

 � lim
�!1

�(pC (�)) � lim
�!1

�
�0(pC (�))� F 0(pC (�))

�
= 0
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which implies that either �0(pN) = limp#pN F
0(p) or lim�!1 �(p

C (�)) = 0.

In case either  = 0 or �0 (p) = 0 for all p 2 (pN ; pN + "), only the �rst condition

under (6) is necessary for convergence. This condition implies that penalties F (p) such

that limp#pN F
0(p) = �0(pN) lead to the competitive outcome independent of  2 [0; 1] and

�0(�). If the �rst condition fails, convergence is impossible for notorious cartels ( = 0) or

detection probabilities that are constant. For less notorious cartels ( > 0) under increasing

detection probabilities (�0 (p) > 0), convergence to the competitive outcome requires the

second condition limp#pN �(p) = 0, as in the linear model. We interpret limp#pN �(p) = 0 as

putting relatively less e¤ort on prosecuting mild abuses just above the competitive equilib-

rium price, and �0 (p) > 0 as monitoring price �uctuations. So, such antitrust enforcement

can be e¤ective in reducing the cartel price to the competitive equilibrium price.
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