T12010-036/4
Tinbergen Institute Discussion Paper

U On the Optimality of Regularity in
Mixing Markovian Decision Rules for
MDP Control

Dinard van der Laan

Department of Econometrics and OR, VU University Amsterdam, and Tinbergen Institute.



Tinbergen Institute

The Tinbergen Institute is the institute for economic
research of the Erasmus Universiteit Rotterdam,
Universiteit van Amsterdam, and Vrije Universiteit
Amsterdam.

Tinbergen Institute Amsterdam
Roetersstraat 31

1018 WB Amsterdam

The Netherlands

Tel.: +31(0)20 551 3500
Fax: +31(0)20 551 3555

Tinbergen Institute Rotterdam
Burg. Oudlaan 50

3062 PA Rotterdam

The Netherlands

Tel.: +31(0)10 408 8900
Fax: +31(0)10 408 9031

Most Tl discussion papers can be downloaded at
http:/ /www.tinbergen.nl.




On the optimality of regularity in mixing Markovian
decision rules for MDP control

Dinard van der Laan *

March 23, 2010

Abstract

In this paper we study Markov Decision Process (MDP) problems with the restric-
tion that at decision epochs only a finite number of given Markovian decision rules
may be applied. The elements of the finite set of allowed decision rules should be
mixed to improve the performance. The set of allowed Markovian decision rules could
for example consist of some easy-implementable decision rules, but also many open-
loop control problems can be modelled as an MDP for which the applicable decision
rules are restricted. For various subclasses of Markovian policies methods to maximize
the performance are obtained, analyzed and illustrated with examples. Advantages
and disadvantages of optimizing over particular subclasses of applicable policies are
discussed and optimal performances are compared. One of the main results gives suf-
ficient conditions for the existence of an optimal Markovian policy belonging to the
subclass of applicable policies having a so-called regular structure.

Keywords: Markov Decision Process; Mixing Decision Rules; Optimization; Regu-
lar Sequences.

1 Introduction

Markov decision processes (MDP) are a well established tool for optimizing the control of
stochastic systems. To model a complex system as MDP is applied in for example telecom-
munication, manufacturing systems and call centers. Classically solving the MDP results
in an (optimal) policy which for every system state yields a corresponding (optimal) con-
trol action. To implement this policy at any decision event the current system state has
to be known (or determined) before the corresponding control action is chosen. In prac-
tice such implementation may not be convenient. Moreover, for complex systems with large
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(multi-dimensional) state space it is hard and practically impossible to find the optimal
state-dependent policy.

In this paper we consider MDP for which decisions should be taken at an infinite discrete set
T of consecutive decision epochs. For such MDP a general (possibly non-stationary) Markov-
ian policy specifies for each decision epoch ¢ € T a decision rule to be applied at ¢ where
a decision rule can be represented by a mapping from the state space to a corresponding
action space. For purposes in this paper all of these spaces may assumed to be finite. Still in
general it soon becomes intractable to determine the optimal policy if the state and/or ac-
tion space(s) get larger. Moreover, optimal decision rules may have a complicated structure
and be hardly implementable in practice. Therefore a basic idea in this paper is to optimize
over a (much) smaller set of Markovian policies by rigorously restricting the set of allowed
decision rules and thus the corresponding mappings from state space to action space are
also restricted and for example have a specific structure. Let D be the set of decision rules
(mappings) to which is restricted. To obtain useful results for implementation in practice D
should be chosen such that some specific properties are satisfied. First D should only con-
sist of easy implementable decision rules such that the implementation of any corresponding
restricted Markovian policy is not a problem. A second objective is the set D being small
such that optimization over Markovian policies with decision rules restricted to D becomes
tractable. Additionally we would like that the performance obtained by optimization over
Markovian policies with decision rules restricted to D is competitive to performances of other
implementable policies which can be quickly found by for example applying some heuristic.

A reasonable and easy implementable decision rule which could be such an element of D
could for example for an MDP associated with some routing problem with parallel servers
be the rule that routes any arriving job at the moment of arrival to the server with the
shortest expected remaining workload. This is a rule which for many such routing problems
gives a reasonable performance, but possibly if it is combined with a few other decision rules
in D a better performance could be obtained while optimization remains tractable.

If not performance but implementation is the issue for some MDP then arguably the most
easy implementable decision rules are the rules which are given by a contant mapping. For
such decision rules the chosen action at some decision epoch will not depend on the state
of the stochastic process. This kind of mechanism to choose an action is also called state-
independent or in a more general setting open-loop control. In fact many problems with
open-loop control or partially observable MDP can be been as special cases of optimization
over Markovian policies with decision rules restricted to D in which D consists only of de-
cision rules corresponding to for example constant mappings or more generally mappings
which are constant on given subdomains of the state space.

In this paper the problem of MDP optimization over Markovian policies with decision rules
restricted to some given finite set D will be referred to as D restricted MDP. Policies which are
applicable to D restricted MDP will be referred to as D-mixing policies. First optimization
over the class of stationary randomized D-mixing policies is investigated and after that



optimization over certain classes of (possibly non-stationary) deterministic D-mixing policies.
The advantages and disadvantages of optimizing over particular classes of D-mixing policies
are discussed. Then for any D restricted MDP an associated MDP is defined for which the
decision rules are not restricted and the action space is very simple, but the state space is
continuous and thus much larger. The associated MDP is defined such that optimization
is equivalent to optimization of the D restricted MDP and (optimal) sample paths of the
former yield (optimal) D-mixing policies. Such associated MDP will be referred to as full
observation MDP. Although for these full observation MDP there is no longer a restriction on
the decision rules obtaining an optimal policy remains difficult in practice mainly due to the
(large) continuous state space of such full observation MDP. However, for the full observation
MDP some well-known structural results like for example existence of a stationary and
deterministic Markovian policy should hold if some appropriate conditions are satisfied. We
will investigate whether such structural results on optimal policies and conditions to be
satisfied for the full observation MDP have corresponding implications for the equivalent D
restricted MDP. Indeed it turns out that for D restricted MDP also structural results on
optimal policies can be formulated if certain conditions are satisfied, but that both structure
and conditions are usually more complex than for MDP without restriction on the applicable
decision rules.

One of the main results in this paper will be the existence of optimal deterministic D-mixing
policies having a so-called regular structure if some conditions are satisfied. The existence of
optimal policies with a regular structure for some open-loop control problems is investigated
before and [1] gives an overview on this. The obtained results were for queueing networks
assumed to have particular topological properties. Moreover, in [1] the main condition for
this optimality of a regular policy is multimodularity of the performance function. For many
problems this condition of multimodularity is hard to check. In the present paper completely
different conditions are obtained which are sufficient for the existence of a regular policy
which is optimal. These conditions are formulated in terms of D restricted MDP and the
associated full observation MDP and can also be checked for other type of problems then
open-loop control in particular queueing networks.

This paper is organized as follows. Section 2 starts with some basic notation and MDP
concepts and a performance measure is defined. Then the concepts of D restricted MDP
and D-mixing policies are introduced and explained in detail. The link between these con-
cepts and open-loop control mechanisms is also explained. In Section 3 Bernoulli policies
are introduced as a class of D-mixing policies having the properties to be randomized and
stationary. A method is given to compute the performance of any Bernoulli policy to be
applied to a D restricted MDP. Also the problem of optimizing over the Bernoulli policies
is considered and we give a method to do this. This method to optimize is illustrated with
an example on a particular D restricted MDP. In Section 4 deterministic D-mixing policies
are introduced. Comparing with Bernoulli policies the advantages and disadvantages of ap-
plying and optimizing over deterministic D-mixing policies are discussed. The problem of
computing the performance of a given deterministic D-mixing is considered and for so-called
periodic policies a method is given and illustrated with an example.

In Section 5 for any given D restricted MDP the associated (full observation) MDP is de-
fined such that there is equivalence with the D restricted MDP. This equivalence gives some



useful results on optimal policies and associated sample paths. Then some conditions for D
restricted MDP are given which are shown to be sufficient for the existence of optimal sta-
tionary deterministic Markovian policies for the associated full observation MDP. Moreover,
it is shown that these conditions are sufficient for performances of deterministic D-mixing
policies to be independent of the initial state distribution from which additional results are
deduced. In Section 6 some special subclasses of deterministic D-mixing policies are intro-
duced. For the introduced subclasses algorithms are given to optimize the performance over
such a subclass. The complexity of these algorithms is considered. A subclass of deter-
ministic D-mixing policies which is considered in particular are the so-called policies with
regular structure for which the corresponding sequence of decision rules is a so-called regu-
lar sequence. The most sophisticated algorithm introduced in this section to optimize the
performance over this subclass is illustrated in an example. In this section also some partial
result is obtained on the optimal performance over some other subclass of policies compared
to the optimal performance over all D-mixing policies. To obtain this result it is again useful
to consider the associated full observation MDP.

Finally in Section 7 it is proved that for D restricted MDP with D consisting of (only) two
different decision rules some generally applicable conditions are sufficient for the existence
of an optimal D-mixing policies within the subclass of deterministic D-mixing policies with
regular structure. The associated full observation MDP is considered to formulate the main
condition for this result. It is shown that for the full observation MDP the existence of an
optimal stationary deterministic Markovian policy having some type of threshold structure
is together with some easy checkable minor conditions sufficient to obtain the result on opti-
mality within the sublass of policies with regular structure. The application of this result is
illustrated with an example. Some concluding remarks are made about possible generaliza-
tions of the main result and possible connections with comparable MDP or optimal control
problems.

2 Mixing of MDP decision rules

To describe the problem we investigate and corresponding results we first recall some basic
notation and definitions for MDP’s. As far as possible the MDP notations and definitions
from [21] are followed. We also introduce some additional notations, definitions for specifi-
cally needed for this paper, meanwhile explaining the concept of mixing decision rules and
corresponding optimization problems.

We recall some MDP notation following [21], meanwhile mentioning for example specific
assumptions, restrictions, etc. for this paper. Let T be the set of decision epochs and S
be the state space. Unless T is explicitly given we assume in this paper T to be discrete
and we assume an infinite horizon MDP, say T'= {1,2,...}. Moreover, S is assumed to be
finite. Most results in this paper extend to more general state space, but we focus on the
basis ideas and more generality could distract (for example existence issues). Let A be the
action space for state s € S and A = UycgA, which is also assumed to be finite. Special fo-



cus will be for the case that A = A, for every s € S, i.e. a common action space for all states.

If in state s at decision epoch ¢ action a € Ay is chosen, then an (expected) immediate
reward 7;(s,a) is received and the system state at the next decision epoch is determined
by the probability distribution p;(:|s,a). In this paper we assume stationary stationary
rewards and transition probabilities. In other words these immediate rewards and probability
distributions will not depend on ¢ and therefore we may omit the subscript ¢ in notation.
Moreover, we assume bounded rewards. Thus |r(s,a)| < M < oo foralla € Ay and s € S. If
the immediate reward also depends on the transition to the next state and r(s, a, j) denotes
the reward received if by choosing action a a transition is made from state s to state j then
for all s, a € A, the expected immediate rewards may be evaluated by computing

7’(37 a) = Z T<S7 a,j)p(j|3, a)'
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The collection of objects {T, S, As, pi(-]s, a), (s, a)} is referred to as Markov decision process
(MDP). Together with an optimality criterion it is also called a Markov decision problem.
Slightly abusing notation in this paper MDP may be used for both.

2.1 Decision rules and policies

A decision rule prescribes at a specific decision epoch for each state s € S a procedure for
selecting an action a € A;. A decision rule is Markovian (memoryless) if only the current
system state at the decision epoch may be used to determine which action is chosen and a
decision rule is deterministic if it chooses an action with certainty. In this paper the main
focus is on Markovian deterministic (MD) decision rules, which are generally the most easiest
to implement. However, also Markovian randomized (MR) decision rules will be considered.
An MD decision rule for a particular ¢ € T is equivalent to a mapping d; : S — A, specifying
the action to be chosen in state s at decision epoch ¢. On the other hand MR decision rules
map the set of states into the set of probability distributions on the action space, that is
dy: S — P(A).

A policy (strategy) specifies for all decision epochs ¢ which decision rule d; is used. Thus
in this paper considering infinite horizon MDP’s a policy 7 is determined by an infinite
sequence m = (dy,dy,...). If dy € MD (d; € MR ) for all t € T then 7 is said to be
Markovian deterministic (7 € IIMP) respectively Markovian randomized (m € IIME). Policy
7 is called stationary if d, = d for all t € T.. Then II°” denotes the class of policies which are
both stationary and Markovian deterministic which is a subset of II°%, the class of policies
which are both stationary and Markovian randomized.



2.2 Induced Markov chains and optimization over mixing policies

Let © = {S x A}* be the sample space for the stochastic process generated by the MDP
applying some policy 7. An element w € Q is an alternating sequence w = (s1, aq, S2, as, . . .)
of states and actions which is referred to as a sample path. For all £ € T random variables X,
and Y; are defined by X;(w) = s; and Y;(w) = a;. Thus X, denotes the state at ¢ and Y; the
action chosen at decision epoch ¢. Since we restrict to Markovian policies 7 it follows that
the induced stochastic process {X;t € T} is a discrete time Markov chain. This Markov
chain is stationary if 7 is also stationary. The bivariate stochastic process { Xy, (X, Y;)}
is referred to as Markov reward process. In this paper the optimality criterion is the lim inf
average reward criterion. In other words for initial probability distribution z on state space
S the performance of policy 7 is given by

N
NP
g"(x) = llNHi)lor(l)f NI[:EJC {t_zl T‘(Xt,Yt)} . (1)

In this paper we would like to restrict to problems for which ¢ (x) does not depend on the
initial distribution x and then the performance of policy 7 may simply be denoted by ¢™. For
now we assume this property holds and later we give some explicit and sufficient conditions
for this.

The main issue in this paper is optimization over policies for which all the decision rules d;,
t =1,2,... are restricted to be elements of some finite set of particular MD decision rules.
Thus the problem is to maximize for any initial state distribution x the performance g™ (z)
over policies m = (dy, ds, .. .) restricted to d; € D for every t € T where D is a given finite
set of MD decision rules.

In practical applications the given set D of allowed decision rules typically consist of easy
implementable MD decision rules determined by some straightforward heuristic. For exam-
ple in a routing problem such heuristic rules could be "route arriving jobs to the shortest
queue” or "route arriving jobs to the queue being served by the fastest server”. In general
such rules are suboptimal with respect to performance optimization.

In the sequel we assume that the set of ”allowed” decision rules D consists of two MD de-
cision rules d' and d?. Then the only two (Markovian) stationary deterministic policies for
which decision rules for all t € T are restricted to D are the policies 7! := (d', d',...) € IIMP
and 72 := (d?,d?,...) € IIMP. Since 7, and 7, are stationary policies they induce stationary
discrete time Markov chains on S with corresponding transition matrices P and () respec-
tively. We assume that both Markov chains are unichain and aperiodic. In other words
both Markov chains have exactly one recurrent class which is aperiodic and let p, ¢ be the
corresponding unique stationary distributions satisfying p? = p’ P, Y scgPs = 1 respectively
q¢" =q¢"Q, Y ,c5¢s = 1, where p” and ¢” are the row vectors representing the stationary
distributions p and ¢ respectively. The finiteness of S guarantees the existence of p and
¢ and the performances ¢™, g™ of both policies may be directly computed from p and ¢



respectively. From the existence of such unique stationary distributions p and ¢ it follows
that the performances g™ and ¢™ of the two stationary policies are independent of the initial
state distribution. Indeed for all initial state distributions on S the performance of policy
T is given by g™ = > < p(s)r(s,d'(s)). Similarly g™ = > _cq(s)r(s,d*(s)) gives the
performance of policy s.

We may generalize these formulas to compute the performance of any (randomized) sta-
tionary policy 7 = (d,d,...) € TIM® where d is some randomized decison rule inducing a
stationary unichain aperiodic Markov chain. Indeed let p be the unique stationary distribu-
tion on state space S of the induced Markov chain and 7(d)s :=>_, ., 7(s,a)Pr(als,d) the
expected immediate reward in state s € S given that MR decision rule d is applied. Then
the expected performance of 7 is given by

g" = Zpsr(w)S = p-r(d), the inner product of p and r(d). (2)

SES

However, for non-stationary policies m = (dy, ds, ...) with d; € D for t = 1,2, ... the perfor-
mance may depend on the initial distribution even if all transition matrices corresponding
to decision rules in D are unichain and aperiodic. Example 11 will show this. In Section
5 some more (additionally to unichain and aperiodic) conditions on the transition matrices
will be given such that also for non-stationary Markovian policies 7 the performance will
not depend on the initial state distribution.

Let 7!, 72 € TIMP be both stationary deterministic policies for D = {d*, d*} as above. Both
7t and 72 are not optimal if d' respectively d? are suboptimal decision rules. In this case
we will see that despite having the restriction d;, € {d!,d?} for all ¢ € T for Markovian
policies m = (dy,ds, . ..) the performance could be improved if 7 is not required to be both
stationary and deterministic. Within this set of allowed policies the objective is to maximize
the performance g™ (assuming for now it does not depend on the initial state distribution)
resulting in a performance that is strictly larger than max(¢g™, ¢™). For such a policy =
the MD decision rules d' and d? have to be mized in some way and therefore we call the
considered policies D-mixing policies.

To explain the basic concepts and optimization tools we investigate the case that D consists
of two (suboptimal) MD decision rules, but we note that the mixing of decision rules can
be applied similarly if D consists of more than two MD decision rules. Also mixing the
more general MR decision rules instead of MD decision rules is theoretically not a problem,
but in practice and the examples we discuss in this paper the set D consists of only MD
decision rules. In the following sections we discuss in detail the concept of mixing decision
rules and several approaches to improve the performance in this way. Structural results for
optimization over D-mixing policies will be derived.



2.3 Open-loop control and corresponding mixing policies

For many applications performance optimization yield an MDP for which it is desirable to
use an open-loop control mechanism. In this case the choice of an action should not depend
on the (current) system state. For example if at decision epochs observing the current
system state is relatively expensive, time-consuming or not possible at all then open-loop
(state-independent) control should be considered. To apply open-loop control we assume
that there is a common action space A for all states. The most simple case is A = {a, b}, i.e.
in every state the same two actions a and b are available. For example in a queueing problem
with admission control with decision epochs corresponding to arrivals of jobs action a could
be to accept the new arriving job and action b to decline it. If A = {a,b} then the only
two decision rules which obey the rules of open-loop control are d* which chooses action a
in every state s € S and d? which chooses action b in every state s € S. Analogously to the
policy mixing over two MD decision rules described in the previous subsection d' induces
a stationary Markov chain with some corresponding transition matrix P and d? induces
a stationary Markov chain with some corresponding transition matrix ). Moreover, any
(Markovian) open-loop control policy 7 is of the form 7 = (dy, ds,...) with d; € {d*, d*} for
every t € T and it follows that optimizing the performance over all open-loop control policies
with two available actions in every state can be considered as a special case of optimization
over {d', d*}-mixing policies as described in the previous subsection. Similarly optimizing
open-loop control with any finite common action space A corresponds to optimization over
D-mixing policies where D has the same cardinality as the action space A.

3 Bernoulli policies

Given some MDP and D = {d', d*} a set of two allowed MD decision rules for controlling the
MDP as in the previous section. Consider the following randomized algorithm to generate
D-mixing policies 7 = (dy, ds,...). Let 8 € [0,1] be given. For ¢t = 1,2, ... generate indepen-
dl if U € [0,9]

d? ifu; e (0,1]
In other words for every decision epoch t € T an independent #-coin is flipped which out-
come determines the decision rule which is applied at ¢. For all ¢ € T with probability
the first decision rule is applied and with probability 1 — 6 the second decision rule. Policies
generated by this randomized algorithm are called Bernoulli policies of rate . Note that
above Bernoulli algorithm may easily be generalized for the case that D consists of more
than two decision rules, but this generalization is not explored in this paper.

dent random numbers u; uniformly distributed on [0, 1] and put d; = {

The randomization of the policy in the Bernoulli algorithm makes actual implementation of
such policies in practice somewhat awkward, but a nice property is that the performance of
Bernoulli policies is relatively easy to compute or approximate. This makes it tractable to
optimize the performance over all Bernoulli policies and in particular analytic methods are
available for optimizing the Bernoulli parameter . The following property of the Bernoulli
policy is important to analyze and compute or approximate performances.



Lemma 1 Assume an MDP with finite state space S where decisions rules d* and d* induce
stationary and aperiodic unichain Markov chains with corresponding transition matrices P
respectively Q. Then any Bernoulli policy mizing d* and d?* with rate 6 € [0,1] induces a
stationary aperiodic unichain Markov chain on S with transition matriz

By=60P+(1-0)Q (3)

which has an unique stationary distribution by satisfying by By = bf and Y sbe(s) = 1,
where b} is the row vector representing by.

In other words the Bernoulli policy mixing two decision rules induces a stationary Markov
chain with unique stationary distribution by depending on the Bernoulli parameter #. From
this it follows that given the MDP and decision rules d* and d? the expected performance of
the Bernoulli policy is a function g(#) of the Bernoulli parameter § and by (2) we have

9(8) =D (b0),[0r(s,d"(s)) + (1= O)r(s,d*())] = 0(bg - 1(d")) + (1 = B)(bg - 1(d*)). (4)
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3.1 Optimizing over Bernoulli policies

Optimizing the expected performance g(f) of Bernoulli policies over 0 € [0, 1] is relatively
easy if g(6) is a smooth function of 6 € [0, 1]. Indeed the function g(#) is usually smooth on
the interval [0, 1] and for example from [11] follow sufficient conditions for the smoothness
of g(f). To give a sufficient condition for the smoothness we first combine some notations,
definitions and results from [11] and [21]. Let P be a transition matrix of an irreducible
finite state Markov chain. The stationary (limiting) matrix P* of P is defined by the Cesaro
limit

= i Z P
P* has all its rows equal to p’, the row-vector of the stationary distribution p of P. The
deviation matrix Dp of P is defined by
Dp= (I — P+ P) (I - P

which equals the Cesaro limit for N — oo of ZN 1(P” P*). These are all square matrices
in RIIIS1 and the so-called maximum absolute row sum norm || ||o is defined by

_ » 151x15)
1B = max » |B(i, j)| for B € R

JjeSs



Let transition matrices P and () be as in Lemma 1. Then with above notations and defi-
nitions a sufficient condition (C) folowing from [11] for the smoothness of the performance
function ¢(@) is the following.

Condition 2 There exists some integer n € N such that

(P = @)Dg)"|loo < 1.

Combining Lemma 3.1 and Lemma 3.3 from [11] the following result follows.

Theorem 3 Let P,Q € RIS be as in Lemma 1. For all § € [0,1] let By = 0P + (1 —6)Q
and Bj the stationary matriz of By. Moreover, let I € RISXISI be the identity matriz and
put A= (P —Q)Dg. Suppose condition 2 is satisfied. Then for any 0 € [0, 1] the Neumann
series expansion im0 SF_ ((By — Q) D)™ = limy_,0 S2F_ (A)" is convergent and

k k
Bj=Q'(I-04)" = Q" lim Y (#4)" = Q" lim } ((By ~ Q)Do)". (5)
n=0 n=0

From (5) it follows that any component of the stationary distribution by of By which is an
(arbitrary) row of Bj is a smooth function of # for € [0,1]. Combining this with equation
(4) gives the following result.

Corollary 4 If Condition 2 is satisfied then the performance function g(0) is smooth on the
interval [0,1]. Moreover, there exists some 6* € [0,1] mazimizing the performance g(0) of
Bernoulli policies and any optimal 6% satisfies (at least) one of the following conditions:

o =0
o =1
° g(0")=0
Remark 5 We have given a sufficient Condition 2 only for the || || matrix norm, but it

may be generalized to so-called v-norms as in [11]. Moreover, for applications in this paper
the role of matrices P and () are symmetric and may be interchanged to get an alternative
sufficient condition which has the same implications as Theorem 3 except for the interchange
of the roles of P and () and Condition 6 is therefore also sufficient for the properties of op-
timal #* as in Corollary 4. This alternative sufficient Condition 6 is given below and in fact
in this condition the role of P and @ is exactly the same as in [11].

Condition 6 There exists some integer n € N such that

I((Q@ = P)Dp)"||oc < 1.

10



3.2 Example

In this subsection we treat an example with a state space consisting of only two states, but
for which the application and optimization of Bernoulli mixing policies is non-trivial and
previous results as Corollary 4 are well illustrated. In fact in the sequel of this paper the
same MDP example will be used to illustrate also optimization over D-mixing policies of an-
other type than the Bernoulli policies discussed in this section and results will be compared.

Example 7 In this example a machine is operated which can be in two states, state space
S = {1, 2}, where state 1 is referred to as the bad state and state 2 as the good state. At
every decision epoch t, t = 1,2,... the operator has to decide whether the machine goes
in working or repair mode for one time-unit until the next decision epoch. Thus there is
a common action space A = {1,2} for both states where action 1 refers to working mode
and action 2 refers to repair mode. If action 1 is chosen then there is a probability of 0.2
that the machine will be in bad state at the next decision epoch if the machine is currently
in good state. Moreover, for action 1 the machine will allways be in bad state at the next
decision epoch if the current state is bad. For action 2 there is a probability of 0.3 that the
machine will be in good state at the next decision epoch if the machine is currently in bad
state. Moreover, for action 2 the machine will allways be in good state at the next decision
epoch if the current state is good. The only case in which a positive immediate reward of 1
is obtained if action 1 is chosen and the machine is currently in good state, in every other
case we assume that the immediate reward is 0. For this MDP with average reward criterion
finding the optimal policy is very easy to solve. Of course if the machine is in good state
then action 1 will be optimal and if the machine is in bad state then action 2 is optimal.
However, we consider optimization over D = {d!, d?}-mixing policies where decision d' is
choosing action 1 (work) for both states and d? is choosing action 2 (repair) for both states.
Note that d' and d* are deterministic open-loop decision rules and {d', d*}-mixing policies
could be considered for example if observing the (current) state of the machine has some
cost. Optimizing over {d!, d*}-mixing policies is not trivial for this problem and for now we
consider optimization over all Bernoulli {d', d?}-mixing policies.

For {d', d?}-mixing policies the problem of maximizing the long-run average reward is com-
pletely specified by the transition matrix P and expected immediate reward vector r(d')
induced by decision rule d!, respectively the transition matrix @ and expected immediate
reward vector 7(d?) induced by decision rule d*>. From the model description above it follows
that for this example we have that

PZ(O%Q 0(.)8>’ T(dl):<(1)>’ Q:<067 Of)’ T(d2)2<8> (6)

By Lemma 1 it follows that applying a Bernoulli policy of rate 6 € [0,1] induces transition

11



matrix

By=0P+(1—0)Q = ( 0.7+0.30 0.3—0.30)

0.26 1—-10.20

it is easily checked that Condition 2 is satisfied for this example. Indeed

1 — _
Dg == 10+ =10 , A=(P—-Q)Dg = % _% and thus
3\0 0 3 3
11 9
A2:<§ §> and [|A%]| = = < 1.
CR 3
Moreover, it is easily obtained that b} = (%, %) is the row vector corresponding to the

stationary distribution of By for any 6 € [0,1]. Using this we may obtain the performance
function ¢(#) by substituting b(f), 7(d') and r(d?) in (2) and it follows that

20 3 -—30 0 20 3-30 0 30 — 362
10 =075 55 (1) +0-0675 5 (1) =55

Obviously ¢(0) = g(1) = 0 and ¢(#) > 0 for § € (0,1). Thus from Corollary 4 it follows

that ¢'(6*) = 0 for any optimal 6* € [0,1]. Since ¢'(f) = 3(0(29__—(;‘;;’3) it follows that 6* =

3 — V6 ~ 0.551 is the unique value for § € [0,1] that maximizes the performance of the
corresponding Bernoulli policy of rate . The performance of this optimal Bernoulli policy
equals g(3 — v/6) = 15 — 61/6 ~ 0.303.

Remark 8 In case of complex systems for which the MDP has a very large state space it
is not tractable to obtain exact expressions for the stationary distribution by and perfor-
mance function ¢(f) as in the example above. However, also for very large state space an
approximation of the stationary distribution by may be obtained by methods like Markov
chain Monte Carlo and then the expected performance g() of the Bernoulli policy could
also be approximated by plugging in the approximation of by in (4). Thus the optimal 6*
maximizing ¢(f) may also be approximated in such cases. Moreover, if g(6) is differentiable
then gradient estimation by measure valued differentiation could be applied to approximate
some (optimal) value #* € [0,1] for which ¢/(6*) = 0. In [5] this simulation technique is
applied to a call center operation problem with two types of jobs having different service
requirements where in various ways two reasonable applicable decision rules are obtained
which are mixed to improve the system performance. The technique is relatively fast to
approximate an optimal value for . For more theoretical results and background on this see
for example [10], [12] and [13].

4 Deterministic mixing policies

In the previous section we have investigated the optimization of Bernoulli policies which rely
on a randomized mechanism to generate D-mixing policies. However, in the present section

12



we investigate the optimization of deterministic D-mixing policies which are represented
as an infinite deterministic sequence describing for every decision epoch which (Markov-
ian deterministic) decision rule in D is applied. For example if D = {d',d*} and we let
symbol 1 correspond to decision rule d' and symbol 0 to decision rule d? then we have a
one-to-one correspondence between deterministic D-mixing policies and one-sided infinite
sequences U = (uy, ug,...) of zeros and ones. Therefore in the sequel an infinite sequence
(uy,us, ...) is identified with a deterministic D-mixing policy where u; determines the de-
cision rule which is applied at decision epoch ¢ for t = 1,2,.... Thus if D = {d', d?} then
optimizing the performance over all deterministic D-mixing policies corresponds to opti-
mization over the set {0,1}" of all one-sided infinite sequences of zeros and ones. More
generally if D = {d',d?,...,d"} then it follows analogously that optimizing the performance
over all deterministic D-mixing policies corresponds to optimization over a corresponding
set W where W = {A}" are all one-sided infinite words over alphabet A. A word is by
definition a sequence of symbols from a finite alphabet and if D = {d',d?,...,d"} then the
corresponding alphabet A consists of n (different) symbols.

4.1 Positive and negative aspects

One of the positive aspects of applying a deterministic D-mixing policy which as above
is represented as infinite decision sequence U = (uy,us,...) is that the implementation is
more straightforward than for Bernoulli policies. Indeed at decision epoch ¢ only the (easy
implementable) MD decision rule determined by u; has to be implemented and it is not
necessary to "flip a coin” (randomization) at every decision epoch as is the case for Bernoulli
policies. Thus the ”additional randomness” in the system evolution created by Bernoulli
policies which may be a problem for operators in real-life applications is nonexistent for
deterministic D-mixing policies.

Moreover, arguably the most important advantage of deterministic mixing policies compared
to Bernoulli policies is that in general good (not necessarily optimal) deterministic mixing
policies easily outperform the best (optimized) Bernoulli policy. Note that implementing
any Bernoulli policy creates a (random) infinite sequence of decision rules. Such an sequence
is an element of W, while deterministic mixing policies may optimize over all elements of
W. Thus an optimal deterministic mixing policy performs generally better than an optimal
Bernoulli policy. Thus there are several advantages of deterministic mixing policies compared
with Bernoulli policies.

There are also some disadvantages which we discuss now. One of the nice properties of
applying a Bernoulli mixing policy is that it induces a stationary Markov chain on the state
space S. In contrast deterministic mixing policies given by some infinite decision sequence
U = (u1,us,...) do not induce a stationary Markov chain except for degenerate policies
for which u; = u, for every decision epoch ¢. Therefore it is also not possible to obtain the
performance of deterministic mixing policies by computing an unique stationary distribution
and applying (4) as for Bernoulli policies. The fact that computing the performance is
harder than for Bernoulli policies is one of the reasons that optimizing over deterministic
mixing policies is also much harder than for Bernoulli policies. For periodic deterministic
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mixing policies there exists an algorithm to compute the performance, but computation
times will increase with the period. A deterministic mixing policy is periodic with period
k if for the corresponding decision sequence U = (uq,us,...) it holds that u; = wuyyy for
t=1,2,.... Below we give an example illustrating the computation of the performance of
periodic deterministic mixing policies.

Example 9 Consider again Example 7 from the previous section which characteristics were
summarized by (6). Instead of the performance of Bernoulli policies we now compute the
performance of the deterministic mixing policy © with corresponding decision sequence U =
(1,0,1,0,...) = (1,0)* which obviously is periodic with period 2. For ¢t = 1,2,... let
X; € {1,2} be the state at decision epoch ¢t when policy 7 is applied. Then {X;,t =1,2,...}
is a Markov chain which is not stationary. However, {X;,t = 1,3,5,...} is a stationary
Markov chain with transition matrix

0.7 0.3
‘%_PQ_<OL10%>'

It is easily verified that this Markov chain has unique stationary distribution b7 = (%, %)
Analogously {X;,t =2,4,6,...} is a stationary Markov chain with transition matrix
0.76 0.24
‘%_QP_<Oﬂ)0%>
and unique stationary distribution b = (15—1, 16—1) It follows that for ¢t =1, 3,... the long-run
average reward is given by the inner product b; - r(d') = % and for ¢t = 2,4,... the long-

run average reward is given by the inner product b, - r(d?) = 0. This implies that for the
performance g(7) we have that g(r) = (32 + 0) = 2 ~ 0.341.

In Example 9 the performance of a deterministic mixing policy with period 2 is computed.
The following theorem generalizes the performance formula for any periodic deterministic
mixing policy.

Theorem 10 Let w be a deterministic D-mizing policy with corresponding decision sequence
U = (uy,us,...) which is periodic with period k. Let X; be the state at decision epoch t
when policy 7 s applied and d; € D the decision rule corresponding to u; to be applied at
decision epoch t. For m = 1,2,... k assume that the stationary Markov chain {X;,t =
m,m+ k,m+ 2k,...} has unique stationary distribution b,,. Then for the long-run average
reward g(m) we have that

o) = 3 D by (™) ®

Note that according to (8) the performance g(m) of such a periodic policy 7 does not depend
on the initial state distribution. However, in Theorem 10 the assumption is made that for
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all m the stationary Markov chain {X;,t = m,m + k,m + 2k, ...} has an unique stationary
distribution. It is important to realize that this is a necessary condition and that for this
condition to hold it is not sufficient that all the transition matrices associated to the decision
rules in D are unichain and aperiodic. Indeed we have the following counterexample.

Example 11 Suppose again D = {d', d*} as in Example 9 and the same periodic determistic
D-mixing policy 7 as in Example 9 corresponding to decision sequence U = (1,0,1,0,...) =
(1,0)* is applied. Let

0 05 05 0 0 1
P=1|10 0 1 and @=1| 0.5 0 0.5
10 0 0 1 0

be the transition matrices corresponding to decision rules d' respectively d?. It is easily seen
that P and () are unichain and aperiodic. However,

0.25 0.5 0.25
A= PQ = 0 1 0
0 0 1

is obviously not unichain and thus the Markov chain {X;, X3, X;5,...} does not have an
unique stationary distribution. Similarly

1 0 0
Ay:=QP=| 05 025 0.25
o 0 1

is not unichain and thus also the Markov chain {X3, X4, X, ...} does not have an unique
stationary distribution. In fact in this example the performance of policy 7 in general
depends on the initial state distribution and can not be computed by (8).

In Section 5 we will give some conditions on the transition matrices corresponding to the
decision sequences in D which are sufficient for the independence of the performance of D-
mixing policies on the initial state distribution and under such conditions (8) is certainly
valid.

We also note that (8) could be seen as a generalization of (2). Indeed the latter formula is
then for the special case k = 1. Also it follows that if (8) is applied to compute the perfor-
mance that the computational effort increases with the period & of the decision sequence U.
In fact it is easily seen that for a fixed set D of allowed decision rules the computation time
of computing the performance of a periodic deterministic D-mixing policy by applying (8)
increases linearly with the period k of the decision sequence.

Recall from Example 7 that for the performance of Bernoulli policies we obtained a closed
formula in the parameter #. More generally, for Bernoulli policies the computational effort
to obtain the performance does hardly depend on which Bernoulli policy is applied since
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all Bernoulli policies induce stationary Markov chains. Thus in comparison with Bernoulli
policies computing the performance is harder for deterministic mixing policies since in gen-
eral such policies do not induce stationary Markov chains. Moreover, for periodic policies
the computational effort increases with the period. Even more problematic are determinis-
tic mixing policies which are not periodic since in that case we do not have an algorithm
to compute the exact performance (despite assuming it to independent of the initial state
distribution) in finite time and we think it is in general only possible to approximate the
performance of such a policy. Therefore the optimization over deterministic mixing policies
is harder than optimization over all Bernoulli policies as we did in Example 7. Another
issue is that deterministic D-mixing policies may be optimized over the infinite discrete set
W of all possible decision sequences U = (uy,us,...) with u, € D for n = 1,2, ... which
structure is more complicated than for Bernoulli policies for which the optimization is over
a compact set. Recall for example from 7 that we could optimize over all Bernoulli policies
by optimizing the parameter 6 € [0, 1].

Summarized a disadvantage of considering deterministic mixing policies is that the perfor-
mance computation and optimization is more complicated than for Bernoulli policies. On
the other hand the advantage of considering deterministic mixing policies is that many of
them perform better than the optimal (and thus any) Bernoulli policy. For example the per-
formance of the periodic policy considered in Example 9 is about 0.341 which improves the
performance of the optimal D -Bernoulli mixing policy which is about 0.303 (see Example
7). We will see that the policy considered in Example 9 is not yet optimal within the class of
deterministic mixing policies and thus the performance of 0.341 could be improved. However,
optimization over the whole set W of possible deterministic decision sequences is intractable
and therefore our approach in Section 6 will be to optimize over some specific subset(s) of
W. The idea is to consider subsets of decision sequences with a specific structure.

5 The associated MDP

In this section we define an equivalent MDP associated to optimizing over D-mixing policies
for D = {d',d*}. The advantage of considering the equivalent MDP is that policies are
no longer restricted to the class of D-mixing policies. Therefore in contrast to the class
of D-mixing policies the existence of optimal Markovian policies which are both stationary
and deterministic holds if certain conditions are satisfied. Then the existence of an optimal
stationary deterministic Markovian policy for the equivalent MDP may be used to obtain
structural properties of some optimal policy within the class of D-mixing polcicies. In this
way we will obtain results about optimality within certain subclasses of D- mixing policies
if some conditions are satisfied. Besides such benefits the equivalent MDP formulation also
gives complications. For example in the equivalent MDP the state space is not finite any-
more, but continuous. Practically this means that also for such associated MDP it is very
hard to obtain an optimal solution. Thus it is hardly possible to obtain an optimal D-mixing
policy via this associated MDP approach, but structural results may be obtained.
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Before we give the equivalent MDP to optimizing within the class of D = {d!, d*}-mixing
policies we recall some definitions and notations. Let S be the finite state space and r(d*)
(r(d?)) be the immediate reward vector for decision rule d' respectively d?. Moreover, let P
be the transition matrix associated to d' and @ be the transition matrix associated to d2.
Then an equivalent MDP with continuous state space is defined as follows:

e The state space X is the set of all probability distributions on S.
e The action space A := {d",d?} for all z € X.

e For all z € X the immediate rewards 7(x,d') and r(z,d?) are given by the inner
products 7(x,d') := x - r(d') respectively r(x,d?) := x - r(d?).

e For action d' state transitions are given by the state space mapping z — P for
all z € X where x is represented as |S|-dimensional row vector. Analogously for d?
state transitions are given by the state space mapping x — z@Q for all x € X being
represented by a row vector.

o Let Q = {X x E}C’O be the sample space for the stochastic process generated by the
MDP when some admissible policy 7 is applied. A sample path w € Q is an alternating
sequence W = (¥, ay, Tz, as, .. .) of states and actions. For t = 1,2,... let variables th
and Y, be defined by )A(;(w) — 2, and Y,(w) = a,. The optimality criterion is again
the liminf average reward criterion. In other words for initial state 3(\/1 =1x € X the
performance of policy 7 is given by

T S TN 1 T & Y v
g"(z) = hj&nmf NEx {Z r(Xt,Yt)} : 9)

—00
t=1

The equivalence between D restricted MDP with finite state space S and the above defined
MDP with a state space X of all probability distributions on S follows from the well-known
equivalence between a partial observation MDP and an equivalent full observation MDP
since we also have equivalence between D restricted MDP and a partial observation MDP
as explained at the end of Section 2. Equivalence between a partial observation MDP and a
corresponding full observation MDP is applied in [16] for the problem we mentioned before,
while in [6] the equivalence is described and explored in a more general setup. Here we do not
go in details about the equivalence between both models, but we note some useful aspects.
Most important for this paper is the following property. Let 7 be a Markovian policy to
be applied for the full observation MDP and @ = (z1, a1, z2,as,...) € Q be an associated
sample path. Define 7 as the D-mixing policy defined by the infinite sequence of decision
rules (aj, as,...) corresponding to sample path &. Then for the performances ¢*(z;) and
g™(z1) as defined by (9) and (1) respectively it almost surely holds that ¢%(z;) = g™ ().
Similarly it follows that if there exists an optimal stationary deterministic Markovian policy
7 for the full observation MDP then the deterministic D -mixing policy 7 obtained from the
sample path w associated to 7 is an optimal D-mixing policy for the initial state distribution
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xI1.

Next two conditions for D restricted MDP are given. If they are satisfied then some use-
ful results (Theorem ?? and Corollary 15) follow immdediately from the above explained
equivalence between D restricted MDP and full observation MDP.

Condition 12 For all deterministic D-mixing policies m and initial state distributions x,y €
X it holds that g™(x) = ¢"(y). In other words performances of deterministic D-mizing
policies do not depend on the initial state distribution and the performance of such a policy
m may be denoted by g™.

Condition 13 There exist optimal stationary deterministic Markovian policies for the full
observation MDP which is equivalent to the considered D restricted MDP.

Theorem 14 Suppose Condition 12 is satisfied for a D restricted MDP. Let T be a stationary
deterministic Markovian policy for the equivalent full state MDP and @ = (x1, ai, T2, as, . ..) €
Q be an associated sample path. Fort =1,2,... let m; be the deterministic D-mixing policy
given by the infinite sequence of decision rules (a;, a;1,...). Then the performances g™ (x)
and g™ (xy1) fort =1,2,... are independent of the initial state distribution x; and moreover,
we have that

g =g" fort=1,2,.... (10)

Corollary 15 Suppose Condition 12 and Condition 13 are satisfied for some D restricted
MDP. Let 7 be an optimal stationary deterministic Markovian policy for the equivalent full
state MDP and for t = 1,2,... let m; be the deterministic D mixing policy defined as in
Theorem 14. Then for allt = 1,2, ... policy m; is an optimal D-mixing policy.

5.1 On the existence of stationary optimal policies for the associ-
ated MDP

Next we wish to apply Corollary 15 to obtain structural results on optimal D-mixing poli-
cies. However, to apply Corollary 15 Condition 12 and Condition 13 should be satisfied. In
Example 11 we have seen that for Condition 12 to be satisfied it is not sufficient for the
relevant transition matrices to be unichain and aperiodic. Moreover, since an equivalent
full state MDP has an uncountable state space X it is in general also not obvious whether
Condition 13 is satisfied. Therefore we wish to apply a sufficient condition according to
Corollary 4.1 in [7] for Condition 13 to be satisfied. This result basically states that for
an equivalent MDP with finite action set associated with a partially observable MDP with
finite state space an uniformly boundedness condition is sufficient for the existence of an ap-
propriate solution of the corresponding average cost optimality equation(ACOE) implying
the existence of optimal stationary deterministic Markovian policies which applied to this
paper means that Condition 13 is satisfied. For the cases in which we apply in this paper the
uniformly boundedness condition to show that Condition 13 is satisfied it will follow that
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Condition 12 is then also satisfied.

The uniformly boundedness condition as given in [7] is that the difference in optimal dis-
counted costs is uniformly bounded over the state space X. Thus in [7] the conditions are
stated with costs instead of rewards, but for rewards an analogous condition may be for-
mulated. To formulate this analogous uniformly boundedness condition for rewards we first
define the (optimal) discounted reward for the equivalent MDP with state space X.

Let 2 € X be an initial state and for ¢ = 1,2, ... variables X, and Y, be defined as in (9) for
policy 7. Since the number of components |S| of both reward vectors r(d'), r(d?) is finite
with no loss of generality we assume in the sequel that all the components of the reward
vectors are non-negative and bounded from above by some positive number B. Then for the
obtained rewards (X, Y;) of the reward process it follows that

0<r(X,Y) <Bfort=1,2,.... (11)

We define for discount factor 0 < < 1, initial state z € X and policy 7 the discounted
reward Rgz(xz,7) (DR) by

N—oo

Ry(x,7) := lim E7 {Z ﬁt—lr()?t,fft)}. (12)

and the optimal (- discounted reward for initial state x € X is given by

Ry(z) == sgp Rs(z,7), (13)

the supremum being taken over all admissible policies. By (11) it follows that the limit
defining Rs(z,7) exists and is finite and it is easily seen that 0 < Rg(z,7) < % for all
initial states * € X and admissible policies w. From this it also follows for the optimal
discounted reward that

B

(14)

Since the action set A = {d',d?} is finite and obtained rewards r(X,,Y;) are bounded it
follows (see for example [7]) that for every discount factor 0 < 5 < 1 there exists some (finite)
solution Rj(x) satisfying the following discounted reward optimality equation (DROE):

Ri(z) = K:n{ld%in {r(z,d") + BR5(xP),r(zx,d*) + fRy(zQ)} for all z € X. (15)
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Moreover, by Theorem 4.2.3 in [14] it also follows that for every 0 < /5 < 1 there exists some
optimal policy which is Markovian, deterministic and stationary. Summarizing we have the
following result.

Theorem 16 For every discount factor 0 < 3 <1 there exists some solution Rj(z) of (15)

for which 0 < RZ(:r) < % for all x € X. Moreover, for the corresponding discounted MDP
there exists some optimal policy which is Markovian, deterministic and stationary.

The long-run expected average reward (AR) g™ () for policy 7 and initial state » € X was
already given by (10) and similarly to the discounted case the optimal average reward for
initial state x € X is given by

g*(z) = sup 9" () (16)

A bounded solution of the average reward optimality equation (AROE) is a pair (g*, h)
satisfying

g +nh(z) = _max {r(z,d")+ h(zP),r(z,d*) + h(zQ)} forallz € X (17)
A={d' a2}

with ¢* € R and h a Borel measurable real-valued function on X, which is lower semi-
continuous and bounded (i.e. sup,.y |h(z)| < 00).

If such a bounded solution (g*, h) satisfying (17) exists then it also follows that there exists
an optimal policy for the average reward criterion which is deterministic and stationair and
moreover, g*(z) = ¢g* for any initial state z € X. Thus the existence of such a bounded
solution (g*, h) of (17) is sufficient for Condition 13 to be satisfied and Condition 12 to be
satisfied for (at least) all the optimal deterministic D-mixing policies m which correspond
to some sample path associated with an optimal deterministic stationary policy for the
equivalent full state MDP. Now we give the uniformly boundedness condition for optimal
discounted rewards which is sufficient for the existence of such a bounded solution of (17).

Condition 17 There exists some M € R such that for all x,y € X and 0 < 8 < 1 it holds
that

|Rs(x) — R(y)| < M. (18)

It turns out for Condition 17 to be satisfied that some sufficient conditions on transition ma-
trices induced by decision rules in D may be formulated with help of Dobrushin’s coefficient
of ergodicity of a transition matrix.
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Definition 18 Let P = (p;;) be a transition matriz on some finite state space S. Dobrushin’s
coefficient of ergodicity of P is defined as

po(P) = 3 MaTi; Z ik — Djkl- (19)
k=1

Lemma 19 states some well-known (see for example [20]) useful properties of Dobrushin’s
coefficient.

Lemma 19

1. 0< po(P) <1
2. po(P) =0 if and only if P has identical rows
8. po(Pr+ Py) < po(Pr) - po(P2)

4. There exists some positive integer N with po(PYN) < 1 if and only if P is unichain and
aperiodic.

For this paper the most useful property of Dobrushin’s coefficient has to do with the [;-
distance between probability distributions on the finite state space S. For z,y € X denote
by

|S|

||z —y[|, = Z |zi — il
i=1

the [1-distance between probability distributions x and y on S. Then the following lemma
(see [20]) holds.

Lemma 20 ||z — y||; is a metric on the set of probability distributions X with the property
that ||x — ylly < 2 for all z,y € X. Moreover, for any x,y € X and transition matriz P on
S we have that

lzP =y Pl < po(P)lx = yl]x. (20)

In other words if po(P) < 1 then P induces a contraction mapping on X. In the following
results Lemma 19 and Lemma 20 will be applied to show that Condition 17 is satisfied under
several specific assumptions on the transition matrices.

Theorem 21 Let D = {d*,d*} and let P and Q be the transition matriz induced by decision
rule d* respectively d*. Assume that (at least) one of the two transition matrices has Do-

brushin’s coefficient smaller than 1 and both transition matrices are unichain and aperiodic.
Then Condition 17 is satisfied.
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Proof. Let x,y € X be arbitrarily chosen probability distributions. We may assume without
loss of generality that Rj(x) > Rj(y) and then we should show that for all discount factors
0 < B < 1it holds that Rj(x) — Rj(y) < M for some M € R. According to Theorem 16
for any arbitrarily chosen 0 < § < 1 there exists some optimal Markovian deterministic and
stationary policy 7. Let W = (x1, ai, T2, as, . ..) be the sample path with initial state x; = x
for optimal policy 7. Tracking sample path @ for t = 1,2,... let r(a;) be the reward vector
for decision rule a; € D, A; € {P,Q} be the transition matrix corresponding to a; and B,
be the matrix product given by B; := HZ_:11 A; with the convention that B; is the identity
matrix. Then x; = 21B; for t = 1,2,... and by (12) we have that

k k
* _ ~\ __ 13 t—1 . t—1
Ri(z) = Rg(z,7) = kli)r(r)logﬁ (T, ar) = klggc); BN xBy) - r(ay). (21)
The infinite sequence of decision rules (aq, as, . . .) defines a policy 7 for which the sample path

w' for initial state y; = y is given by &' = (y1, a1, ye, as,...) with y, = yB; for t =1,2,....
Hence

Ry(y) > Rp(y, @) = hm Zﬂt Yr(ys, ar) = hm Zﬁt YyBy) - r(ay) (22)

Recall that we could assume that all components of the reward vectors r(a;) are nonnegative
and bounded from above by some B > 0. Thus by (21),(22) and Lemma 20 we have

k
Ry() = Ry(y) < lim » B7(xBy) - r(ar) = (yBy) - r(an)) =
k k
. t—1 .
I}LIEOZB (B —yBy) - r(a;) < ]}ggo; ||zB: — yByl|[1 B <
k k
: ol < 9B B _
B lim ;po(Bt)Hx yll < 2B lim ;po(Bt) (23)

Without loss of generality we may assume that po(P) = v < 1. Moreover, since @ is
unichain and aperiodic there exists by property 4 of Lemma 19 some N € N such that
po(QY) = v, < 1. Put v = max(7y1,72). Then it follows by property 1 and property 3 of
Lemma 19 that po(By11) < 7 < 1 since the matrix product By, contains at least one P or
By, = QV. Similarly it follows that po(Biin) < vpo(B;) for t = 1,2,.... Combining this
with 0 < po(B;) <1 fort =1,2,... it follows that

k k k k
Jim ;po(Bt) <N+ lim Y po(By) = N+ lim ;po(BHN) < N7 lim ;po(Bt).

k—o0
t=N+1

Hence (1 — 7)limy o Zle po(B:) < N and thus limg_,q Zf L po(By) < % Combining
this with (23) we obtain Rj(x) — Rj(y) < QBN Thus we have shown that for all z,y € X
and 0 < § < 1 it holds that
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|R5(x) — Rs(y)| < -—— (24)

Thus Condition 17 is satisfied with M = %. ]

We have just shown that Condition 17 is satisfied if both transition matrices P and () are
unichain and aperiodic and at least one of them has Dobrushin coefficient smaller than one.
Since Condition 17 is satisfied it also follows that Condition 13 is satisfied. Moreover, in
the proof of Theorem 21 we have shown something additional which is also useful. Namely
from the given proof it also follows that for any (not only an optimal) deterministic D-
mixing policy m = (a1, as,...) and any time ¢ the difference in expected accumulated total
(undiscounted) rewards up to time ¢ for any two initial state distributions z,y € X is
uniformly bounded by M = %. From this it immediately follows that the expected long-
run average reward g™ of such a policy m does not depend on the initial state distribution.
Thus Condition 12 is also satisfied for D restricted MDP as in Theorem 21. Thus Theorem 14
and Corollary 15 are applicable for such D restricted MDP. Consider the following example

in which the results are applied.

Example 22 Consider once again the D = {d', d?} restricted MDP considered in Example
7 and Example 9. Recall (6) describing P, @, 7(d') and r(d?). It follows that py(P) = 0.8
and po(Q) = 0.7. Hence (24) holds for B =1, N =1 and v = 0.8 and thus Condition 17 is
satisfied for M = 10. Then as explained also Condition 13 and Condition 12 are satisfied.
Hence Theorem 14 and Corollary 15 are applicable to obtain structural results on optimal
D -mixing policies. Later we consider this example again to obtain such results.

Theorem 21 and its consequences may easily be generalized to be applicable for more D
restricted MDP problems. Indeed from the proof it is easily seen that the conditions on
the transition matrices given in Theorem 21 are a special case of the following more general
result.

Theorem 23 Consider a D restricted MDP with D = {d*,d?,...,d"} and let
A={P,P,,...,P,} be the set of n corresponding transition matrices. Suppose there exists
some v < 1 and positive integer N such that for all n™ matriz products A of the form
A= H,]jzl Ay with Ay, € A fork =1,2,..., N it holds that py(A) < =, then for the equivalent
(full observation) MDP Condition 17 is satisfied for M = %. Moreover, Condition 13 and
Condition 12 are also satisfied.

Proof. Similar as in the proof of Theorem 21 it follows that (24) holds and thus Condition
17 is satisfied. Then as explained above it also follows that Condition 13 and Condition 12
are satisfied. m

To conclude this section the following example gives for D = {d', d*} a case where Theorem
23 is applicable while Theorem 21 is not applicable. Thus also for D = {d!, d*} Theorem 23
is really more general than Theorem 21.
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Example 24 Consider the D = {d!, d*} restricted MDP with state space S = {1,2,3}. For
decision rule d' the transition matrix P and reward vector r(d') are as follows:

0 05 05 2
P=( 1 0 0 |, rd)=1{0
0.5 05 0 3

For the other decision rule d? the transition matrix @ and reward vector 7(d?) are as follows:

1 0 0 0
Q=105 05 0 |, r(d@=1]2
0 05 0.5 0

Then po(P) = po(Q) = 1 and thus Theorem 21 is not applicable in this case. However, it is
easy to check that po(P?) = 0.75, po(Q?) = 0.75, po(PQ) = 0.75 and py(QP) = 0.75. Thus
Theorem 23 is applicable with N =2, v = 0.75 and B = 3. Hence Condition 17 is satisfied
for M = 48 and also Condition 13 and Condition 12 are satisfied. Thus Theorem 14 and
Corollary 15 could also be applied in this case.

6 Optimizing over special subsets of deterministic mix-
ing policies

To simplify notation and definitions we restrict again to the case that D = {d', d*} which
implies that deterministic mixing policies correspond to infinite sequences U = (uq, us, .. .)
of zeros and ones as explained before. However, we keep in mind that generalization to
the case D = {di,ds,...,d,} could usually be achieved in a straightforward manner. The
main issue for deterministic mixing policies is that optimization of the performance is not
tractable if we consider the set W of all infinite sequences of zeros and ones. Let W? C W
be the subset of all periodic sequences of zeros and ones. Assuming Condition 12 is satisfied
for deterministic mixing policies corresponding to U € WP we presented a formula (8) to
compute the performance. The problem is that the set WP is still both large and discrete
and therefore it is not tractable to optimize the performance over all elements of W? by
enumeration. However, optimizing over specific relatively small subsets of W7 is tractable
by enumeration of all performances. If the optimal performance within such a subset is close
(or preferably even equal) to the optimal performance within W? (and possibly also W)
then we may obtain (almost) optimal mixing policies in such a way. Next we introduce some
subsets for which optimization is more or less tractable and could give useful results.

At first it seems a good idea to optimize for some n € N over the subset of periodic sequences
with period smaller or equal than n. We denote such subset by W?(n) C WP?. Optimization
over such a subset may in practice give good results. For example consider the problem
investigated in Example 7 and Example 9. Optimization over the small set W?(2) would
result in the deterministic mixing policy corresponding to sequence (1,0)° which according
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to Example 9 yields a performance of 0.341 which improves the performance of the optimal
Bernoulli mixing policy which equals 0.303 according to Example 7.

However, optimization over sets WP?(n) has some disadvantages. First of all the cardinality
of WP(n) increases exponentially in n and therefore it is only tractable for rather small n.
Besides if n gets smaller than the optimal performance within the subset is likely to de-
crease. Thus there is a trade-off between computation time and performance and a priori
it is unknown what would be a good choice for the maximal period n. For the problem of
Example 7 we have seen that for period n = 2 already a policy exists which improves on the
optimal Bernoulli policy, but for larger state space it is likely that a much larger period n is
necessary to improve on the optimal Bernoulli policy. In general for fixed period n we can
not say a priori whether the optimal performance over W,(n) is better than for the optimal
Bernoulli mixing policy. Of course the optimal performance over W,(n) is not better than
the optimal performance over W, but nothing is known about the difference. This lack of
guarantees for the optimal performance over W,(n) motivates to investigate optimization
over other kind of subsets.

Such an interesting other subset is the set G of periodic sequences for which there exists
some non-negative integer k such that between any two consecutive zeros there are exactly k
other symbols in the sequence. In other words the gap between consecutive zeros is constant
and equal to k£ + 1. Since we restricted in this subsection to zero-one sequences this implies
that there are exactly k£ ones between any two consecutive zeros and thus there exists a
period cycle of the form (0,1,...,1). Analogously the set G is the set of periodic zero-one
sequences for which there exists some non-negative integer k£ such that between any two
consecutive ones there are exactly k zeros in the sequence which implies that there exists a
period cycle of the form (1,0,...,0). Note that the set G := Gy U G contains for example
the only two decision sequences 0,0,... and 1,1,... inducing a stationary Markov chain.
Moreover, we note that the periodic sequence with period cycle (1,0) is contained in both
Gy and G and (up to cyclic shifts) is unique with respect to this property.

Optimization of the performance over the set Gy (or G1) corresponds to optimization over
the non-negative integer k. Usually an optimal value for £ is very small and easy to find.
Then the optimal performance over Gy (and also over G; or G) is quickly obtained. For
example in Example 7 it may be shown that for £ = 1 the performance over G is optimized.
For the corresponding policy with period cycle (1,0) we already computed the performance
in Example 9. Recall that this performance 0.341 improved the optimal performance over
all Bernoulli policies. Moreover, it may be checked that for Example 7 this sequence with
performance 0.341 is also optimal over GGy and thus over G. However, the question remains
how close an optimal performance over Gy, G; or GG is to the optimal performance over the
much larger sets W, or W. Some partial results are known on this which is more than for
the earlier discussed W), (n) sets. Indeed for some particular problems it may be shown that
a policy which corresponds to an optimal decision sequence over G is also optimal over WW.
For example in [16] the static assignment to parallel exponential servers with no buffer is
studied. In [16] the problem to minimize the average number of blocked customers is formu-
lated as stochastic control problem with partial observations. For 2 servers it is proved that
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the optimal assignment sequence is in the set G. Moreover, if the server corresponding to
symbol 1 is the faster server than the optimal assignment sequence is in GGy and by symmetry
it is in G if the other server is faster. Note that from these results it also follows that if
the two servers have equal service rates that there exists an optimal assignment sequence in
Go NG, which implies that the round robin policy with period cycle (1,0) is optimal. In [1]
similar results are obtained for general stationary arrival processes.

For D = {d', d*} restricted MDP we have the following result on the existence of an optimal
decision sequence within G; or GGy in case the transition matrices satisfy some particular
condition.

Theorem 25 Consider a D = {d', d*} restricted MDP. Let symbol 1 correspond to applying
decision rule d' inducing an aperiodic and unichain transition matriz P. Let symbol 0
correspond to applying decision rule d* inducing an aperiodic and unichain transition matriz
Q. If po(P) = 0 then there exists some optimal deterministic D-mizing policy m = (a1, as, .. .)
for which the corresponding infinite decision sequence of zeros and ones is either (0,0,...) or
some element of G1. Analogously if po(Q) = 0 then there exists some optimal deterministic
D-mizing policy m = (a1, as,...) for which the corresponding infinite decision sequence of
zeros and ones is either (1,1,...) or some element of G.

Proof. Suppose po(P) = 0 and @ is aperiodic and unichain. Then the conditions of
Theorem 21 and thus also Theorem 23 are satisfied. Hence Condition 12 and Condition 13
are satisfied. Thus for the equivalent full observation MDP with state space X there exists
some deterministic stationary Markovian policy 7 which is optimal. This deterministic
stationary policy ™ may be represented by a mapping from state space X to action space
A = {d',d*}. Let a: X — A be this mapping. If policy 7 is applied then for any initial
state distribution x; € X an associated sample path @ = (1, a4, 29, as,...) is inductively
determined by

P if a =d
ar = a(zy) and T4y = { ZIIZQ if ai — 2 (25)

For such @ inductively determined by (25) it follows by Corollary 15 that for all ¢t € N
the deterministic D mixing policy m; := (as, @441, - - -) is optimal with respect to maximizing
the expected long-run average reward. Let (uy, us,...) be the infinite sequence of zeros and
ones corresponding to the infinite sequence of decision rules (a1, as,...). Suppose (uy, us, .. .)
contains only a finite number of ones. Then there exists some ¢ € N such that u,, = 0 for
all £ > n and it follows that the optimal deterministic D mixing policy m; corresponds to
the infinite decision sequence (0,0, ...). Suppose on the other hand that (ay, as,...) contains
infinitely many ones. Then there exist k,/ € N with £ < [ such that uy =u; =1 and u; =0
for all k < ¢ < [. Since py(P) = 0 we have by Lemma 19 that P has identical rows and let
xog € X be the unique row vector which is row of P. Then it follows that P = xy for all
r € X. Since ay = q; = d' we have by (25) that zx, = 71,1 = 9. From this it follows
inductively by (25) that z; = x;,,_ for all t > k£ + 1 and a; = ayyy_y, for all ¢ > k. Thus the
infinite sequence (ug, ugy1,...) is periodic with period [ — k and it follows that this sequence
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is element of (G; since we also have that u; = 1 and uw;, = 0 for all £ < ¢ < [. Thus we
have proved Theorem 25 in case py(P) = 0. The statement for the case py(Q) = 0 follows
analogously and a symmetry argument could be applied. m

6.1 Regular sequences and corresponding policies

Consider again the D = {d', d*} restricted MDP from Example 7 characterized by (6). Re-
call (Example 9) that the best performance we have obtained so far for this example is 0.341
which is obtained by the deterministic D mixing policy which corresponds to the periodic
decision sequence with period cycle (1,0). Moreover, this is the best performance that can
be obtained within the set G of decision sequences. Thus if py(P) = 0 or po(Q) = 0 then
it would follow from Theorem 25 that this policy with performance 0.341 would be optimal
over all D mixing policies, but po(P) = 0.8 > 0 and pp(Q) = 0.7 > 0. Thus in this example
it could be possible that some decision sequence which is not an element of G has better
performance. Indeed by (8) it can be checked that for example the periodic decision sequence
with period cycle (1,1,0,1,0,1,0,1,0) yields an expected long-run average reward of 0.3435
which slightly improves 0.341. Thus in this example there exist periodic decision sequences
with better performance than the optimal performance within the set G.

The remaining question is whether such improving sequences can only be found by an ex-
haustive search over the set W (or W,) or if it is possible to characterize some subset of
W in which improving decision sequences can be found provided they exist. Such charac-
terization is useful if searching over the subset is less complex than over W (W),) and then
it would be especially nice if the optimal decision sequence is shown to be element of this
subset. Indeed we may characterize some subset of W which potentially has all these desired
properties. This is the subset R C W of so-called regular sequences of zeros and ones. In
the sequel of this paper we define this subset and give some of the most useful properties
and characterizations. We show how an effective optimization over this subset R may be
performed and we will apply this to the D = {d', d?} restricted MDP from Example 7. Fi-
nally we give some conditions which are shown to be sufficient that some optimal D-mixing
policy corresponds to a decision sequence which is a regular sequence. Thus in that case the
optimal performance may indeed be found within this set of regular sequences.

Definition 26 Let U = (uy, uo,...) be an infinite sequence of certain symbols. A suffic of
U is an infinite sequence of the form (uy, uny1,...) for somen € N. A finite subsequence of
U is a finite sequence of the form (ug, ugi1,...,u;) for some k,l € N with k <.

In the sequel U = (uy,us,...) is assumed to be an infinite sequence of zeros and ones. In
that case we denote by si(n) := Zf;’,:‘_l u; the number of ones in the subsequence of length
n beginning at the k-th element of U and put s(n) := s1(n). Then U is said to have a density
of 0 € [0,1] if lim,, s(:) = 6. Thus if an infinite sequence U of zeros and ones has a density

f then 6 is the asymptotic frequency of the ones in U. In that case it may intuitively be clear
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that the positions of ones in the sequence are more regularly distributed if for all k,n € N
absolute deviations between si(n) and nf are small. The following fundamental definition
is based on this intuition and defines exactly when an infinite sequence of zeros and ones is
(most) regular. We also define when a sequence is so-called eventually regular.

Definition 27 Let U = (uy,us,...) be an infinite sequence of zeros and ones. Then U is
called regular of density 0 if for sp(n), the number of ones in the corresponding subsequence
of length n, it holds that

|sk(n) —nl| <1 for every k,n € N. (26)

An infinite sequence of zeros and ones is called eventually regular if it has a suffix which is
reqular of some density.

The earlier discussed subset R C W of regular sequences can now be defined as the set of
infinite sequences of zeros and ones which are regular for some density 6 € [0, 1]. It is obvious
that if some sequence U is regular and thus element of R that (26) holds for some unique
6 € [0, 1] which will be the density of the sequence. For infinite sequences of zeros and ones
very closely related to this notion of being (eventually) regular but possibly more convenient
to apply is the notion of being (eventually) balanced. This notion is defined as follows.

Definition 28 Let U = (uy,us,...) be an infinite sequence of zeros and ones. Then U is
called balanced if

|sk(n) — si(n)] <1 for every k,l,n € N. (27)

In other words U s balanced if for any two finite subsequences of the same length the number
of ones contained in these subsequences differs by at most one.

An infinite sequence of zeros and ones is called eventually balanced if it has a suffix which is
balanced.

A complete classification of balanced sequences was given in [19]. Next we enumerate in
Proposition 29 and Proposition 30 for regular (balanced) sequences the most important
properties and connections which are useful for the present paper. These results are obvious
or may be retrieved from results in [19], [23] or [17] although in these references not exactly
the same terminology is used.

Proposition 29 For infinite sequences of zeros and ones the following properties hold.
1. All reqular sequences are balanced.

All balanced sequences are eventually reqular.

A sequence is eventually reqular if and only if it is eventually balanced.

Let U = (uq,us,...) be an infinite sequence of zeros and ones and V = (vy,vs,...) be
defined by v, =1 —u, for alln € N. Then U is balanced if and only if V is balanced.
Moreover, U is reqular of density 6 if and only if V' is reqular of density 1 — 6.
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5. For every 0 € [0,1] there exist some reqular sequence(s) of density 0. Indeed for given
0 € [0,1] a reqular sequence U = (uq,us,...) of density 8 may be obtained as follows.
Choose some arbitrary ¢ € R and let U be determined either by

up =m0+ ¢| — [(n—1)0+ ¢| for alln € N (28)
or by
up = [n0+ @] — [(n — 1)8 + @] for alln € N. (29)

Then U is reqular of density 6. Moreover, an infinite sequence of zeros and ones
(uy,us, ...) may be determined for some ¢ € R by either (28) or (29) if and only if the
sequence s reqular of density 6.

6. A reqular sequence of density 0 is periodic if and only if 0 is rational. If 0 = ’E’ with

p,q € N, p and q coprime, then the reqular sequence has a period cycle of length q
containing exactly p ones and q — p zeros.

Also noteable is that the set GG introduced in the previous section is a subset of R. Indeed
it is easily seen that G corresponds to regular sequences of densities 0, %, %, %, ... and Gy
corresponds to regular sequences of densities 1, %, %, i, .... Thus the maximal performance
over R is always at least as good as the maximal performance over G. The following result

will be very useful for implementing the maximization of performance over the set R.

Proposition 30 Let U and V' be reqular sequences and suppose they both have density 6.
Then the set of all finite subsequences of U equals the set of all finite subsequences of V.
Moreover, either V is a suffiz of U or U is a suffix of V. If 8 is rational then the period
cycles of U and V are cyclic shifts of each other.

For example U = (1,0,1,0,0)> and V = (0,1,0,1,0)* are regular sequences of the same
density % and indeed the period cycles (1,0,1,0,0) and (0, 1,0, 1,0) are cyclic shifts of each
other.

6.2 Optimization over regular sequences

We have defined the subset R of regular sequences and described some important properties
of regular (balanced) sequences. In this subsection our objective is to apply this and op-
timize the performance over R in an efficient manner. Regular and/or balanced sequences
have been applied in open-loop control of particular queueing systems. In [9] it was proved
for some specific admission control problem that the optimal control sequence is a regular
sequence. After that these sequences have been applied (see for example [4], [2], [3], [15] and
[8]) to several admission, routing and polling problems. In such applications to queueing
and discrete-event systems the optimality of regular sequences for open-loop control follows
from multimodularity of an appropriate performance criterion such as expected workload in
a queue or expected waiting times. Multimodularity is a property of functions defined on a
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discrete set which is comparable to convexity for functions defined on a continuous set. The
concept of multimodularity and its applications are discussed in detail in [1] and then also
an overview of control problems is given for which optimality of regular sequences can be
established by multimodularity. In [1] several assumptions like for example specifications on
the topology of the queueing system are used to obtain multimodularity.

In the present paper the objective is to apply regular sequences for general D restricted
MDP optimizing the long-run average reward instead of some specific open-loop queueing
control problem with a specific performance criterion like for example minimizing expected
average waiting times of customers as in previous papers. A consequence of this that multi-
modularity of the performance function is not applicable to get results on the optimality of
some policy corresponding to a regular decision sequence. In the next section we show that
if for the equivalent full observation MDP an optimal stationary and deterministic policy
exists satisfying some specific properties that the existence of an optimal D mixing policy
corresponding to some regular sequence follows. This is a new approach to establish without
multimodularity the optimality of regular sequences for some (restricted) MDP problems.
In this subsection we discuss and illustrate with an example the remaining practical problem
of optimizing the performance over R, the set of all regular sequences of zeros and ones.

When we optimize over R for some D = {d!, d*} restricted MDP problem we assume that
Condition 12 and Condition 13 are satisfied such that Theorem 14 and Corollary 15 are ap-
plicable. In Section 5 we have seen some sufficient conditions for this. Then by Theorem 14
and Proposition 30 it follows that all deterministic D mixing policies corresponding to regu-
lar sequences of the same density 6 € [0, 1] have the same performance. Thus we may denote
by h(6) the long-run average reward of a deterministic D mixing policy corresponding to a
regular decision sequence of density #. Now we have that maximizing the performance over
R is nothing more than maximizing the function h(#) over 6 € [0, 1]. Recall from Section 3
that this problem is rather similar to finding the optimal Bernoulli policy for which a perfor-
mance function ¢g(€) should be maximized over 6 € [0, 1]. We also note that in the admission,
routing and polling problems in which regular sequences have been applied before the opti-
mization in most cases was reduced to a maximization or minimization over the density 6
of the regular sequence. Then it always held that h(6) > ¢(#) for all # in case of maximiza-
tion or h(f) < g(f) in case of minimization. Hence the optimal value of h(f) improves the
optimal performance over all Bernoulli policies. Naturally we expect and would like that
this property also holds for D restricted MDP problems like we consider in the present paper.

Recall that for Bernoulli policies it is not difficult to maximize g(#) since for any 6 € [0, 1] the
value ¢(#) can be computed quickly and possibly a closed formula for g(6) may be obtained
as in Example 7. However, maximizing h(#) is more difficult. First of all it seems in general
impossible to obtain a closed formula for h(f) and for irrational § we do not even have a
finite algorithm to compute h(#). On the other hand if 6 is rational the value h(f) may be
computed by the following finite algorithm.
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Figure 1: The performance of regular sequences versus Bernoulli policies
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Figure 2: The performance of regular sequences for rational densities in the interval
[0.55,0.56] and denominator at most 200
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Algorithm 31 If Condition 12 is satisfied this algorithm computes the performance h(0)
of any D = {d*, d?} mizing policy corresponding to a reqular decision sequence of rational
density 6 € [0, 1].

1. Determine coprime integers p and q with p > 0, ¢ > 0 such that 0 = %’.

2. Choose some default value for ¢, say ¢ = 0, and then for n = 1,2,...,q compute u,
by (28). The obtained sequence (uy,us, ..., u,) is a period cycle of a reqular sequence
of density 0 = g.

3. Apply (8) to compute the long-run average reward g™ of the periodic policy ™ with period
cycle (uy, ug, ..., uy). The value h(0) is obtained by putting h(0) = g~.

The running time of Algorithm 31 increases in the denominator ¢ of 6 since the period cycle
of the regular sequence of density 6 is of length ¢. Thus for given § = % the computation
time is of order (¢) and to obtain or approximate the maximal value of h(6) it seems most
efficient to apply Algorithm 31 to a set of densities # with bounded denominator ¢q. For
example Algorithm 31 can be applied to obtain a maximum of h(f) over the set R N W,(n)
for some n € N. For such maximization the algorithm has to be applied only O(n?) times
and for each run the period cycle of the decision sequence is at most n. Therefore the
total computation time is polynomial in n and the algorithm terminates relatively quickly if
neither n nor the state space are very large.

For the D restricted MDP from Example 7 the algorithm quickly maximizes the performance
over R N W,(n) for a maximal period of for example n = 200. Applying the algorithm it
follows that the regular sequence with period cycle (1,1,0,1,0,1,0,1,0) and density 0 = g
maximizes the performance over this set. Recall from the previous subsection that this
particular decision sequence yields an expected long-run average reward of 0.3435. Applying
the Algorithm for larger values of n does not give another improvement. Results in the
sequel of this paper support the optimality of this regular sequence of density g for the D
restricted MDP from Example 7.

We note that that g is close but not equal to #* = 3 — /6 ~ 0.551 which maximizes (recall
Example 7) the performance over Bernoulli policies over rate #. Figure 1, in which for
6 € [0,1] the performance of Bernoulli policies and deterministic D-mixing policies given
by a regular sequence of density 6 are plotted, illustrates this. Recall from Example 7 that
for Bernoulli policies of rate § the performance g(6) is according to the function g(f) =
%. For regular sequences of density 6 the performance h(f) is plotted for all § = % for
k=0,1,...,100. Thus g(0) is the solid smooth curve in Figure 1, while the isolated points
(6, h(8)) for 6 = & also seem to be situated on some smooth curve. This suggests that
the performance h(#) for regular sequences is continuous for € [0, 1] just as g(#) which we
proved to be continuous. It is also interesting to note that h(6) is never smaller than g(6)
and that the difference in performance h(f) — g(f) appears to be maximal around the value
where h(6) is maximal. Moreover, Figure 1 confirms that the value of  which maximizes

h(6) could well be § = 2 and that the maximizing value for h(6) is close to the value which
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maximizes g(#).

Figure 2 visually confirms that for = > the value of h(6) is maximal. In Figure 2 the value
of 0 is varying over the small interval [0.55,0.56] and in this interval all points (0, h()) are
plotted for all rational § =  with denominator n < 200. In this figure the point (3, h(3)) is
obviously the top one. Moreover, from the triangular shape which is recognizable in Figure
2 it may be concluded that for # in this small interval around g the value of h(f) increases
approximately linearly if # approximates g.

7 Sufficient conditions for optimality of a regular se-
quence

In this final section we show that certain conditions for D = {d', d*} restricted MDP are
sufficient for the existence of an optimal D-mixing policy which is deterministic corresponding
to a reqular zero-one decision sequence. We also discuss the applicability of the results to D
restricted MDP problems and in particular the problem introduced in Example 7.

First we formulate and prove a key result which states that some infinite sequence of zeros
and ones generated by iterating some function on the interval [0, 1] is eventually regular if
the functions satisfies certain conditions. In the sequel we denote with I the interval [0, 1].

Iteration 32 Let xy,x* € I be given. Let fi, fo : I — I be given functions and f : 1 — I be
defined by

| Alx) fr<a*
fla) = { hiz) ifz> 2 (30)
Consecutively for n =1,2,... determine u,, and x,. iteratively by
0 ifz, <zx*
Up = { 1 zj‘i:vn > and Tpy1 = f(x,). (31)

Theorem 33 Let U = (uy,us,...) be an infinite sequence of zeros and ones generated by
Iteration 32 with fi, fo : I — I satisfying the following properties:

1. f1 and f5 are monotonically increasing.
2.
filf2(2)) = f2(fi(@)) for allz € 1. (32)
Then U is an eventually reqular sequence.
To prove Theorem 33 we apply Lemma 34 which follows immediately from Proposition
2.1.3 in [17]. Similar as in [17] for sequences (or so-called words) a = (ay,as,...,a,) and

b = (b1, bo,...,by) the concatenation (ay,as, ..., a,,by,bs, ..., by) is shortly denoted with
ab.
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Lemma 34 Let U = (uy,us,...) be an infinite sequence of zeros and ones. Then U is
balanced if and only if there does not exist some (possibly empty) finite sequence w of zeros
and ones such that both Ow0 and 1wl are subsequences of U.

Proof of Theorem 33. We distinguish a few cases. In the first case suppose fi(z*) < x*.
Then fi(z) < z* for all 0 < z < z* since f; is monotonically increasing. Thus if =, < z*
for some N € N then z, < z* forn = N,N +1,... and thus (uy,uyny1,...) = (0,0,...)
is regular of density 0. Hence U is an eventually regular sequence. If on the other hand
x, >a* forn=1,2,... then U= (1,1,...) is regular of density 1.

In the second case suppose fo(z*) > x*. Then it follows analogously to the first case that
there exist some N € N such that z,, > z* foralln > N or z, < z* for n =10, 1,.... Hence
either U is eventually regular of density 1 or U is regular of density 0.

In the third and most important case we suppose that fo(z*) < z* < fi(2*) and let J denote
the interval [fo(x*), fi(2*)]. Note that if z, < fo(z*) then x,1 = fi(z,) < fi(z*) and if
xn > fi(x*) then 2,1 = fo(z,) > fo(z*). Thus either x, < fo(2*) < 2* forn=1,2,... or
x> fi(z*) > x* forn =1,2,... or xy € J for some N € N. Thus either U is regular of
density 0 or U is regular of density 1 or zy € J for some N € N. Suppose zn € J for some
N eN. If fo(z*) <zny < z* then x4 = fi(zy) < fi(z*) and by (32) we also have that

v = filzn) 2 filfa(2®)) > fo(fi(@")) = fao(a¥)

and thus xy,; € J. Similarly if 2* < zy < fi(2*) then 2y = fo(xy) > fo(z*) and by (32)
we also have that

1 = fa(zn) < fa(fi(27)) < fi(fa(27)) < fi(a¥)

and thus xy.; € J. Hence if zy € J then it follows by induction that x, € J for n =
N, N +1,.... Thus in this third case we may assume that there exist some N € N such that
z, € J foralln > N.

Consider the suffix U’ := (uy,uny1,...) of U. Suppose u,, =0, u, = 1 for some m,n € N.
Assume there exists some k € N for which u,,,, # u, and let ky be the minimal positive
integer satisfying w,,1x, # Unik,- We claim that then it follows that

Utk = 1 and w45, = 0.

To verify this claim note that by (32) and z,,, z,, € J we have that

T = fi(®m) 2 fi(f2(27)) 2 fo(fi(27)) > folwn) = Tppa.

Thus if kg = 1 then x4k, > Tpik, IMplying 1 > Uy, > Unik, > 0. Hence upip, = 1
and u,,r, = 0 follows from the fact that w, .k, # Unik,- If kg > 2 then we have that
U1 = Upy1. Since both fi, fo are monotonically increasing and thus order-preserving
it follows that x,, 0 > x,.9 by either z,,0 = fi(Tmi1) > fi(Tni1) = Tpao OF Ty =
fo(zmi1) > fa(Tpi1) = Tpio. By applying this order preserving property of both f; and
fa repetively it follows again that x,,1x, > Tpik, and thus up,x, = 1 and vy, = 0 as
above. Thus the claim holds but then it follows that there does not exist some (possibly
empty) finite sequence w of zeros and ones such that both 0w0 and 1wl are subsequences
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of U’. Thus by Lemma 34 it follows that U’ is balanced. Thus by definition U is eventually
balanced since U’ is a suffix of U and by Proposition 29 it follows that U is an eventually
regular sequence. m

Next our aim is to apply Theorem 33 to D = {d', d*} restricted MDP problems with finite
state space S satisfying some specific properties. For this we consider again the equivalent
full observation MDP with continuous state space X of probability distributions on S as
we introduced in Section 5. First of all we restrict to problems for which Condition 12 and
Condition 13 are satisfied. Recall that in Subsection 5.1 we have investigated when these
two conditions are satisfied and that we have seen that they are satisfied for a considerable
class of problems. Now we define an extra condition which should hold in particular for the
applicability of Theorem 33. In the sequel this new condition will be called the threshold
condition since basically it says that for the equivalent full observation MDP some optimal
stationary deterministic Markovian policy (which exists according to Condition 13) has some
”threshold structure”. In Definition 35 we define this notion of ” threshold structure” for such
policies which is followed by Condition 36 stating our threshold condition for D = {d!, d*}
restricted MDP.

Definition 35 Let h : X — A = {d',d*} be the mapping corresponding to a stationary
deterministic Markovian policy 7. Then we say that mapping h and policy T have threshold
structure if there exists some i € S and 2° € I such that for all * = (v1,29,...,2)5) € X
we either have that h(z) = d* if and only if x; < 2° (x; < 2°) or h(x) = d* if and only if
2, <20 (x; < 20).

Condition 36 For the full observation MDP which is equivalent to the considered D =
{d', d*} restricted MDP there exist some optimal stationary deterministic Markovian policy
7 having a threshold structure as defined in Definition 35.

Proposition 37 connects Condition 36 with Iteration 32 in case of a 2 states state space as
for example in the D = {d', d?} restricted MDP of Example 7. Then Theorem 33 will be
applicable if the appropriate functions f; and f, have the properties stated in Theorem 33.
Additionally from Proposition 37 it follows for such 2 state cases the appropriate f; and f5
are linear which in the sequel will be useful to check the properties to apply Theorem 33.

Proposition 37 Consider a D = {d',d*} restricted MDP with state space S = {1,2}.
Suppose that Condition 36 is satisfied and let T be a stationary deterministic Markov-
ian policy for the equivalent full observation MDP having a threshold structure. Let w =
(y1, ai, Yo, A, . ..) € Q be an associated sample path. Forn =1,2,... let v,,w, € I satisfying
U + w, = 1 be such that y, = (v, w,). Then there exist xi,x* € I and linear functions
f1, fo - I — I such that the sequences (uq,us,...) and (x1,xs,...) generated by Iteration 32
satisfy the following properties.

1. Either x, = v, forn=1,2,... or x, = w, forn=1,2,....
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2. FEither (33) or (34) holds,

0 ifa,=d

u":{l i}[ande form=1,2,... (33)
0 ifa,=d*

u":{l i}can:dl form=1,2,.... (34)

Proof. Let P be the transition matrix corresponding to d' and ) be the transition matrix
corresponding to d?. Let a,b,c,d € I be such that

P:<1gb1;a>’ Q:<1Ed156>' (35)

Let h: X — {d',d*} be the mapping corresponding to 7. Then h has a threshold structure
(see Definition 35) and assume h has this property for state i = 1. Now we distinguish
several cases.

In the first case suppose that there exists some x° € I such that for any & = (Z1,2) € X
it holds that h(Z) = d! if and only if 2; < 2% Then we claim that by putting z; = vy,
=2 fi(z) =(a+b—1)z+1—bforallz € I and fo(x) = (c+d— 1)z + 1 —d for all
x € I the sequences (uj,usg,...) and (xq,Zs,...) generated by Iteration 32 satisfy =, = v,
for n = 1,2,... and moreover, u, = 0 if and only if a, = d'. We prove this claim by
induction to n. For n = 1 we already have z; = vy. If v; < 2° then ay = h(y,) = d,
77 < z* and thus u; = 0. On the other hand if v; > 2° then a; = h(y;) = d?, x, > z*
and thus u; = 1. Thus the claim holds for n = 1. Suppose the claim holds for n = k
and thus z;, = v;. Distinguish the cases v, < 2° and v, > 2°. Suppose v, < 2°. Then
ar = h(yr) = d* and thus u; = 0 by the induction claim. Then by Tteration 32 it follows
that 1 = fi(zr) = fi(vr) = (@ +b— 1)v, + 1 —b. Also we have

1—
Yrr1 = (v, wi) P = (vg, wy) < 1 g bbb “ ) = (avy + (1 — b)wy, (1 — a)vg + bwy).

Hence vgy1 = avg + (1 — b)wy, = avg + (1 —b)(1 —vx) = (a+b— 1)vy + 1 — b and thus
Tp4+1 = Ug41 if Vg S 1‘0.

Suppose vy > 2°. Then a; = h(yx) = d? and thus u; = 1 by the induction claim. Then by
Iteration 32 it follows that xx1 = fo(xk) = fo(vg) = (c+d — 1)vg + 1 — d. Also we have

Yrr1 = (Vg, W) Q = (v, wi) < ) f ; 1 ; ¢ > = (cvp + (1 — d)wy, (1 — ¢)vg + dwy,).

Hence vgy1 = cop + (1 — d)wy, = cvp + (1 — d)(1 —vx) = (¢ +d— 1)vp +1 — d and thus
Tpe1 = Uppr if vp > 20, Thus we have proved that x,; = v44;. Then for n = k+1 it follows
that u,, = 0 if and only if a,, = d' similarly as for n = 1 and the induction proof is finished.
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In the second case suppose that there exists some 2° € I such that for any & = (2, 2,) € X
it holds that h(z) = d' if and only if #; < 2°. Then we claim that by putting z; = wy,
*=1-2° fi(z) = (c+d—1)z+1—cforallz € [ and fo(z) = (a+b—1)z+1—a for all
x € I the sequences (uq,us,...) and (z1,x9,...) generated by Iteration 32 satisfy =, = w,
for n = 1,2,... and moreover, u, = 0 if and only if a, = d?. This claim follows also by
induction analogously to the first case above.

In the third case suppose that there exists some 2° € I such that for any & = (&;,49) € X
it holds that h(%) = d? if and only if ; < 2° Then we claim that by putting z; = vy,
=2 fi(z) =(c+d—1)z+1—dforallz € I and fo(x) = (a+b— 1)z +1—b for all
x € I the sequences (u1,us,...) and (xq,Zs,...) generated by Iteration 32 satisfy =, = v,
for n = 1,2,... and moreover, u, = 0 if and only if a, = d?. This claim follows also by
induction analogously to the first case above.

In the fourth and last case suppose that there exists some z° € I such that for any & =
(%1, 42) € X it holds that h(Z) = d? if and only if #; < 2°. Then we claim that by putting
T =wy, 2" =1-2% fi(z) = (a+b—1)z+1—aforallz € I and fo(z) = (c+d—1)z+1—c
for all € I the sequences (uj,us,...) and (z1,z9,...) generated by Iteration 32 satisfy
Tn = W, for n = 1,2, ... and moreover, u, = 0 if and only if a,, = d'. This claim follows also
by induction analogously to the first case above.

This finishes the proof for the case that h has a threshold structure for state ¢ = 1. For the
case that h has a threshold structure for state ¢ = 2 it could be proved similar as for 7+ = 1
by distinguishing four different cases and obtaining the appropriate z1,z*, f; and f5 for all
these cases. However, it follows more elegant by noting that if S = {1,2} any threshold
structure for state ¢ = 2 is equivalent to a threshold structure for state + = 1 and vice versa.
For example suppose there exists some z° € I such that for any 2 = (2, %,) € X it holds
that h(2) = d' if and only if #5 < 2. This is a threshold structure according to Definition
35 for state 1 = 2. Obviously it is equivalent to h(%) = d? if and only if 2; < 1 — 2° which
gives a threshold structure according to Definition 35 for state i = 1. m

Theorem 38 is a main result in this paper which is based on combining Theorem 23, Theorem
14, Corollary 15, Proposition 29, Proposition 37 and Theorem 33.

Theorem 38 Consider a D = {d',d*} restricted MDP with state space S = {1,2}. Let
a,b,c,d € I be such that (35) holds where P is the transition matriz corresponding to d* and
Q is the transition matriz corresponding to d?*. Suppose that 1 < a+b< 2,1 <c+d <2
and Condition 36 is satisfied. Then for the equivalent full observation MDP there exists
some optimal stationary deterministic Markovian policy 7 having a threshold structure as in
Definition 35. B

Moreover, let © = (y1, a1, Yo, A, ...) € Q be an associated sample path for ™ and let fi, fo
I — I be linear functions as obtained in the proof of Proposition 37. If there exists some
x € I for which fi(fo(x)) > folfi(z)) then for the D = {d*,d*} restricted MDP there exist
an optimal D-mizing policy which is deterministic and the corresponding decision sequence
of zeros and ones is a regular sequence. In particular there exist some n € N such that for
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all positive integers t > n the infinite sequence of decision rules (ay, azyq,...) determines an
optimal D-mizing policy for which the corresponding sequence of zeros and ones is a reqular
sequence.

Proof. We have P = ( 1 i b L ; “ ) and thus by (19) it is easily seen that py(P) =
la+b—1|. Since 1 < a+ b < 2 it follows that po(P) < 1 and similarly we also have that
po(Q) < 1. Thus Theorem 23 is applicable for N = 1 and thus it follows for the equiva-
lent full observation MDP that Condition 17, Condition 13 and Condition 12 are satisfied.
Thus there exist optimal stationary deterministic Markovian policies for the full observa-
tion MDP and since Condition 36 is also satisfied it follows that there exists some optimal

stationary deterministic Markovian policy 7 having a threshold structure as in Definition 35.

Let @ = (y1,a1,99,a9,...) € Q be an associated sample path for 7 as in Proposition 37.
For the D = {d!, d*} restricted MDP we have by Theorem 14 and Corollary 15 that all de-
terministic D-mixing policies 7y, t = 1,2, ... given by the infinite sequence of decision rules
(ag, agy1, - . .) have the same performance. Moreover, this performance is optimal with respect
to maximizing the long-run average reward for the D restricted MDP since (y1, a1, y2, as, . . .)
is a sample path of policy 7 which is optimal for the equivalent full observation MDP. Thus
for all t =1,2,... policy 7 is an optimal D-mixing policy.

Let U := (uy,us,...) and (z1,2,...) be the infinite sequences generated by Iteration 32 for
linear functions fi, fo and appropriate x1,z* € I as in Proposition 37. Then U is an infinite
sequence of zeros and ones and by Proposition 37 we have that either (33) or (34) holds.
Moreover, according to the proof of Proposition 37 we may assume that either the slope of
fi1is a4+ b —1 and the slope of f5 is ¢ +d — 1 or the slope of f; is ¢ + d — 1 and the slope
of fy is a4+ b — 1. Anyway it follows that f; and f, are monotonically increasing functions
since a +b > 1 and ¢+ d > 1. Moreover, it follows that the composite functions f; o fs and
fo o f1 are both linear functions with slope (a + b — 1)(c + d — 1) mapping I to /. Hence
fi(fa(x)) > fo(fi(x)) for some z € I implies that fi(fo(x)) > fo(fi(x)) for all x € I. Thus
if fi(f2(x)) > fo(fi(x)) for some x € I then the properties demanded in Theorem 33 for
the functions f; and f; are satisfied and thus the sequence U generated by Iteration 32 is
an eventually regular sequence. Thus there exists some n € N such that for every positive
integer ¢ > n the infinite sequence Uy := (uy, Uy 1, - . .) is a regular sequence of zeros and ones.

Recall from Section 4 that by convention symbol 1 corresponds to action d' and symbol
0 corresponds to action d?. Following this convention let U’ := (u},u),...) be the infinite
sequence of zeros and ones corresponding to (aj,as,...). Then for ¢ = 1,2,... we have
that U] = (u}, uj,,,...) is the infinite sequence of zeros and ones corresponding to optimal
D-mixing policy m = (a¢, az41,...). In case (33) holds then it follows that u), = 1 — w,
for n = 1,2,.... Thus by property 4 of Proposition 29 it follows for ¢ = 1,2,... that U]
is regular of density 1 — 6 if and only if U; is regular of density #. Thus for every positive
integer ¢ > n the sequence U] corresponding to optimal D-mixing policy 7 is regular since
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U is regular for ¢ = n,n + 1,.... In the other case that (34) holds then it follows that
u, = u, for n = 1,2,.... Thus it follows for ¢ = 1,2,... that sequence U] is exactly the
same as sequence U;. Thus for every positive integer ¢ > n the sequence U] corresponding to
optimal D-mixing policy 7, is regular of some density 6 since U; is regular of some density 6

fort=n,n+1,.... m

In Example 39 we apply Theorem 38 to the D = {d*, d*} restricted MDP of Example 7.

Example 39 Consider once again the D = {d', d?} restricted MDP of Example 7. Let
a,b,c,d € I be defined as in Theorem 38. For this example we have that « = 1, b = 0.8,
¢ = 0.7and d = 1. Thus the conditions 1 < a+b < 2 and 1 < ¢+ d < 2 are satisfied.
Moreover, recall from Example 22 that Condition 17, Condition 13 and Condition 12 are
satisfied. Thus for the equivalent full information MDP there exist some optimal stationary
deterministic Markovian policy 7. We will not prove that also Condition 36 is satisfied,
but we note that it seems plausible. Indeed let p be the probability that the machine is in
state 1 (the bad state) at a decision epoch. Indeed it seems plausible that there exists some
threshold probability p* such that if p is smaller than p* that then it is optimal to choose
action 1 (work), while if p is larger than p* that then it is optimal to choose action 2 (repair).
Thus assume Condition 36 is satisfied and that policy 7 has indeed a threshold structure.
Let W = (y1, a1, Y2, az,...) € Q be an associated sample path for 7 and for n = 1,2,... let
U, Wy, € I be such that y, = (v,,w,) for n =1,2,... as in Theorem 38.

Now we distinguish two cases of plausible threshold structures that optimal policy 7 could
have in this example. In the first case suppose there exists some p* € I such that policy
7 chooses decision rule d' and thus action 1 (work) if and only if p < p* and chooses de-
cision rule d? and thus action 2 (repair) if and only if p > p*. Then following the proof
of Proposition 37 we put z; = vy, * = p*, fi(z) = (a+b—1)z+1—b = 0.82 + 0.2 and
fa(z) = (c+d—1)z+1—d = 0.7z. Then fi(f2(z)) = 0.56240.2 and fo(fi(z)) = 0.562+0.14.
Thus for this threshold structure (32) is indeed satisfied.

In the second case suppose there exists some p* € I such that policy 7 chooses at a de-
cision epoch decision rule d' and thus action 1 (work) if and only if p < p* and chooses
decision rule d? and thus action 2 (repair) if and only if p > p*. Then following the proof of
Proposition 37 we put 1 = wy, * =1 —p*, fi(x) =(c+d—1)z+1—¢=0.72x 4+ 0.3 and
fo(z) = (a+b—1)z+1—a = 0.8z. Then fi(fo(x)) = 0.562+0.3 and fo(f1(z)) = 0.562+0.24.
Thus also for this threshold structure (32) is indeed satisfied.

Thus we may conclude that if Condition 36 is satisfied for this example that then (32)
holds for all plausible threshold structures. Then it follows by Theorem 38 that there exists
some n € N such that for all positive integers t > n the infinite sequence of decision rules
(ag, agy1, - -.) determines an optimal D-mixing policy for which the corresponding sequence
of zeros and ones is a regular sequence. In other words under the assumption that Condition
36 holds it follows for this example that an optimal D-mixing policy is among the determin-
istic Markovian D-mixing policies for which the corresponding decision sequence is in the
set R of regular sequences of zeros and ones and the maximal performance is obtained by
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maximizing performances over R.

Recall from subsection 6.2 that for the D = {d!, d?} restricted MDP of Example 7 the max-
imal performance over R N W,(200) equals 0.3435 (rounded to 4 decimals) and is obtained
by the regular sequence with period cycle (1,1,0,1,0,1,0,1,0) of density 6 = g. Moreover,
Figure 1 and Figure 2 did give additional visual support for density g maximizing the per-
formance over R. If § = 2 indeed maximizes h(#) and Condition 36 holds then it follows
from Theorem 38 that for this D = {d!, d*} restricted MDP the D = {d!, d*}-mixing policy
corresponding to period cycle (1,1,0,1,0,1,0,1,0) (with symbol 1 corresponding to choosing
d' and symbol 0 corresponding to choosing d?) is optimal and the maximal long-run average
reward is 0.3435 which is obtained by this policy.

Vice versa this would imply that there should exist some p* and corresponding threshold
property as described above such that for the equivalent full observation MDP and the
corresponding policy 7 induces for any initial state distribution € X an infinite sequence of
decision rules which is eventually periodic according to the period cycle (1,1,0,1,0,1,0,1,0).
Indeed this is the case for p* = 0.47 and in fact also for other values of p* which are
(sufficiently) close to 0.47. The reader may check that by putting z* = 1 — p* = 0.53,
fi(z) = 0.72 4+ 0.3 and fy(x) = 0.8z as in the second distinguished case above that then
for any z; € [0,1] the infinite sequence (uq,us,...) of zeros and ones obtained according to
Iteration 32 eventually becomes periodic with period cycle (1,1,0,1,0,1,0,1,0). Moreover,
for initial distribution y; = (1 — z1,21) € X the sample path @ = (y1, a1, 99, a9,...) € Q
obtained by applying the threshold property a, = d' if and only if ¥, - (1,0) < 0.47 satisfies
(34). Thus for this D restricted MDP we have estasblished some additional confirmation
for the optimality of the D = {d!, d*}-mixing policy corresponding to a regular decision
sequence with period cycle of density g yielding a performance of 0.3435.

7.1 Concluding remarks

In this final section we have shown that for a class of D restricted MDP the optimality
of a deterministic policy corresponding to a regular sequence is assured if some threshold
condition is satisfied for the corresponding full observation MDP. In the present paper we
have not investigated whether the threshold condition actually holds for the corresponding
full observation MDP. However, for many comparable MDP such threshold structure of op-
timal stationary policies has been investigated and established. For example in section 5.3
of [22] for the so-called searching for a moving target problem it was conjectured that the
optimal policy has a simple threshold structure. Namely search location 1 if and only if at
the decsion epoch the probability p that the target is at location 1 is larger (or equal) than
a certain threshold probability p*. In [18] the existence of such optimal threshold proba-
bility p* and corresponding policy is proved for many cases of such searching for moving
target MDP. Condition 36 for MDP associated with D = {d!, d*} restricted MDP is sim-
ilar and possibly for some problem classes it can be established by similar methods as in [18].

If Condition 36 indeed holds then the (desired) optimality within the class of policies cor-
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responding to regular sequences follows if some additional (and easy-checkable) technical
conditions (see Theorem 38) are satisfied for the transition matrices induced by the ap-
plicable decision rules in D. Note that we have proved that these additional conditions
stated in Theorem 38 are sufficient, but possibly these technical conditions can be weak-
ened. Moreover, Theorem 38 can possibly be generalized to D = {d!, d*} restricted MDP
with S consisting of more than 2 states. Another interesting issue is whether the results on
optimality of regular sequences can be extended from the relatively simple threshold struc-
ture given by Condition 36 to more involved cases where for example an optimal stationary
policy is determined by multiple thresholds.

References

[1] B. Altman, E. Gaujal and A. Hordijk. Discrete-Event Control of Stochastic Networks:
Multimodularity and Regularity. Lecture Notes in Mathematics. Springer Verlag, 2003.

[2] E. Altman, B. Gaujal, and A. Hordijk. Balanced sequences and optimal routing. Journal
of the ACM, 47:752-775, 2000.

[3] E. Altman, B. Gaujal, and A. Hordijk. Multimodularity, convexity and optimization
properties. Mathematics of Operations Research, 25:324-347, 2000.

[4] E. Altman, B. Gaujal, A. Hordijk, and G. Koole. Optimal admission, routing and service
assignment control: the case of single buffer queues. In the 37th IEEE Conference on
Decision and Control, volume 2, pages 2119-2124, Tampa, FL, USA, 1998.

[5] S.Bhulai, T. Farenhorst-Yuan, B. Heidergott, and D.A. van der Laan. Optimal balanced
control for call centers. Technical report, Tinbergen Institute, 2010.

[6] E. Fernandez-Gaucherand, A. Araposthathis, and S.I. Marcus. On the average cost
optimality equation and the structure of optimal policies for partially observable markov
decision processes. Annals of Operations Research, 29:439-470, 1991.

[7] E. Ferndndez-Gaucherand, A. Araposthathis, and S.I. Marcus. Remarks on the exis-
tence of solutions to the average cost optimality equation in markov decision processes.
Systems and Control Letters, 15:425-432, 1991.

[8] B. Gaujal, A. Hordijk, and D.A. van der Laan. On the optimal policy for determinis-
tic and exponential polling systems. Probability in the Engineering and Informational
Sciences, 21:157-187, 2007.

[9] B. Hajek. Extremal splittings of point processes. Mathematics of Operations Research,
10(4), 1985.

[10] B. Heidergott and A. Hordijk. Taylor series expansions for stationary markov chains.
Advances in Applied Probability, 35:1046-1070, 2003.

41



[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

B. Heidergott, A. Hordijk, and M. van Uitert. Series expansions for finite-state markov
chains. Probability in the Engineering and Informational Sciences, 21:381-400, 2007.

B. Heidergott and F. Vazquez-Abad. Measure valued differentiation for markov chains.
Journal of Optimization and Applications, 136:187-209, 2008.

B. Heidergott, F. Vazquez-Abad, G. Pflug, and T. Farenhorst-Yuan. Gradient esti-
mation for discrete-event systems by measure-valued differentiation. Transactions on
Modeling and Computer Simulation. Accepted.

O. Hernandez-Lerma and J.B. Lasserre. Discrete-Time Markov Control Processes: Basic
Optimality Criteria. Springer, 1996.

A. Hordijk and D.A. van der Laan. On the average waiting time for regular routing to
deterministic queues. Mathematics of Operations Research, 30:521-544, 2005.

G. Koole. On the static assignment to parallel servers. IEEE Transactions on Automatic
Control, 44:1588-1592, 1999.

M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002.

.M. MacPhee and B.P. Jordan. Optimal search for a moving target. Probability in the
Engineering and Informational Sciences, 9:159-182, 1995.

M. Morse and G.A. Hedlund. Symbolic dynamics ii - sturmian trajectories. American
Jornal of Mathematics, 62:1-42, 1940.

G. C. Pflug. Optimization of Stochastic Models. Kluwer Academic Publishers, 1996.

M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons, 1994.

S.M. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, 1983.

R. Tijdeman. Fraenkel’s conjecture for six sequences. Discrete Mathematics, 222:223—
234, 2000.

42



