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Abstract

The basic structural time series model has been designed for the modelling and forecast-

ing of seasonal economic time series. In this paper we explore a generalisation of the basic

structural time series model in which the time-varying trigonometric terms associated with

different seasonal frequencies have different variances for their disturbances. The contribu-

tion of the paper is two-fold. The first aim is to investigate the dynamic properties of this

frequency specific basic structural model. The second aim is to relate the model to a com-

parable generalised version of the Airline model developed at the U.S. Census Bureau. By

adopting a quadratic distance metric based on the restricted reduced form moving-average

representation of the models, we conclude that the generalised models have properties that

are close to each other compared to their default counterparts. In some settings, the distance

between the models is almost zero so that the models can be regarded as observationally

equivalent. An extensive empirical study on disaggregated monthly shipment and foreign

trade series illustrates the improvements of the frequency-specific extension and investigates

the relations between the two classes of models.
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1 Introduction

The Airline model popularised by Box and Jenkins (1970) and the basic structural model (BSM)

popularised by Harvey (1989) are amongst the most widely used models for seasonal adjustment.

Their popularity can be attributed to their simplicity and accuracy for a wide range of seasonal

economic time series. However, the simplicity of both models inevitably implies that there will

be a substantial number of practical cases where either model is inadequate. In this paper,

we consider a similar generalisation for both seasonal specifications. We aim to investigate the

dynamic properties of the frequency specific basic structural model (FS-BSM) and to relate the

model to a frequency specific version of the Airline model developed recently at the U.S. Census

Bureau, as in Aston, Findley, McElroy, Wills, and Martin (2007).

The BSM belongs to the class of unobserved component time series models that decompose

time series into trend, seasonal and irregular components. Here we focus on the seasonal compo-

nent that is studied in detail by Proietti (2000,2004). In particular, we consider the trigonometric

representation of the seasonal component. To address the criticism that the BSM can be too

restrictive to fit seasonal time series adequately, we modify the BSM to be less restrictive in

the specification of the seasonal component. Instead of having a single seasonal variance for

all frequencies, we let the time-varying trigonometric terms associated with different seasonal

frequencies have different variances. Therefore we develop the FS-BSMs that are more flexible

than the standard BSM while still capable of producing component estimates. The extended

set of parameters can be estimated using maximum likelihood procedures based on the Kalman

Filter.

To illustrate that less restrictive models can be needed to fit seasonal time series, we focus

on two particular time series from a database of 75 monthly seasonal time series provided by the

U.S. Census Bureau. The two time series are presented in Figure 1. The first series has code

X41140 and is one of the Foreign Trade series which corresponds to the Final Export of Musical

Instruments from January 1989 through November 2001. The second series has code U37AVS

and corresponds to Shipments of Household Furniture and Kitchen Cabinet from January 1992

through September 2001. Both time series yt are differenced by ∆∆12yt = yt−yt−1−yt−12+yt−13

after taking the natural logarithm. The autocorrelation functions (ACF) of the differenced series

are also presented in Figure 1. We observe that for X41140, the only significant correlations

are at lags 1, 11, 12 and 13, while those for U37AVS are at lags 1, 3, 5 and 12. Comparing

the characteristics of these two time series, we learn that a basic model may suffice for X41140

while a more elaborate model is needed for U37AVS. Details of estimation and testing results

for different models applied to the two time series are discussed in Section 4.

The procedure of ARIMA model based seasonal adjustment dates back to the early 1980s,

see Burman (1980) and Hillmer and Tiao (1982), but the automatic implementation in seasonal

adjustment software was carried out more than a decade later, see the documentation of SEATS

from Gómez and Maravall (1996). Using this software, the Airline model is frequently chosen

to identify seasonal time series. In the search for a useful alternative for the Airline model,

Aston, Findley, McElroy, Wills, and Martin (2007) introduce extensions to the standard Airline
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Figure 1: Motivating example. Top: Final Export of Musical Instruments series (X41140)

and bottom: Manufacturers’ Shipment on Household Furniture and Kitchen Cabinet series

(U37AVS). The first column shows the series in natural logarithm and the second column depicts

the ACF of the differenced series. X41140 does not require an FS model while U37AVS does

require an FS model as the ACF shows more periodicities.

model by means of decomposing and re-parametrizing the seasonal moving average (MA) factor

and partitioning the factors of different seasonal frequencies into two groups, each with its

own coefficient. Because of the dependency of its parameters on the seasonal frequencies, the

new model is called the frequency specific Airline model (FS-AM). In the empirical part of

their research, they show that the FS models are preferred above the standard Airline model

for 22 series out of the 75 selected US Census Bureau economic indicator series that we also

examine here. The Airline model was known to be adequate for these 75 time series compared

to other SARIMA models. The comparison between FS and non-FS Airline model is based on

the Minimum Akaike’s Information Criterion (MAIC) and a modification of it, the so-called

F-MAIC, see also Aston et al (2004, 2007).

The remainder of the paper is organised as follows. Section 2 discusses the FS-AM, intro-

duces the general FS-BSM and provides an alternative representation for the FS-BSM. Section 3

introduces restricted specifications of the FS-BSM and FS-AM that we consider in this paper.

It also discusses testing procedures for deterministic seasonal components and defines a distance

metric to measure the difference between FS-BSM and FS-AM specifications. In Section 4 we

investigate empirically whether FS models lead to increases in fit and to more similar decomposi-

tions compared to non-FS models. Here we consider a U.S. Census Bureau database of seasonal

time series that has been analysed previously with the FS-AMs of Aston, Findley, McElroy,

Wills, and Martin (2007). A concluding review is presented in Section 5.
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2 Frequency specific time series models

In this section we discuss two classes of frequency specific seasonal time series models and develop

a common stationary representation for both classes. We adopt the following notation. We define

L as the lag operator with Lpyt = yt−p for any p = 0, 1, . . ., ∆ as the difference operator with

∆yt = (1 − L)yt = yt − yt−1, ∆s as the seasonal difference operator with ∆syt = yt − yt−s and

S(L) as the seasonal sum operator with S(L)yt =
∑s−1

i=0 L
iyt = yt + yt−1 + . . .+ yt−s+1 for any

seasonal length s = 2, 3, . . .. The moving average model of order q is denoted by MA(q) and is

given by

yt = θ(L)εt = εt + θ1εt−1 + . . .+ θqεt−q, εt ∼ NID(0, σ2),

with lag polynomial θ(L) = 1 + θ1L + . . . + θqL
q, for any q = 1, 2, . . ., and where coefficients

θi are fixed, for i = 1, . . . , q, and the disturbance εt is normally and independently distributed

with mean zero and variance σ2.

2.1 Frequency specific Airline model

The frequency-specific Airline model (FS-AM) is developed by Aston, Findley, McElroy, Wills,

and Martin (2007). For a seasonal time series yt, the Airline model is given by

(1− L)(1− Ls)yt = (1− θL)(1−ΘLs)εt, (2.1)

where s ≥ 2. When Θ > 0, the Airline model (2.1) can be written as

(1− L)(1− Ls)yt = (1− θL)(1−Θ1/sL)
(∑s−1

j=0 Θj/sLj
)
εt,

=
(

1− (θ + Θ1/s)L+ θΘ1/sL2
)(∑s−1

j=0 Θj/sLj
)
εt, (2.2)

where the non-seasonal polynomial 1 − (θ + Θ1/s)L + θΘ1/sL2 and the seasonal polynomial∑s−1
j=0 Θj/sLj both contain Θ1/s. Therefore coefficient Θ both affects the trend and seasonal

dynamic properties. Aston, Findley, Wills, and Martin (2004) replace the restrictive polynomials

in (2.2) with two coefficients by less restrictive polynomials with three coefficients and obtain

(1− L)(1− Ls)yt =
(

1− aL+ bL2
)(∑s−1

j=0 c
jLj
)
εt, (2.3)

where the seasonal sum polynomial relies on coefficient c that is distinct from the non-seasonal

coefficients a and b. Aston, Findley, McElroy, Wills, and Martin (2007) decompose the seasonal

factor
∑s−1

j=0 c
jLj further into several factors with different coefficients for different frequencies.

By expanding the seasonal factor

s−1∑
j=0

cjLj = (1 + cL)

s/2−1∏
i=1

(
1− 2c cos(2πi/s)L+ c2L2

)
, (2.4)

a generalisation of the right-hand-side with different coefficients ci at different seasonal frequen-

cies 2π·i
s is obtained. For monthly series, the generalisation becomes

(1 + c6L)
5∏
i=1

(
1− 2ci cos(2πi/12)L+ c2iL

2
)
.
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Hence the frequency specific Airline model for s = 12 is then given by

(1− L)(1− L12)yt = (1− aL− bL2)
[
(1 + c6L)

∏5
i=1

(
1− 2ci cos(2πi/12)L+ c2iL

2
)]
εt, (2.5)

which is a less parsimonious model representation with the nine coefficients a, b, c1, . . . , c6, and

σ2. For many typical monthly macroeconomic time series of moderate length (say 8 to 13 years),

the estimated coefficients often imply that several roots of the seasonal MA polynomial are close

to the unit circle. Aston, Findley, McElroy, Wills, and Martin (2007) alleviate the unit root

problem by proposing more parsimonious formulations that consist of two or three seasonal MA

coefficients.

2.2 Frequency specific basic structural model

In this section we give details of FS-BSM and its variations, starting from the most general form

of FS-BSM to the grouped FS-BSMs. Let the time series observation yt at time t be modelled

as the sum of the trend µt, the seasonal term γt and the irregular disturbance εt. The FS-BSM

is then given by,

yt = µt + γt + εt, εt ∼ NID(0, σ2ε ), (2.6)

for t = 1, . . . , n, where the trend µt is specified as

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2η), (2.7)

βt+1 = βt + ζt, ζt ∼ NID(0, σ2ζ ), (2.8)

and the seasonal component γt follows the trigonometric specification as given by

γt =

s/2∑
j=1

γj,t, (2.9)(
γj,t+1

γ∗j,t+1

)
=

(
cosλj sinλj

− sinλj cosλj

)(
γj,t

γ∗j,t

)
+

(
ωj,t

ω∗j,t

)
,

(
ωj,t

ω∗j,t

)
∼ NID

[(
0

0

)
, σ2ω,jI2

]
, (2.10)

with λj = 2πj/s as the j-th seasonal frequency, j = 1, . . . s/2, and I2 is the 2×2 identity matrix.

We assume s is even to simplify notation. The extension to odd s does not add new insights.

In monthly time series (s = 12), equation (2.10) implies a seasonal component with six different

variances. Further it is assumed that all disturbances in the model are mutually and serially

uncorrelated at all leads and lags. The standard BSM is obtained when all seasonal variances

σ2ω,j are equal, that is σ2ω,j = σ2ω for all j = 1, . . . , s/2. More details and properties of the BSM

are given by Harvey (1989). Note that we have s = 12 in all applications in this paper.

2.3 Stationary form of FS-BSM

The stationary formulation of the seasonal component γt in (2.9) and the time series yt are

required for determining the ACF of S(L)γt and ∆∆syt. An alternative specification of the
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seasonal component γt is given by

γt =

s/2∑
j=1

γj,t =

s/2−1∑
j=1

(1− cosλjL)ωj,t−1 + (sinλjL)ω∗j,t−1
1− 2 cosλjL+ L2

+
ωs/2,t−1

(1 + L)
, (2.11)

for s is even, see Harvey (1989) for more details. Bell (1993) has shown that the trigonometric

specification (2.11) is a sum of ARIMA components. The numerator of (2.11) is an MA(1)

process for each seasonal frequency so that we can rewrite the above equation as

γt =

s/2∑
j=1

(1− αjL)wj,t
δj(L)

, (2.12)

where αj is a fixed constant for a given s, wj,t ∼ NID(0, σ2j ) with σ2j a function of σ2ω,j in (2.10)

and δj(L) = 1 − 2 cosλjL + L2 for each seasonal frequency j = 1, . . . , s/2. In particular, σ2j =

2σ2ω,j/(1 +α2
j ) for j = 1, . . . , s/2− 1, and σ2s/2 = σ2ω,s/2 for j = s/2. The specifications for δj(L),

αj and σ2j for s = 12 are given in Table 1 as taken from Bell (2004). Since
∏s/2
j=1 δj(L) = S(L),

we have

S(L)γt =

s/2∑
j=1

S(L)γj,t =

s/2∑
j=1

S(L)

δj(L)
(1− αjL)wj,t =

s/2∑
j=1

∏
i 6=j

δi(L)(1− αjL)wj,t, (2.13)

where the right hand side is the sum of s/2 independent MA(s− 2) processes since there is no

power in the polynomial
∏
i 6=j δi(L)(1−αjL) that is higher than s−2 for each seasonal frequency

j, see Harvey (1989, §2.4.3) for more details.

The FS-BSMs and FS-AMs can be most conveniently related by expressing both models in

their stationary MA formulations. For the FS-BSM, we specify the trend µt as in (2.7)-(2.8) by

µt =
ηt−1
∆

+
ζt−2
∆2

, (2.14)

with ∆m = (1 − L)m. The stationary form of the seasonal component is given by (2.13).

Substituting equations (2.13) and (2.14) into the FS-BSM (2.6) yields

yt =
ηt−1
∆

+
ζt−2
∆2

+

∑s/2
j=1

∏
i 6=j δi(L)(1− αjL)wj,t

S(L)
+ εt. (2.15)

The minimum order of differencing for yt is given by ∆2S(L) and the stationary MA formulation

of yt in the FS-BSM becomes

∆∆syt = ∆sηt−1 + S(L)ζt−2 + ∆2

s/2∑
j=1

∏
i 6=j

δi(L)(1− αjL)wj,t + ∆∆sεt. (2.16)

The highest polynomial order is s+ 1. The stationary time series ∆∆syt in (2.16) can therefore

be represented by an MA(s+ 1) process with at most 3 + s/2 coefficients.
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Table 1: ARIMA representation (2.12) for the individual trigonometric seasonal components

with s = 12

j λj δj(L)γj,t = (1− αjL)wj,t σ2j
1 π/6 (1−

√
3L+ L2)γ1,t = (1− 1

3

√
3L)w1,t 1.5σ2ω,1

2 π/3 (1− L+ L2)γ2,t = (1− (2−
√

3)L)w2,t (1 + 1
2

√
3)σ2ω,2

3 π/2 (1 + L2)γ3,t = w3,t 2σ2ω,3
4 2π/3 (1 + L+ L2)γ4,t = (1 + (2−

√
3)L)w4,t (1 + 1

2

√
3)σ2ω,4

5 5π/6 (1 +
√

3L+ L2)γ5,t = (1 + 1
3

√
3L)w5,t 1.5σ2ω,5

6 π (1 + L)γ6,t = w6,t σ2ω,6

3 Design of empirical study

To investigate the frequency specific models in more detail, we carry out an extensive empirical

study in the next section. Given the flexible nature of FS models and the need for parsimony,

we introduce a set of restricted FS models in section § 3.1. Only these model classes will be

considered in our empirical study. The study also relies on tests for deterministic seasonal

components and tests for the null hypothesis of a non-FS model. Section § 3.2 discusses some

details of these tests. To relate the dynamic properties of the FS-BSM with the FS-AM we

propose a distance measure in section § 3.3. The behaviour of the distance measure is investigated

in a limited Monte Carlo experiment in section § 3.4.

3.1 Classes of restricted FS-AM and FS-BSM specifications

The unrestricted form of the FS-AM for a monthly time series is given by (2.5). It shows that the

monthly FS-AM allows an MA(13) representation for ∆∆12yt in a similar way that the monthly

FS-BSM in (2.6) has the MA(13) representation (2.16) for∆∆12yt. Both unrestricted models

have nine parameters. To obtain more parsimonious specifications, we consider the following

restrictive specifications.

Different restrictions can be imposed on the FS-BSM class of models. In our study we

consider the following set of FS-BSM restrictions. We reduce the number of parameters to

five. The variances of the trend and irregular (non-seasonal) components σ2η, σ
2
ζ and σ2ε are

unrestricted. The number of seasonal variances are reduced to two and are denoted by σ2ω,I and

σ2ω,II. The following seasonal restrictions are considered.

FS-BSM({i}/s) The seasonal variance corresponding to a single frequency {i}/s is set differ-

ently from those for the remaining (s/2)− 1 frequencies with i = 1, . . . , s/2. For example,

the FS-BSM({3}/12) imposes the restrictions

σ2ω,3 = σ2ω,I and σ2ω,1 = σ2ω,2 = σ2ω,4 = σ2ω,5 = σ2ω,6 = σ2ω,II.

7



FS-BSM({i, j}/s) A pair of variances associated with the seasonal frequencies i/s and j/s are

set equal to σ2ω,I while the seasonal variances for the remaining frequencies are set equal

to σ2ω,II where i < j and i, j = 1, . . . , s/2. The FS-BSM({1, 2}/12) for example has the

restrictions

σ2ω,1 = σ2ω,2 = σ2ω,I and σ2ω,3 = · · · = σ2ω,6 = σ2ω,II.

FS-BSM({i, j, k}/s) The variances associated with three seasonal frequencies i/s, j/s and k/s

are set equal to σ2ω,I while the seasonal variance for the remaining three frequencies are

set equal to σ2ω,II where i < j < k and i, j, k = 1, . . . , s/2. An example is the FS-

BSM({1, 2, 3}/12) in which we impose the restrictions

σ2ω,1 = σ2ω,2 = σ2ω,3 = σ2ω,I and σ2ω,4 = σ2ω,5 = σ2ω,6 = σ2ω,II.

In case of the FS-AM in (2.5), we consider the same restrictions but with respect to c1, . . . , c6

for s = 12. We denote the three classes of FS-AM models by FS-AM({i}/s), FS-AM({i, j}/s)
and FS-AM({i, j, k}/s) which correspond to their FS-BSM counterparts. These FS-AM models

have a seasonal component that relies on the two coefficients cI and cII. For all FS-BSM and

FS-AM classes, the models contain five parameters (two coefficients for the trend, one for the

noise or irregular and two for the seasonal).

3.2 Testing for deterministic seasonal components in a FS-BSM

In a FS-BSM we may test for a deterministic seasonal component γj,t in (2.10) by means of the

hypothesis H0 : σ2ω,j = 0 for j = 1, . . . , 6 with s = 12. For this purpose we consider the Cramer

von Mises (CvM) seasonality test of Harvey (2001) and Busetti and Harvey (2003). We effectively

need to determine whether the estimated seasonal variance σ2ω,j is significantly larger than zero.

The CvM test statistic can be constructed using standardised one-step ahead prediction errors

from the model with parameters that are estimated under the null hypothesis H0. The resulting

test statistic follows a Cramer von Mises distribution with two degrees of freedom for j = 1, . . . , 5

and with one degree of freedom for j = 6. In case of the restricted models in FS-BSM({i}/s), FS-

BSM({i, j}/s) and FS-BSM({i, j, k}/s), the test hypotheses H0 : σ2ω,I = 0 and H0 : σ2ω,II = 0 are

effectively joint tests. When we consider a model in FS-BSM({i}/s), the test for H0 : σ2ω,II = 0

leads to a CvM test with 9 degrees of freedom for i = 1, . . . , 5 (and 10 for i = 6). The critical

values of the CvM distribution for the different degrees of freedom are given in Harvey (2001).

Finally, in case of the BSM, the test for H0 : σ2ω = 0 is CvM distributed with 11 degrees of

freedom.

Once it is determined for a FS-BSM that both variances σ2ω,I and σ2ω,II are significantly

different from zero, we can also test whether the FS-BSM can be reduced to the standard BSM

by means of the hypothesis H0 : σ2ω,I = σ2ω,II . The likelihood-ratio test statistic based on the

maximized likelihoods under the null and the alternative hypotheses can be considered for this

purpose. This test is standard and has an asymptotic χ2 distribution with 1 degree of freedom.
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3.3 Distance measure between AM and BSM

The common representation of the AM and BSM (FS and non-FS) is the MA(s+1) representation

for ∆∆syt. The MA representation for the FS-AM is given by (2.5) and for the FS-BSM

by (2.16). We can relate the two models by comparing their corresponding MA coefficients

individually. To give an overall measure of closeness between the FS-BSM and FS-AM models

with s = 12, we define the distance metric as

D =

√√√√ 13∑
i=1

[θ∗i − θi]2, (3.1)

where θ∗i and θi refer to the ith MA coefficient of the FS-AM and the FS-BSM, respectively,

for i = 1, . . . , 13. The 13 coefficients in the MA representation of the FS-BSM are computed

numerically from the theoretical autocovariance function using the method of Tunnicliffe-Wilson

(1969), see also the discussion in McElroy (2008). When the value of D is small, we regard the

two models to be close to each other. Since the AM and BSM are special cases of the FS-AM

and FS-BSM, respectively, the distance metric D can also be computed for non-FS models.

3.4 Distribution of the distance measure: a Monte Carlo experiment

By means of a limited Monte Carlo experiment we can obtain an indication of the distribution of

the distance metrics (3.1). The simulations are based on 1000 simulated time series with a length

of 120 data points. First, we generate time series from a BSM with ση = 0.02, σζ = 0.0001,

σω = 0.003 and σε = 0.03. Each series is used for the estimation of parameters in both the BSM

and the Airline model. Second, we generate another 1000 series from a FS-BSM({1, 4}/12) with

ση = 0.02, σζ = 0.0001, σω,I = σω,1 = σω,4 = 0.005, σω,II = σω,2 = σω,3 = σω,5 = σω,6 = 0.002

and σε = 0.03. Each series is used for the estimation of parameters in the FS-BSM({1, 4}/12)

and those in the corresponding FS-AM({1, 4}/12). Further we compute the coefficients of the

MA(13) representations of the BSM and FS-BSM and we calculate the distance metric D in

(3.1) for the respective AM and FS-AM for each time series. These comparisons are based on

the model with the estimated parameters.

Figure 2 presents the histogram of the 1000 distances for comparisons BSM versus AM and

FA-BSM versus FS-AM. It confirms our expectation that the FS models lie closer to each other

than the non-FS models. The median of the distance metric distribution for the FS comparisons

lies around 0.1 and for the non-FS comparisons around 0.13. We also learn from the histograms

that all distance metrics are computed as non-zero. This implies that the BSM and FS-BSM

never display exactly the same fit as the AM and FS-AM, respectively. This confirms the

findings reported in Maravall (1985) and Harvey (1989). However, the differences are often

small. In many cases the models lead to very similar time series decompositions into seasonal

and non-seasonal component estimates.
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Figure 2: Histogram of distance metric D (defined equation (3.1)) based on simulation study

with 1000 replications. (Top panel) Distance metric between the BSM and Airline model for

a BSM data generating process. (Bottom panel) Distance metric between FS-BSM({1, 4}/12)

and FS-AM({1, 4}/12) for a FS-BSM data generating process. The dotted line is the estimated

density as a smooth function through the histogram.

4 Empirical results for U.S. shipment and foreign trade series

In this section we discuss the results of our empirical study into frequency specific seasonal time

series models for 75 U.S. Census Bureau monthly data. Two time series on manufacturing and

foreign trade are presented in Figure 1 as examples. Strong seasonal patterns are present in

both series. The database of 75 time series consists of 36 monthly Manufacturers’ Shipments,

Inventories and Orders Survey data from January 1992 until September 2001, and 39 monthly

Foreign Trade series (Imports and Exports) from January 1989 through November 2001. The

database has been analysed previously with the Airline model (AM) and the FS-AM by Aston,

Findley, McElroy, Wills, and Martin (2007). In this paper state space methods are adopted for

parameter estimation by maximum likelihood; see Durbin and Koopman (2001). All calculations

are carried out by the object-oriented matrix programming environment Ox of Doornik (2006)

using the SsfPack library of Koopman, Shephard, and Doornik (2008).

4.1 Illustration 1: U37AVS

We analyse the time series U37AVS (U.S. shipment of household furniture and kitchen cabinets)

in more detail. We consider the non-FS BSM and all 31 models in FS-BSM, for each model

we add regression variables to account for trading days, Easter effect and outlier effects. The

strategies of including regression variables and of taking logs or no-logs are the same as in Aston,

10



Findley, McElroy, Wills, and Martin (2007). When effects are not significant at a significance

level of 5%, the regression variables are removed. After this extensive analysis (which consists

of estimating the parameters for many different model specifications) we select the model FS-

BSM({4}/12) for the time series U37AVS (in logs). The corresponding estimated parameters,

together with those of the BSM, are presented in Table 2. The AIC(c) of FS-BSM({4}/12)

is smaller than the AIC(c) of the BSM and the average of the estimated seasonal disturbance

variances for the FS-BSM appears much larger than the estimated seasonal variance for the

BSM.

Table 2 also reports the Cramer von Mises test statistics discussed in section §3.2. We

learn that our FS-BSM model for the log(U37AVS) requires a stochastic seasonal component

since the null hypothesis of a deterministic seasonal component is rejected at the 5% significance

level according to the CvM seasonality test for both the BSM and the FS-BSM({4}/12). The

likelihood-ratio test rejects the hypothesis H0 : σ2ω,I = σ2ω,II and therefore we advocate the use

of the FS model. The estimated trend variance in FS-BSM({4}/12) is larger than the one in the

BSM while the estimated irregular variance is smaller in case of the FS-BSM. Indeed all results

indicate that FS-BSM({4}/12) improves the fit for log(U37AVS) compared to the BSM.

The Ljung-Box Q-statistic p-values for the prediction errors are reported in Table 3. It

shows that the FS-BSM captures the dynamic features in log(U37AVS) more adequately than

the BSM. We do not find significant autocorrelations in the standardized prediction errors from

the FS-BSM while the prediction errors from the BSM have clear traces of autocorrelation. We

also report the standard asymptotic χ2 normality test of two degrees of freedom and for both

models the normality tests are satisfactory.

Figure 3 presents the seasonally adjusted time series for log(U37AVS). Seasonal adjustment

is based on the estimated seasonal component obtained from the Kalman filter and smoother.

The FS-BSM produces smoother seasonally adjusted series than the BSM. This finding may be

caused by a more adequate specification of the individual seasonal components in the FS-BSM

compared to the BSM. Since a smoother seasonally adjusted series is often preferred by the

economic policy maker, we regard the FS-BSM as providing a superior model-based seasonal

adjustment method for the log(U37AVS) series.

4.2 Illustration 2: X41140

The time series X41140 (export of music instruments) of the U.S. Census database is presented

in Figure 1. After the same extensive analysis as for the U37AVS series, we opt for modeling

the log(X41140) series and consider the BSM and the 31 FS-BSM models. We find that the

maximized likelihood values for the 31 FS-BSM models do not increase in comparison with the

maximized likelihood value for the BSM; see the bottom panel of Table 2. Since the likelihood

values are very close, the AIC(c) of each FS-BSM is larger than the AIC(c) of the BSM. We

therefore prefer the more parsimonious BSM for the log(X41140) time series. Furthermore,

the CvM test statistics reveal that the seasonal component is close to being deterministic in

both the BSM and FS-BSM cases. The Ljung-Box Q-statistics show no significant residual
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Table 2: Estimated parameters of log furniture shipment series, log(U37AVS), using BSM and

FS-BSM({4}/12) (top panel) and of log export musical instrument series, log(X41140), using

BSM and FS-BSM({5, 6}/12) (bottom panel).

BSM FS-BSM

Freq. Est.par S.E. CvM df Est.par S.E. CvM df

ση 0.0080 0.0043 ση 0.0132 0.0035

σζ 0.0011 0.0006 σζ 0.0006 0.0006

σε 0.0241 0.0031 σε 0.0154 0.0045

{i}/12 σω 0.0009 0.0005 2.910∗ 11 σω,I 0.0008 0.0004 2.513∗ 9

4/12 σω,II 0.0054 0.0016 1.032∗ 2

Log L 196.94 201.72

AIC -385.87 -393.44

AICc -385.52 -392.90

BSM FS-BSM

Freq. Est.par S.E. CvM df Est.par S.E. CvM df

ση 0.0262 0.0062 ση 0.0262 0.0062

σζ 5.12e-07 0.0005 σζ 8.64e-08 0.0005

σε 0.0634 0.0052 σε 0.0634 0.0052

{i}/12 σω 1.81e-07 0.0009 1.7834 11 σω,I 3.45e-07 0.0012 1.2939 8

{5, 6}/12 σω,II 1.96e-07 0.0015 0.4895 3

Log L 145.44 145.44

AIC -282.88 -280.88

AICc -282.61 -280.48

Notes: Maximum likelihood estimation of model (2.1)-(2.5) extended with regressors for trading

days, outliers, and Easter effect. Regression parameters are not included in AIC and AICc.

Standard errors are obtained using a numerical estimate of the Hessian of the log-likelihood and

the delta method. Further, ∗ indicates that H0 : σ2ω = 0 (for BSM) or H0 : σ2ω,i = 0 (for FS-

BSM) is rejected at 5% significance level with i = I, II. For the BSM, all seasonal frequencies

have the same variance so that the degrees of freedom in the CvM seasonality test is equal to

the sum of the individual degrees of freedom. For the grouped FS-BSM, the degrees of freedom

for each group equals the sum of individual degrees of freedom within the tested group. Freq =

seasonal frequency; Est.par = estimated parameters; S.E. = estimated standard errors; CvM =

Cramer von Mises test statistic, df = CvM degrees of freedom.
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Table 3: p-values from Ljung-Box Q-Statistics and Normality test of the residuals of log furniture

shipment series, log(U37AVS), resulting from BSM and FS-BSM({4}/12).

LB Statistics BSM FS-BSM LB Statistics BSM FS-BSM

Q(5) 0.0027 ∗∗∗ - Q(15) 0.0473 ∗ 0.5748

Q(6) 0.0011 ∗∗∗ 0.0505 Q(16) 0.0453 ∗ 0.5318

Q(7) 0.0007 ∗∗∗ 0.1271 Q(17) 0.0566 0.4702

Q(8) 0.0015 ∗∗∗ 0.0738 Q(18) 0.0757 0.5247

Q(9) 0.0025 ∗∗∗ 0.1391 Q(19) 0.0981 0.5789

Q(10) 0.0051 ∗∗ 0.1934 Q(20) 0.1293 0.6445

Q(11) 0.0098 ∗∗ 0.2859 Q(21) 0.0572 0.2279

Q(12) 0.0147 ∗ 0.3890 Q(22) 0.0761 0.2777

Q(13) 0.0239 ∗ 0.4947 Q(23) 0.0970 0.3336

Q(14) 0.0379 ∗ 0.5196 Q(24) 0.0985 0.2841

Normality test 0.5494 0.6974

Here, ∗,∗∗ , and ∗∗∗ symbolise that the p-value is asymptotically significant at 5%, 1%, and 0.5%

rejection levels respectively, with H0 of no autocorrelation in the residuals.
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Figure 3: Estimated seasonal component of log furniture shipment series, log(U37AVS), plotted

separately for each month and the seasonally adjusted series. BSM’s estimates are shown at the

top row while the estimates from FS-BSM({4}/12) are presented at the bottom row.
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autocorrelation in the one-step ahead prediction errors. The BSM with a nearly fixed seasonal

component is therefore a satisfactory model to describe the dynamic features in the log(X41140)

series.

4.3 Analysis of all 75 time series

To obtain an overall assessment of the usefulness of the FS-BSM, we analyse all 75 time series

from our U.S. Census database in the same way as we have done for the U37AVS and X41140

series. For each time series, we estimate the parameters for the BSM and for all 31 FS-BSM

specifications that contain the parameters σ2η, σ
2
ζ , σ

2
ω,I , σ

2
ω,II and σ̂2ε . We opt for the model

with the lowest corrected Akaike criterion (AICc) function. After completing the analysis for

all 75 time series, we have found that in 55 (73%) cases a particular FS-BSM model has the

lowest AICc compared to the BSM, while 35 (46%) cases passed the likelihood ratio test with a

significance level of 5%. These findings indicate that the FS-BSM leads to improvements in the

fit of a time series in many cases.

4.4 Distance measures between FS-BSM and FS-AM

Given the preferred model choice for the 75 time series, we derive the 13 coefficients of the MA

representations together with the innovation variance in each case. It enables comparisons with

the BSM and AM models. For this purpose we consider the distance metric D defined in (3.1).

We note that corresponding (FS-)BSM and (FS-)AM models are specified with the same set of

additional regressors (to account for trading days, Easter and outliers).

We first take a closer look at the U37AVS series of section § 4.1. In Table 4 the MA(13)

representations of BSM vs AM and FS-BSM({4}/12) vs FS-AM({4}/12) are presented for the

log(U37AVS) series. The MA(13) coefficients for the BSM at lag 2, . . . , 11 tend to zero while

those at lags 1 and 12, 13 have the same magnitude as those of AM. The corresponding distance

metric D = 0.128 is also reported in Table 4 and is a typical value in view of the distribution of

D as presented in Figure 2. For the FS-BSM({4}/12) and FS-AM({4}/12), the distance metric

D = 0.065 is clearly smaller.

Next we have computed the distance metric for all series in the database (only for the

optimal model specifications in terms of lowest AICc). The 75 distance metrics for both the

non-FS and FS models are presented in Figure 4. We note that the smallest distance for each

series does not always correspond to the combination of lowest AICc for the FS-BSM and FS-

AM. However, the combination of lowest AICc for both types of FS models has produced a

distance metric that is smaller than the distance metric resulting from the non-FS models in all

cases. Therefore we can conclude that the FS-BSM and FS-AM specifications are closer to each

other than the BSM and AM.

Figure 5 indicates whether the FS-AM and FS-BSM are more similar to each other compared
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Table 4: Restricted reduced form MA(13) coefficients of the (FS-)AM and (FS-)BSM applied to

log furniture shipment series, log(U37AVS).

Airline model BSM FS-AM 4-5-1(4) FS-BSM({4}/12)

i θ̂∗i θ̂i θ̂∗i θ̂i

1 0.609 0.651 0.607 0.634

2 0 -0.045 0.051 0.021

3 -0.010 -0.348 -0.340

4 -0.043 0.269 0.260

5 . -0.010 0.046 0.046

6 . -0.040 -0.319 -0.345

7 . -0.008 0.247 0.269

8 -0.037 0.043 0.018

9 -0.006 -0.293 -0.282

10 -0.032 0.227 0.230

11 0 -0.002 0.039 0.059

12 0.667 0.697 0.440 0.431

13 -0.406 -0.478 -0.222 -0.211

log(σ̂) -3.341 -3.355 -3.394 -3.398

Log L 196.162 196.937 201.569 201.722

D 0.128 0.065
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Figure 4: (Top panel) Distance metric D in (3.11) between estimated BSM and Airline models

applied to 75 manufacturing and export monthly time series from the U.S. Census Bureau

database. (Bottom panel) The smallest distance between 31 types of grouped FS-BSMs and

4-coefficients FS-AMs. For each series we find a smaller distance metric between the FS models

compared to the distance between the non-FS models.

to their non-FS counterparts. For this purpose we introduce the relative distance as given by

RD =
DnonFS −DFS

DnonFS
, (4.1)

where DnonFS and DFS are the distance (3.1) between BSM vs AM and FS-BSM vs FS-AM,

respectively. In Figure 5 we present the average values of RD for all 75 time series in our

database. A positive (negative) RD indicates by how much the similarity between the FS-AM

and FS-BSM increases (decreases) compared to the similarity between their non-FS counterparts.

The x-axis of Figure 5 represents a specific FS-BSM as discussed in section § 3.1 while the y-axis

represents the corresponding FS-AM. The model class FS-BSM({i}/s) are indexed from 1 to 6

on the x-axis, FS-BSM({i, j}/s) are indexed from 7 to 21 (15 models) and FS-BSM({i, j, k}/s)
are indexed as 22-31 (10 models). The indexing is similar for the FS-AM models. In total we

consider 31 different FS-BSM and FS-AM models. For all series in the database, we obtained

positive RD values which indicate that the distance for the FS models is always smaller than

the distance for the non-FS models. The most positive RD values are obtained on the leading

diagonal which shows that similar restrictions applied to FS-BSM and FS-AM lead to more

similar models compared to non-FS models.

All results in this subsection are for FS models with two seasonal coefficients and a total of

five coefficients. We have also considered the estimation of models with six different variances for

the six different seasonal frequencies in the FS-BSM. When we compare the resulting distances

from their FS-AM counterparts, the empirical models are even more similar. However, we do
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not advocate such over-parametrized specifications as the estimation results can be spurious

with many seasonal variances frequently estimated as zero in the FS-BSM and many seasonal

unit roots in the moving average part of the FS-AM.
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Figure 5: Average of relative distance (RD) of non-FS models versus FS models, RD is defined

in (4.1) and the average is for the RD values obtained for the 75 time series in our database. The

RD values are computed for the 31 FS-BSM and FS-AM specifications (with five parameters).

5 Conclusion

We have investigated frequency specific (FS) time series models for seasonal time series. In

particular, we focussed on the FS versions of the basic structural time series model and compared

it to the FS versions of the well-known Airline model. The dynamic properties of the FS-BSM

are investigated in terms of its MA representation that also allows its comparison with the FS-

AM. The relations between the parameters of the FS-BSM and FS-AM are highly non-linear.

We therefore rely on numerical comparisons between the two classes of models. For this purpose

we propose a distance measure based on the MA coefficients of both models. In general, BSM

models can be quite different from AM models when they are fitted to the same time series.

However, we show in our simulation and empirical studies that FS versions of these models are

more similar to each other. Furthermore, we have shown that, in many cases, the FS version of

a model offers a significantly better description of the dynamic properties of a time series.
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