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Abstract

We consider cooperative transferable utility games, or simply TU-games, with a limited

communication structure in which players can cooperate if and only if they are connected

in the communication graph. A difference between the restricted Banzhaf value and the

Myerson value (i.e. the Shapley value of the restricted game) is that the restricted Banzhaf

value satisfies collusion neutrality, while the Myerson value satisfies component efficiency.

Requiring both efficiency and collusion neutrality for cycle-free graph games yields other

solutions such as the hierarchical outcomes and the average tree solution. Since these

solutions also satisfy the superfluous player property, this also ‘solves’ an impossibility

for TU-games since there is no solution for these games that satisfies efficiency, collusion

neutrality and the null player property.

We give axiomatizations of the restricted Banzhaf value, the hierarchical outcomes

and the average tree solution that are comparable with axiomatizations of the Myerson

value in case the communication graph is cycle-free. Finally, we generalize these solutions

to classes of solutions for cycle-free graph games using network power measures.

Keywords: Cooperative TU-game, communication structure, Myerson value, Shapley

value, Banzhaf value, hierarchical outcome, average tree solution, component efficiency,

collusion neutrality.

JEL code: C71



1 Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game, being a

pair (N, v), where N = {1, . . . , n} is a finite set of players and v: 2N → IR is a characteristic

function onN such that v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition S,

i.e., the members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate.

In a TU-game any subset S ⊆ N is assumed to be able to form a coalition and

earn the worth v(S). However, in most economic and political organizations not every set

of participants can form a feasible coalition. One of the most well-known restrictions in

cooperation are the games with limited communication structure as introduced by Myerson

(1977) in which the members of some coalition S can realize the worth v(S) if and only if

they are connected within a given communication graph on the set of players. Solutions for

graph-restricted games studied in the literature are, a.o. the Myerson value (see Myerson

(1977)), the position value (see Borm, Owen and Tijs (1992)) and recently, for cycle-

free graph games the hierarchical outcomes (see Demange (2004)) and their average (see

Herings, van der Laan and Talman (2008)). The hierarchical outcomes are introduced in

Demange (2004) and are extreme points of the Core of the Myerson restricted game in

case the game v is superadditive and the communication graph is a tree. This definition

can be extended to cycle-free graph games in a straightforward way by defining the payoffs

componentwise. This implies that for these graph games also all convex combinations, in

particular the average, of the hierarchical outcomes belong to the Core of the restricted

game. The solution that assigns to every cycle-free graph game the average hierarchical

outcome is introduced in Herings, van der Laan and Talman (2008) as the average tree

solution.

Both the Myerson value as well as the average tree solution are characterized by

component efficiency (stating that every component in the communication graph earns

exactly its own worth) and some fairness or equal gain/loss axiom (equalizing the changes in

payoffs of certain players after deleting links from the communication graph), see Myerson

(1977), respectively, Herings, van der Laan and Talman (2008). Alternatively, Borm, Owen

and Tijs (1992) provide axiomatizations of the Myerson value and the position value for

cycle-free graph games using component efficiency, additivity, the superfluous link property

(stating that deleting so-called superfluous links does not change the payoff distribution)

and the communication ability property (stating that the players earn equal payoffs in case

they are in some sense equal in the communication graph game)1.

1In fact, they apply the communication ability property only to characterize the Myerson value, while

they use the degree property to characterize the position value. But, as shown by van den Brink, van der

Laan and Pruzhansky (2004), both solutions can be characterized by a communication ability property
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It turns out that this axiomatization is very useful in comparing the Myerson value

with the restricted Banzhaf value (i.e. applying the Banzhaf value to the restricted game)

and the average tree solution for cycle-free graph games. From the axioms mentioned above,

the restricted Banzhaf value does not satisfy component efficiency. Instead it satisfies a

variation of the collusion neutrality axioms of Haller (1994) and Malawski (2002) for TU-

games. These collusion neutrality axioms state that, if two players in a TU-game collude

and act as if they are one player, then the sum of their payoffs should not change. For

TU-games, both efficiency (stating that the sum of payoffs over all players equals the worth

of the ‘grand coalition’ N) and collusion neutrality seem to be desirable properties of which

the Shapley value satisfies efficiency but not collusion neutrality, and the Banzhaf value

satisfies collusion neutrality but not efficiency. In van den Brink (2009) it is shown that

there is no solution for TU-games that satisfies efficiency, collusion neutrality and the null

player property2 (stating that a null player in a game earns a zero payoff). Thus, requiring

efficiency and collusion neutrality to be satisfied at the same time is very restrictive for

TU-games.

When considering graph restricted games we might also apply the communication

restrictions to certain axioms. For example, efficiency is usually strengthened to component

efficiency. On the other hand, it seems reasonable to weaken collusion neutrality by allowing

only neighbours in the communication graph to collude. Indeed, it seems counterintuitive

that two players who cannot cooperate because they cannot communicate, would be able

to collude. The restricted Banzhaf value satisfies this collusion neutrality and together

with additivity, the superfluous link property, the communication ability property and

the isolated player property (stating that players that have no neighbours earn their own

worth) characterizes this solution.

Of course, the restricted Banzhaf value does not satisfy component efficiency. As

mentioned above, for TU-games there is no solution satisfying efficiency, collusion neutral-

ity and the null player property. However, for cycle-free graph games it turns out that

all hierarchical outcomes3 and their convex combinations4 (thus also the average tree solu-

tion) satisfy component efficiency, collusion neutrality and the superfluous player property

and a degree measure property, by taking the appropriate power measure for communication graphs.

In particular, the equal power measure for the Myerson value and the degree measure for the so-called

Harsanyi degree solution (wich is equal to the position value on cycle-free graph games and is equal to the

Shapley value on complete graph games).
2There it is also shown that the equal division solution, being the solution that distributes v(N) equally

over all players, is the only solution for TU-games satisfying efficiency, collusion neutrality and symmetry.
3Note that a hierarchical outcome is a payoff vector. If no confusion arises, in the sequel we will refer

also to the solution that assigns to every cycle-free graph game this payoff vector as a hierarchical outcome.
4These convex combinations are the random tree solutions as considered in Béal, Rémila and Solal

(2009).
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(stating that a null player in the restricted game earns a zero payoff). Therefore, the ‘im-

possibility’ concerning the existence of a solution for TU-games satisfying these axioms is

‘solved’ when restricting cooperation by allowing only connected coalitions in a cycle-free

communication graph to cooperate and neighbours to collude5. Adding the communication

ability property, the equal gain/loss property (stating that after a collusion of two players,

the payoffs of other players change by the same amount) and component independence

characterizes the average tree solution.

From the axioms mentioned above, the Myerson value and the Banzhaf value do not

satisfy the equal gain/loss property (besides component efficiency, respectively, collusion

neutrality). However, for the axiomatization of the average tree solution it is sufficient

to require the weaker axiom which states that after a collusion between two neighbouring

players that are symmetric in the restricted game, the payoffs of other players in the same

component that are symmetric with them, change by the same amount. In this way the

Myerson value, the restricted Banzhaf value and the average tree solution are characterized

by comparable axioms, where the Myerson value and the average tree solution have in

common that they both satisfy component efficiency, the average tree solution and the

restricted Banzhaf value have in common that they both satisfy collusion neutrality, and

the Myerson value and the restricted Banzhaf value have in common that they both satisfy

the superfluous link property.

It is also clear that the average tree solution satisfying both component efficiency

and collusion neutrality goes ‘at a cost’, being that it does not satisfy the superfluous link

property. But similar disadvantages can be mentioned for the Myerson value (not satisfying

collusion neutrality) and restricted Banzhaf value (not satisfying component efficiency).

Finally, we can easily generalize the above mentioned axiomatizations of the re-

stricted Banzhaf value and the average tree solution in a similar way as done in van den

Brink, van der Laan and Pruzhansky (2004) for the Myerson value, by generalizing the

communication ability property to the σ-communication ability property. For any positive

network power measure6 σ this axiom states that in case the players are in some sense equal

in the communication graph game, then the (Harsanyi) dividends (see Harsanyi (1959))

are allocated proportional to the power of the players in the corresponding coalitions. Ob-

5A well-known result for cycle-free graph games is given by Le Breton, Owen and Weber (1992) and

Demange (1994) who showed that these communication restrictions guarantee the existence of a Core

payoff vector in the restricted game when v is superadditive. Demange (2004) introduced the hierarchical

outcomes as (some) extreme points of this Core.
6A network power measure is a function that assigns to every node in any communication graph a real

number that can be seen as a measure of the ‘power’ or ‘influence’ of that node in the communication

graph. It is positive if it assigns a positive value to every node that has at least one neighbour, and zero

to isolated nodes that have no neighbour.
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viously, taking the equal power measure that assigns to every connected player the same

power (and isolated players having power zero) yields the communication ability property.

For trees (i.e. connected, cycle-free graphs) with a fixed root player i, taking as power

measure the one that assigns in any connected coalition full power to the player that is

‘closest’ to the root player i and assigns power zero to the other players yields (together

with the other axioms used to characterize the average tree solution) an axiomatization of

the corresponding hierarchical outcome with root player i. Another solution is obtained

when taking the degree measure as power measure which, in the axiomatic system of Borm,

Owen and Tijs (1992), yields the position value. In this way we obtain some kind of average

tree-position value and restricted Banzhaf-position value. (Note that the position value

itself does not satisfy collusion neutrality.)

This paper is organized as follows. Section 2 contains preliminaries on TU-games, commu-

nication graphs and communication graph games. In Section 3 we provide an axiomatiza-

tion of the restricted Banzhaf value for cycle-free graph games. In Section 4 we axiomatize

the average tree solution for cycle-free graph games. In Section 5 we consider generaliza-

tions of the restricted Banzhaf value and average tree solution (including the hierarchical

outcomes) using network power measures. Finally, Section 6 contains concluding remarks.

2 Preliminaries

2.1 Cooperative TU-games

Since in this paper we take the player set N to be fixed, we represent a TU-game (N, v)

just by its characteristic function v. The collection of all TU-games on N (represented by

their characteristic function) is denoted by GN .

A special class of games are the unanimity games. The unanimity game of coalition

T ⊆ N , T 	= ∅, is the game uT ∈ GN given by uT (S) = 1 if T ⊆ S, and uT (S) = 0

otherwise. It is well-known that the unanimity games form a base of GN . Every game

v ∈ GN can be written as a linear combination of unanimity games v =
∑

T⊆N

T �=∅
∆v(T )uT

with ∆v(T ) =
∑

S⊆T (−1)|T |−|S|v(S) being the Harsanyi dividends, see Harsanyi (1959).

A TU-game (N, v) is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N with

S ∩ T = ∅, i.e. when two disjoint coalitions cooperate in a superadditive game then it is

always possible to reallocate the worth of these coalitions in such a way that all players in

the coalition benefit (or at least are not worse off) from the cooperation. We denote the

collection of all superadditive TU-games on N by GNS .

A payoff vector of a game v is an n-dimensional vector x ∈ IRN giving a payoff

xi ∈ IR to player i ∈ N . A payoff vector x is efficient for game v if it exactly distributes

4



the worth v(N) of the ‘grand coalition’ N , i.e.,
∑

i∈N xi = v(N). A (single-valued) solution

for TU-games is a function f that assigns to every game v a payoff vector f(v) ∈ IRN . A

solution f is efficient if f(v) is efficient for every game v. The most famous efficient (single-

valued) solution is the Shapley value (Shapley, 1953) being the solution Sh:GN → IRNthat

assigns to every player its expected marginal contribution to the coalition of players that

enter before that player, given that every order of entrance π on N has equal probability
1
n!

to occur, i.e.

Shi(v) =
1

n!

∑

π∈Π(N)

mπ
i (v) for all i ∈ N,

where Π(N) is the collection of all permutations of N and for π ∈ Π(N),

mπ
i (v) = v({j ∈ N | π(j) ≤ π(i)})− v({j ∈ N | π(j) < π(i)}) (2.1)

is the marginal contribution of player i to the coalition of all its predecessors in permutation

π.

The non-efficient solution that got most attention in the literature is the Banzhaf

value (introduced by Banzhaf (1965) to measure voting power in voting games and gen-

eralized by Owen (1975) and Dubey and Shapley (1979) to general TU-games) being the

solution Ba:GN → IRN that assigns to every player its expected marginal contribution

given that every combination of the other players has equal probability of being the coali-

tion that is already present when that player enters. Thus, it assigns to every player in a

game its average marginal contribution, i.e.

Bai(v) =
1

2n−1

∑

S⊆N\{i}

mS
i (v) for all i ∈ N,

where mS
i (v) = v(S ∪ {i})− v(S).

Using the Harsanyi dividends it is also known that the Shapley value and Banzhaf

value can be written as

Shi(v) =
∑

T⊆N

i∈T

∆v(T )

|T |
, respectively, Bai(v) =

∑

T⊆N

i∈T

∆v(T )

2|T |−1
, for all i ∈ N. (2.2)

A set-valued solution for TU-games is a mapping F that assigns to every game v a

set of payoff vectors F (v) ⊂ IRN . A set-valued solution F is efficient if all x ∈ F (v) are

efficient for every game v. The most famous set-valued solution is the Core (Gillies, 1953)

that assigns to every game v the set of all efficient and coalitionally stable payoff vectors,

i.e.,

Core(v) =

{

x ∈ Rn

∣∣∣∣∣

∑

i∈N

xi = v(N) and
∑

i∈S

xi ≥ v(S) for all S ⊂ N

}

.
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For general TU-games, a Core payoff vector need not exist, even not for superadditive

games7.

2.2 Graphs

An undirected graph is a pair (N,L) where N is the set of nodes and L ⊆ {{i, j}|i, j ∈

N, i 	= j} is a collection of subsets of N such that each element of L contains precisely two

nodes. The elements of L represent bilateral communication links and are refered to as

edges or links. Since in this paper the nodes in a graph represent the positions of players

in a communication network we refer to the nodes as players. If there is a link between

two players then we call them neighbours and we denote the set of neighbours of player i

by R(N,L)(i) = {j ∈ N | {i, j} ∈ L}. A sequence of k different players (i1, . . . , ik) is a path

in (N,L) if {ih, ih+1} ∈ L for all h = 1, . . . , k − 1. Two distinct players i and j, i 	= j, are

connected in graph (N,L) if there is a path (i1, . . . , ik) with i1 = i and ik = j. A graph

(N,L) is connected if any two players i, j ∈ N are connected. For some S ⊆ N , the graph

(S, L(S)) with L(S) = {l ∈ L|l ⊆ S} is called a subgraph of (N,L). For given graph (N,L),

a set of players S is connected when the subgraph (S,L(S)) is connected.

A subset K of N is a component in (N,L) if the subgraph (K,L(K)) is maximally

connected in (N,L), i.e., the subgraph (K,L(K)) is connected, and for any j ∈ N \K, the

subgraph (K ∪{j}, L(K ∪{j})) is not connected in (N,L). For every coalition S ⊆ N , the

components in (S, L(S)) form a partition of S. For graph (N,L) and coalition S ⊆ N we

denote by CL(S) the set of all connected coalitions in (S, L(S)), and by CmL (S) the partition

of coalition S into components of (S, L(S)). For i ∈ N , Ki
L denotes the component of N

in (N,L) to which i belongs.

A path (i1, . . . , ik), k ≥ 3, is a cycle in (N,L) if {ik, i1} ∈ L. A graph (N,L) is

cycle-free when it does not contain any cycle. A player i ∈ N is called a pending player

if it is connected to exactly one other player, i.e., if |{l ∈ L | i ∈ l}| = 1. Note that a

cycle-free communication graph (N,L) with |N | ≥ 2 and L 	= ∅ has at least two pending

players. A graph that is connected and cycle-free is called a tree. We denote by LN the

collection of all sets of links L such that (N,L) is a graph on N . By LNCF we denote the

collection of all sets of links L such that (N,L) is a cycle-free graph on N .

Finally, we denote by D(N,L) = {i ∈ N | R(N,L)(i) 	= ∅} the set of all non-isolated

players in (N,L).

7It is well-known that the Core of a game is nonempty if and only if the game is balanced, see Bondareva

(1963) and Shapley (1967).
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2.3 Graph games and solutions

In a TU-game any subset S ⊆ N is assumed to be able to form a coalition and earn

the worth v(S). However, in most economic and political organizations not every set of

participants can form a feasible coalition. One of the most well-known restrictions on

coalition formation are communication restrictions as introduced in Myerson (1977). In

this model there is a communication network on the set of players in a cooperative game,

and a coalition is feasible if and only if the players in this coalition are connected within

this communication network. The communication network is represented as an undirected

graph (N,L) on the set of players N , where L is the set of binary communication links

between the players. A game v ∈ GN with communication graph (N,L) is shortly denoted

by (v, L) and referred to as a graph game. A (single-valued) solution for graph games is a

function f that assigns a payoff vector f(v, L) ∈ IRN to every graph game (v, L) on N .

In the graph game (v, L) the players in a coalition S can cooperate and earn their

worth v(S) if and only if S is connected in (N,L). If S is not connected we follow Myerson

(1977) and assume that the players in S can only realize the sum of the worths of the

components of S. This yields Myerson (1977)’s restricted game vL given by

vL(S) =
∑

T∈Cm
L
(S)

v(T ), S ⊆ N, (2.3)

where CmL (S) is the partition of S into components. The best-known solution for graph

games is the Myerson value µ which is obtained by assigning to every graph game (v, L)

the Shapley value of the restricted game vL, i.e.,

µ(v, L) = Sh(vL) for all (v, L) ∈ GN ×LN .

This solution is introduced by Myerson (1977) as the unique solution satisfying component

efficiency and fairness (the latter axiom stating that deleting a link between two players

changes their payoff by the same amount). Later, Borm, Owen and Tijs (1992) character-

ized this solution on the class of cycle-free graph games by the following four axioms.

Component efficiency For every graph game (v, L) and every component C of N in

(N,L) it holds that
∑

i∈C fi(v, L) = v(C).

Additivity For every pair of graph games (v, L), (w,L) it holds that8 f(v + w,L) =

f(v, L) + f(w,L).

Link l ∈ L is called superfluous in graph game (v, L) if vE(N) = vE∪{l}(N) for all E ⊆ L.

8For two games v,w ∈ GN the sum game is defined by (v +w)(S) = v(S) +w(S) for all S ⊆ N .
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Superfluous link property If l ∈ L is a superfluous link in graph game (v, L), then

f(v, L) = f(v, L \ {l}).

A graph game (v, L) is called point unanimous if there is a c∗ ∈ IR such that vL(S) = c∗

for all S ⊆ N with D(N,L) ⊆ S, and vL(S) = 0 for all S ⊆ N with D(N,L) 	⊆ S, i.e., the

corresponding restricted game is a multiple of the unanimity game uD(N,L) with respect to

the set of non-isolated players D(N,L).

Communication ability property If graph game (v, L) is point unanimous, then there

is an α ∈ IR such that fi(v, L) = α for all i ∈ D(N,L), and fi(v, L) = 0 for all

i ∈ N \D(N,L).

Theorem 1 [Borm, Owen and Tijs (1992)]9

The Myerson value is the unique solution on the class of cycle-free graph games satisfy-

ing component efficiency, additivity, the superfluous link property and the communication

ability property.

If the graph (N,L) is a tree (i.e. connected and cycle-free) then we call (v, L) a tree game .

For such tree games, Demange (2004) defines for every player i ∈ N the corresponding

hierarchical outcome hi(v, L) as the marginal vector mπ(vL) (see (2.1)) of the Myerson

restricted game that is obtained for any permutation of the players that is consistent with

the tree L, i.e. if the path from i to g contains j then π(g) < π(j). In other words, it is

the marginal vector corresponding to a permutation where players enter ‘from the bottom’

when i is the root. Alternatively, defining S
i

j(L) = {g ∈ N | j belongs to the path from

i to g} and Sij(L) = S
i

j(L) ∩ R(N,L)(j) as the set of subordinates, respectively (direct)

successors, of j in the rooted tree with root player i, the hierarchical outcomes are also

given by

hij(v, L) = v(S
i

j(L))−
∑

g∈Sij(L)

v(S
i

g(L)) for all i, j ∈ N.

(Note that j ∈ S
i

j(L) \ Sij(L).) Le Breton, Owen and Weber (1992) and Demange (1994)

have shown that the Core of the restricted game vL is nonempty if the game v is super-

additive and the graph L is cycle-free, respectively, a tree. More specifically, Demange

(2004) shows that in case game v is superadditive and L is a tree, then for any i ∈ N the

hierarchical outcome hi(v, L) is an extreme point of Core(vL). (Note that there can be

other extreme points of the Core that are not hierarchical outcomes.) By convexity of the

9Borm, Owen and Tijs (1992) define a stronger version of the communication ability property using

point anonymous games, but as mentioned in van den Brink, van der Laan and Pruzhansky (2004) they

only apply the weaker version as stated here.

8



Core, this implies that all convex combinations of hierarchical outcomes are Core elements.

In particular, the average hierarchical outcome of tree game (v, L)

AHO(v, L) =
1

n

∑

i∈N

hi(v, L)

belongs to the Core of vL. Herings, van der Laan and Talman (2008) extend this definition

to cycle-free graph games, by determining the average payoff of a player only over the

hierarchical outcomes in its own component10, i.e.

AHOj(v, L) =
1

|Kj
L|

∑

i∈Kj
L

hij(v |Ki
L
, L(K i

L))

=
1

|Kj
L|

∑

i∈Kj
L



v(Sij(L))−
∑

g∈Sij(L)

v(S
i

g(L))



 for all j ∈ N.

They define the average tree solution AT as the solution that assigns to every cycle-

free graph game its average hierarchical outcome11, and provide an axiomatization by

component efficiency and an alternative fairness axiom, refered to as component fairness

(stating that deleting a link between two players changes the average payoff of the players

in the two new components that arise by the same amount.) Moreover, they characterize

the average tree solution as the Harsanyi power solution (see van den Brink, van der Laan

and Pruzhansky (2004)) given by

ATi(v, L) =
∑

T∈CL(N)

i∈T

1 + pLT (i)

|T |+
∑

j∈T p
L
T (j)

∆vL(T ), i ∈ N, (2.4)

where pLT (j) =
∑

g∈N\T

{j,g}∈L
|Kg

L\{j,g}|, j ∈ N .

3 An axiomatization of the restricted Banzhaf value

for cycle-free graph games

In this section we consider the restricted Banzhaf value for cycle-free communication graph

games that is obtained by applying the Banzhaf value to the restricted game, i.e. we

consider the solution β given by

β(v, L) = Ba(vL) for all (v, L) ∈ GN × LN .

10To be precise, for the first equality we should define solutions also for subgames (K, v|K , L(K)),

K ∈ Cm
L
(N), with v|K(S) = v(S) for all S ⊆ K, but since we only use these subgames to compute

hierarchical outcomes in the cycle-free graph game (N,v, L) we just write graph games as (v, L).
11A generalization for arbitrary graph games can be found in Herings, van der Laan, Talman and Yang

(2008)
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Haller (1994) introduced some collusion neutrality properties which state that the sum

of payoffs of two players does not change if they ‘collude’. He used these properties to

axiomatize the Banzhaf value. Later, Malawski (2002) showed that several other collusion

neutrality properties can be used12. In this paper we consider collusion between two players

where they agree to ‘act as one’ in the sense that they contribute to a coalition only when

they both are present13. So, when players i, j ∈ N , i 	= j, collude in game v ∈ GN , then

instead of game v we consider the game vij ∈ GN given by

vij(S) =

{
v(S \ {i, j}) if {i, j} 	⊆ S

v(S) if {i, j} ⊆ S.
(3.5)

Applying this idea to communication graph games, it seems reasonable to weaken collusion

neutrality by allowing only neighbours in the communication graph to collude. Indeed, it

seems counterintuitive that two players who cannot cooperate because they cannot com-

municate would be able to collude, since collusion is a stronger form of coalition formation

then cooperation.

Collusion neutrality If {i, j} ∈ L then fi(vij, L) + fj(vij, L) = fi(v, L) + fj(v, L), where

vij is given by (3.5).

Next, the isolated player property states that isolated players just earn their singleton

worth.

Isolated player property If R(N,L)(i) = ∅ then fi(v, L) = v({i}).

The restricted Banzhaf value is characterized by collusion neutrality, additivity, the super-

fluous link property, the communication ability property and the isolated player property.

Theorem 2 The restricted Banzhaf value is the unique solution for cycle-free graph games

that satisfies collusion neutrality, additivity, the superfluous link property, the communica-

tion ability property and the isolated player property.

Proof

It is straightforward to verify that the restricted Banzhaf value satisfies these five axioms.

To show uniqueness, suppose that solution f satisfies these five axioms for cycle-free graph

games.

12A characterization of the Banzhaf value with collusion properties in terms of inequalities can be found

in Lehrer (1988).
13This is a collusion game as used by Malawski (2002), but the results of this paper, in particular

Theorems 2 and 4, also hold when taking the collusion games of Haller (1994).
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First, consider cycle-free graph game (cuT , L), c ∈ IR, c 	= 0, ∅ 	= T ⊆ N . If L = L∅ := ∅,

then the isolated player property implies that fi(cuT , L
∅) = v({i}) for all i ∈ N . For

L 	= L∅ we distinguish the following two cases.

(i) If there is no component C in (N,L) such that T ⊆ C then all links are superfluous,

and the superfluous link property implies that f(cuT , L) = f(cuT , L
∅). (Note that in this

case |T | ≥ 2.) Thus, fi(cuT , L) = v({i}) = 0 for all i ∈ N as determined above.

(ii) If there is a component C in (N,L) such that T ⊆ C then consider the connected hull

H(T ) = {h ∈ N | there exist i, j ∈ T such that h belongs to the path between i and j}

of T . (Note that in a cycle-free graph there is exactly one path between any pair of

connected players.) Since (cuT , L(H(T ))) is point unanimous, the communication ability

property implies that there is an α ∈ IR such that fi(cuT , L(H(T ))) = α for all i ∈ H(T ),

and fi(cuT , L(H(T ))) = 0 for all i ∈ N \H(T ). Since all links outside the connected hull

of T are superfluous, the superfluous link property implies that

fi(cuT , L) = fi(cuT , L(H(T ))) =

{
α for all i ∈ H(T )

0 for all i ∈ N \H(T ).
(3.6)

We prove uniqueness of f(cuT , L) by induction on |H(T )|. If |H(T )| = 1 then the isolated

player property implies that α = c, and thus f(cuT , L) = β(cuT , L) is determined with

(3.6) and (2.2).

Proceeding by induction, suppose that α = c

2|H(T
′)|−1 has been determined whenever |H(T ′)| <

|H(T )|. Since L is cycle-free, there is a j ∈ T such that |R(N,L(H(T )))(j)| = 1, i.e. j is a

pending player in (N,L(H(T ))). Let h ∈ R(N,L(H(T )))(j) ∩H(T ) be the unique neighbour

of j in (N,L(H(T ))). We distinguish two cases:

Case A. Suppose that h ∈ T . Consider the game cuT\{j}. Since H(T \ {j}) = H(T ) \ {j},

with the induction hypothesis it follows that fh(cuT\{j}, L) = c

2|H(T\{j})|−1
= c

2|H(T )|−2
and

fj(cuT\{j}, L) = 0.

Since (uT\{j})hj = uT , collusion neutrality implies that fh(cuT , L)+fj(cuT , L) = fh(cuT\{j}, L)+

fj(cuT\{j}, L) = c

2|H(T )|−2
+ 0 = c

2|H(T )|−2
.

By (3.6) and h, j ∈ H(T ) we then have that α = c

2|H(T )|−1
, and thus f(cuT , L) = β(cuT , L).

Case B. Suppose that h 	∈ T . Consider the game cuT∪{h}. Since H(T ∪ {h}) = H(T ),

according to Case A, f(cuT∪{h}, L) = β(cuT∪{h}, L) is determined. Since cuT∪{h} = (cuT )jh,

by collusion neutrality we have that fh(cuT , L)+fj(cuT , L) = fh(cuT∪{h}, L)+fj(cuT∪{h}, L) =
c

2|H(T )|−2
. By (3.6) we again have that α = c

2|H(T )|−1
, and thus f(cuT , L) = β(cuT , L).

So, f(cuT , L) = β(cuT , L) is uniquely determined in both cases.
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Obviously, for the null game given by v0(S) = 0 for all S ⊆ N , the superfluous link

property and the isolated player property imply that fi(v0, L) = fi(v0, L
∅) = 0 = βi(v0, L)

for all i ∈ N .

Finally, since every v ∈ GN can be written as a linear combination of unanimity games in

a unique way as v =
∑

T⊆N

T �=∅
∆v(T )uT , additivity implies that fi(v, L) =

∑
T⊆N

i∈H(T )

∆
vL
(T )

2|H(T )|−1
=

βi(v, L), i ∈ N , is uniquely determined for all (v, L) ∈ GN × LNCF . �

Note that the Myerson value also satisfies the isolated player property. So, the difference in

the axiomatizations given in Theorems 1 and 2 is the Myerson value satisfying component

efficiency, and the restricted Banzhaf value satisfying collusion neutrality14.

4 Hierarchical outcomes and an axiomatization of the

average tree solution for cycle-free graph games

Both component efficiency and collusion neutrality seem to be desirable properties. For

TU-games, van den Brink (2009) has shown that there is no solution satisfying efficiency,

collusion neutrality and the null player property. However, when we allow collusion to occur

only between neighbours in a cycle-free communication graph, then there are solutions that

satisfy component efficiency, collusion neutality and the superfluous player property. A

player i ∈ N is called superfluous in graph game (v, L) if it is a null player in the restricted

game, i.e, if vL(S) = vL(S \ {i}) for all S ⊆ N . The next axiom is introduced in van den

Nouweland (1993) and states that such superfluous players earn zero payoff.

Axiom 1 (Superfluous player property) If i ∈ N is a superflous player in graph game

(v, L) then fi(v, L) = 0.

In the following, we will often refer to the solution that assigns to every tree game (v, L),

the payoff vector hi(v, L) simply as the hierarchical outcome15 corresponding to player i, or

the solution hi. It is easy to verify that all hierarchical outcomes satisfy these three axioms

for tree games. Moreover, this holds for all their convex combinations. In particular, the

average tree solution satisfies these three properties on the class of cycle-free graph games.

(The straightforward proof is left for the reader.)

14Similar as done for games with a hierarchical permision structure in van den Brink (2000), the Myerson

value can be characterized using a ‘grand’ version of collusion neutrality stating that if two neighbours in

a graph game collude then the total sum of payoffs over all players does not change.
15Similar, in the literature the Core often refers to the set of efficient, group stable payoff vectors of a

game, as well as the solution that assigns this set to every game.
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Proposition 3 All solutions hi, i ∈ N , satisfy component efficiency, collusion neutrality

and the superfluous player property on the class of tree games. The average tree solution

satisfies these properties on the class of cycle-free graph games.

Thus, the ‘impossibility’ concerning the existence of a solution for TU-games satisfying

efficiency, collusion neutrality and the null player property is ‘solved’ when restricting

cooperation by allowing only connected coalitions in a cycle-free communication graph to

cooperate and only neighbours can collude.

To axiomatize the average tree solution, we further use additivity and two other

axioms. First, the equal gain/loss property states that collusion of two players has the same

effect on the payoffs of other players16. Again, we only allow collusion among neighbours

in the communication graph.

Axiom 2 (Equal gain/loss property) If {i, j} ∈ L then fh(vij, L)−fh(v, L) = fg(vij, L)−

fg(v, L) for all h, g ∈ N \ {i, j}.

Finally, we use the axiom which states that payoffs in one component do not depend on

the game in and structure of other components.

Axiom 3 (Component independence) If v, w ∈ GN and L,L′ ∈ LN are such that

v(S) = w(S) for all S ⊆ T ∈ CmL (N)∩CmL′(N), and L(T ) = L′(T ), then fi(v, L) = fi(w,L
′)

for all i ∈ T .

Next, we state an axiomatization of the average tree solution for cycle-free graph games17.

Theorem 4 The average tree solution is the unique solution for cycle-free graph games

that satisfies component efficiency, collusion neutrality, additivity, the communication abil-

ity property, the superfluous player property, the equal gain/loss property and component

independence.

16Note that this also can be seen as some kind of fairness axiom concerning collusion of players.
17The hierarchical outcomes and the average tree solution satisfy the no gain/loss property, which is

stronger than the equal gain/loss property, and states that after a collusion of two neighbours the payoffs

of the other players do not change. After communicating Theorem 4 and this remark by e-mail and

in personal communication with Dolf Talman, in Mishra and Talman (2009) it is shown that using this

no gain/loss property instead of the equal gain/loss property, we do not need collusion neutrality to

characterize the average tree solution for cycle-free graph games. In fact they use a weaker version of the

no gain/loss property, refered to as independence in unanimity games, which requires this property only

for unanimity games and connected coalitions. Note that, as usual, in the proof of Theorem 4 all axioms,

except additivity, are applied only to unanimity games.
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Proof

Using (2.4) and Proposition 3 it is straightforward to verify that the average tree solution

satisfies these seven axioms.

To show uniqueness, suppose that solution f satisfies these seven axioms for cycle-free

graph games.

First, consider graph game (cuT , L), c ∈ IR, c 	= 0, ∅ 	= T ⊆ N . If L = L∅ = ∅, then

component efficiency implies that fi(cuT , L
∅) = v({i}) for all i ∈ N . Next, for L 	= L∅ we

distinguish the same two cases as in the proof of Theorem 2 (which, however, are treated

different).

(i) If there is no component C in (N,L) such that T ⊆ C then all players are superfluous,

and the superfluous player property implies that fi(cuT , L) = 0 for all i ∈ N .

(ii) If there is a component C in (N,L) such that T ⊆ C then component independence

implies that f(cuT , L) = f(cuT , L(C)). Component efficiency18 implies that

fi(cuT , L) = fi(cuT , L(C)) = 0 for all i ∈ N \ C. (4.7)

We prove uniqueness of f(cuT , L) by induction on |H(T )| (i.e. the number of players in the

connected hull of T ), but now starting with |H(T )| = |C|. If |H(T )| = |C| then (cuT , L(C))

is point unanimous, and thus the communication ability property implies that there is an

α ∈ IR such that fi(cuT , L) = α for all i ∈ C. Component efficiency then determines that

α = c
|C| , and thus with component independence we have that

fi(cuT , L) = fi(cuT , L(C)) =

{
c
|C| if i ∈ C

0 otherwise.

Proceeding by induction, suppose that f(cuT ′ , L) has been uniquely determined whenever

|H(T ′)| > |H(T )|. Since H(T ) 	= C, there exists a h ∈ H(T ) such that R(N,L)(h) \H(T ) 	=

∅. Take such an h and j ∈ R(N,L)(h) \H(T ).

We distinguish the same two cases as in the proof of Theorem 2:

Case A. Suppose that h ∈ T .

Since j 	∈ T , we have that (cuT )hj = cuT∪{j}, and thus collusion neutrality implies that

fj(cuT , L) + fh(cuT , L) = fj(cuT∪{j}, L) + fh(cuT∪{j}, L). (4.8)

The superfluous player property implies that fj(cuT , L) = 0.

Since |H(T ∪ {j})| = |H(T )| + 1, the payoff vector f(cuT∪{j}, L) is determined by the

induction hypothesis. Therefore, by (4.8), fh(cuT , L) = fh(cuT∪{j}, L) + fj(cuT∪{j}, L) −

fj(cuT , L) is uniquely determined.

18The same follows from the superfluous player property.
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The equal gain/loss property implies that there is a β ∈ IR such that fi(cuT , L) =

fi(cuT∪{h}, L)+ β for all i ∈ H(T ) \ {h}. Again, by the induction hypothesis f(cuT∪{h}, L)

is determined. Since fi(cuT , L) = 0 for all i ∈ N \H(T ) by the superfluous player property,

and fh(cuT , L) is determined above, component efficiency determines β. Thus, f(cuT , L)

is determined.

Case B. Suppose that h 	∈ T . Consider the game cuT∪{h}. Since H(T ∪ {h}) = H(T ),

according to Case A, f(cuT∪{h}, L) is uniquely determined. Since h ∈ H(T ) \ T there

exist at least two paths (h1, . . . , hp) and (z1, . . . , zq) such that h1 = z1 = h, {hp, zq} ⊆

T, {h1, . . . , hp−1} ∩ T = ∅, {z1, . . . , zq−1} ∩ T = ∅ and {h1, . . . , hp} ∩ {z1, . . . , zq} = {h}.

First, consider the path (h1, . . . , hp). Since (cuT∪{h})hh2 = cuT∪{h,h2}, collusion neutrality

implies that fh(cuT∪{h,h2}, L) + fh2(cuT∪{h,h2}, L) = fh(cuT∪{h}, L) + fh2(cuT∪{h}, L) is de-

termined since f(cuT∪{h}, L) is determined. Component efficiency and the equal gain loss

property19 then determine the payoffs fg(cuT∪{h,h2}, L) for all g ∈ N \ {h, h2}.

Since (cuT∪{h2})h2h = cuT∪{h,h2}, again applying collusion neutrality yields that fh(cuT∪{h2}, L)+

fh2(cuT∪{h2}, L) = fh(cuT∪{h,h2}, L)+fh2(cuT∪{h,h2}, L) is determined. Again by component

efficiency and the equal gain loss property the payoffs fg(cuT∪{h2}, L) are determined for

all g ∈ N \ {h, h2}.

Repeated application of this argument we end up20 with game cuT , and thus fg(cuT , L)

are determined for all g ∈ N \ {h1, . . . , hp}.

Applying a similar reasoning to the path (z1, . . . , zq) yields that fg(cuT , L) are determined

for all g ∈ N \ {z1, . . . , zq}.

So, all payoffs fg(cuT , L), g ∈ (N \ {h1, . . . , hp}) ∪ (N \ {z1, . . . , zq}) = N \ {h}, are

determined. Component efficiency then determines fh(cuT , L).

So, in both cases f(cuT , L) is uniquely determined.

Obviously, for the null game given by v0(S) = 0 for all S ⊆ N , the superfluous player

property implies that fi(v0, L) = fi(v0, L
∅) = 0 for all i ∈ N .

Since every arbitrary v ∈ GN can be written as a linear combination of unanimity games in

a unique way as v =
∑

T⊆N

T �=∅
∆v(T )uT , additivity implies that fi(v, L) is uniquely determined

for all (v, L) ∈ GN ×LNCF . �

From the proof it also follows that deleting component independence from the axioms,

characterizes the average tree solution for tree games as considered in Demange (1994,

19This also follows from the equal gain/loss property and the superfluous player property since player j

is superfluous in both games and thus earns zero in both games.
20In the last step we apply this argument to (cuT )hphp−1 = cuT∪{hp−1}.
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2004).

Since the set-valued solution that assigns to every cycle-free graph game the Core

of the restricted game satisfies component efficiency, the superfluous player property and

component independence21, as a corollary of Theorem 4 and Demange (2004)’s result that

every hierarchical outcome is an extreme point of the Core of the restricted game if v is

superadditive and L is cycle-free, and the Core of a game being a convex set, we obtain

that the average tree solution is the unique solution for cycle-free graph games that satisfies

collusion neutrality, additivity, the communication ability property, the equal gain/loss

property and is Core stable for superadditive games22.

Corollary 5 The average tree solution is the unique solution f for cycle-free graph games

that satisfies collusion neutrality, additivity, the communication ability property, the equal

gain/loss property and is such that f(v, L) ∈ Core(vL) for all (v, L) ∈ GNS × L
N
CF .

Proof

Since all positively scaled unanimity games are superadditive, it follows similar as the proof

of Theorem 4 that f(cuT , L) is uniquely determined for all c > 0, ∅ 	= T ⊆ N and L ∈ LNCF .

Next, consider (cuT , L) with c < 0. Since −cuT is superadditive and cuT + (−cuT ) is

the null game (i.e. (cuT + (−cuT ))(S) = 0 for all S ⊆ N), it follows from additivity

of f and the fact that fi(cuT + (−cuT ), L) = 0 for all i ∈ N (by Core stability), that

f(cuT , L) = f(cuT + (−cuT ), L) − f(−cuT , L) = −f(−cuT , L) is uniquely determined

because −cuT is superadditive.

Obviously, for the null game given by v0(S) = 0 for all S ⊆ N , Core stability implies that

fi(v0, L) = fi(v0, L
∅) = 0 for all i ∈ N .

Again, additivity then determines f(v, L) for all v ∈ GN and L ∈ LNCF . �

From the axioms of Theorem 4, both the Myerson value and the Banzhaf value do not

satisfy the equal gain/loss property. However, Theorem 4 can also be stated using the

weaker axiom which states that after a collusion as described by vij in (3.5) between

players i and j that are symmetric23 in the restricted game, the payoffs of other symmetric

players in the same component change by the same amount24.

21Of course, these properties should be defined for set-valued solutions.
22A similar corollary was stated by Herings, van der Laan and Talman (2008) with their axiomatization

using component fairness.
23Players i, j ∈ N are symmetric in a game v ∈ GN if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.
24This can be seen since in the proof of Theorem 4 we need to apply the equal gain/loss property only to

players in H(T ). Although the second and third time we apply this axiom to all players in N \ {h, h2}, we

could instead apply the superfluous player property to players outside H(T ), and the weak equal gain/loss

property to players in H(T ) \ {h, h2}.
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Axiom 4 (Weak equal gain/loss property) Let i, j ∈ N be symmetric players in vL

such that {i, j} ∈ L. Then fh(vij , L)−fh(v, L) = fg(vij, L)−fg(v, L) for all h, g ∈ Ki
L\{i, j}

that are symmetric with i, j in vL.

Replacing the equal gain/loss property by this weak equal gain/loss property in Theorem

4, the axioms that characterize the average tree solution are also satisfied by the Myerson

value (except collusion neutrality) and the restricted Banzhaf value (except component

efficiency). Therefore, we obtained comparable axiomatizations of these three solutions,

where the Myerson value and the average tree solution have in common that they both

satisfy component efficiency, the average tree solution and the restricted Banzhaf value

have in common that they both satisfy collusion neutrality, and the Myerson value and

the restricted Banzhaf value have in common that they both satisfy the superfluous link

property, see Table 1. In this way it is also clear that the average tree solution satisfying

both component efficiency and collusion neutrality goes ‘at a cost’, since it does not satisfy

the superfluous link property. However, similar disadvantages can be stated for the Myerson

value (which does not satisfy collusion neutrality) and the restricted Banzhaf value (which

is not component efficient).

Comp. eff. Collusion neutr. Superfl. link prop.

Myerson value + - +

restricted Banzhaf value - + +

average tree solution + + -

Table 1: Properties of Myerson value, restricted Banzhaf value and average tree solution

for cycle-free graph games

5 A generalization using network power measures

In van den Brink, van der Laan and Pruzhansky (2004), the communication ability prop-

erty is generalized allowing the payoffs in point unanimous graph games to be allocated

according to any positive symmetric power measure. A power measure is a function σ that

assigns to any graph (S, L), S ⊆ N , a nonnegative vector σ(S,L) ∈ IR
|S|
+ , yielding the non-

negative power σi(S, L) of node i ∈ S in the graph (S, L).25 A power measure is symmetric

if for any graph (S, L), S ⊆ N , and i, j ∈ S such that R(S,L)(i) \ {j} = R(S,L)(j) \ {i}, we

25So, a power measure on N assigns power values to nodes in all subgraphs on S ⊆ N .
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have σi(S, L) = σj(S,L). It is positive if for any (S,L), the power of node i is positive if

and only if i is non-isolated (and thus node i has zero power if it is isolated).

Given a positive power measure σ, van den Brink, van der Laan and Pruzhansky

(2004) define the corresponding Harsanyi power solution, denoted by ϕσ, on the class

of all graph games on player set N as the solution that distributes the dividend of any

(connected) coalition in the restricted game vL proportional to the σ-power of the players

in the corresponding subgraph, i.e.

ϕσi (v, L) = v({i}) +
∑

S∈CL(N), |S|≥2

i∈S

σi(S, L(S))∑
j∈N σj(S, L(S))

∆vL(S).

Note that for any positive power measure and connected coalition S ∈ CL(N) with |S| ≥ 2

it holds that
∑

j∈S σj(S, L(S)) > 0. Moreover, for every nonconnected coalition S 	∈ CL(N)

it holds that ∆vL(S) = 0, so all Harsanyi power solutions satisfy component efficiency.

The σ-communication ability property states that in case the graph game is point

unanimous, the dividends are allocated proportional to the power values of the players in

the graph.

σ-Communication ability property If (v, L) is point unanimous, then there is α ∈ IR

such that f(v, L) = ασ(N,L).

Obviously, we have the communication ability property in case we take the equal power

measure that assigns the same positive power value to all players that have at least one

neighbour, and assigns value zero to all isolated players.

In a similar way as Theorem 1 is generalized in van den Brink, van der Laan and

Pruzhansky (2004), we can generalize Theorems 2 and 4.

Theorem 6 For a positive power measure σ,

(i) there is a unique solution for cycle-free graph games that satisfies collusion neutral-

ity, additivity, the superfluous link property, the isolated player property and the

σ-communication ability property.

(ii) there is a unique solution for cycle-free graph games that satisfies component efficiency,

collusion neutrality, additivity, the superfluous player property, the equal gain/loss

property, component independence and the σ-communication ability property.

In particular, by taking σ to be the degree measure we obtain some kind of average tree-

position value and restricted Banzhaf-position value26.

26Note that the position value itself does not satisfy collusion neutrality.
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Similar as Theorem 4, Theorem 6.(ii) can be modified for tree games by deleting

component independence. Then, we obtain axiomatizations of the hierarchical outcomes

for tree games by taking appropriate power measures. Let (N,L) be a tree. For player

i ∈ N , take the power measure σi (on trees) as the one that assigns for every tree (N,L)

positive power to player i, and assigns power zero to all other players, i.e.

σij(S, L(S)) =

{
1 if j = i

0 otherwise.

Although this is not a positive power measure, we have the following. (The proof is left

for the reader.)

Theorem 7 The solution hi, i ∈ N , is the unique solution for tree games that satisfies ef-

ficiency, collusion neutrality, additivity, the superfluous player property, the equal gain/loss

property and the σi-communication ability property.

Again this also yields a characterization using the Core property.

Corollary 8 The solution hi, i ∈ N , is the unique solution f for tree games that satisfies

collusion neutrality, additivity, the equal gain/loss property, the σi-communication ability

property, and is such that f(v, L) ∈ Core(vL) for all (v, L) ∈ GNS × L
N
CF .

Adding the following property we obtain a characterization of the class of hierarchical

outcomes as a corollary.

root communication ability property There exists an i ∈ N such that fj(v, L) = 0

for all j ∈ N \ {i}, whenever (v, L) is point unanimous.

This is some kind of representation property which states that in a point unanimous graph

game all payoff goes to one player.

Theorem 9 A solution for tree games is a hierarchical outcome if and only if it satisfies

component efficiency, collusion neutrality, additivity, the superfluous player property, the

equal gain/loss property and the root communication ability property.

6 Concluding remarks

In this paper we gave axiomatizations of the Myerson value, the restricted Banzhaf value

and the average tree solution, where the difference between these solutions is with respect

to the axioms of component efficiency (satisfied by the Myerson value and the average tree

solution) collusion neutrality (satisfied by the restricted Banzhaf value and the average
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tree solution) and the superfluous link property (satisfied by the Myerson value and the

restricted Banzhaf value).

As mentioned before, collusion neutrality properties are discussed by Haller (1994)

and Malawski (2002) to characterize the (non-efficient) Banzhaf value for TU-games. In

van den Brink (2009) it is shown that there is no solution that satisfies efficiency, collusion

neutrality and the null player property. In that sense, restricting cooperation by allowing

only connected coalitions in a cycle-free communication graph to cooperate and neighbours

to collude ‘solves’ this impossibility.

As argued by Haller (1994), collusion neutrality can be seen as some kind of sta-

bility property. According to a solution that satisfies collusion neutrality, players have

no incentive to merge or split in separate players. Similar, Le Breton, Owen and Weber

(1992) and Demange (1994) have shown that the communication restrictions that arise

from cycle-free graphs guarantee the existence of a Core payoff vector in the restricted

game when v is superadditive, while Demange (2004) introduced the hierarchical outcomes

as extreme points of this Core. This shows that situations in which cooperation among

players can be modelled as a cycle-free graph game has appealing properties concerning

Core stability and collusion neutrality. Examples of such situations are sequencing games

(see, e.g. Curiel, Pederzoli and Tijs (1989)), auction games (see Graham, Marshall and

Richard (1990)), dual airport games (see Littlechild and Owen (1973)), river games (see

Ambec and Sprumont (2002)) and polluted river games (see Ni and Wang (2007)).

In games with hierarchies, collusion neutrality properties are applied to characterize

the Banzhaf value in, e.g. van den Brink (2002) for apex games, van den Brink (2000)

for games with a permission structure and in Algaba, Bilbao, van den Brink and Jiménez-

Losada (2004b) for games on antimatroids. In van den Brink (2006) the sets of feasible

coalitions arising as connected coalitions from a communication graph (and more specific

cycle-free and cycle-complete communication graphs) are characterized by similar proper-

ties that define an antimatroid. This motivates to apply antimatroids in studying hierar-

chies to make comparisons with communication networks, and to further study properties

like component efficiency and collusion neutrality for these models. Adding properties to

the sets of feasible coalitions lead to other (some well-known) models. For example, the

sets of feasible coalitions arising from conjunctive permission structures (see Gilles, owen

and van den Brink (1992) and van den Brink and Gilles (1996)) are characterized as those

antimatroids that are colsed under intersection (see Algaba, Bilbao, van den Brink and

Jiménez-Losada (2004a)), while the sets of connected coalitions in communication graphs

that are closed under intersection are exactly those arising from cycle-complete commu-

nication graphs (see van den Brink (2006)). In voting, van den Brink, Rusinowska and

Steffen (2009) applied collusion neutrality properties for measures of power and success in
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situations where some voters are influenced by other voters (their peers) in casting their

vote, i.e. a voter might vote against its own inclination when a sufficient number of its

peers cast the same vote.

Another question for further study is the exploration of the classes of solutions

determined by Theorem 6, and other classes of solutions that satisfy component efficiency

and collusion neutrality. Adding more axioms is very restrictive for TU-games27 but, as

seen in this paper, yields interesting possibilities for cycle-free graph games.
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