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A game theoretical approach to sharing penalties and rewards in

projects

Arantza Estévez-Fernández1

Abstract:

This paper analyzes situations in which a project consisting of several activities is not realized according to plan. If

the project is expedited, a reward arises. Analogously, a penalty arises if the project is delayed. This paper considers

the case of arbitrary nondecreasing reward and penalty functions on the total expedition and delay, respectively.

Attention is focused on how to divide the total reward (penalty) among the activities: the core of a corresponding

cooperative project game determines a set of stable allocations of the total reward (penalty). In the definition of

project games, surplus (cost) sharing mechanisms are used to take into account the specific characteristics of the

reward (penalty) function at hand. It turns out that project games are related to bankruptcy and taxation games.

This relation allows us to establish the nonemptiness of the core of project games.

Keywords: Project planning, delay, expedition, cost sharing mechanism, surplus sharing mechanism, bankruptcy

problems, taxation problems, cooperative game, core.

JEL classification: C71, C44.

1 Introduction

A project consists of a set of activities, which interconnections are known, being completed over a period of

time and intended to achieve a particular aim. The project time is the minimum time needed to end all the

activities in a project.

Nowadays, many projects require employing and coordinating different companies to perform specialized

jobs, like the creation of high technology devices, the construction of a building, and the construction of

infrastructures (such as highways and railroads). Due to its high societal and economical relevance, project
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management has become an important and relevant discipline. A good planning of a project is important

to reduce the project time. Two important methods to schedule and coordinate the activities in a project

are the PERT (Program Evaluation Review Technique) and the CPM (Critical Path Method). During the

last decades many studies have appeared addressing several issues as the question of assessing the project

success in Pinto and Slevin (1988) and Tubig and Abeti (1990), the role of research in projects of weapon

systems development in Sherwin and Isenson (1967), the problem of determining the amount, location,

and timing of progress payments in projects from a client’s perspective in Dayanand and Padman (2001),

behavioral functions in technology-based innovative projects in Roberts and Fusfeld (1981), the classification

of projects in types depending on the management style in Shenhar and Dvi (1996), the search of adequate

success criteria for project management in Atkinson (1999) and the study of project scheduling with resource

constrains in Dorndorf, Pesch and Phan-Huy (2000) and Möhring, Schulz, Stork and Uetz (2003).

An important problem within project management is the delay of a project. The delay in the construction

of highways and railways connections brings both economical and social losses since society has to wait longer

to enjoy their benefits. Delay is one of the most important issues for project managers. Quoting Mr. Rafael

Romero, chairman of the Chamber of Constructors of Catalonia, “The expenditures used to prepare a project

imply a saving of time and money” and “The suitability of a work goes through three fundamental pillars:

security, finishing in the agreed deadline, and that the budget is met” (see http://www.lukor.com/not-

esp/locales/portada/08030207.htm). In many countries, when a public project is delayed, the government

is legally entitled to fine the company in charge. Also in private projects there is usually a clause in the

contract in which a penalty for the company is agreed upon if the project is finished later than planned.

In all these cases, if the company in charge of the project has subcontracted some specialized jobs to other

firms, and these firms have contributed to the delay, it is important to know for which part of the penalty

they can be held responsible for. Opposite to extra costs associated to delay in projects, there may be extra

rewards associated to expedited projects. As an example, we have the development of new high-technology

devices. It is well known that development of high technology needs the input of different specialized agents.

Besides, companies usually compete to be the first to have the new production on the market and therefore

they promise a bonus to their employees if the product is finished before the agreed time. The subsequent

question is how to share the bonus among the employees whose efforts resulted in the expedition of the

project. The question we address in this paper is how to share the extra costs (or fine) among the agents

responsible of the delay of a project, or the extra rewards in case of expedition.

Albeit delayed project problems and expedited project problems seem to be related, they have a different

nature. While any firm or agent can delay a project on its own, a coordination of firms or agents is needed

in order to expedite the project. In this paper we study both the allocation of extra costs and rewards

simultaneously, taking into account the similarities and differences of both problems. Cooperative games
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are a mathematical tool to provide an answer to this type of allocation problems. The focus of our study

will be on defining a game in an adequate way and analyzing the corresponding core. The core of a game

(Gillies (1953)) provides allocations of the total penalty or the total reward that are stable, i.e. no group of

activities can reasonably object to allocations in the core. The interaction between operations research and

cooperative game theory already goes back to the seventies, for a survey on the topic see Borm, Hamers and

Hendrickx (2001).

The main focus in the literature on project problems has been on delayed project problems. Branzêi,

Ferrari, Fragnelli and Tijs (2002) study delayed project problems in the framework of taxation problems

and propose a specific allocation rule. Bergantiños and Sánchez (2002) analyze two other allocation rules for

delayed project problems. A common feature in these papers is however that game theoretical aspects are

only indirectly present in analyzing the allocation problem at hand. Estévez-Fernández, Borm and Hamers

(2007) is the first paper to approach the related allocation problem from a direct game theoretical point

of view. Moreover, Estévez-Fernández et al. (2007) is the first article where both delayed and expedited

project problems are analyzed. Still, the paper is restricted to project problems where the penalty (reward)

function is proportional with respect to the total delay (expedition) of the project. An important aspect of

Estévez-Fernández et al. (2007) is that it provides the tools to obtain “fair” allocations of the corresponding

penalty or reward by explicitly considering the structure of the project, i.e. the interconnections among the

different activities.

In this paper, we extend the work in Estévez-Fernández et al. (2007) by both analyzing project problems

with arbitrary but nondecreasing penalty and reward functions and by taking into account whether an

activity can be started before its planned starting time. As in Estévez-Fernández et al. (2007), the analysis

is done by defining project games associated to project problems and considering the corresponding core as

the solution set to the underlying allocation problem. We have decided to focus on the (set-valued solution)

core instead of given an explicit one-point solution because this allows us to cover a wide variety of project

situations that can have different needs depending, for instance, on the legal aspects that are applicable,

which may vary depending on the type of project at hand and/or on the country where the project is realized.

Here, two stages are needed to define project games for nondecreasing reward (penalty) functions. In the

first stage surplus (cost) sharing problems are used. As a first approach to share the reward (penalty) of a

project, we look at each path in the project separately and we share the reward (penalty) that the path can

be held responsible of among its activities by making use of a surplus (cost) sharing mechanism which is

chosen by taking into account the specific characteristics of the reward (penalty) function at hand. In this

first stage, the total amount shared among all the activities may exceed the total reward (penalty) of the

project, hence a second stage is needed to exactly obtain allocations of the total reward (penalty). In the

second stage, a project game is defined in the spirit of Estévez-Fernández et al. (2007) using the allocations
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obtained in the first stage. Although the model here proposed is inspired in Estévez-Fernández et al. (2007),

both games need not coincide when we restrict to proportional reward (penalty) functions. In fact, the core

of the game defined here always contains the core of the game in Estévez-Fernández et al. (2007).

Our main result is that project games have a nonempty core. Moreover, it turns out that the games

associated to the expedition part of the project are convex and can be described as the maximum of a

number of bankruptcy games (see O’Neill (1982)).

The structure of this paper is as follows. Section 2 recalls some basic notions from project problems,

cost and surplus sharing problems, cooperative games, and bankruptcy and taxation problems. Section 3

analyzes general project problems. Section 4 concludes.

2 Preliminaries

2.1 Projects

A project consists of a set of activities for which the inter-connections are known. These activities are

completed over a period of time and intended to achieve a particular aim. Let N denote the set of activities

of a project. Given an activity i ∈ N , let Pi denote the set of predecessors of i, i.e. the set of activities that

have to be processed before i can start. Analogously, let Fi be the set of followers of i, i.e. the set of activities

that need i to be completed before starting. A project is defined as a collection of ordered subsets of N or

paths, {N1 , . . . ,Nm}, where a bijection σα : {1, . . . |Nα|} → Nα describes the order in Nα, α ∈ {1, . . . , m},

satisfying the following conditions:

(i) N =
⋃m

α=1 Nα;

(ii) Fσα(|Nα|) = ∅, Pσα(1) = ∅, and Pσα(r) = {σα(1), . . . , σα(r − 1)} for every α ∈ {1, . . . , m} and every

r ∈ {2, . . . , |Nα|};

(iii) for α, β ∈ {1, . . . , m}, if i, j ∈ Nα ∩ Nβ with σ−1
α (i) < σ−1

α (j), then σ−1
β (i) < σ−1

β (j).

Throughout, there is no specific need to explicitly keep track of the ordering. Therefore, σ1, . . . , σm are

suppressed from the notations.

Note that a project can be represented by a directed graph where the set of arcs corresponds to the set of

activities. In order to avoid multiple arcs, dummy activities are introduced in the graph (a dummy activity

is a fictitious activity that does not consume neither time, nor resources). Dummy activities are represented

by a dashed arc.

Example 2.1. Table 1 gives the set of activities of a project with their corresponding predecessors.

Here, the set of activities is N = {A, B, C} and the collection of paths is {N1, N2}, with N1 = {A, C}, and
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Activity Predecessors

A

B

C A,B

Table 1: Predecessors of activities in Example 2.1.

N2 = {B, C}. The graphical representation of this project is given in Figure 1.

b

b b b

B

A

C

Figure 1: Representation of the project given in Table 1.
3

Associated to a project {N1 , . . . ,Nm}, there is a duration function l : N → R+ with l(i) denoting

the length or duration of activity i ∈ N . Given a project {N1 , . . . ,Nm} and a duration function l, we

define the duration of a path Nα according to l, D(Nα, l), as the sum of the duration of its activities, i.e.

D(Nα, l) =
∑

i∈Nα
l(i). The duration of the project according to l, D(l), is the maximum duration of its paths,

i.e. D(l) = max1≤α≤m {D(Nα, l)}. The slack of Nα according to l, slack(Nα, l), is the maximum time that the

activities of Nα can be delayed without altering the duration of the project, i.e. slack(Nα, l) = D(l)−D(Nα, l).

We say that a path is critical if it has slack zero. Associated to a project there is also an availability function

a : N → R+ with a(i) denoting the amount of time that activity i can start before the planned time if

necessary.

Example 2.2. Consider the project given in Example 2.1. Let l : N → R+ be given by l(A) = 15, l(B) = 10,

and l(C) = 8. Table 2 summarizes the duration and slack of the paths. Note that D(l) = 23.

Nα D(Nα, l) slack(Nα, l)

AC 23 0

BC 18 5

Table 2: Duration and slack of the paths in Example 2.2.

Let a : N → R+ be given by a(A) = 0, a(B) = 0, and a(C) = 7, then A and B cannot start before their

planned starting time, while activity C could start 7 units of time before its planned starting time, i.e. C

could start at time 8. 3
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Throughout, we use a fixed notation for two specific duration functions. We denote by p : N → R+ the

function representing the planned or estimated time of the activities and by r : N → R+ the function giving

the real time of the activities after the realization of the project. We define the delay function d : N → R+

as d(i) = (r(i) − p(i))+(:= max{r(i) − p(i), 0}), i.e. d(i) represents the delay of activity i. Analogously, we

define the expedition function e : N → R+ as e(i) = (p(i) − r(i))+, i.e. e(i) represents the expedition of

activity i.

Example 2.3. Consider the project given in Example 2.1. Let the planned time p : N → R+ be given by

p(A) = 15, p(B) = 10, and p(C) = 8 and let the real time r : N → R+ be given by r(A) = 7, r(B) = 6, and

r(C) = 12. The delay and expedition functions are given in Table 3. 3

A B C

d(i) (7 − 15)+ = 0 (6 − 10)+ = 0 (12 − 8)+ = 4

e(i) (15 − 7)+ = 8 (10 − 6)+ = 4 (8 − 12)+ = 0

Table 3: Delay and expedition functions in Example 2.3.

2.2 Cost sharing and surplus sharing problems

A cost sharing problem is defined by a tuple (N, q, c) where N = {1, 2, . . . , n} is the set of agents (or players),

q ∈ R
N
+ is a vector of nonnegative numbers, with qi representing the demand of agent i ∈ N , and c : R → R+

is a nondecreasing cost function satisfying c(t) = 0 for t ≤ 0. A cost sharing mechanism on a class of cost

sharing problems C is a mapping y that assigns to each (N, q, c) ∈ C a vector of cost shares y(N, q, c) ∈ R
N
+ ,

i.e.
∑

i∈N yi(N, q, c) = c(
∑

i∈N qi), satisfying that if qi = 0, then yi(N, q, c) = 0.

Several mechanisms can be found in the literature (see e.g. Moulin (1987), Moulin and S. Shenker (1992),

and Koster (1999)); we recall here one of the most studied cost sharing mechanisms in the literature, the serial

cost sharing mechanism, ys. Let (N, q, c) be a cost sharing problem and assume without loss of generality

that q1 ≤ q2 ≤ . . . ≤ qn,then the proportional cost sharing mechanism is defined by

ys
1(N, q, c) =

c(nq1)

n
,

ys
i (N, q, c) =

c(nq1)

n
+

i
∑

k=2

c(
∑k−1

j=1qj +(n − k + 1)qk) − c(
∑k−2

j=1 qj +(n − k + 2)qk−1)

n − k + 1
for every i∈N \{1}.

Example 2.4. Let (N, q, c) be a cost sharing problem with N = {1, 2, 3}, q = (2, 5, 6), and c defined by

c(t) =

{

0 if t ≤ 0,

t2 + 100 if t > 0.
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In this case, c(2 + 5 + 6) = 269 and ys(N, q, c) = (45 1
3 , 99 1

3 , 124 1
3 ). Table 4 summarizes the computation of

the serial cost sharing rule.

t c(t)

3q1 = 6 136

q1 + 2q2 = 12 244

q1 + q2 + q3 = 13 269

i
c(6)
3

c(12)−c(6)
2

c(13)−c(12)
1 ys

1 136
3 = 45 1

3 45 1
3

2 136
3 = 45 1

3
108
2 = 54 99 1

3

3 136
3 = 45 1

3
108
2 = 54 25

1 = 25 124 1
3

Table 4: Computation of the cost sharing rule in Example 2.4. 3

Analogously to cost sharing problems, one can think of surplus sharing problems. All definitions given

above for cost sharing problems can be easily translated to surplus sharing problems.

2.3 Transferable utility (TU) games

A cooperative (TU) game in characteristic function form is an ordered pair (N, v) where N is a finite set of

players and v : 2N → R satisfying v(∅) = 0. In general, v(S) represents the value of coalition S, i.e. the joint

payoff that can be obtained by this coalition when its members decide to cooperate.

A cooperative game can reflect costs or rewards. A game reflecting costs is denoted by a mapping c, while

a game reflecting rewards is denoted by a mapping v.

The core of a game (N, v) is defined by

Core(v) = {x ∈ R
N |
∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S) for all S ∈ 2N},

i.e. the core is the set of efficient allocations of v(N) to which no coalition can reasonably object. An important

subclass of games with nonempty core is the class of convex games (see Shapley (1971)). A game (N, v) is

said to be convex if v(S ∪ {i})− v(S) ≤ v(T ∪ {i}) − v(T ) for every i ∈ N and every S ⊂ T ⊂ N \ {i}.

Let (N, c) be a cost game. The corresponding cost savings game (N, v) is defined by

v(S) =
∑

i∈S

c({i}) − c(S)

for all S ⊂ N .

The properties and solution concepts for cooperative cost games can consequently be derived from the

above definitions. The equivalent of a convex game for a cost game is a concave game.

2.4 Bankruptcy and taxation problems

A bankruptcy problem is defined by a tuple (N, E, c) where N = {1, . . . , n} is the set of agents (or players),

E is the estate that must be shared among the agents, and c ∈ R
N is the vector of claims of the agents
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satisfying
∑

i∈N ci > E. Bankruptcy problems have being firstly studied from a game theoretical viewpoint

in O’Neill (1982). Given a bankruptcy problem (N, E, c), the corresponding bankruptcy game, (N, v(N,E,c)),

is defined by

v(N,E,c)(S) =

(

E −
∑

i∈N\S

ci

)

+

for every S ⊂ N . In Curiel et al. (1987) it is shown that bankruptcy games are convex.

Taxation problems can be seen as dual of bankruptcy problems. A taxation problem is defined by a tuple

(N, E, c) where N = {1, . . . , n} is the set of agents (or players), E is the tax that must be collected among

the agents, and c ∈ R
N is the vector of the abilities to pay of the players satisfying

∑

i∈N ci > E. Given a

taxation problem (N, E, c), the corresponding taxation game, (N, c(N,E,c)), is defined by

c(N,E,c)(S) = min

{

E,
∑

i∈S

ci

}

for every S ⊂ N . In Branzêi et al. (2002) it is shown that taxation games are concave.

3 Project problems

A project problem arises when the planned time of the activities has been incorrectly estimated, possibly

bringing delay or expedition and associated extra costs or rewards to the project. We study project problems

in terms of rewards, where a negative reward reflects costs. A nondecreasing reward function R : R → R

is associated to the difference between the planned and real times of the project, satisfying R(t) ≤ 0 for

t < 0, R(t) = 0 for t = 0, and R(t) ≥ 0 for t > 0. A project problem can be described by a 5-tuple

({N1 , . . . ,Nm}, p, r, a, R) where p and r satisfy p 6= r. For simplicity of notation, we omit the vector of

availabilities a from the description of a project problem whenever all activities can be started as soon as

needed.

When a reward forms due to the difference between the planned and real times of a project, one can think

of sharing the delay or expedition of the project among the activities in a first (linear) stage and allocating

the (possibly nonlinear) reward among the activities according to the delay or expedition they have been

held responsible of in a second stage. This approach has already been suggested in Branzêi et al. (2002). The

problem with this procedure is that the specific characteristics of the reward function may be neglected. We

show the inadequacy of this procedure in the following example in which the allocation of the total difference

in time is obtained by considering the core of the game defined in Estévez-Fernández et al. (2007).

Example 3.1. Consider the project problem ({N1, N2, N3, N4} , p, r, R) with N1 = {A}, N2 = {B}, N3 =

{C, D}, N4 = {E}; p(A) = 21, p(B) = 19, p(C) = 2, p(D) = 16, p(E) = 17; r(A) = 14, r(B) = 15, r(C) = 7,
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r(D) = 6, r(E) = 14; and R(t) =







−20t2 if t ≤ 0,

t4 if 0 < t ≤ 4,

t2 + 240 if t > 4.

Note that d(A) = 0, d(B) = 0, d(C) = 5, d(D) = 0, d(E) = 0, e(A) = 7, e(B) = 4, e(C) = 0, e(D) = 10 and

e(E) = 3. The project is represented in Figure 2.

b

b

b b

b

b

A
B

C D

E

Nα D(Nα, p) slack(Nα, p) D(Nα, r)

A 21 0 14

B 19 2 15

C D 18 3 13

E 17 4 14

Figure 2: Representation of the project given in Example 3.1 and duration of the paths.

Here, D(p) = 21 and D(r) = 15, and then the total expedition is D(p) − D(r) = 6 with an associated

reward of R(6) = 276.

Following the suggested two-stage approach, we first share the total expedition of 6 among the activities

by making use of the associated linear project game given in Estévez-Fernández et al. (2007). All coalitional

values are given in Table 5.

S {A} {B} {C} {D} {E} {A,B} {A,C} {A,D} {A,E} {B,C} {B,D} {B,E} {C,D} {C,E} {D,E}

ū(S) 0 0 −2 0 0 0 −2 2 0 −2 0 0 0 −2 0

S {A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D} {B,C,E} {B,D,E} {C,D,E}

ū(S) −2 4 0 2 −2 2 0 −2 0 0

S {A,B,C,D} {A,B,C,E} {A,B,D,E} {A,C,D,E} {B,C,D,E} N

ū(S) 4 −2 6 2 0 6

Table 5: Coalitional values in Example 3.1.

It can be easily checked that (2, 2,−2, 2, 2) ∈ Core(ū). Fix (2, 2,−2, 2, 2) as the allocation of the total

expedition among the activities. Here, we encounter two problems. The first problem is of an interpretational

nature. Activity C is held responsible of 2 units of delay, but it is not clear what is the monetary equivalence

of this delay. Is it given by the penalty part or by the bonus part of the reward function? The second problem

is the loss of the characteristics of the reward function when applying proportionality. By dividing the total

reward proportionally to the allocation of responsibilities (2, 2,−2, 2, 2), as suggested in Branzêi et al. (2002),

an allocation of (92, 92,−92, 92, 92) is obtained. Note that without the expedition of activity D, activity C

would have created a delay of 2 with a reward of R(−2) = −80. However, the allocation assigns a total

penalty of 92 to C. 3
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As pointed out in the example above, the inadequacy in first sharing “responsibilities” among the activities

and then the reward in a second stage is that the characteristics of the reward function are not reflected

on the final share of the total reward. Our approach follows the opposite reasoning. We first allocate the

reward associated to the delay or expedition of each path (i.e. the total delay or total expedition created by

its activities) among its activities. In a second step, we use cooperative games to share the reward of the

project among all its activities, using the initial allocations as reference points.

Associated to a project problem ({N1 , . . . ,Nm}, p, r, a, R), we define a project game where the set of

players is the set of activities and the value of a coalition is determined by taking into account the simi-

larities and differences of both delayed and expedited projects. In determining the value of a coalition we

pessimistically assume that all delayed activities have indeed acted according to realization and that all

expedited activities outside the coalition have acted according to plan. Then, if the expedition given by the

expedited activities in the coalition itself is not enough to expedite the duration of the project, the value of

the coalition is negative and is determined through a cost game. Otherwise, the value of the coalition is posi-

tive and is determined through a reward game. Formally, given a project problem ({N1 , . . . ,Nm} , p, r , a,R),

a cost sharing mechanism y, and a surplus sharing mechanism z, we denote by (N, uyz) the associated project

game, still to be formally defined. Let E denote the set of expedited activities, i.e. E = {i ∈ N | e(i) > 0}.

3.1 Delay in project problems

If D(p|E\S , r|N\(E\S)) ≥ D(p), then the expedition carried by the expedited activities in S is not enough to

expedite the project and cy(S) reflects the maximum delay that the coalition can be held responsible of.

If activities in a path are delayed and they cause a delay of the project, we can consider this as a cost

sharing problem where the demands of the activities are their delays and the cost function is the negative

part of the reward function. For every α ∈ {1, . . . , m}, consider the cost sharing problem

(Nα, qα, K)

with qα
i = d(i) for every i ∈ Nα and K(t) = −R(−t) if t > 0 and K(t) = 0 otherwise. Selecting a cost sharing

mechanism y by taking into account the type of penalty function at hand, we define yα = y(Nα, qα, K).

Here, we pessimistically assume that the activities in Nα are not allowed to make use neither of the planned

slack, nor of the expedition created by other activities in the path and have to pay the cost associated to

their total delay. In this way, yα
i represents the cost that i is held responsible of for the cost associated to

the total delay of the activities in Nα. By using these allocations as starting points, the activities of coalition

S that are in path α cannot be held responsible neither for more than the total cost assigned to them by

the cost sharing mechanism, nor for more than the net delay of the path as a consequence of the delay of

activities in the path and the expedition of the activities within the coalition. The value of coalition S is
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then the maximal amount that the coalition can be held responsible of with respect to the different paths

involved in the coalition. Formally,

cy(S) = max
α∈P(S)

{

min

{

∑

i∈Nα∩S

yα
i , K

(

D(Nα, (p|E\S , r|N\(E\S))) − D(p)
)

}}

, (3.1)

where P(S) represents the set of paths in which S is involved, i.e. P(S) = {α ∈ {1, . . . , m}| Nα ∩ S 6= ∅}.

Note that cy(N) = K(D(r) − D(p)) since min
{
∑

i∈Nα
yα

i , K (D(Nα, r) − D(p))
}

= K (D(Nα, r) − D(p))

for every α ∈ {1, . . . , m}.

Example 3.2. Consider the project problem ({N1, N2, N3} , p, r, R) with N1 = {A, B}, N2 = {A, D},

N3 = {C, D}; p(A) = 2, p(B) = 15, p(C) = 13, p(D) = 3; r(A) = 9, r(B) = 11, r(C) = 12, r(D) = 8; and

R(t) =







−t4 − 100 if t < 0,

0 if t = 0,

t2 + 200 if t > 0.

The project is represented in Figure 3.

b

b b

b

A B

C D

Nα D(Nα, p) slack(Nα, p) D(Nα, r)

AB 17 0 20

AD 5 12 17

CD 16 1 20

Figure 3: Representation of the project given in Example 3.2 and duration of the paths.

Here, D(p) = 17 and D(r) = 20, and then the difference of time is D(p) − D(r) = −3 with an associated

reward of R(−3) = −181. Besides, d(A) = 7, d(B) = 0, d(C) = 0 and d(D) = 5; e(A) = 0, e(B) = 4, e(C) = 1

and e(D) = 0; and E = {B, C}.

For the computation of (N, cy) we use the serial cost sharing mechanism. Associated to each path Nα

we have the cost sharing problem (Nα, qα, K), with qα
i = d(i) and K(t) = 0 if t ≤ 0 and K(t) = t4 + 100

if t > 0. Then, y1 = y({A, B}, (7, 0), K) = (2501, 0), y2 = y({A,D}, (7, 5), K) = (15786, 5050), and y3 =

y({C, D}, (0, 5), K) = (0, 725). Below, the computation of cy({A, B, C}) is explained.

cy({A, B, C}) = max
α∈P({A,B,C})

{

min

{

∑

i∈Nα∩S

yα
i , K

(

D(Nα, (p|E\S , r|N\(E\S))) − D(p)
)

}}

= max
α∈{1,2,3}

{

min

{

∑

i∈Nα∩S

yα
i , K

(

D(Nα, (p|E\S , r|N\(E\S))) − D(p)
)

}}

= max {min {2501 + 0, K (20 − 17)} , min {15786, K (17 − 17)} ,

min {0, K (20 − 17)}}

= max {min {2501, 181} , min {15786, 0} , min {0, 181}}

= max {181, 0, 0}
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= 181.

All coalitional values are given in Table 6.

S {A} {B} {C} {D} {A,B} {A,C} {A,D} {B,C} {B,D} {C,D} {A,B,C} {A,B,D} {A,C,D} {B,C,D} N

cy(S) 2501 0 0 356 181 2501 2501 0 356 181 181 356 2501 181 181

Table 6: Coalitional values in Example 3.2.

It can be checked that the core of the game is

Core(cy) = conv{(0, 0,−175, 356), (0, 0, 0, 181), (2320,−2320, 0, 181), (2501,−2320, 0, 0),

(2145,−2145,−175, 356), (181, 0,−175, 175), (181, 0, 0, 0)}.

Note that this game is not concave by taking i = B, S = {A}, and T = {A, D} since cy({A, B})− cy({A}) =

−2320 6≥ −2145 = cy({A, B, D}) − cy({A, D}). 3

Theorem 3.1. Let ({N1 , . . . ,Nm}, p, r, a, R) be a project problem and let y be a cost sharing mechanism.

Then, (N, cy) has a nonempty core.

Proof: Let α̂ ∈ {1, . . . , m} be such that D(r) = D(Nα̂, r), i.e. Nα̂ is responsible of the total delay of the

project. Consider the taxation problem (N, Eα̂, cα̂) given by Eα̂ = K(D(Nα̂, r) − D(p)), cα̂
i = yα̂

i if i ∈ Nα̂

and cα̂
i = 0 if i ∈ N \ Nα̂. Then,

cy(N) = K (D(Nα̂, r) − D(p))

= min

{

∑

i∈Nα̂

yα̂
i , K (D(Nα̂, r) − D(p))

}

= min

{

∑

i∈N

cα̂
i , Eα̂

}

= c(N,Eα̂,cα̂)(N)

where the first equality follows because D(r) = D(Nα̂, r), the second one is a direct consequence of

K (D(Nα̂, r) − D(p)) ≤ K
(
∑

i∈Nα̂
d(i)

)

=
∑

i∈Nα̂
yα̂

i since R is nondecreasing and hence K is also non-

decreasing, and the third one is a direct consequence of the definition of Eα̂ and cα̂. Moreover, for every

S ⊂ N we have

cy(S) = max
α∈P(S)

{

min

{

∑

i∈Nα∩S

yα
i , K

(

D(Nα, (p|E\S , r|N\(E\S))) − D(p)
)

}}

≥ min

{

∑

i∈Nα̂∩S

yα̂
i , K

(

D(Nα̂, (p|E\S , r|N\(E\S))) − D(p)
)

}

12



≥ min

{

∑

i∈Nα̂∩S

yα̂
i , K (D(Nα̂, r) − D(p))

}

= min

{

∑

i∈S

cα̂
i , Eα̂

}

= c(N,Eα̂,cα̂)(S)

where the second inequality follows because R is nondecreasing and therefore K is also nondecreasing, and

the second equality is a direct consequence of the definitions of Eα̂ and cα̂.

Since (Nα̂, c(N,Eα̂,cα̂)) is concave, we know that there is an x ∈ Core(c(N,Eα̂,cα̂)) and then
∑

i∈N xi =

c(N,Eα̂,cα̂)(N) = cy(N) and
∑

i∈S xi ≤ c(N,Eα̂,cα̂)(S) ≤ cy(S) for every S ⊂ N , and therefore x ∈ Core(cy).

2

3.2 Expedition in project problems

If D(p|E\S , r|N\(E\S)) < D(p), then the expedition created by the expedited activities in S is enough to

expedite the project and vz(S) reflects the amount of reward from the expedition that the coalition may

claim.

Before starting with the description of the expedited part of project games, we give the following example

that illustrates the ideas behind the model.

Example 3.3. Consider the project problem ({N1, N2, N3, N4} , p, r, R) in Example 3.1. Recall that N1 =

{A}, N2 = {B}, N3 = {C, D} and N4 = {E}; p(A) = 21, p(B) = 19, p(C) = 2, p(D) = 16 and p(E) = 17;

r(A) = 14, r(B) = 15, r(C) = 7, r(D) = 6 and r(E) = 14; and R(t) =







−20t2 if t ≤ 0,

t4 if 0 < t ≤ 4,

t2 + 240 if t > 4.

The project

is represented in Figure 2.

In this project problem, D(p) = 21 and D(r) = 15, therefore there is a total expedition of D(p)−D(r) = 6

and a reward of R(6) = 276.

Note that the critical path N1 = {A} is always indispensable to expedite the project. Moreover, due to

the delay of activity C, activity D is also indispensable to expedite the project. We subsequently explain how

this expedition is achieved. First, suppose that the delayed activities (activity C) act according to realization

while the expedited activities act according to plan. Second, assume that both the expedited activities in N3,

i.e. activity D, and the activities in N1 act according to realization while activities in N2 and N4 act according

to plan, then the project is expedited in 2 with an associated reward of R(2) = 16, and N2 becomes critical.

Note that N1 and N3 are exclusively responsible of a reward of 16, and that N2 becomes indispensable to

continue expediting. Third, suppose that also activities in N2 act according to realization, then the project

13



has an extra expedition of 2 with an associated marginal reward of R(4)−R(2) = 256−16 = 240 of which N1,

N2, and N3 are responsible. Last, suppose that all activities act according to realization, then the project has

an extra expedition of 2 with an associated marginal reward of R(6) − R(4) = 276 − 256 = 20 of which N1,

N2, N3 and N4 are responsible. The description of the sequence in which realization times are considered for

the activities is given in Table 7.a and the contribution of the paths to the reward obtained by the expedition

of the project is summarized in Table 7.b.

pA=21
pB=19

pC=2, pD=16
pE=17

pA=21
pB=19

rC=7, pD=16
pE=17

rA=14
pB=19

rC=7, rD=6
pE=17

rA=14
rB=15

rC=7, rD=6
pE=17

rA=14
rB=15

rC=7, rD=6
rE=14

N1 21 21 14 14 14

N2 19 19 19 15 15

N3 18 23 13 13 13

N4 17 17 17 17 14

a: Description of the sequence in which realization times are

considered for the activities.

Phase 1 Phase 2 Phase 3

N1 16 240 20

N2 0 240 20

N3 16 240 20

N4 0 0 20

b: Decomposition of the total

reward by means of levels

of expedition.

Table 7: Description of the decomposition of the total rewards by levels of expedition in Example 3.3.

Note that the sum of both the first and third rows in Table 7.b gives the total reward. This type of

decomposition by means of levels of expedition plays an important role in the definition of the expedited

part of project games. 3

In order to define the value corresponding to the expedited part of a project game, we first optimistically

allocate the part of the expedition that each path could contribute to among its activities. In a second step,

we define the value of the game using the initial allocations as reference points.

Before defining vz , we need to introduce some notation. We denote by rslack(Nα, p, r) the amount of

remaining slack of a path with respect to the planned duration if only its delayed activities act according

to realization, i.e. rslack(Nα, p, r) = slack(Nα, p) −
∑

i∈Nα
d(i). Note that rslack(Nα, p, r) can be negative,

meaning that the delayed activities have consumed all the initial slack and would produce a delay on the

project, as a whole, of − rslack(Nα, p, r) if the expedited activities had acted according to plan. We denote

by J1 the set (of indexes) of paths with remaining slack less than or equal to zero:

J1 = {α ∈ {1, . . . , m}| rslack(Nα, p, r) ≤ 0} .

Recursively, we define for k ≥ 2

Jk =

{

α ∈ {1, . . . , m} \
k−1
⋃

l=1

Jl| rslack(Nα, p, r) ≤ rslack(Nβ , p, r) for all β ∈ {1, . . . , m} \
k−1
⋃

l=1

Jl

}

,
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i.e. Jk contains all paths that would have smallest remaining slack if the paths in J1, . . . , Jk−1 where not

present. Set rslack(J1) := 0 and let rslack(Jk) denote the remaining slack of the paths in Jk for k ≥ 2,

i.e. rslack(Jk) = rslack(Nα, p, r) for each α ∈ Jk, k ≥ 2. Let g be such that rslack(Jg) < D(p) − D(r) ≤

rslack(Jg+1) if D(p) − D(r) > 0 and g = 0 otherwise. For k = 1, . . . , g, we define F k as the marginal

contribution of the paths in J1, . . . , Jk to the total reward associated to the expedition. Formally,

F k =







R(rslack(Jk+1)) − R(rslack(Jk)) if 1 ≤ k < g;

R(D(p) − D(r)) − R(rslack(Jg)) if k = g.

Note that
∑g

k=1 F k = R(D(p) − D(r)) since R(rslack(J1)) = 0.

For every α ∈ {1, . . . , m}, consider the surplus sharing problem

(Nα, pα, Rα)

with1 pα
i = min{e(i), minj∈Nα∩Fi

{a(j)}} for every i ∈ Nα (i.e. since activity i needs to coordinate with its

followers to expedite the project, i cannot expedite the path e(i) if its followers do not have enough availability

to start as soon as allowed by i’s expedition) and Rα(t) = R(t + (rslack(Nα, p))+) − R((rslack(Nα, p))+) if

t ≥ 0 and Rα(t) = 0 otherwise.

Selecting a surplus sharing mechanism z (taking into account the type of reward function at hand), we

denote by zα the allocation proposed by our mechanism to the surplus sharing problem (Nα, pα, Rα), i.e.

zα = z(Nα, pα, Rα). Here, zα
i is the maximum amount that i can claim according to the surplus sharing

mechanism if its path is awarded with the total expedition that it can bring to the project. Then, we

optimistically define the vector of maximal rewards, fz, by

fz
i = max

α:Nα∋i
{zα

i },

i.e. fz
i is the maximum reward that activity i can claim from the expedition of the project when the surplus

sharing mechanism z is considered.

Next, we define vz(S) representing the sum over all k ∈ {1, . . . , g} of those specific parts of the contribution

to the total reward F k for which the activities outside the coalition that are in paths of
⋃k

l=1 Jl cannot be

held responsible for anymore at that phase. Formally2,

vz(S) =

g
∑

k=1

(

F k − wk
z (S)

)

(3.2)

1Note that if all followers of i in path α have enough availability to start as soon as needed, then pα

i
= e(i).

2The idea behind the model is the following. By being pessimistic,we consider that all delayed activities are planned according

to realization and if D(p) − D(p|E, r|N\E) < 0, i.e. the delayed activities could bring delay to the project on their own, then

the reward function for the expedited activities changes to R̃(t) = (R(t + D(p) − D(p|E, r|N\E)))+. In this way, the expedited

activities need to allocate R̃(D(p|E , r|N\E) − D(r)) among themselves. To solve this allocation problem, the ideas behind

bankruptcy games are followed taking into account the levels of expedition.
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where wk
z (S) represents the part of the contribution to the total reward F k that players in S maximally

would have to concede to players in the paths corresponding to
⋃k

l=1 Jl outside S, taking into account earlier

concessions from the previous phases. Formally,

wk
z (S) = min







∑

i∈(
S

k
l=1 NJl

)\S

fz
i −

k−1
∑

l=1

wl
z(S), F k







(3.3)

for all k ∈ {1, . . . , g}, where NJl
=
⋃

α∈Jl
Nα. Note that wk

z is non-negative. Moreover, vz(N) equals the

total expedition of the project since wk
z (N) = 0 for any k ∈ {1, . . . , g}.

Example 3.4. Consider the project problem ({N1, N2, N3, N4} , p, r, R) in Example 3.1. Recall that N1 =

{A}, N2 = {B}, N3 = {C, D}, N4 = {E}; p(A) = 21, p(B) = 19, p(C) = 2, p(D) = 16, p(E) = 17; r(A) = 14,

r(B) = 15, r(C) = 7, r(D) = 6, r(E) = 14; and R(t) =







−20t2 if t ≤ 0,

t4 if 0 < t ≤ 4,

t2 + 240 if t > 4.

The project is represented

in Figure 2.

In this project problem D(p) = 21 and D(r) = 15, therefore there is a total expedition of D(p)−D(r) = 6

and a reward of R(6) = 276. Besides,

d(A) = 0, d(B) = 0, d(C) = 5, d(D) = 0 and d(E) = 0;

e(A) = 7, e(B) = 4, e(C) = 0, e(D) = 10 and e(E) = 3;

rslack(N1, p, r) = 0 − 0 = 0, rslack(N2, p, r) = 2 − 0 = 2,

rslack(N3, p, r) = 3 − 5 = −2, and rslack(N4, p, r) = 4 − 0 = 4;

J1 = {1, 3}, J2 = {2}, and J3 = {4};

F 1 = R(rslack(J2)) − R(rslack(J1)) = R(2) − R(0) = 16,

F 2 = R(rslack(J3)) − R(rslack(J2)) = R(4) − R(2) = 240, and

F 3 = R(D(p) − D(r)) − R(rslack(J3)) = R(6) − R(4) = 20.

For the computation of (N, vz) we use the serial surplus sharing mechanism. Associated to each path Nα we

have the surplus sharing problem:

(N1, p
1, R1): N1 = {A}, p1 = (7), R1(t) =

{

R(t) if t ≤ 0,

0 if t > 0,
and z1 = (289);

(N2, p
2, R2): N2 = {B}, p2 = (4), R2(t) =

{

R(t + 2) − R(2) if if t ≥ 0,

0 if t > 0,
and z2 = (260);

(N3, p
3, R3): N3 = {C, D}, p3 = (0, 10), R3(t) =

{

R(t) if t ≤ 0,

0 if t > 0,
and z3 = (0, 340);

(N4, p
4, R4): N4 = {E}, p4 = (3), R4(t) =

{

R(t + 4) − R(4) if if t ≥ 0,

0 if t > 0,
and z4 = (33);

which gives fz = (289, 260, 0, 340, 33). Below, the computation of vz({A, B, D}) is explained.

w1
z({A, B, D}) = min

{

fz
C, F 1

}

= min {0, 16} = 0,
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w2
z({A, B, D}) = min

{

fz
C − w1

z({A, B, D}), F 2
}

= min {0 − 0, 240} = 0,

w3
z({A, B, D}) = min

{

fz
C + fz

E − w1
z({A, B, D}) − w2

z({A, B, D}), F 3
}

= min {0 + 33 − 0 − 0, 20} = 20,

and therefore

vz({A, B, D}) = (F 1 − w1
z({A, B, D})) + (F 2 − w2

z({A, B, D})) + (F 3 − w3
z({A, B, D}))

= (16 − 0) + (240 − 0) + (20 − 20) = 256.

All coalitional values are given in Table 8.

S {A} {B} {C} {D} {E} {A,B} {A,C} {A,D} {A,E} {B,C} {B,D} {B,E} {C,D} {C,E} {D,E}

vz(S) 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

S {A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D} {B,C,E} {B,D,E} {C,D,E}

vz(S) 0 256 0 16 0 16 0 0 0 0

S {A,B,C,D} {A,B,C,E} {A,B,D,E} {A,C,D,E} {B,C,D,E} N

vz(S) 256 0 276 16 0 276

Table 8: Coalitional values in Example 3.4.

It can be checked that the core of the game is

Core(vz) = conv{(0, 0, 0, 256, 20), (0, 0, 0, 276, 0), (0, 240, 0, 16, 20), (0, 260, 0, 16, 0),

(256, 0, 0, 0, 20), (276, 0, 0, 0, 0), (16, 240, 0, 0, 20), (16, 260, 0, 0, 0)}.

3

Given a project problem ({N1 , . . . ,Nm}, p, r, a, R) and a surplus sharing mechanism z, the corresponding

game (N, vz) can be described as the maximum of as many bankruptcy games as levels of expedition in the

project, where the bankruptcy problem associated to level of expedition k ∈ {1, . . . , g} is

(N, Ek, cz,k)

with Ek = R(rslack(Jk+1)) if k < g and Eg = R(D(p) − D(r)), and c
z,k
i = fz

i if i ∈ ∪k
l=1NJl

and c
z,k
i = 0

otherwise. Besides, it turns out that (N, vz) is convex.

Theorem 3.2. Let ({N1 , . . . ,Nm}, p, r, a, R) be a project problem and let z be a surplus sharing mechanism.

Then,

vz(S) = max
k∈{1,...,g}

{v(N,Ek,cz,k)(S)}

for every S ⊂ N .
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Proof: Since z is fixed, we denote cz,k by ck. We proceed by induction on g. Let g = 1 and S ⊂ N , then

vz(S) = F 1 − w1
z(S) = F 1 − min







∑

i∈N\S

fz
i , F 1







= max







F 1 −
∑

i∈N\S

fz
i , 0







= v(N,E1,c1)(S).

Next, assume that the result is satisfied for 1, . . . , g − 1. Let S ⊂ N , then

vz(S) =

g
∑

k=1

(

F k − wk
z (S)

)

=

g
∑

k=1

F k −

g−1
∑

k=1

wk
z (S) − min







∑

i∈(
Sg

k=1 NJk
)\S

fz
i −

g−1
∑

k=1

wk
z (S), F g







= max







g
∑

k=1

F k −
∑

i∈(
Sg

k=1 NJk
)\S

fz
i ,

g−1
∑

k=1

F k −

g−1
∑

k=1

wk
z (S)







= max







g
∑

k=1

F k −
∑

i∈(
Sg

k=1 NJk
)\S

fz
i , max

k∈{1,...,g−1}
{v(N,Ek,ck)(S)}







= max















g
∑

k=1

F k −
∑

i∈(
Sg

k=1 NJk
)\S

fz
i





+

, max
k∈{1,...,g−1}

{v(N,Ek,ck)(S)}











= max









Eg −
∑

i∈N\S

c
g
i





+

, max
k∈{1,...,g−1}

{v(N,Ek,ck)(S)}







= max

{

v(N,Eg,cg)(S), max
k∈{1,...,g−1}

{v(N,Ek,ck)(S)}

}

= max
k∈{1,...,g}

{v(N,Ek,ck)(S)}

where the fourth equality follows by induction, the fifth one is a consequence of maxk∈{1,...,g−1}{v(N,Ek,ck)(S)}

≥ 0, and the sixth one follows because
∑g

k=1 F k = R(D(p) − D(r)) = Eg and because, by definition of cg,

we have c
g
i = fz

i if i ∈
⋃g

k=1 NJk
and c

g
i = 0 otherwise. 2

The next example illustrates the result in Theorem 3.2.

Example 3.5. Consider the expedited project game in Example 3.4. Associated to each level of expedition

Jk we have a bankruptcy problem (N, Ek, cz,k):

E1 = R(slack(J2)) = R(2) = 16, cz,1 = (fz
A, 0, fz

C, fz
D, 0) = (289, 0, 0, 340, 0),

E2 = R(slack(J3)) = R(4) = 256, cz,2 = (fz
A, fz

B, fz
C, fz

D, 0) = (289, 260, 0, 340, 0),

E3 = R(D(p) − D(r)) = R(6) = 276, cz,3 = (fz
A, fz

B, fz
C, fz

D, fz
E) = (289, 260, 0, 340, 33).

Table 9 gives the values of the corresponding bankruptcy games and expedited project game.

3
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S {A} {B} {C} {D} {E} {A,B} {A,C} {A,D} {A,E} {B,C} {B,D} {B,E} {C,D} {C,E} {D,E}

v(N,E1,cz,1)(S) 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

v(N,E2,cz,2)(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v(N,E3,cz,3)(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

vz(S) 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

S {A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D} {B,C,E} {B,D,E} {C,D,E}

v(N,E1,cz,1)(S) 0 16 0 16 0 16 0 0 0 0

v(N,E2,cz,2)(S) 0 256 0 0 0 0 0 0 0 0

v(N,E3,cz,3)(S) 0 243 0 0 0 16 0 0 0 0

vz(S) 0 256 0 16 0 16 0 0 0 0

S {A,B,C,D} {A,B,C,E} {A,B,D,E} {A,C,D,E} {B,C,D,E} N

v(N,E1,cz,1)(S) 16 0 16 16 0 16

v(N,E2,cz,2)(S) 256 0 256 0 0 256

v(N,E3,cz,3)(S) 243 0 276 16 0 276

vz(S) 256 0 276 16 0 276

Table 9: Values of the bankruptcy games and expedited part of the project game in Example 3.5.

Before showing the convexity of (N, vz), we need to introduce some notation and provide a technical

result. Note that, by definition of cz,k, we have that c
z,k′

i ≤ c
z,k
i for every i ∈ N and every k′ ≤ k. For

U ⊂ N , let k̂(U, vz) denote the smallest index satisfying vz(U) = v(N,Ek̂(U,vz),cz,k̂(U,vz))(U), i.e.

k̂(U, vz) = min{k ∈ {1, . . . , g} | vz(U) = v(N,Ek,cz,k)(U)}.

Lemma 3.3. Let ({N1 , . . . ,Nm}, p, r, a, R) be a project problem and let z be a surplus sharing mechanism.

Then, k̂(S, vz) ≤ k̂(T, vz) for every S ⊂ T ⊂ N .

Proof: Since z is fixed, we denote cz,k by ck. By Theorem 3.2 it follows

vz(T ) = max
k∈{1,...,g}

{

v(N,Ek,ck)(T )
}

= max
k∈{1,...,g}

{

(

Ek−
∑

j∈N\T

ck
j

)

+

}

= max
k∈{1,...,g}

{

(

Ek−
∑

j∈N\S

ck
j +

∑

j∈T\S

ck
j

)

+

}

for T ⊂ N and S ⊂ T .

We proceed by contradiction. Assume that k̂(S, vz) > k̂(T, vz) ≥ 1, then

vz(S) = v(N,Ek̂(S,vz),ck̂(S,vz))(S) > v(N,E1,c1)(S) ≥ 0

and

vz(T ) = v(N,Ek̂(T,vz),ck̂(T,vz))(T )
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=

(

Ek̂(T,vz) −
∑

j∈N\T

c
k̂(T,vz)
j

)

+

=

(

Ek̂(T,vz) −
∑

j∈N\S

c
k̂(T,vz)
j +

∑

j∈T\S

c
k̂(T,vz)
j

)

+

≤

(

Ek̂(T,vz) −
∑

j∈N\S

c
k̂(T,vz)
j

)

+

+
∑

j∈T\S

c
k̂(T,vz)
j

< Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j +

∑

j∈T\S

c
k̂(T,vz)
j

≤ Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j +

∑

j∈T\S

c
k̂(S,vz)
j

=

(

Ek̂(S,vz) −
∑

j∈N\T

c
k̂(S,vz)
j

)

+

= v(N,Ek̂(S,vz),ck̂(S,vz))(T )

which contradicts the definition of k̂(T, vz). Here, the first and second equalities follow by definition of

k̂(T, vz) and v(N,Ek̂(T,vz),ck̂(T,vz))(T ), respectively. The second inequality follows because k̂(T, vz) < k̂(S, vz),

and then vz(S) = v(N,Ek̂(S,vz),ck̂(S,vz))(S) > v(N,Ek̂(T,vz),ck̂(T,vz))(S) by definition of k̂(S, vz), together with

vz(S) > 0. The last inequality follows because k̂(T, vz) < k̂(S, vz), and then ck̂(T,vz) ≤ ck̂(S,vz) by definition

of ck. The last equality is a consequence of Ek̂(S,vz) −
∑

j∈N\S c
k̂(S,vz)
j ≥ 0 and ck̂(S,vz) ≥ 0. 2

Convexity of (N, vz) can be shown following the same lines as in the proof of Theorem 4.2 in Estévez-

Fernández et al. (2007). We have decided to provide this new proof since it is more understandable and less

technical than that in Estévez-Fernández et al. (2007). The simplicity of this new proof is rooted in both

the relation between the expedited part of a project game and a number of related bankruptcy games, and

the special structure of the claims of the related bankruptcy games.

Theorem 3.4. Let ({N1 , . . . ,Nm}, p, r, a, R) be a project problem and let z be a surplus sharing mechanism.

Then, (N, vz) is convex.

Proof: Let ({N1 , . . . ,Nm}, p, r, R) be an expedited project problem, let z be a cost sharing mechanism, and

let (N, vz) be the expedited part of the project game. Since z is fixed, we denote cz,k by ck. Let i ∈ N and

S ⊂ T ⊂ N \ {i}, we have to show that vz(S ∪ {i}) − vz(S) ≤ vz(T ∪ {i}) − vz(T ).

Note that (N, vz) satisfies monotonicity, i.e. vz(S) ≤ vz(T ) for every S ⊂ T ⊂ N , since bankruptcy

games are monotonic together with Theorem 3.2. Therefore, if vz(S ∪ {i}) − vz(S) = 0 or vz(S) = vz(T ),

then the condition is satisfied by monotonicity of (N, vz). We can then assume without loss of generality

that vz(S ∪ {i}) > vz(S) and vz(T ) > vz(S) by monotonicity of (N, vz). Note that then vz(S ∪ {i}) > 0 and

vz(T ) > 0 since vz is nonnegative. We distinguish between two cases.
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Case 1: k̂(S ∪ {i}, vz) ≤ k̂(T, vz). Then,

vz(S ∪ {i})− vz(S) = Ek̂(S∪{i},vz) −
∑

j∈N\S

c
k̂(S∪{i},vz)
j + c

k̂(S∪{i},vz)
i −

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

≤ Ek̂(S∪{i},vz) −
∑

j∈N\S

c
k̂(S∪{i},vz)
j + c

k̂(S∪{i},vz)
i −

(

Ek̂(S∪{i},vz) −
∑

j∈N\S

c
k̂(S∪{i},vz)
j

)

+

≤ c
k̂(S∪{i},vz)
i

≤ c
k̂(T,vz)
i

= Ek̂(T,vz) −
∑

j∈N\T

c
k̂(T,vz)
j + c

k̂(T,vz)
i − Ek̂(T,vz) +

∑

j∈N\T

c
k̂(T,vz)
j

≤ Ek̂(T∪{i},vz) −
∑

j∈N\T

c
k̂(T∪{i},vz)
j + c

k̂(T∪{i},vz)
i −

(

Ek̂(T,vz) −
∑

j∈N\T

c
k̂(T,vz)
j

)

= vz(T ∪ {i})− vz(T )

where the first equality is a direct consequence of the definition of k̂ applied to S ∪ {i} and S and because

v(S ∪ {i}) > v(S)(≥ 0) by assumption; the first inequality follows by definition of k̂ applied to coalition

S; the second inequality is a direct consequence of (x)+ = max{0, x}; the third inequality follows because

k̂(S ∪ {i}, vz) ≤ k̂(T, vz) and by definition of ck we have ck̂(S∪{i},vz) ≤ ck̂(T,vz); the last inequality follows

by definition of k̂ applied to coalition T ∪ {i} and vz(T ∪ {i}) ≥ vz(T ) > 0; and the last equality is a direct

consequence of the definition of k̂ and vz(T ∪ {i}) ≥ vz(T ) > vz(S)(≥ 0) by assumption.

Case 2: k̂(S ∪ {i}, vz) > k̂(T, vz). In this case we show that the equivalent condition vz(S ∪ {i}) + vz(T ) ≤

vz(T ∪ {i}) + vz(S) is satisfied.

vz(S ∪ {i}) + vz(T ) = Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j + Ek̂(T,vz) −

∑

j∈N\T

c
k̂(T,vz)
j

= Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j + Ek̂(T,vz) −

∑

j∈N\S

c
k̂(T,vz)
j +

∑

j∈T\S

c
k̂(T,vz)
j

≤ Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(T,vz) −
∑

j∈N\S

c
k̂(T,vz)
j

)

+

+
∑

j∈T\S

c
k̂(T,vz)
j

≤ Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

+
∑

j∈T\S

c
k̂(T,vz)
j

≤ Ek̂(S∪{i},vz) −
∑

j∈N\(S∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

+
∑

j∈T\S

c
k̂(S∪{i},vz)
j

= Ek̂(S∪{i},vz) −
∑

j∈N\(T∪{i})

c
k̂(S∪{i},vz)
j +

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

≤ Ek̂(T∪{i},vz) −
∑

j∈N\(T∪{i})

c
k̂(T∪{i},vz)
j +

(

Ek̂(S,vz) −
∑

j∈N\S

c
k̂(S,vz)
j

)

+

21



= vz(T ∪ {i}) + vz(S),

where the first equality is a direct consequence of the definition of k̂ applied to S ∪ {i} and T together with

the assumption vz(S∪{i}) > vz(S)(≥ 0) and vz(T ) > vz(S)(≥ 0); the second inequality follows by definition

of k̂ applied to S; the third inequality is a direct consequence of k̂(T, vz) < k̂(S ∪ {i}, vz) and by definition

of ck we have ck̂(T,vz) ≤ ck̂(S∪{i},vz); the last inequality follows by definition of k̂ applied to coalition T ∪{i}

together with vz(T ∪ {i}) ≥ vz(T ) > 0; finally, the last equality follows by definition of k̂ together with

vz(T ∪ {i}) ≥ vz(T )(> 0) by monotonicity of vz . 2

3.3 Project games

Finally, we define the associated project game (N, uyz) by

uyz(S) =







− cy(S), if D(p|E\S , r|N\(E\S)) ≥ D(p);

vz(S), if D(p|E\S , r|N\(E\S)) < D(p).
(3.4)

for every S ⊂ N . Note that if the project has been delayed, then uyz = − cy since D(p|E\S , r|N\(E\S)) ≥

D(r) ≥ D(p) and therefore project games need not be convex (see Example 3.2).

As an illustrative example of the computation of project games, we compute the project game and its

corresponding core for the project problem in Examples 3.1 and 3.4.

Example 3.6. Consider the project problem ({N1, N2, N3, N4} , p, r, R) in Examples 3.1 and 3.4 which is

represented in Figure 2.

For the computation of (N, uyz), we first compute (N, cy) and (N, vz). In order to compute (N, cy), note

that only activity C, which is in path N3, has been delayed and hence y1 = (0), y2 = (0), y3 = (−R(−2), 0) =

(80, 0) and y4 = (0). Recall that we have used the serial surplus sharing mechanism for the computation of

(N, vz) (see Example 3.4). All coalitional values are given in Table 10.

It can be checked that the core of the game is

Core(uyz) = conv{(0, 0, 0, 256, 20), (0, 0, 0, 276, 0), (0, 240, 0, 16, 20), (0, 260, 0, 16, 0),

(256, 0, 0, 0, 20), (276, 0, 0, 0, 0), (16, 240, 0, 0, 20), (16, 260, 0, 0, 0),

(0, 0,−80, 336, 20), (0, 0,−80, 356, 0), (0, 240,−80, 96, 20), (0, 260,−80, 96, 0),

(256, 0,−80, 80, 20), (276, 0,−80, 80, 0), (16, 240,−80, 80, 20), (16, 260,−80, 80, 0)}.

3

The following example illustrates how availabilities of the activities are taken into account when solving

a project problem.
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S {A} {B} {C} {D} {E} {A,B} {A,C} {A,D} {A,E} {B,C} {B,D} {B,E} {C,D} {C,E} {D,E}

D(p|E\S , r|N\(E\S)) 23 23 23 21 23 23 23 19 23 23 21 23 21 23 21

− cy(S) 0 0 −80 0 0 0 −80 0 0 −80 0 0 0 −80 0

vz(S) 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0

uyz(S) 0 0 −80 0 0 0 −80 16 0 −80 0 0 0 −80 0

S {A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D} {B,C,E} {B,D,E} {C,D,E}

D(p|E\S , r|N\(E\S)) 23 17 23 19 23 19 21 23 21 21

− cy(S) −80 0 0 0 −80 0 0 −80 0 0

vz(S) 0 256 0 16 0 16 0 0 0 0

uyz(S) −80 256 0 16 −80 16 0 −80 0 0

S {A,B,C,D} {A,B,C,E} {A,B,D,E} {A,C,D,E} {B,C,D,E} N

D(p|E\S , r|N\(E\S)) 17 23 15 19 21 15

− cy(S) 0 −80 0 0 0 0

vz(S) 256 0 276 16 0 276

uyz(S) 256 −80 276 16 0 276

Table 10: Computation of the project game in Example 3.6.

Example 3.7. Consider the project problem ({N1, N2} , p, r, a, R) with N1 = {A, C} and N2 = {B, C};

p(A) = 15, p(B) = 10, and p(C) = 8; r(A) = 7, r(B) = 6, and r(C) = 12; a(A) = 0, a(B) = 0, and a(C) = 7;

and R(t) =







t3 − 100 if t < 0,

0 if t = 0,

t3 + 200 if t > 0,

represented in Figure 1.

Note that since activity C can only start 7 units of time before the planned starting time (i.e. at time 8),

the expedition of A is not fully exploited. Hence, D(Na, r) = 20 since C cannot start before time 8. In this

project problem, D(p) = 23 and D(r) = 20, therefore there is a total expedition of D(p) − D(r) = 3 and a

reward of R(6) = 227. Besides,

d(A) = 0, d(B) = 0, and d(C) = 4;

e(A) = 8, e(B) = 4, and e(C) = 0;

rslack(N1, p, r) = 0 − 4 and rslack(N1, p, r) = 5 − 4 = 1;

J1 = {1} and J2 = {2}

F 1 = R(1) − R(0) = 201 and F 2 = R(3) − R(1) = 26.

For the computation of (N, uyz), we first compute (N, cy) and (N, vz).

Since only activity C has been delayed and C needs the expedition of A to compensate its own delay,
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we have that, for any cost sharing mechanism y, cy(S) = 164 if S = {C} or S = {B, C} and cy(S) = 0

otherwise. For the computation of (N, vz) we use the serial surplus sharing mechanism. Associated to each

path Nα we have the surplus problem:

(N1, p
1, R1) : N1 = {A, C}, p1(A) = min{e(A), a(C)} = min{8, 7} = 7 and p1(C) = 0,

R1(t) = R(t) for t > 0 and R1(t) = 0 otherwise, and z1 = (543, 0).

(N2, p
2, R2) : N2 = {B, C}, p2(B) = min{e(B), a(C)} = min{4, 7} = 4 and p2(C) = 0,

R2(t) = R(t + 1) − R(1) for t > 0 and R2(t) = 0 otherwise, and z2 = (124, 0).

All coalitional values are given in Table 11.

S {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}

D(p|E\S , r|N\(E\S)) 22 27 27 20 22 27 20

− cy(S) 0 0 −164 0 0 −164 0

vz(S) 201 0 0 227 201 0 227

uyz(S) 201 0 −164 227 201 −164 227

Table 11: Computation of the project game in Example 3.7.

It can be checked that the core of the game is

Core(uyz) = conv{(391, 0,−164), (365, 26,−164), (201, 26, 0), (227, 0, 0)}. 3

Theorem 3.5. Project games have a nonempty core.

Proof: Let ({N1 , . . . ,Nm}, p, r, a, R) be a project problem, let y and z be a cost and a surplus sharing

mechanism, respectively, and let (N, uyz) be the associated project game. We distinguish between two cases.

Case 1: D(p) ≤ D(r).

In this case, D(p) ≤ D(r) ≤ D(p|E\S , r|N\(E\S)) for every S ⊂ N , and therefore uyz(S) = − cy(S) for every

S ⊂ N . Then, (N, uyz) has a nonempty core by Theorem 3.1.

Case 2: D(p) > D(r).

In this case, uyz(N) = vz(N) and uyz(S) ≤ vz(S) for every S ⊂ N . By Theorem 3.4, we know that

(N, vz) is convex and therefore Core(vz) 6= ∅. Let x ∈ Core(vz), then
∑

i∈N xi = vz(N) = uyz(N) and
∑

i∈S xi ≥ vz(S) ≥ uyz(S) for every S ⊂ N , and therefore x ∈ Core(uyz). 2

We now show that the core of project games satisfies some basic and desirable properties for solutions of

project problems.
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In many project problems the general manager of the project does not have legal authority to oblige

delayed activities to compensate expedited activities for their contribution to decrease the total delay of the

project. In this situation, a set-valued solution should satisfy: if the project is neither delayed, nor expedited,

then there should be a solution in which nobody is neither punished, nor rewarded, i.e. if D(r) = D(p), then

the zero vector should be a possible solution; if the project is delayed, then there should be a solution in which

the delayed activities pay exactly the total cost associated to the total delay, i.e. expedited activities are

not compensated; if the project is expedited, then there should be a solution in which expedited activities

get exactly the total reward associated to the total expedition, i.e. the delayed activities don’t have to

compensate expedited activities.

Let D be the set of delayed activities, i.e. D = {i ∈ N |p(i) < r(i)}, and recall that E is the set of

expedited activities, i.e. E = {i ∈ N |p(i) > r(i)}.

Theorem 3.6. Let ({N1 , . . . ,Nm}, p, r, a, R) be a project problem, let y and z be a cost and surplus sharing

mechanism, respectively, and let (N, uyz) be the associated project game.

(i) If D(p) < D(r), then there exist x ∈ Core(uyz) such that xi = 0 for every i ∈ N \ D.

(ii) If D(p) = D(r), then 0 ∈ Core(uyz).

(iii) If D(p) > D(r), then there exist x ∈ Core(uyz) such that xi = 0 for every i ∈ N \ E.

Proof: (i) If D(p) < D(r), then D(p) < D(r) ≤ D(p|E\S , r|N\(E\S)) for every S ⊂ N , and therefore

uyz(S) = − cy(S) for every S ⊂ N . Let α̂ ∈ {1, . . . , m} be such that D(r) = D(Nα̂, r), i.e. Nα̂ is re-

sponsible of the total delay of the project. Consider the taxation problem (N, Eα̂, cα̂) given by Eα̂ =

K(
∑

i∈Nα̂
d(i) −

∑

i∈Nα̂
e(i) − slack(Nα̂, p)), cα̂

i = yα̂
i if i ∈ Nα̂ and cα̂

i = 0 if i ∈ N \ Nα̂. Note that

cα̂
i = 0 for every i ∈ Nα̂ \ D. By the proof of Theorem 3.5, we know that Core(c(N,Eα̂,cα̂)) ⊂ Core(cy).

Moreover, it is well known that any x ∈ Core(c(N,Eα̂,cα̂)) satisfies 0 ≤ x ≤ cα̂, and therefore xi = 0 for every

i ∈ N \ D.

(ii) If D(p) = D(r), then D(p) = D(r) ≤ D(p|E\S , r|N\(E\S)) for every S ⊂ N , and therefore uyz(S) =

− cy(S) ≤ 0 for every S ⊂ N . Moreover, uyz(N) = 0 and then 0 ∈ Core(uyz).

(iii) If D(p) > D(r), then uyz(N) = vz(N) and uyz(S) ≤ vz(S) for every S ⊂ N . Then, Core(vz) ⊂ Core(uyz).

Since fz
i = 0 for every i ∈ N \ E, we have vz(S ∪ {i}) = vz(S) for every i ∈ N \ E and therefore xi = 0 for

every x ∈ Core(vz) and i ∈ N \ E. 2
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To finalize, we focus on project problems where the reward function is proportional to the expedition of

the project. It turns out that the core of the game proposed in Estévez-Fernández et al. (2007) is always

contained in the core of our project game. Recall that given a project problem ({N1 , . . . ,Nm}, p, r, R) with

R(t) = αt for every t ∈ R, α ≥ 0, the corresponding game in Estévez-Fernández et al. (2007), (N, ū), is

defined by

ū(S) =







−αc̄(S) if D(p|E\S , r|N\(E\S)) ≥ D(p),

αv̄(S) if D(p|E\S , r|N\(E\S)) < D(p),
(3.5)

with

c̄(S) = max
α∈P(S)







min







(

∑

i∈Nα∩S

d(i) −
∑

i∈Nα∩S

e(i)

)

+

,

(

∑

i∈Nα

d(i) −
∑

i∈Nα∩S

e(i) − slack(Nα, p)

)

+













and

v̄(S) =

g
∑

k=1

(

F k − w̄k(S)
)

where w̄k(S) = min
{

∑

i∈(
S

k
l=1 NJl

)\S e(i) −
∑k−1

l=1 w̄l(S), F k
}

.

Theorem 3.7. Let ({N1 , . . . ,Nm}, p, r, R) be a project problem with R proportional to the expedition time

of the project and let (N, uyszs) be the associated project game. Then, Core(ū) ⊂ Core(uyszs).

Proof: Due to the proportionality of the reward function, we can assume without loss of generality that

R(t) = t for every t ∈ R. From the definition of ys and zs and the fact that all activities can start as soon

as necessary, we have that cys and vzs can be rewritten as

cys(S) = max
α∈P(S)







min







∑

i∈Nα∩S

d(i),

(

∑

i∈Nα

d(i) −
∑

i∈Nα∩S

e(i) − slack(Nα, p)

)

+













and

vzs(S) =

g
∑

k=1

(

F k − w̄k(S)
)

where wk
zs(S) = min

{

∑

i∈(
S

k
l=1 NJl

)\S e(i) −
∑k−1

l=1 wl
zs(S), F k

}

.

It is easily seen that w̄k = wk
zs for every k ∈ {1, . . . , g}, v̄ = vzs , ū(N) = uyszs(N) and c̄ ≤ cys . Therefore,

ū ≥ uyszs with ū(N) = uyszs(N) which implies Core(ū) ⊂ Core(uyszs). 2

4 Final remarks

We have generalized the work in Estévez-Fernández et al. (2007) by both considering non decreasing reward

functions and by taking into account whether an activity can be started before its planned starting time. We
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have seen in Theorem 3.7 that the core of our game is bigger than the core of the game in Estévez-Fernández

et al. (2007). Besides, the core of the game in Estévez-Fernández et al. (2007) does not need to satisfy the

properties in Theorem 3.6 as illustrated in the following example.

Example 4.1. Consider the project problem ({N1} , p, r, R) with N1 = {A, B, C}; p(A) = 7, p(B) = 8, and

p(C) = 10; r(A) = 8, r(B) = 11, and r(C)=9; and R(t) = t. The project is represented in Figure 4.

b b b b

A B C

Figure 4: Representation of the project in Example 4.1.

In this problem, D(p) − D(r) = −3; d(A) = 1, d(B) = 3, and d(C) = 0; e(A) = 0, e(B) = 0, and e(C) = 1.

The values of the game in Estévez-Fernández et al. (2007), (N, ū), and our project game are given in Table 12.

For the computation of (N, uyz) we have used yi(N, q, K) = qi and zi(N, p, R) = pi.

S {A} {B} {C} {A,B} {A,C} {B,C} N

ū(S) −1 −3 0 −4 0 −2 −3

uyz(S) −1 −3 0 −4 −1 −3 −3

Table 12: Coalitional values in Example 4.1.

It can be checked that

Core(ū) = {(−1,−3, 1)}

while

Core(uyz) = conv{(−1,−3, 1), (−1,−2, 0), (0,−3, 0)}. 3

We have used cooperative games to find solutions to project problems. The associated project game, in

our opinion, provides an adequate thought experiment to evaluate coalitional influence and the core of this

game provides a suitable answer to the allocation problem at hand.

Contrary to our focus on finding suitable allocations satisfying some basic properties, Castro, Gómez

and Tejada (2007) concentrate on finding a game related to project problems satisfying some “desirable”

properties. They put forward the properties of separability, non-manipulability by splitting, and independent

slack and propose a cooperative game to share the total delay or expedition of a project satisfying these three

properties. One can question the desirability of these three properties when we concentrate on the allocation

of the rewards (or penalties) created by a project that has not performed as planned. For instance, the

property of separability says that if a project can be decomposed in two different (sub)projects (i.e. if there

is a node used by all paths in the project), then the associated game can be decomposed as the sum of
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the two games associated to the two corresponding (sub)projects. Note that the total reward of the project

does not need to equal the sum of the rewards of the (sub)projects since we allow for non additive reward

functions too. Hence, in our setting, separability does not need to be satisfied by project problems, let alone

by the associated games.

In our opinion, it is not the properties of the game as a whole that are relevant, but rather the properties

of the derived solutions (except of course from adequately modeling the coalitional possibilities).

As mentioned above, Castro, Gómez and Tejada (2007) define a cooperative game to share the total

delay or expedition of a project. If one uses the core of this game to share the total reward in a project

problem where the reward function is proportional to the total expedition or delay of the project, one

encounters unwanted features in the allocations proposed by the core. It turns out that for projects in which

the corresponding graph is a line, the game in Castro et al. (2007) is additive (i.e. the value of a coalition

equals the sum of the individual values of its members). Therefore, the core of their game does not need to

satisfy any of the properties proposed in Section 3.

Example 4.2. Consider the project problem ({N1} , p, r, R) with N1 = {A, B}, p(A) = 10, p(B) = 15,

r(A) = 13, r(B) = 12, and R(t) = t. The project is represented in Figure 5.

b b b

A B

Figure 5: Representation of the project in Example 4.2.

In this problem, D(p)−D(r) = 0, d(A) = 3, d(B) = 0, e(A) = 0, e(B) = 3, the values of their corresponding

game (N, v) are v({A}) = −3, v({B}) = 3, v({A, B}) = 0, and Core(v) = {(−3, 3)}. 3
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