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Abstract

Power is a core concept in the analysis and design of organizations. One of the problems

with the extant literature on positional power in hierarchies is that it is mainly restricted

to the analysis of power in terms of the bare positions of the actors. While such an

analysis informs us about the authority structure within an organization, it ignores the

decision-making mechanisms completely. The few studies which take into account the

decision-making mechanisms make all use of adaptations of well-established approaches

for the analysis of power in non-hierarchical organizations such as the Banzhaf measure;

and thus they are all based on the structure of a simple game, i.e. they are ‘membership-

based’. In van den Brink and Steffen (2008) it is demonstrated that such an approach is in

general inappropriate for characterizing power in hierarchies as it cannot be extended to

a class of decision-making mechanisms which allow certain actors to terminate a decision

before all other members have been involved. As this kind of sequential decision-making

mechanism turns out to be particularly relevant for hierarchies, we suggested an action-

based approach - represented by an extensive game form - which can take the features

of such mechanisms into account. Based on this approach we introduced a power score

and power measure that can be applied to ascribe positional power to actors in sequential

decision making mechanisms. In this paper we provide axiomatizations of this power score

and power measure for one of the most studied decision models, namely that of binary

voting.
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1 Introduction

Positional power is what results from the interplay of two components of an organization’s

architecture: the arrangement of positions in the organization and the decision-making

mechanisms in use. The extant literature on positional power in hierarchies is mainly re-

stricted to the analysis of power only in terms of the arrangement of the positions which

informs us about the authority structure within the hierarchy1. The few studies which

also take into account the decision-making mechanisms make all use of adaptations of well-

established approaches for the analysis of power in non-hierarchical organizations such as

the Banzhaf (1965) measure; and thus they are all based on the structure of a simple game,

i.e. they are ‘membership-based’.2 In van den Brink and Steffen (2008) we demonstrated

that such an approach is in general inappropriate for sequential decision-making mecha-

nisms which allow certain actors to terminate a decision before all other members have

been involved. As this kind of decision-making mechanism is particularly relevant for hier-

archies, we suggested an action-based approach - represented by an extensive game form -

which can take the features of such mechanisms into account. Based on this approach we

introduced a power score and measure which can be applied to ascribe positional power to

actors in sequential decision making mechanisms.

Hierarchies form a certain subclass of organizational architectures. Following van

den Brink (1994) they distinguish themselves from other organizational architectures by

the arrangement of its members being connected via directed relations, which we interpret

as dominance (or superior to) relations. Loosely speaking, we can say that an actor i in a

dominating position has an influence on the ‘powers’ of other actors who are in positions

that are dominated by i. Domination can be either indirect or direct, i.e. with or without

intermediate actors. Note, that if we just make use of the term ‘domination’ without

further specification, we allow for indirect and direct domination.

Actors in dominating positions are called superiors (or principals) - bosses or man-

agers in common parlance -, while the actors in dominated positions are called subordinates

(or agents). If we refer to a superior who directly dominates another actor, the dominating

actor is called a predecessor, and if we refer to a subordinate who is directly dominated by

another actor, the dominated actor is called a successor.

The second component of an organizational architecture we refer to in our analy-

sis are the decision-making mechanisms (DMMs) in use. A decision-making mechanism

1See, for instance, Copeland (1951), Russett (1968), Grofman and Owen (1982), Daudi (1986), Brams

(1968), van den Brink (1994, 2002), van den Brink and Gilles (2000), Mizruchi and Potts (1998), Hu and

Shapley (2003), Herings et al. (2005), and the references therein.
2See van den Brink (1994, 1997, 1999, 2001), Gilles et al. (1992), Gilles and Owen (1994), van den

Brink and Gilles (1996), Berg and Paroush (1999), Shapley and Palamara (2000a,b), and Steffen (2002).
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consists of a decision rule together with a decision-making procedure. A decision-making

procedure provides the course of actions of the actors for a collective decision and deter-

mines the actions to be counted, i.e. which actions go into the domain of the decision rule.

The sets of actions from which an individual actor can choose are created by the proposals

submitted to the organization. The choices within the organization are made by one or

more actors where each of these actors has to perform an action to make its individual

choice effective. How those actions and the outcomes are linked is given by the decision

rule. In other words: a decision rule is a function which maps ordered sets of individually

chosen actions into outcomes.

In this paper we propose an axiomatization of the power score and measure for

positional power in hierarchies introduced in van den Brink and Steffen (2008) for one of

the most discussed decision-making situations in the voting power literature, namely that of

binary voting. The paper is organized as follows. In Section 2 we discuss some preliminaries

on collective decision making in hierarchies, power and directed graphs. Section 3 describes

the model and the power score and measure. In Section 4 we provide axiomatizations of

the power score, while Section 5 contains an axiomatization of the power measure. Finally,

Section 6 contains concluding remarks on the relation of our model to Sah and Stiligtz’s

(1985, 1986) work on hierarchies.

2 Preliminaries

2.1 Collective decision making in hierarchies

There exist two DMMs, the One Desk Conjunctive and the One Desk Disjunctive DMM

which can be regarded to be the elementary bottom-up DMMs for hierarchies as they form

the root of the other DMMs discussed in the literature3. They are the simplest DMMs that

take into account the existence of the dominance structure which distinguishes a hierarchy

from any other organizational architecture. Both DMMs are characterized by a set of nine

joint assumptions. These assumptions are:

1. Proposals submitted to the hierarchy are exogenous: it is the task of the hierar-

chy either to accept or to reject the proposal, i.e. we have a binary outcome set:

{acceptance, rejection}.

2. A proposal can be submitted to the hierarchy only once.

3. A hierarchy contains a finite set of members N , |N | ≥ 2, whose actions bring about

the decision of the hierarchy.

3See van den Brink and Steffen (2008) for an overview.
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4. Each actor i ∈ N has a binary action set, {yes, no}, to chose from where ‘yes’ means

that i supports the proposal and ‘no’ that i rejects the proposal.

5. The direction of the decision-making procedure through the hierarchy is bottom-up.

6. New proposals entering the organization can only be received by bottom actors being

actors in positions with no successors.

7. A new proposal can only be received by one bottom actor at the same time (One

Desk Model).

8. The choice of the ‘yes’-action results (i) in a final approval if actor i is the top

actor, i.e. if i has no predecessor, or (ii) in forwarding the proposal to one or more

predecessors if i is not the top actor.

9. The choice of the ‘no’-action results in a final rejection of the proposal, if (i) actor i

is a bottom actor, or (ii) if for the actor who has forwarded the proposal to i there

is no other predecessor left to ask for an approval of the proposal whose individual

approval contains the potential of a final approval. If such predecessor exists it results

in forwarding the proposal to this actor.

Assumptions 1-4 are also common in the analysis of power in non-hierarchical organizations.

The other assumptions are additional for hierarchies. Both DMM’s that we referred to

above satisfy assumptions 1-9. They differ with respect to the following two assumptions,

where each satisfies either one of these two assumptions.

10. (One Desk Conjunctive DMM) For the approval of a new proposal received by bottom

actor i, the consent of all superiors of i is necessary and sufficient.

11. (One Desk Disjunctive DMM) For the approval of a new proposal received by bottom

actor i, the consent of all superiors of i along one path up to the top is necessary and

sufficient.

These two DMM’s respect the following two basic principles:

P1. Reduction of the breadth of the hierarchy involved in a particular decision by a trun-

cation of the hierarchy.

P2. Permission for non-top actors to make certain types of final decisions on behalf of the

whole hierarchy even before one of their superiors has been involved.
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Especially the second principle is an essential characteristic of DMMs in hierarchies which

is often overlooked in the literature.

In this paper we restrict our attention to strict hierarchies that are represented

by (rooted) directed trees (see Section 2.3), see also e.g. Radner (1992). For such strict

hierarchies the Conjunctive and Disjunctive DMM’s coincide and therefore we will speak

only about the One Desk Conjunctive DMM.

2.2 Power

Our understanding of ‘power’ is based on Harré (1970) and Morriss (1987/2002) who define

power as a concept that always refers to a generic ability or capacity of an object. In a

social context this object is an actor and a power ascription refers to its ability: what the

actor is able to do against the resistance of at least some other actor. Following Braham

(2008) we say that an actor i has power with respect to a certain outcome if i has an

action (or sequence of actions) such that the performance of the action under the stated

or implied conditions will result in that outcome despite the actual or possible resistance

of at least some other actor. That is, power is a claim about what i is able to do against

some resistance of others irrespective of the actual occurrence of the resistance. Thus,

power is a capacity or potential which exists whether it is exercised or not. In our context,

this capacity is based on the positions of the actors in an organizational architecture. The

measurement of power involves the following steps:

(i) The identification of the action profiles within the organization that are sufficient for

bringing about an outcome.

(ii) The ascription of power to an individual actor in these action profiles by determining

if the actor has an action that if performed will, ceteris paribus, alter the outcome

of the collective action.

(iii) The aggregation of the individual power ascriptions of each actor, giving us a bare

power score.

(iv) The weighting of the aggregated power ascriptions of each actor yielding a power

measure.

We will make use of these four steps in Section 3 explaining our score and measure.

2.3 Directed graphs

We end the preliminaries by describing some basic concepts of directed graphs. For a finite

set of actors N ⊂ IN we model a hierarchical structure by a directed graph (N,D) where
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D ⊆ N × N is a binary relation on N . Given a digraph (N,D) we denote SD(i) = {j ∈

N | (i, j) ∈ D} as the set of successors of i, and the set S−1D (i) = {j ∈ N | i ∈ SD(j)} as

the set of predecessors of i. (We will omit the subscript D if this leads to no confusion.)

Further we denote by ŜD(i) the successors of i in the transitive closure of D, i.e. j ∈ ŜD(i)

if and only if there exists a sequence of actors (h1, . . . , ht) such that h1 = i, hk+1 ∈ S(hk)

for all 1 ≤ k ≤ t − 1, and ht = j. The actors in ŜD(i) are called the subordinates of i,

and the players in Ŝ−1D (i) = {j ∈ N | i ∈ ŜD(j)} are called the superiors of i. In this

paper we restrict our attention to hierarchies with a tree structure, i.e. we consider acyclic

structures with a unique actor at the top having no predecessors and being superior of all

other actors, while all other actors have exactly one predecessor. These structures are also

called strict hierarchies. Since in this paper we only consider such strict hierarchies we will

often refer to them just as hierarchies. We denote the top actor by i0, i.e. |S−1(i0)| = 0 and

|S−1(j)| = 1 for all j ∈ N \ {i0}. Note that every directed tree has at least one actor that

has no successors. We call these actors in the set K(D) = {i ∈ N | SD(i) = ∅} the bottom

actors. For a subset T ⊂ N we denote by (T,D(T )) with D(T ) = {(i, j) ∈ D | {i, j} ⊆ T},

the subdigraph restricted to T . Finally, we denote the class of all digraphs by D.

3 The model

3.1 Power in sequential voting

Presuming that only bottom actors may receive a proposal on their desk, we presuppose

that only those have contact with the outside world. Based on this let us assume a voting

procedure that combines hierarchical and polyarchical features similar to those of Sah and

Stiglitz (1985, 1986), but in the context of binary voting4.

Assume an organization described by a tree (N,D) on the set of actors N . As

mentioned above, new proposals enter the organization at one desk of a bottom actor, i.e.

an actor in the set K(D). Let us first consider the most simple case, namely that of a line

structure. Without loss of generality we consider the line given by D = {(i, i + 1) | i ∈

{1, . . . , n − 1}}. So, S(i) = i + 1 for all i ∈ {1, . . . , n − 1} and S(n) = ∅. We consider

this line as a hierarchy in the sense of Sah and Stiglitz (1986) meaning that the approval

of all actors in the line is necessary for acceptance. So, in this case the proposal enters

the organization at position n. If the actor in this position rejects then the proposal is

rejected by the organization, and if it accepts then the proposal goes to actor n − 1. If

that actor n− 1 rejects then the proposal is rejected and if it accepts then it goes to actor

4Thus, the ‘correct’ choice is endogenously determined by the preference profile and social welfare

function, and not exogenously given as in Sah and Stiglitz (1985, 1986). For a discussion of the relation

of our model to Sah and Stiglitz’s work see Section 6.
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n − 2, and so on until it (possibly) reaches actor 1. Acceptance or rejection of actor 1

leads to acceptance or rejection, respectively, by the organization. Clearly, in this case the

proposal is accepted if and only if all actors accept it. Note that this also implies that the

proposal has reached all actors. Clearly then, in this specific circumstance all actors seem

equally powerful. However, that is not so obvious if one of the actors rejects the proposal

since by the sequential nature of the decision making process the proposal will not reach

all superior actors who, thus, cannot cast their vote. As mentioned before, the established

power measures in the literature do not take account of this sequential feature (Principle

P2).

Besides the choice whether to take account of the sequential nature of the decision

making process, we must make more assumptions in case the tree is not a line. In that case

there exists more than one actor who might receive the proposal from the outside world,

and we must make an assumption about which bottom actor receives the proposal under

the One Desk Model. Applying the principle of insufficient reason of classical probability

theory5, we assume that each bottom actor receives the proposal with equal probability6.

Then a sequential hierarchical decision process in the line from the corresponding bottom

position to the top will start7. In this way, when measuring power we can focus on truncated

hierarchies, i.e. we consider a tree as a union of lines.

3.2 Power score and measure

In van den Brink and Steffen (2008) a power score and measure are proposed for general

DMMs in hierarchies. There we argue, in a more general setting, that step (i), i.e. identi-

fying action profiles, requires a set-up that allows for an action-based representation of a

DMM in an organizational architecture. Similar as with models of simultaneous voting, for

the One Desk Conjunctive DMM in a binary voting model, the score of an actor is deter-

mined by its number of swings. In traditional (simultaneous) voting, a swing of an actor

is an action profile where the outcome changes if the actor changes its vote, given that the

other actors do not change their vote. This works well in a simultaneous voting situation

5In the absence of any information about the outside world the application of the principle of insufficient

reason appears to be legitimate here as we fulfill the condition that we have a finite probability space

consisting of finitely many clearly distinguished indivisible ‘atomic events’ (Felsenthal et al. 2003).
6Of course, other probability distributions than this uniform distribution may be considered.
7Alternatively, and in line with Sah and Stiglitz’s (1985, 1986) idea of a polyarchy, one may, for

instance apply an All Desk Model stating that the proposal enters at all bottom positions, and that one

full hierarchical approval in one of the lines is sufficient for approval by the organization, see the concluding

remarks at the end of this paper. Another intermediate version would be a Multi Desk Model assuming

that a new proposal enters the organization at more than one but less than all desks belonging to bottom

actors.
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where every action profile consists of n votes, one for each actor. Usually these profiles

are represented by simple games, i.e. sets of coalitions voting ‘yes’, while the complement

consists of the actors that vote ‘no’. Therefore, this is referred to as a membership-based

approach. However, in a sequential DMM as considered here, not all actors vote in every

action profile. This creates several problems in step (ii), for example with respect to the

ceteris paribus clause. It might be that with a certain action of actor i, another actor j

will not vote, but when i changes its action, then j gets to vote and has an influence on

the outcome. Then i changing its action might lead to a different outcome, but not nec-

essarily (depending on the voting behavior of j and possibly other actors). On one hand

we cannot consider this to be a ‘full’ swing for actor i since it cannot, for sure, change the

outcome, given that the other actors vote the same (because in the original action profile

j did not vote). On the other hand, by changing its vote i can create a situation where the

outcome might change, so we can still consider this to be some kind of swing. Therefore,

we distinguish between strong and weak swings. In our case of a binary outcome set actor

i has a strong swing if, by changing its action it changes the outcome for sure (i.e. turns

a rejection into an acceptance or vice versa). Actor i has a weak swing, if by changing its

action it allows other outcomes, but also the original outcome is still possible.

We illustrate this with an example.

Example 3.1 Consider the hierarchy (N,D) with N = {1, 2} and D = {(2, 1)}. In a

simultaneous voting situation we would consider four action (or voting) profiles:

(yes, yes), (yes, no), (no, yes) and (no, no).

However, in our DMM, if actor 1 votes ‘no’ then the voting stops and the proposal is

rejected. So, we have only three action profiles: (yes, yes), (yes, no) and (no). Actor 2

has a strong swing in the first two profiles: by changing its vote the outcome changes from

acceptance to rejection, respectively the other way round. Actor 1 has a strong swing

in profile (yes, yes) since changing its vote would change an acceptance into a definite

rejection. However, considering the profile (no) which yields rejection, by changing its vote

the outcome might still be rejection, but also acceptance is possible, depending on the vote

of actor 2. Therefore we refer to this as a weak swing. �

It is usually said that an actor i has a positive swing, if i by switching from a ‘no’- to a

‘yes’-action can alter the outcome from rejection to acceptance and has a negative swing,

if by switching from a ‘yes’- to a ‘no’-action can alter the outcome from acceptance to

rejection.
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To formally measure power, taking account of the sequential nature of the DMM,

van den Brink and Steffen (2008) introduced a power score and measure as follows8. In the

power score (step iii) for every actor its expected number of strong swings are fully counted

while its expected number of weak swings are counted only for a fraction ǫ ∈ [0, 1].9 Thus,

if ǫ = 1 weak swings are counted the same as strong swings, while weak swings are not

counted at all if ǫ = 0.

For every bottom subordinate of actor i the number of strong and weak swings

containing that particular bottom subordinate is the same. Therefore, by |SW s
i | we denote

the number of strong swings of actor i containing a particular bottom subordinate of i, and

by |SWw
i | we denote the number of weak swings of actor i containing a particular bottom

subordinate of i. Since we assumed the proposal to enter every bottom desk with equal

probability, the power score ηǫ(N,D) of actor i is given by

ηǫi (N,D) =
|S(i)|

|K(D)|
(|SW s

i |+ ǫ|SW
w
i |), (3.1)

where S(i) = (Ŝ(i) ∪ {i}) ∩ K(D) (and, thus, |S(i)|
|K(D)|

is the probability that the proposal

enters at the desk of one of the bottom subordinates of i or at i’s desk if i is a bottom

actor itself).

Consider a bottom actor i ∈ K(D). This actor has one strong and one weak swing.

The strong swing results from the action profile where every actor votes ‘yes’. Clearly, this

action profile yields acceptance, while actor i switching its vote from ‘yes’ to ‘no’ yields

rejection of the proposal. Bottom actor i also has one weak swing, namely the action

profile where it votes ‘no’. This leads to a rejection, which might change if the actor votes

‘yes’, but not necessarily changes. Since all bottom actors receive the proposal with equal

probability, i’s swings occur with probability 1
|K(D)|

. Considering the actors i �∈ K(D)∪{i0}

that are not at the bottom nor at the top, the same reasoning can be followed for each of

their subordinates at the bottom. Hence, for each truncated hierarchy ‘middle’ actor i is

a member of, i has one weak and one strong swing, each occurring with probability 1
|K(D)|

.

Finally, the top actor i0 has two strong swings for every bottom actor.

Since (i) every nontop actor has one strong and one weak swing associated to each

of it subordinate bottom actors, and (ii) the top-actor has two strong swings associated to

8The binary setup in this paper allows us to represent our action-based score and measure by the

digraph of the dominance structure. For a more general representation using extensive game forms we

refer to van den Brink and Steffen (2008).
9Note that in van den Brink and Steffen (2008) we assume ǫ ∈ (0, 1) as it appears conceptually reasonable

to exclude ǫ = 0 and ǫ = 1. However, for the axiomatization of the score and measure it turns out to be

useful to formally allow for both extremes.

8



every bottom actor, the power score ηǫ(N,D) of actor i �= i0 given by (3.1) is equal to

ηǫi (N,D) =





2|S(i0)|
|K(D)|

= 2 if i = i0

|S(i)|
|K(D)|

(1 + ǫ) if i �= i0.

(3.2)

To define the power measure (step iv), the power score of every actor is divided by the

expected number of action profiles it is a member of 10. Every bottom actor (who can receive

the proposal from the outside world), and all its superiors are member of a ‘positive’ profile

where they all vote ‘yes’, which yields acceptance. Further, in this truncated hierarchy the

bottom actor is member of the ‘negative’ profile where it votes ‘no’. Each of its superior

actors is member of a ‘negative’ profile where every subordinate on the path from this actor

to the bottom actor votes ‘yes’, and this actor votes ‘no’, yielding rejection. (Note that

every such action profile consists of a number of consecutive ‘yes’ votes, and ends with a

‘no’ vote.) Clearly, there are |Ŝ−1(i)|+1 of such action profiles for bottom actor i ∈ K(D).

So, for each of its subordinate bottom actors, every actor i is member of |Ŝ−1(i)|+2 action

profiles containing this bottom subordinate, and the probability that nature chooses an

action profile containing one of i’s bottom actors or i itself if i is a bottom actor is |S(i)|
|K(D)|

.

This yields the β̂ǫ- power measure

β̂ǫi (N,D) =
ηǫi (N,D)

|S(i)|
|K(D)|

(
|Ŝ−1(i)|+ 2

) =





2
1(0+2)

= 1 if i = i0

|S(i)|
|K(D)|

(1+ǫ)

|S(i)|
|K(D)|(|Ŝ−1(i)|+2)

= (1+ǫ)

(|Ŝ−1(i)|+2)
if i �= i0.

(3.3)

Note, that the composition of the denominator of this power measure shows a significant

difference compared to the denominator of the well known Banzhaf measure for simultane-

ous voting situations. To obtain the Banzhaf measure from the Banzhaf score for an actor

i its score is divided by 2n−1. Representing the voting situation by a simple game being

a ‘one-sided’ model based upon so-called ‘winning coalitions’ this number corresponds to

the number of coalitions actor i is a member of and in which all members vote ‘yes’. In

terms of action profiles this is equal to the number of all action profiles containing actor

i and in which i votes ‘yes’. However, in principle, 2n−1 could also be interpreted to be

10In the more general setting considered in van den Brink and Steffen (2008) the denominator is the

expected number of alternative actions in action profiles actor i is a member of. Since in the binary voting

model considered here an actor can choose only between two actions, this denominator boils down to the

expected number of action profiles i is a member of. In order to obtain this expected number the action

profiles of each truncated hierarchy i is a member of are weighted by the probability that this truncated

hierarchy occurs, i.e. by the probability that a proposal enters at the desk of the bottom actor of this

truncated hierarchy.
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the number of coalitions actor i is a member of and in which all members vote ‘no’ or, in

terms of action profiles, as the number of all action profiles containing actor i and in which

i votes ‘no’. Which interpretation is used makes no difference to the power ascribed by

the Banzhaf measure as under a simultaneous voting situation the number of both types

of coalitions (and action profiles) is identical. However, this equality does no longer hold

for sequential voting situations. We showed above that in sequential voting, for each of

its subordinate bottom actors an actor i has one action profile in which it votes ‘no’ (in

which, moreover, i has a positive weak swing), and |Ŝ−1(i)| + 1 action profiles in which

i votes ‘yes’ (in one of those i has a positive strong swing). Thus, following the idea of

the Banzhaf measure and modifying the denominator in (3.3) by dividing our power score

ηǫi (N,D) by the number of action profiles in which i votes ‘yes’ or i votes ‘no’ yields two

different power measures. If we would define the measure by dividing the power score to

the expected number of action profiles in which an actor votes ‘no’, then the measure is

equal to the power score, since for every subordinate bottom actor there is only one such

an action profile. However, the βǫ-measure that is obtained by dividing the power score

to the expected number of action profiles in which an actor votes ‘yes’ is not equal to the

power score, and is given by

βǫi (N,D) =
ηǫi (N,D)

|S(i)|
|K(D)|

(
|Ŝ−1(i)|+ 1

) =





2
1
= 2 if i = i0

S(i)|
|K(D)|

(1+ǫ)

|S(i)|
|K(D)|(|Ŝ−1(i)|+1)

= (1+ǫ)

(|Ŝ−1(i)|+1)
if i �= i0.

(3.4)

Example 3.2 For the hierarchy of Example 3.1 the power score and measures, respec-

tively, are given by ηǫ(N,D) = (1 + ǫ, 2), β̂ǫ(N,D) = (1
3
(1 + ǫ), 1) and βǫ(N,D) =

(1
2
(1 + ǫ), 2). �

In the next sections we present axiomatic characterizations of the ηǫ-score and βǫ-measure

of power under the One Desk assumption.

4 Axiomatizations of the power score

In this section we provide axiomatizations of the power score ηǫ given by (3.2). We first

discuss the extreme cases ǫ ∈ {0, 1}, from which the general result follows.

10



4.1 The case ǫ = 1

We begin with the special case where strong and weak swings are assigned equal weight.

For ǫ = 1 the power score (3.2) equals

η1i (N,D) =
2|S(i)|

|K(D)|
for all i ∈ N. (4.5)

Next, we provide two axiomatizations of the power score η1. The first one uses three

axioms. As mentioned earlier, our view of power is based on a definition of power as an

ability or capacity which exists whether it is exercised or not. What counts is what an actor

is able to do in its position in the hierarchy if a proposal reaches him. Thus, its power is

independent from the choices of his successors (in the dominance structure). Furthermore,

according to our definition of a swing the top has two (strong) swings. Hence, we postulate

that the top should have a power score of two having in mind that the score of an actor

is the result of the aggregation of its individual power ascription (step (iii) in Section 2.2).

In the following we denote by f a generic power score or measure.

Axiom 4.1 (Normalization) fi0(N,D) = 2.

Note, that due to the fact that we truncate all strict hierarchies which are not already

a line into overlapping lines with the top being the unique actor who is member of all

truncated hierarchies, the probabilities determining which bottom actor receives a new

proposal under the One Desk Model do not affect the power score of the top.

The principle of truncation of hierarchies is formulated in the following axiom which

states that the power score of an actor in a hierarchy is equal to the average of its power

scores in all truncated hierarchies. To every bottom actor j ∈ K(D) is associated a

truncated hierarchy (Ŝ−1(j)∪{j}, D(Ŝ−1(j)∪{j})) which consists of this bottom actor with

all its superiors and the dominance relations between them. We denote by TD = {(Ŝ−1(j)∪

{j},D(Ŝ−1(j) ∪ {j}))}j∈K(D) the set of all truncated hierarchies in (N,D). For i ∈ N we

denote by T iD = {(T,D(T )) ∈ TD | i ∈ T} = {(Ŝ−1(j)∪{j}, D(Ŝ−1(j)∪{j})}j∈S(i)) the set

of all truncated hierarchies that contain actor i ∈ N .11

Axiom 4.2 (Truncation) For every hierarchy (N,D) it holds that

fi(N,D) = 1
|K(D)|

∑
(T,D(T ))∈T i

D

f(T,D(T )).

For firms with constant span of control (meaning that every actor that is not a bottom

actor has the same number of successors) and identical workers, Williamson (1967) states

that the ratio between the wage of a manager and a successor lies between one and the span

11Recall from Section 2.3 that D(T ) denotes the subgraph of D restricted to T ⊂ N .
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of control (i.e. the number of the manager’s successors). In van den Brink (2008) a (co-

operative) game theoretic model and corresponding class of wage functions are introduced

that satisfy these bounds in a more general context, where the span of control does not

have to be constant12. This result states that in a firm with a strict hierarchical structure

(i) the wage (to be replaced by power in our case) of a manager is always at least as high

as the wage of each of its successors (and thus by repeated application of this property as

the wage of each of its subordinates), and (ii) the wage of a manager never exceeds the

sum of the wages of its successors. Applying these bounds in developing a power score for

hierarchies we obtain the following property.

Axiom 4.3 (Bound property) For every i ∈ N \K(D) it holds that

(i) fi(N,D) ≥ fj(N,D) for all j ∈ S(i), and

(ii) fi(N,D) ≤
∑
j∈S(i) fj(N,D).

In case of a line-hierarchy (N,D) (i.e. |S(i)| = 1 for all i ∈ N \K(D)) the bound property

determines that all scores are equal, and by normalization all scores are determined to be

equal to 2. Then truncation determines the power scores for arbitrary hierarchies. Since

it is straightforward to verify that η1 satisfies these three axioms, we state the following

axiomatization without further proof13.

Theorem 4.4 A power score f is equal to η1 if and only if it satisfies normalization,

truncation and the bound property.

It seems that truncation and the bound property are rather strong axioms to require from

a power score. Therefore we suggest the following three alternative axioms. The first one

is the axiom of symmetry which is standard.

Axiom 4.5 (Symmetry) If S(i) = S(j) and S−1(i) = S−1(j) then fi(N,D) = fj(N,D).

The second axiom is an independence axiom. This follows Arrow’s famous ‘independence

of irrelevant alternatives’ axiom in social choice theory. Here we assume that given that

we are organizing the same set of bottom actors, the power of an actor only depends on

the structure of its superiors and subordinates. With this we mean that as long as i and

all its subordinates have the same successors, and i and all its superiors have the same

predecessors, the power score of i does not change.

12The production functions are supermodular and satisfy the zero-property meaning that nothing is

produced with zero labor effort.
13Moreover, the uniqueness part of this theorem also follows from Theorem 4.9 which proof we give later.
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Axiom 4.6 (Independence of outside organization) Consider two hierarchies

(N,D), (N ′, D′) with i ∈ N∩N ′. If SD(j) = SD′(j) for all j ∈ ŜD(i)∪{i}, S
−1
D (j) = S−1D′ (j)

for all j ∈ Ŝ−1D (i) ∪ {i}, and K(D) = K(D′), then fi(N,D) = fi(N
′, D′).

Finally, we reflect the principle of truncation of the hierarchy (with overlapping member-

ships) by requiring that the power score of a non-bottom actor equals the sum of the powers

of its successors.

Axiom 4.7 (Successor-sum property) For every i ∈ N\K(D) it holds that fi(N,D) =
∑
j∈S(i) fj(N,D).

So, the successor-sum property relates the power score of an actor i to those of its successors

in the hierarchy, while truncation (Axiom 4.2) relates i’s score to its own scores in all

truncated hierarchies.

Since the changes made in the hierarchy according to the independence of outside

organization axiom do not change the structure of the truncated hierarchies that involve

agent i, it is obvious that truncation implies independence of outside organization. Further,

truncation and the bound property together imply the successor-sum property.

Proposition 4.8 If power score f satisfies truncation and the bound property then it sat-

isfies the successor-sum property.

Proof

Suppose that power score f satisfies truncation and the bound property. Consider a hier-

archy (N,D) and an actor h ∈ N with S(h) �= ∅.

For every truncated hierarchy (T,D(T )) ∈ T hD the bound property implies that all actors

in T have the same power score. In particular actors h and j ∈ S(h) ∩ T have the same

power score. Since {S(j)}j∈S(h) is a partition of S(h), the truncation property implies that

fh(N,D) =
∑
j∈S(h) fj(N,D). So, f satisfies the successor-sum property. �

Replacing in Theorem 4.4 the truncation and bound properties by symmetry, independence

of outside organization and the successor-sum property, also yields an axiomatization of

the power score η1.

Theorem 4.9 A power score f is equal to η1 if and only if it satisfies normalization,

symmetry, independence of outside organization and the successor-sum property.

Proof

It is straightforward to verify that η1 satisfies normalization, symmetry and independence

of outside organization. The successor-sum property follows since by {S(j)}j∈S(i) being a

partition of S(i), we have that
∑
j∈S(i) η

1
j (N,D) =

∑
j∈S(i)

2|S(j)|
|K(D)|

= 2|S(i)|
|K(D)|

= η1i (N,D).

13



To show uniqueness assume that the power score f satisfies the four axioms, and consider

hierarchy (N,D). Define a reduced hierarchy (N0, S0) by N0 = {i0} ∪ K(D), S0(i0) =

K(D) and S0(j) = ∅ for all j ∈ K(D), see Figures 1 and 2 as an illustration of deleting

middle actors. Normalization implies that fi0(N
0, S0) = 2. Symmetry implies that all

actors in K(D) have the same power score in (N0, S0). Since the successor-sum property

implies that the sum of the powers of all actors in K(D) should add up to the power score

of the top i0, it holds that fj(N
0, S0) = 2

|K(D)|
for all j ∈ K(D).

Next take an i ∈ K(D). Define hierarchy (N i, Si) by N i = K(D) ∪ Ŝ−1(i) (note that this

implies that i0 ∈ N i) and

Si(j) =





(K(D) \ {i}) ∪ (S(i0) ∩ (Ŝ−1(i) ∪ {i})) if j = i0

S(j) ∩ (Ŝ−1(i) ∪ {i}) if j ∈ Ŝ−1(i) \ {i0}

∅ otherwise,

see Figure 3 for an example. Normalization implies that fi0(N
i, Si) = 2.

Independence of outside organization implies that fj(N
i, Si) = fj(N

0, S0) = 2
|K(D)|

for all

j ∈ K(D) \ {i}.

Since the successor-sum property implies that the sum of the powers of all actors in K(D)\

{i} and that of the actor in S(i0) ∩ (Ŝ−1(i) ∪ {i}) should add up to the given power of 2

for the top i0, it follows that fj(N
i, Si) = 2

|K(D)|
for j ∈ S(i0) ∩ (Ŝ−1(i) ∪ {i}). Repeated

application of the successor-sum property further determines that fj(N
i, Si) = 2

|K(D)|
for

all j ∈ Ŝ−1(i), and thus eventually fi(N
i, Si) = 2

|K(D)|
is determined.

Independence of outside organization then implies that fi(N,D) = fi(N
i, Si) = 2

|K(D)|
=

η1i (N,D).

Since all fi(N,D) are thus determined for i ∈ K(D), the successor-sum property determines

the power score for all other actors, and thus f(N,D) is uniquely determined. �

4.2 The case ǫ = 0

Next we consider the other extreme case where weak swings are assigned weight zero.

Compared to the case ǫ = 1 discussed above, all non-top actors i �= i0 ‘lose’ their weak

14
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Figure 1: A hierarchy (N,D)
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swings, i.e. the swings where they vote ‘no’ and their subordinates who receive the proposal

on their desk (if they exist) voted ‘yes’. But they still have their strong swings, where every

actor involved voted ‘yes’. Since for the top actor i0 all swings are strong, for ǫ = 0 the

power score given by (3.2) is equal to

η0i (N,D) =





η1i (N,D) if i = i0

|S(i)|
|K(D)|

= 1
2
η1i (N,D) for all i �= i0.

For ǫ = 0 the axioms of normalization, symmetry and independence of outside organization

still hold. The successor-sum property only holds outside the top.

Axiom 4.10 (Outside the top successor-sum property) For every i ∈ N \ (K(D)∪

{i0}) it holds that fi(N,D) =
∑
j∈S(i) fj(N,D).

The possibility of the top to finalize the decision to a ‘yes’ (if it gets the opportunity to

vote) is now reflected in a doubling of the sum of the powers of its subordinates.

Axiom 4.11 (Top successor-sum property) fi0(N,D) = 2
∑
j∈S(i0) fj(N,D).

Replacing the successor-sum property by these two axioms in Theorem 4.9 characterizes

η0.

Theorem 4.12 A power score f is equal to η0 if and only if it satisfies normalization,

symmetry, independence of outside organization, the outside the top successor-sum property

and the top successor-sum property.

The proof goes similar as the proof of Theorem 4.9 (the only difference is that where

the successor-sum property is used concerning the top actor, now the top successor-sum

property has to be used) and is therefore omitted.

It is straightforward to verify that the power score η0 also satisfies truncation.

However, the bound property must be adapted, taking account of the ‘special’ top position.

Axiom 4.13 (Outside the top bound property) For every i ∈ N \ (K(D) ∪ {i0}) it

holds that

(i) fi(N,D) ≥ fj(N,D) for all j ∈ S(i), and

(ii) fi(N,D) ≤
∑
j∈S(i) fj(N,D).

Axiom 4.14 (Top bound property) For top actor i0 in hierarchy (N,D) it holds that

16



(i) fi0(N,D) ≥ 2fj(N,D) for all j ∈ S(i0), and

(ii) fi0(N,D) ≤ 2
∑
j∈S(i0) fj(N,D).

We state the following result without proof.

Theorem 4.15 A power score f is equal to η0 if and only if it satisfies normalization,

truncation, the outside the top bound property and the top bound property.

4.3 The case ǫ ∈ [0, 1]

Finally, let us consider the general case. From the two extreme cases considered in the

previous two subsections we can derive that for ǫ ∈ [0, 1] the power score is given by

ηǫ(N,D) = η0(N,D) + ǫ(η1(N,D)− η0(N,D)) = ǫη1(N,D) + (1− ǫ)η0(N,D),

and, thus, is a convex combination of η0 and η1. Taking account of ǫ ∈ [0, 1] with respect to

the Top successor-sum property in a straightforward way, we obtain the following axiom.

Axiom 4.16 (ǫ-top successor-sum property) fi0(N,D) = 2
1+ǫ

∑
j∈S(i0) fj(N,D).

Replacing the top successor-sum property by this axiom in Theorem 4.12 characterizes ηǫ.

Theorem 4.17 A power score f is equal to ηǫ, ǫ ∈ [0, 1], if and only if it satisfies normal-

ization, symmetry, independence of outside organization, the outside the top successor-sum

property and the ǫ-top successor-sum property.

The proof goes similar as the proofs of Theorems 4.9 and 4.4, and is therefore omitted.

In a similar way the top bound property can be generalized.

Axiom 4.18 (ǫ-top bound property) (i) fi0(N,D) ≥ 2
1+ǫ
fj(N,D) for all j ∈ S(i0),

and

(ii) fi0(N,D) ≤ 2
1+ǫ

∑
j∈S(i0) fj(N,D).

We state the following without proof.

Theorem 4.19 A power score f is equal to ηǫ if and only if it satisfies normalization,

truncation, the outside the top bound property and the ǫ-top bound property.
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5 An axiomatization of the power measure

Next we adapt the axioms of the previous section in order to obtain an axiomatization

of a measure of power under the One-Desk assumption. We focus our attention on the

βǫ-measure, see (3.4). Again, we first consider the case ǫ = 1 where all weak swings are

fully counted. Substituting the power score η1 as given by (4.5) yields the power measure

β1i (N,D) =
η1i (N,D)

|S(i)|
|K(D)|

(
|Ŝ−1(i)|+ 1

) =
2

|Ŝ−1(i)|+ 1
for all i ∈ N.

To characterize this power measure we first consider what properties of the power score it

satisfies. It is easy to verify that it satisfies normalization, symmetry and independence of

outside organization14. It does not satisfy the successor-sum property.

With respect to the independence axiom, β1 even satisfies the stronger independence

axiom where we do not require the set of bottom actors to be the same. Moreover, it does

not depend on the successors of subordinates.

Axiom 5.1 (Strong independence of outside organization) Consider two hierarchies

(N,D), (N ′, D′) with i ∈ N ∩N ′. If S−1D (j) = S−1D′ (j) for all j ∈ Ŝ−1D (i), then fi(N,D) =

fi(N
′, D′).

Note, that deleting the requirement K(D) = K(D′) can be interpreted as the power

measure not depending on the probabilities with which bottom actors are chosen to receive

the proposal.

For the axiomatization we add another axiom that discusses a special type of regular

hierarchies. We call a hierarchy a regular hierarchy if the top actor has two successors and

in every level (except the bottom level) the number of successors of the actors in that level

is one more than that of the direct superior level. So, a hierarchy (N,D) is regular if

|S(i)| = |Ŝ−1(i)|+ 2 for all i ∈ N \K(D).

We define an office as the set of successors of the same predecessor, i.e. every

S(i), i ∈ N \K(D), is an office. Here we also consider the singleton {i0} as an office. The

next axiom says that the total power in any office in a regular hierarchy is the same. We

denote the set of all offices in hierarchy (N,D) by P(D) = {S(i) | i ∈ N \K(D)} ∪ {{i0}}

Axiom 5.2 (Regularity) If (N,D) is a regular hierarchy, then
∑
i∈P fi(N,D) =

∑
i∈P ′ fi(N,D)

for every pair of offices P, P ′ ∈ P(D).

These axioms characterize the power measure β1.

14It does satisfy another truncation property where to determine the power measure for an actor i the

average is taken over all truncated hierarchies containing i and not all truncated hierarchies as done for

the power score, i.e. fi(N,D) = 1
|S(i)|

∑
j∈S(i) f(Ŝ

−1(j) ∪ {j},D(Ŝ−1(j) ∪ {j})).
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Theorem 5.3 A power measure f is equal to β1 if and only if it satisfies normalization,

symmetry, strong independence of outside organization and regularity.

Proof

It is straightforward to verify that β1 satisfies normalization, symmetry and strong inde-

pendence of outside organization. Consider a regular hierarchy (N,D) with i ∈ P ∈ P(D).

By regularity, |P | = |Ŝ−1(i)| + 1, and thus
∑
i∈P β

1
i (N,D) =

∑
i∈P

2

|Ŝ−1(i)|+1
= (|Ŝ−1(i)| +

1) · 2

|Ŝ−1(i)|+1
= 2 = β1i0(N,D), showing that β1 satisfies regularity.

To show uniqueness assume that the power measure f satisfies the four axioms, and consider

hierarchy (N,D).

Next, consider actor i ∈ N \ {i0}, and define the reduced hierarchy (N i, Di) by N i =

{i} ∪ Ŝ−1(i) and Di = D(N i). Next consider a set of actors N
i
⊃ N i with |N

i
| =

1 +
∑|Ŝ−1(i)|
k=1 k(k + 1), and D

i
such that (N

i
, D

i
) is a regular hierarchy with S

D
i(j) ⊇

SDi(j) for all j ∈ Ŝ−1Di (i). (Note that we choose |N
i
| such that a regular hierarchy exists.)

Normalization implies that fi0(N
i
, D

i
) = 2. Let S−1(i) = {h}. Regularity implies that

∑
j∈S

D
i (h) fj(N

i
, D

i
) = 2. Since by regularity of (N

i
, D

i
) we have |S

D
i(h)| = |Ŝ−1(i)| + 1,

symmetry then requires that fi(N
i
, D

i
) = 2

|Ŝ−1(i)|+1
. Independence of outside organization

finally implies that fi(N,D) = fi(N
i
,D

i
) = 2

|Ŝ−1(i)|+1
. �

Considering the case that weak swings are not counted at all (ǫ = 0), we obtain the power

measure β0 given by

β0i (N,D) =
η0i (N,D)

|S(i)|
|K(D)|

(
|Ŝ−1(i)|+ 1

)

=





2 if i = i0

1

|Ŝ−1(i)|+1
for all i �= i0

This power measure satisfies the axioms of Theorem 5.3 except regularity. It still satisfies

regularity as long as we do not consider the singleton {i0} as an office.

Hence, for the top actor we need a separate regularity condition. We denote by P(D) =

P(D) \ {{i0}} the set of all offices except the top-office.

Axiom 5.4 (Top-regularity) If (N,D) is a regular hierarchy, then fi0(N,D) = 2
∑
i∈P fi(N,D)

for every office P ∈ P(D).

Replacing regularity in Theorem 5.3 by top regularity characterizes β0.

Theorem 5.5 A power measure f is equal to β0 if and only if it satisfies normalization,

symmetry, strong independence of outside organization, and top-regularity.
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Proof

It is straightforward to verify that β0 satisfies these axioms. With respect to uniqueness,

normalization fixes the power measure for i0. The power measures for the other actors

then are determined by top-regularity and symmetry. Uniqueness for the power measure

of the other actors follows similar as the uniqueness proof of Theorem 5.3 �

Finally, we can obtain the power measures βǫ, ǫ ∈ [0, 1], as

βǫ(N,D) = ǫβ1(N,D) + (1− ǫ)β0(N,D).

For ǫ ∈ [0, 1] we generalize top-regularity in a similar way as we generalized the top

successor-sum property for power scores.

Axiom 5.6 (ǫ-Top regularity) If (N,D) is a regular hierarchy, then fi0(N,D) =
2
1+ǫ

∑
i∈P fi(N,D) for every office P ∈ P(D).

Replacing top-regularity in Theorem 5.5 by this axiom characterizes βǫ.

Theorem 5.7 A power measure f is equal to βǫ if and only if it satisfies satisfies normal-

ization, symmetry, strong independence of outside organization, and ǫ-Top regularity.

The proof goes similar as the proof of the previous theorems and is therefore omitted.

6 Concluding remarks

In this paper we applied the power score and measure introduced in van den Brink and

Steffen (2008) for general sequential decision making mechanisms in hierarchies to the

special class of binary voting problems. We provided axiomatizations of both a power score

and power measure, which can be seen as analogues of the Banzhaf score and measure for

simple games (modeling simultaneous voting situations).

We want to wind up this paper with some remarks on the indicated relation of

our model to Sah and Stiglitz’s (1985, 1986) work on hierarchies (see Section 3)15. Their

work focuses on the relation between the architecture of an organization and its members’

collective competence to detect the truth of a proposition, i.e. they have to decide whether

a proposition is true or false.

In general, a competence is defined as the state of being adequately qualified to do

something, which implies that there exists a special type of ability containing an evaluative

15While in Sah and Stiglitz (1986) the analysis is restricted to polyarchies and hierarchies with a line

structure only, in Sah and Stiglitz (1985) also more complex architectures as investigated in the underlying

paper are taken into account.
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component in addition to the bare ability to make a decision, i.e. to choose a non-empty

proper subset of elements out of an outcome set (see van den Brink and Steffen 2008)16.

In Sah and Stiglitz’s case this evaluative component is the ability to detect the truth in

addition to the bare ability to choose between elements of the action set containing the

elements ‘true’ and ‘false’. Hence, like in our case the action and outcome set is binary.

Sah and Stiglitz commence with the assumption that each member of an organization

possesses an exogenously given individual competence (ability) to detect the truth (see

footnote 4). Via the architecture of the organization, i.e. the dominance structure and

the DMM in use, these individual competences (abilities) are then aggregated into a col-

lective competence (ability) of the organization. However, by inserting the members of an

organization into their positions, i.e. by the aggregation mechanism via the organizational

architecture, their individual bare ability to make a decision is affected by the ability of

their positions to make a decision. The latter ability is the subject matter of the underlying

paper: positional power. Both abilities together establish the collective competence of the

organization17. Thus, in their analysis Sah and Stiglitz implicitly integrate individual and

positional abilities without neither distinguishing between the components nor discussing

whether their composition is appropriate or not. However, doing so they analyze the effect

of different organizational architectures on the collective competence of an organization,

i.e. they investigate how different distributions of positional power affect the aggregated

extent of the exogenously given individual competences of these actors.
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