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Abstract 

Data Envelopment Analysis (DEA) has become an established tool in comparative analyses of efficiency 
strategies in both the public and the private sector. The aim of this paper is to present and apply a newly 
developed, adjusted DEA model – emerging from a blend of a Distance Friction Minimization (DFM) and a 
Goals Achievement (GA) approach on the basis of the Charnes-Cooper-Rhodes (CCR) method – in order to 
generate a more satisfactory efficiency-improving projection model in conventional DEA. 

Our DFM model is based on a generalized Euclidean distance minimization and serves to assist a Decision 
Making Unit (DMU) in improving its performance by the most appropriate movement towards the efficiency 
frontier surface. Standard DEA models use a uniform proportial input reduction or a uniform proportial output 
increase in the improvement projections, but our DFM approach aims to generate a new contribution to 
efficiency enhancement strategies by deploying a weighted projection function. In addition, at the same time, it 
may address both input reduction and output increase as a strategy of a DMU. A suitable form of 
multidimensional projection functions that serves to improve efficiency is given by a Multiple Objective 
Quadratic Programming (MOQP) model using a Euclidean distance. 

Another novelty of our approach is the introduction of prior goals set by a DMU by using a GA approach. 
The GA model specifies a goal value for efficiency improvement in a DFM model. The GA model can 
compute the input reduction value or the output increase value in order to achieve a pre-specified goal value for 
the efficiency improvement in an optimal way. Next, using the integrated DFM-GA model, we are able to 
develop an operational efficiency-improving projection that provides a clear, quantitative orientation for the 
actions of a DMU. 

The above-mentioned DFM-GA model is illustrated empirically by using a data set of efficiency indicators 
for cities in Hokkaido prefecture in Japan, where the aim is to increase the efficiency of local government 
finance mechanisms in these cities, based on various input and output performance characteristics. In summary, 
this paper presents a practical policy instrument that may have great added value for the decision making and 
planning of both public and private actors.  
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1. Introduction 

  

In recent years, the public sector has been under increasing pressure to increase its efficiency, through innovative 

strategies (see, e.g., Windrum and Koch, 2008). To this end, it is necessary to use reliable and operational methods that 

can be used for benchmark and performance analysis. Data Envelopment Analysis (DEA) has become an established 

approach in the analysis of efficiency problems in both the public and the private sector. A large number of studies show 

that efficiency analysis is an important but difficult topic. DEA was developed to analyse the relative efficiency of 

‘Decision Making Units’ (DMUs) by constructing a piecewise linear production frontier, and projecting each agent 

(DMU) onto the frontier. A DMU that is located on the frontier is efficient, while a DMU that is not on the frontier is 

inefficient. An inefficient DMU can become efficient by reducing its inputs (or increasing its outputs). In the standard 

DEA approach, this is achieved by a uniform reduction in all inputs (or uniform increase in all outputs). But in principle, 

there are an infinite number of improvements to reach the efficient frontier, and hence there are many solutions for a 

DMU to enhance efficiency. 

  The existence of an infinite number of solutions to reach the efficient frontier has led to a stream of literature on the 

integration of DEA and Multiple Objective Linear Programming (MOLP), which was initiated by Golany (1988). In 

short, this literature proposes trajectories to efficiency by taking into account the preferences of the decision maker 

(DMU). Thus, the challenge is now to develop a methodology for projecting DMUs on the efficient frontier that does 

not include subjective valuations. 

Suzuki et al. (2007a, 2007b, 2007c) proposed a Distance Friction Minimization (DFM) model in a DEA model that 

is based on a generalized distance friction function and serves to assist a DMU in improving its performance by an 

appropriate movement towards the efficiency frontier surface. This DFM approach aims to generate a new contribution 

to efficiency enhancement strategies by deploying a weighted projection function, and at the same time it may address 

both input reduction and output increase as a strategy of a DMU. A suitable form of multidimensional projection 

functions that serves to improve efficiency is given by a Multiple Objective Quadratic Programming (MOQP) model in 

conformity with a Euclidean distance.  

A general efficiency-improving projection model in combination with our DFM model is able to calculate either an 

input reduction value or an output increase value to reach an efficient score 1.000, although in reality this may be hard 

to achieve.  

The aim of this paper is to present and apply a newly developed, adjusted DEA model – emerging from a blend of a 

Distance Friction Minimization (DFM) and a Goals Achievement (GA) approach on the basis of the 

Charnes-Cooper-Rhodes (CCR) method – in order to generate a more appropriate efficiency-improving projection 

model in conventional DEA. The GA model specifies a Goal Improvement Rate (GIR) of the total efficiency gap in the 

framework of a DFM model. The GA model can compute an input reduction value or an output increase value in order 

to achieve a prior goal value for the efficiency improvement in an optimal way.  
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The above-mentioned CCR-DFM-GA model will be empirically illustrated by using a data set of cities in Hokkaido 

prefecture in Japan, where the aim is to increase the efficiency of local government finance, based on various input and 

output performance characteristics of these cities. The relevance of our approach can be illustrated by referring to recent 

public financial deficits in Yubari city in Hokkaido prefecture, which was close to financial bankruptcy in March 2007. 

In particular, the White Paper on local public finance (Ministry of Internal Affairs and Communications 2007) 

illustrated clearly that the issue of the public financial deficits of cities and prefectures is an urgent concern in Japan. 

This paper thus proposes a policy instrument that may have great added value for the decision making and planning of 

public finance actors.  

  The paper is organized as follows. Section 2 discusses DEA and efficiency-improvement projection methods. Next, 

Section 3 introduces our DFM methodology, while Section 4 proposes the new model which is a GA model in the 

framework of a DFM model. Section 5 then presents an application of the methodology to a comparative study of local 

government finance efficiency analysis in Japan. Finally, Section 6 draws some conclusions. 

 

 

2. Efficiency Improvement Projection in DEA 

 

The original formulation for DEA was given by Farrell (1957), who aimed to develop a measure for production 

efficiency. This work was elaborated by Charnes et al. (1978), who presented a quantitative measure for assessing the 

relative efficiency of DMUs in the case of a frontier method that aims to determine the maximum volume of outputs, 

given a set of inputs. In this framework, it is possible to assess ex post the (in)efficiency of a production system using 

the distance to the production frontier (without any explicit assumptions on the production technology concerned). This 

is usually a deterministic analysis, which has a close resemblance to non-parametric linear programming. Over the 

years, DEA has become an operational tool for analysing efficiency problems in both the private and the public sector, 

where (in)efficiency is interpreted as the relative distance from an actual situation to the optimal production frontier 

function. 

  DEA has been fully developed by Charnes et al. (1978) and later on by Banker et al. (1984) to analyse the efficient 

operation of DMUs, as well as to determine improvements of inefficiency by means of an appropriate projection choice 

of a DMU, based on the ratio of the weighted sum of outputs to the weighted sum of inputs, given the requirement that 

these ratios are less than (or equal to) 1 for each DMU under consideration. The main goal is to determine in numerical 

terms the weights associated with each DMU in such a way that it may maximize the improvement of its efficiency. 

The Charnes et al. (1978) model (abbreviated hereafter as the CCR-input model) for a given DMUj ),,1( Jj L=  to 

be evaluated in any trial generally designated as DMUo (where o ranges over 1, 2 …, J) may then be represented as the 

following fractional programming (FPo) problem: 



 3

 (FPo)      
uv,
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∑
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 ),,1( Jj L=       (2.1) 

  0≥mv , 0≥su , 

 

  where θ is an objective variable (efficiency score); xmj is the volume of input m (m=1,…, M) for DMU j (j=1,…,J); 

ysj is the output s (s=1,…,S) of DMU j; and vm and us are the weights given to input m and output s, respectively. 

Model (2.1) is often called an input-oriented CCR model, while its reciprocal (i.e. an interchange of the numerator 

and denominator in objective function (2.1), with a specification as a minimization problem under an appropriate 

adjustment of the constraints) is usually known as an output-oriented CCR model. Model (2.1) is obviously a fractional 

programming model, which may be solved stepwise by first assigning an arbitrary value to the denominator in (2.1), 

and then maximizing the numerator. But it is preferable to transform (2.1) into a linear programming model, as shown 

below. 

  The CCR model (2.1) can be shown to have the following equivalent linear programming (LPo) specification for any 

DMU j: 

 (LPo)      
uv,

max   ∑=
s

sosyuθ    

 s.t.      1=∑
m

momxv                 (2.2) 

0≤+− ∑∑
s

sjs
m

mjm yuxv  

0≥mv , 0≥su . 

 

The dual problem of (2.2), DLPo, can be expressed by means of a real variable θ , using the following vector 

notation: 

(DLPo) 
λθ ,

min   θ         

s.t.        0≥− λθ Xxo          (2.3) 

  oyY ≥λ            

0≥λ ,            
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where the transposed (T) presentation ( )T
Jλλλ L,1= is a non-negative vector (corresponding to the presence 

of slacks for each DMU), X an (M× J) input matrix, and Y an (S× J) input matrix. 

 We can now define the input excesses mRs ∈− and the output shortfalls sRs ∈+ , and identify them as ‘slack’ 

vectors as follows: 

λθ Xxs o −=− ;         (2.4) 

oyYs −=+ λ .        (2.5) 

 

We can then solve the following two-stage LP problem in a straightforward way: 

1. Solve DLPo. Let the optimal objective value be ∗θ . 

2. Given the value of ∗θ , solve the following LP model using ( )+− ss ,,λ  as slack variables: 

+− ss ,,
max
λ

 +− += esesω                     (2.6) 

s.t.        λθ Xxs o −= ∗−          (2.7) 

   oyYs −=+ λ         (2.8) 

0,0,0 ≥≥≥ +− ssλ  ,       (2.9) 

 

where ω  is an objective variable, and e a unit vector. For any inefficient DMUo, we can now define the reference 

set Eo, based on the max-slack solution as obtained in Steps 1 and 2, as follows: 

{ }0>= ∗λjEo  { }( )Jj ,,1L∈ ,       (2.10) 

  where Eo is a reference set for any inefficient DMUo.  An optimal solution can then be expressed as follows: 

 
∗−

∈

∗∗ += ∑ sxx
oEj

jjo λθ ;        (2.11) 

∗+

∈

∗ −= ∑ syy
oEj

jjo λ .                (2.12) 

  The improvement projection ( )ˆ ˆ,o ox y  is now defined in (2.13) and (2.14) as: 

         ˆo ox x sθ ∗ −∗= − ;          (2.13) 

                ˆo oy y s+∗= + .          (2.14) 
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These equations suggest that the efficiency of (xo, yo) for DMUo can be improved if the input values are reduced 

radially by the ratio ∗θ , and the input excesses ∗−s  are eliminated (see Figure 1). Similarly, the efficiency can be 

improved, if the output values are increased by the output shortfall ∗+s . 

The original DEA models presented in the literature have thus far only focused on a uniform input reduction or a 

uniform output increase in the efficiency-improvement projections, as shown in Figure 1 (∗θ =OC’/OC). But, in 

principle, there are an infinite number of efficiency-improvement projections on the efficient frontier line. The 

efficiency-improvement projection of the original DEA models is only one solution, based on a projection related to a 

uniform input reduction or a uniform output increase. If we adopt a different perspective, this will, of course, lead to 

another projection. 

In the past decade several attempts have been made to integrate the DEA and the MOLP models (see, e.g., Belton 

1992, Belton and Vickers 1993, and Doyle and Green 1993). Most of the research was inspired by the pioneering 

research of Golany (1988) who tried to find efficient solutions in order to map out the efficiency frontier in an 

interactive way. Later on, Kornbluth (1991) was able to show the similarity between DEA problems and fractional 

MOLP problems. This similarity holds for both input-oriented and output-oriented models. 

 

 
 

Figure 1 Illustration of original DEA projection in input space 

 

Most contributions on the integration of the DEA and the MOLP models find their origin in the standard CCR model or 

in the Banker et al. (1984) (abbreviated as BCC) model, which provide the foundations of DEA. All such models aim 

to find an appropriate projection for an efficiency improvement for each inefficient DMU, based on a radial projection 

in which the input volumes are reduced (or the output values are increased) by a uniform ratio. 

It is noteworthy that the existence of an infinite number of efficiency-improvement solutions has in recent years 

prompted a rich literature on the methodological integration of the MOLP and the DEA models. As mentioned, the first 

contribution was offered by Golany (1988), who proposed an interactive MOLP procedure which aimed at generating a 

set of efficient points for a DMU. This model allows a decisionmaker to select the preferred set of output levels, given 

the input levels, and it was used as a support tool for the selection of effective and efficient points for a decision-making 

agency. Thanassoulis and Dyson (1992) then developed adjusted models which can be used to estimate alternative 

Input 1 (x1) 

Input 2 (x2) 

O 

A 
C 

B 

C’ 
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input and output levels in order to render relatively inefficient DMUs more efficient. These models are able to 

incorporate preferences for a potential improvement of individual input and output levels. The resulting target levels 

reflect the user’s relative preference over alternative paths to efficiency. Joro et al. (1998) demonstrated the analytical 

similarity between a DEA model and a Reference Point Model in a MOLP formulation from a mathematical standpoint. 

Additionally, the Reference Point Model provides suggestions which make it possible to freely search on the efficiency 

frontier for good solutions or for the most preferred solution based on the decisionmaker’s preference structure. More 

recently, Halme et al. (1999) developed a Value Efficiency Analysis (VEA), which included the decisionmaker’s 

preference information in a DEA model. The foundation of VEA originates from the Reference Point Model in a 

MOLP context. Here the decisionmaker identifies the Most Preferred Solution (MPS), so that each DMU can be 

evaluated by means of the assumed value function based on the MPS approach. A further development of this approach 

was made by Korhonen and Siljamäki (2002) who addressed several practical aspects related to the use of VEA. In 

addition, Korhonen et al. (2003) developed a multiple objective approach which allows for changes in the time frame. 

And, finally, Lins et al. (2004) proposed two multi-objective approaches that determine the basis for an a posteriori 

preference incorporation. The first model is known as MORO (Multiple Objective Ratio Optimization), which 

optimizes the ratios between the observed and the target inputs (or outputs) of a DMU. The second model is known as 

MOTO (Multiple Objective Target Optimization), which directly optimizes the target values. 

  These approaches dealt with the challenge to identify a target or a direction to render relatively inefficient DMUs 

more efficient, based on the decisionmaker’s preference information. The various approaches have suggested that the 

solution of an efficient improvement problem is not only a search for just one point. In particular, the Reference Point 

Model (see Joro et al. 1998) has many possibilities to generate a great variety of solutions to render inefficient DMUs 

more efficient. Clearly, one remark is in order here: these approaches have to incorporate the decisionmaker’s 

preference information. In this regard, Angulo-Meza and Lins (2002) make the following observation: 

  “There are disadvantages in the methods that incorporate a priori information, concerning subjectivity: 

 •The value judgments, or a priori information can be wrong or biased, or the ideas may not be consistent with reality. 

 •There may be a lack of consensus among the experts or decision-makers, and this can slow down or adversely affect   

the study. 

  Indeed, one may want to preserve the DEA spirit in the sense of not including a priori information.” (p. 232). 

  Given these considerations, we propose in our study a new efficiency-improvement projection model, known as the 

Distance Friction Minimization (DFM) approach, which does not need to incorporate a value judgment of a 

decision-maker. In this approach a generalized distance friction function will be presented to assist a DMU in 

improving its efficiency by the most appropriate movement towards the efficiency frontier surface. The direction of this 

efficiency improvement depends on the input/output data characteristics of the DMU. Each of these characteristics may 

have a different weight for the DMU. To achieve the required rise in efficiency, it is thus necessary to take into account 

the various most appropriate input/output weights of these characteristics. It is then possible to define the projection 
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functions for the minimization of the distance friction, using a Euclidean distance in weighted spaces. Here we will use 

a MOQP model. 

 

 

3. The Distance Friction Minimization (DFM) Approach 

 

As mentioned, the efficiency improvement solution in the original CCR-input model requires that the input values 

are reduced radially by a uniform ratio ∗θ  ( ∗θ =OD’/OD in Figure 2). That is to say, the improvement solution for 

any arbitrarily inefficient DMUD is D’ in Figure 2 (in cases where the input space is a non-weighted (i.e. normal) 

x-space). The general specification of a CCR model was frequently based on a normal x- or y-space (non-weighted 

space) (see Figure 1), in contrast to Figures 2 and 3, which are based on weighted x- or y-spaces. Weighted spaces can 

be investigated regarding the distance frictions in efficiency-improvement projections for input and output variables in 

the following way (see Cooper et al. 2006). 

The (v*, u*) values obtained as an optimal solution for formula (2.2) result in a set of optimal weights for DMUo. 

Then the efficiency score can be evaluated by: 

∑

∑
∗

∗

∗ =

m
mo

s
so

xv

yu

m

s

θ  .          (3.1) 

The denominator may arbitrarily be set equal to 1, and hence: 

∑
∗∗ =

s
soyu

s
θ .                 (3.2) 

 

As mentioned earlier, (v*, u*) is the set of most favourable weights for DMUo , in the sense of maximizing the ratio 

scale. vm
* is the optimal weight for the input item m, and its magnitude expresses how much in relative terms the item is 

contributing to efficiency. Similarly, us
* does the same for the output item s. Furthermore, if we examine each item 

vm
* xmo in the total input: 

∑
∗

m
moxv

m
 (= 1),        (3.3) 

we can derive the relative importance of each item with reference to the value of each vm
* xmo. The same holds for 

us
* yso, where us

* provides a measure of the relative contribution of yso to the overall value of ∗θ . These values show 

not only which items contribute to the performance of DMUo, but also to what extent they do so. In other words, it is 

possible to express the distance frictions (or alternatively, the potential increases) in improvement projections. 

In this study, we use the optimal weights us
* and vm

* from (3.1), and then develop next our new efficiency 

improvement projection model. A visual presentation of this new approach is given in Figures 2 and 3. 

In this approach a generalized distance friction is deployed to assist a DMU in improving its efficiency by a 
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movement towards the efficiency frontier surface. The direction of efficiency improvement depends on the input/output 

data characteristics of the DMU. It is then appropriate to define the projection functions for the minimization of 

distance friction by using a Euclidean distance in weighted spaces. As mentioned, a suitable form of multidimensional 

projection functions that serves to improve efficiency is given by a MOQP model which aims to minimize the 

aggregated input reduction frictions, as well as the aggregated output increase frictions. Thus, the DFM approach can 

generate a new contribution to efficiency enhancement problems in decision analysis, by deploying a weighted 

Euclidean projection function, and at the same time it may address both input reduction and output increase. 

 

Figure 2 Illustration of the DFM approach (Input- vi
*xi space) 

 

 

Figure 3 Illustration of the DFM approach (Output - ur
*yr space) 
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Our DFM approach contains 5 stages which will now briefly be presented. 

 1. Solve DLPo in (2.3). Let the optimal objective value be ∗θ , and the obtained optimal weights us
* and vm

*. 

 2. Using ∗θ , solve (2.6)-(2.9), so that we obtain ∗−s , ∗+s . Each DMU can then be categorized by ∗θ , ∗−s and 

∗+s  as follows: 

  (a) if ∗θ =1, ∗−s = ∗+s = 0: a situation of an efficient DMU. 

  (b) if ∗θ =1, 0s−∗ ≠  or 0s+∗ ≠ : improvement solutions are generated by formulas (2.13) and (2.14). 

  (c) if θ ∗ ≠ 1, 0s−∗ ≠  or 0s+∗ ≠ : improvement solutions are generated by subsequent steps 3,4 and 5.  

 

3. Introduce the distance friction function Frx and Fry by means of (3.4) and (3.5), which are defined by the Euclidean 

distance shown in Figures 2 and 3. And solve the following MOQP using x
mod (a reduction distance for xio) and y

sod  

(an increase distance for yso) as variables: 

         min ( )∑
∗∗ −=

m

x
mommom

x dvxvFr
2

        (3.4) 

 min ( )∑
∗∗ −=

s

y
sossos

y duyuFr
2

      (3.5) 

      s.t.      ( ) ∗

∗
∗

+
=−∑ θ

θ
1
2

m

x
momom dxv         (3.6) 

( ) ∗

∗
∗

+
=+∑ θ

θ
1
2

s

y
sosos dyu          (3.7) 

0≥− x
momo dx          (3.8) 

0≥x
mod           (3.9) 

0≥y
sod ,          (3.10) 

  

where mox is the amount of input item m for an arbitrarily inefficient DMUo, and soy  is the amount of output item 

s for arbitrarily inefficient DMUo. 

  The aim of function Frx (3.4) is to find a solution that minimizes the sum of input reduction distances which is 

incorporated in the improvement friction. The aim of function Fry (3.5) is to find a solution that minimizes the sum of 
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output increase distances which is incorporated in the improvement friction. 

Constraint functions (3.6) and (3.7) refer to the target values of input reduction and output increase. An illustration of 

a target value and a ‘fair’ allocation between input efforts and output efforts is shown in Figure 4.  

  The balance in the distribution of contributions from the input and output side to achieve efficiency is established as 

follows. The total efficiency gap to be covered by inputs and outputs is (1-θ*). The input and output side contribute 

according to their initial levels 1 and θ*, implying shares θ*/(1+θ*) and 1/(1+θ*) in the efficiency-improvement 

contribution. Thus the contributions from both sides equal (1-θ*)[θ*/(1+θ*)], and (1-θ*)[1/(1+θ*)].  

Hence we find for the input reduction target and the output increase targets:  

 

Input reduction target: ( ) ( ) ( ) ∗

∗

∗
∗∗

+
=

+
×−−=−∑ θ

θ
θ

θ
1
2

1
1

11
m

x
momom dxv  ;   (3.11) 

Output increase target: ( ) ( ) ( ) ∗

∗

∗

∗
∗∗∗

+
=

+
×−+=+∑ θ

θ
θ

θθθ
1
2

1
1

s

y
sosos dyu  .   (3.12) 

 

Figure 4 Presentation of balanced allocation for the total efficiency gap (1-∗θ ) 

 

Constraint function (3.8) refers to a limitation of input reduction, while constraint functions (3.9) and (3.10) express 

simultaneously the pressure of input reduction and output increase. It is now possible to determine each optimal 

distance ∗x
mod  and ∗y

sod  by using MOQP (3.4)-(3.10). 

 

4. The friction minimization solution for an inefficient DMUo can now be expressed by means of formulas (3.13) and 

(3.14): 

Target value 

1 

∗θ

( ) ( )∗

∗
∗

+
×−

θ
θθ

1
1

( ) ( )∗
∗

+
×−

θ
θ

1

1
1

∗

∗

+θ
θ

1

2

∗∗ =∑ θ
s

sos yu 1=∑
∗

m
momxv
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∗∗ −= x
momomo dxx          (3.13) 

∗∗ += y
sososo dyy  .        (3.14) 

 

5. In order to ascertain the presence of slacks for input and output variables, we have to solve formulas (2.3) and 

(2.6)-(2.9). By using ∗
mox , ∗

soy , we can obtain θ ∗∗ , s−∗∗ , s+∗∗ .  In this case, we are sure that θ ∗∗  is calculated 

as 1. An optimal solution for an inefficient DMUo can be now expressed by means of formulas (3.15) and (3.16): 

 ∗∗−∗∗∗ −= sxx momo  ;       (3.15) 

∗∗+∗∗∗ += syy soso  .        (3.16) 

 

  By means of the DFM model, it is possible to present a new efficiency-improvement solution based on the standard 

CCR projection. This means an increase in options for efficiency-improvement solutions in DEA. The main advantage 

of the DFM model is that it yields an outcome on the efficient frontier that is as close as possible to the DMU’s input 

and output profile (see Figure 5).  

In addition, the DFM model retains the property of the standard DEA approach that the measurement units of the 

different inputs and outputs need not be identical, while the efficiency-improvement projection in a DFM model does 

not need to incorporate a priori information. 

 

Figure 5 Degree of improvement of a DFM-projection and a CCR-projection in weighted input space 

 

4. A Goals Achievement Model in a DFM Approach 

 

In our study we aim to integrate a GA model in the framework of the CCR-DFM model. The GA model specifies a 

Goal Improvement Rate (GIR) of the total efficiency gap (1- ∗θ ) in the DFM model. The value of the GIR ranges from 

O 

ACCR 
CCR-Projection  

A 

ADFM 

DFM-Projection  

Weighted 
Input 2 
(v2

*x2) 

Weighted Input 1 (v1
*x1) 

B 
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D 
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0 to 1. For example, if GIR is specified to be 0.1, then the GA model can compute an input reduction value and an 

output increase value in order to achieve an efficiency-improvement that is equivalent to 10 percent of the total 

efficiency gap (1- ∗θ ).   This model will use the constraint functions (4.1) and (4.2) instead of constraint functions 

(3.6) and (3.7) in the DFM model. Thus, we have the following model specification for the Goals-Achievement Values 

(GAVs): 
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A visual presentation of constraint functions (4.1) and (4.2) is given in Figure 6, which will now be clarified 

concisely. 

 

 

Figure 6 Presentation of a GA model 
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the GAVy , which are fairly allocated between input efforts and output efforts, are computed in Figure 6 using constraint 

functions (4.1) and (4.2). Finally, we can compute an input reduction value and an output increase value in order to 

achieve a GAVx and a GAVy using our CCR-DFM model. If the GIR = 1.0, then constraint functions (4.1) and (4.2) 

completely accord with constraint functions (3.6) and (3.7). In other words, the case of GIR = 1.0 represents a full 

improvement in the total efficiency gap (1-∗θ ). Alternatively, a case of GIR = 0.0 indicates a negligible improvement 

in the total efficiency gap (1-∗θ ). 

 

 

5. Application to Local Government Finance Efficiency by Means of the CCR-DFM-GA Model 

 

5.1 Analysis framework and database of local government finance efficiency in Hokkaido, Japan 

In our empirical work, we use input and output data for a set of 34 cities (the capital Sapporo City - population 

1,880,863 – was eliminated from our list of DMUs in order to avoid the extreme biased effects caused by scale 

differences) in Hokkaido prefecture in Japan. The cities (DMUs) used in our analysis are listed in Table 1. These cities 

were categorized, on the basis of their population size, into two groups: those with populations of more than 50,000, 

and those with populations of less than 50,000, in order to avoid biased effects caused by scale differences in 

government finance. 

For our DEA, we use the following inputs and outputs: 

• Input:  

(a) Number of municipal employees (in 2005); 

(b) Expenditures by local government (in million yen) (with elimination of employment costs) (in 2005); 

(c) Amount of outstanding city bonds (in million yen) (in 2005). 

• Output: 

(d) Tax revenues by local government (in million yen) (in 2005); 

(e) Public service level (in 2005). 

Data on ‘(a) Number of municipal employees’ were obtained from ‘The local authority regular data base 2005, 

Ministry of Internal Affairs and Communications, Japan’. Data on ‘(b) Expenditures by local government’, and ‘(c) 

Amount of outstanding city bonds’, and ‘(d) Tax revenues by local government’, were obtained from ‘The 

Municipality Accounting Card 2005, Ministry of Internal Affairs and Communications, Japan’. Data on ‘(e) Public 

service level’ were calculated by a standardized score method using 6 types of data, viz. ‘Number of elementary and 

junior high schools’, ‘Number of community centres and libraries’, ‘Road extensions (municipality road)’, ‘Number of 

urban parks’, ‘Number of care facilities for the elderly’, and ‘Number of day-care centres for children’, which were 

obtained from ‘Statistical observations of SHI, KU, MACHE, MURA 2005, Ministry of Internal Affairs and 

Communications, Japan’. 
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Table 1 DMUs (Hokkaido prefecture’s cities) 

Group 1 (More than 50000 population)  Group 2 (Less than 50000 population) 

No.  DMU Population  No. DMU Population 

1 Asahikawa 355,004  1 Hokuto 48,056 

2 Hakodate 294,264  2 Takikawa 45,562 

3 Kushiro 190,478  3 Abashiri 42,045 

4 Tomakomai 172,758  4 Wakkanai 41,592 

5 Obihiro 170,580  5 Date 37,066 

6 Otaru 142,161  6 Nayoro 31,628 

7 Kitami 129,365  7 Nemuro 31,202 

8 Ebetsu 125,601  8 Bibai 29,083 

9 Muroran 98,372  9 Rumoi 26,826 

10 Iwamizawa 93,677  10 Monbetsu 26,632 

11 Chitose 91,437  11 Fukagawa 25,838 

12 Eniwa 67,614  12 Furano 25,076 

13 Kitahiroshima 60,677  13 Shibetsu 23,411 

14 Ishikari 60,104  14 Sunagawa 20,068 

15 Noboribetsu 53,135  15 Ashibetsu 18,899 

 Sapporo 1,880,863  16 Akabira 14,401 

    17 Yubari 13,001 

    18 Mikasa 11,927 

    19 Utashinai 5,221 

 

In our application, we first applied the standard CCR model, while next the results of this analysis were used to 

determine the CCR-DFM and CCR-DFM-GA projections. The steps followed in our analysis are shown in Figure 7. 

In Subsection 5.2, we present the efficiency evaluation results based on the CCR model. Next, in Subsection 5.3, we 

present the efficiency-improvement projection results based on the CCR-DFM model, and compare these with the 

CCR projections and outcomes. Finally, in Subsection 5.4, we present the efficiency-improvement projection results 

based on the CCR-DFM-GA model.  

 

5.2 Efficiency evaluation based on the CCR model 

The efficiency evaluation results for the 15 larger cities (more than 50,000 population) and the smaller19 cities (less 

than 50,000 population) based on the CCR model are given in Figures 8 and 9.  

From Figure 8, it can be seen that Tomakomai city, Obihiro city, Chitose city, Kitahiroshima city, and Ishikari city are 

efficiently-operating cities. It should be noted that Tomakomai city and Ishikari city have a large-scale industrial area 

and a harbour, while Chitose city has the New Chitose International Airport. Obihiro city produces a high agricultural 

output, and well-known confectionary companies are also based in the city. And finally, Kitahiroshima city has many 

industrial complexes and printing factories. 

On the other hand, Iwamizawa city has a low efficiency (i.e. an efficiency score around 50 percent) in terms of 
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government finance. It is also clear that this city has in the past flourished on the basis of its coal production and its 

railway links, but most coal mines in Hokkaido were closed down after 1970s. 

 

 

 

Figure 7 Analysis framework 

 

  From Figure 9, it can be seen that Hokuto city, Furano city, and Utashinai city are efficient. It is noteworthy that 

Hokuto city has promoted mergers of cities, towns and villages, in order to improve the efficiency of the city 

administration.  Furthermore, this city has a large-scale factory which is a subsidiary of a cement company in Japan. 

On the other hand, Yubari city and Bibai city are low-efficiency cities in terms of government finance. It is also 

noteworthy that these cities have flourished as former coal mining areas, but now they have been deprived from their 

main industry. 
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Figure 8 Efficiency score based on the CCR model (15 larger cities: more than 50,000 population) 
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Figure 9 Efficiency score based on CCR model (19 smaller cities: less than 50,000 population) 

 

5.3 Efficiency improvement projection based on the CCR and CCR-DFM models 

The efficiency improvement projection results based on the CCR and CCR-DFM model for inefficient cities are 

presented below (see Tables 2 and 3).  

In Tables 2 and 3, it appears that the ratios of change in the CCR-DFM projection are smaller than those in the CCR 

projection, as was expected. In Table 2, this particularly applies to Kushiro, Kitami, Iwamizawa and Eniwa. (the larger 

Group 1 cities in Table 1), which are non-slack type cities (i.e. s-**  and s+**  are zero). The CCR-DFM projection 
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involves both input reduction and output increase, and, clearly, the CCR-DFM projection does not involve a uniform 

ratio because this model looks for the optimal input reduction (i.e., the shortest distance to the frontier, or distance 

friction minimization). For instance, the CCR projection shows that Eniwa should reduce the urban Employees and 

City bonds by 8.1 percent and its Expenditures by 25.7 percent in order to become efficient. On the other hand, 

CCR-DFM results show that a reduction in City bonds of 7.5 percent and an increase in the Tax revenues of 4.9 percent 

are required to become efficient. Apart from the practicality of such a solution, the models show clearly that a different, 

and a perhaps more efficient solution is available than the standard CCR projection to reach the efficiency frontier. 

 

 

Table 2  Efficiency-improvement projection results of the CCR and the CCR-DFM model 

(more than 50,000 population cities) 

DMU Score(θ*) DMU Score(θ*)

Difference % Difference % Difference % Difference %

d mo
x* +s -** d mo

x* +s -**

d so
y* +s +** d so

y* +s +**

Asahikawa 0.869 Ebetsu 0.789
(I)Employees 3229 -424.5 -13.2% -238.8 -7.4% (I)Employees 1169 -256.7 -22.0% -134.6 -11.5%
(I)Expenditures 126886.6 -21040.3 -16.6% -9232.0 -7.3% (I)Expenditures 30744.6 -6487.0 -21.1% -3626.1 -11.8%
(I)City bonds 194947.5 -25629.9 -13.2% 0.0 0.0% (I)City bonds 44192.8 -10356.7 -23.4% -7389.5 -16.7%
(O)Tax revenues 38607.7 0.0 0.0% 2716.5 7.0% (O)Tax revenues 11483.6 0.0 0.0% 1409.7 12.3%
(O)Public service 73.3 17.0 23.1% 26.7 36.4% (O)Public service 48.1 0.0 0.0% 0.0 0.0%
Hakodate 0.649 Muroran 0.883
(I)Employees 4054 -1485.0 -36.6% -937.8 -23.1% (I)Employees 1432 -304.9 -21.3% -245.2 -17.1%
(I)Expenditures 103328.9 -36288.0 -35.1% -22008.6 -21.3% (I)Expenditures 35125.4 -4175.8 -11.9% -1997.0 -5.7%

(I)City bonds 157613.8 -67455.3 -42.8% -48252.0 -30.6% (I)City bonds 46054.1 -5407.9 -11.7% -2872.6 -6.2%
(O)Tax revenues 31918.6 0.0 0.0% 6798.5 21.3% (O)Tax revenues 14401.7 0.0 0.0% 902.3 6.3%
(O)Public service 63.8 50.5 79.2% 74.9 117.4% (O)Public service 43.6 0.0 0.0% 0.0 0.0%
Kushiro 0.578 Iwamizawa 0.515
(I)Employees 2847 -1202.2 -42.2% -793.4 -27.9% (I)Employees 1228 -595.5 -48.5% -282.8 -23.0%
(I)Expenditures 90247.1 -38841.7 -43.0% 0.0 0.0% (I)Expenditures 38822.4 -20818.4 -53.6% 0.0 0.0%
(I)City bonds 119382.3 -50411.3 -42.2% 0.0 0.0% (I)City bonds 53304.3 -25849.1 -48.5% -20847.6 -39.1%
(O)Tax revenues 22248.4 0.0 0.0% 6060.9 27.2% (O)Tax revenues 8337.1 0.0 0.0% 3097.8 37.2%
(O)Public service 52.9 0.0 0.0% 0.0 0.0% (O)Public service 48.1 0.0 0.0% 0.0 0.0%
Otaru 0.594 Eniwa 0.919
(I)Employees 2012 -858.6 -42.7% -611.3 -30.4% (I)Employees 609 -49.1 -8.1% 0.0 0.0%
(I)Expenditures 54218.1 -22965.4 -42.4% -13936.4 -25.7% (I)Expenditures 21537.9 -5531.0 -25.7% 0.0 0.0%
(I)City bonds 69480.5 -28184.3 -40.6% -17677.5 -25.4% (I)City bonds 26370.4 -2125.9 -8.1% -1985.9 -7.5%
(O)Tax revenues 14628.9 0.0 0.0% 3739.5 25.6% (O)Tax revenues 7395.8 0.0 0.0% 359.3 4.9%
(O)Public service 46.4 0.0 0.0% 0.0 0.0% (O)Public service 41.6 0.0 0.0% 0.0 0.0%
Kitami 0.772 Noboribetsu 0.927
(I)Employees 1300 -296.8 -22.8% -168.7 -13.0% (I)Employees 514 -37.3 -7.3% -19.4 -3.8%
(I)Expenditures 52923.4 -12084.7 -22.8% 0.0 0.0% (I)Expenditures 18035 -4506.5 -25.0% -3997.1 -22.2%
(I)City bonds 85613.4 -22256.8 -26.0% 0.0 0.0% (I)City bonds 30716.5 -9595.5 -31.2% -8800.1 -28.6%
(O)Tax revenues 13612.5 0.0 0.0% 1846.3 13.6% (O)Tax revenues 5066.6 1216.2 24.0% 1452.8 28.7%

(O)Public service 54.9 0.0 0.0% 0.0 0.0% (O)Public service 39.3 0.0 0.0% 1.5 3.8%
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Table 3  Efficiency improvement projection results of the CCR and the CCR-DFM model 

(less than 50000 population cities) 

DMU Score(θ*) DMU Score(θ*)

Difference % Difference % Difference % Difference %
d mo

x* +s -** d mo
x* +s -**

d so
y* +s +** d so

y* +s +**

Takikawa 0.846 Monbetsu 0.837
(I)Employees 805 -513.6 -63.8% -489.4 -60.8% (I)Employees 327 -70.3 -21.5% -47.5 -14.5%
(I)Expenditures 17260.4 -2734.5 -15.8% -1526.6 -8.8% (I)Expenditures 12399.5 -2024.8 -16.3% -1102.4 -8.9%
(I)City bonds 24001.6 -3685.3 -15.4% -1995.9 -8.3% (I)City bonds 28617.2 -14595.6 -51.0% -13348.1 -46.6%
(O)Tax revenues 4227.3 0.0 0.0% 351.5 8.3% (O)Tax revenues 2762.6 0.0 0.0% 246.1 8.9%
(O)Public services 55.4 4.7 8.4% 9.7 17.5% (O)Public services 47.3 0.0 0.0% 4.2 8.9%
Abashiri 0.899 Fukagawa 0.768
(I)Employees 396 -67.0 -16.9% -49.5 -12.5% (I)Employees 605 -268.0 -44.3% -205.2 -33.9%
(I)Expenditures 18248.7 -1849.7 -10.1% -974.3 -5.3% (I)Expenditures 13233.4 -3076.0 -23.2% -1740.3 -13.2%
(I)City bonds 49073.7 -26137.6 -53.3% -24913.1 -50.8% (I)City bonds 27701.6 -14729.5 -53.2% -11898.7 -43.0%
(O)Tax revenues 4772.4 0.0 0.0% 254.8 5.3% (O)Tax revenues 2236.8 0.0 0.0% 0.0 0.0%
(O)Public services 52.1 15.7 30.2% 19.3 37.1% (O)Public services 54.3 0.0 0.0% 11.9 21.9%
Wakkanai 0.760 Shibetsu 0.809
(I)Employees 783 -484.8 -61.9% -444.2 -56.7% (I)Employees 682 -329.8 -48.4% -277.7 -40.7%
(I)Expenditures 19555 -4689.3 -24.0% -2664.1 -13.6% (I)Expenditures 12951.9 -2477.4 -19.1% -1369.7 -10.6%
(I)City bonds 29764.8 -8973.1 -30.2% -6140.6 -20.6% (I)City bonds 23623.4 -9960.3 -42.2% -7612.7 -32.2%
(O)Tax revenues 4326.2 0.0 0.0% 589.4 13.6% (O)Tax revenues 2231.8 0.0 0.0% 0.0 0.0%
(O)Public services 52.9 8.6 16.2% 17.0 32.0% (O)Public services 57.2 0.0 0.0% 9.9 17.2%
Date 0.979 Sunagawa 0.828
(I)Employees 448 -135.0 -30.1% -136.3 -30.4% (I)Employees 746 -492.5 -66.0% -434.1 -58.2%
(I)Expenditures 13112.7 -277.7 -2.1% -140.3 -1.1% (I)Expenditures 10496.5 -1803.3 -17.2% -986.4 -9.4%
(I)City bonds 22046.1 -4652.9 -21.1% -4419.7 -20.0% (I)City bonds 17954.2 -6590.4 -36.7% -5871.0 -32.7%
(O)Tax revenues 3442.1 0.0 0.0% 61.5 1.8% (O)Tax revenues 2112.5 0.0 0.0% 15.5 0.7%
(O)Public services 58.1 0.0 0.0% 0.2 0.3% (O)Public services 43.1 0.0 0.0% 7.2 16.7%
Nayoro 0.732 Ashibetsu 0.863
(I)Employees 885 -552.0 -62.4% -460.5 -52.0% (I)Employees 527 -264.6 -50.2% -237.6 -45.1%
(I)Expenditures 15769.7 -4229.3 -26.8% -2442.2 -15.5% (I)Expenditures 9045.9 -1238.6 -13.7% -664.8 -7.3%
(I)City bonds 23971.5 -8850.9 -36.9% -6911.0 -28.8% (I)City bonds 13433.7 -3258.0 -24.3% -2042.0 -15.2%
(O)Tax revenues 2822.8 0.0 0.0% 226.1 8.0% (O)Tax revenues 1665.7 0.0 0.0% 0.0 0.0%
(O)Public services 56.9 0.0 0.0% 12.4 21.8% (O)Public services 42.6 0.0 0.0% 5.1 12.0%
Nemuro 0.860 Akabira 0.832
(I)Employees 663 -370.9 -55.9% -328.0 -49.5% (I)Employees 460 -205.6 -44.7% -176.8 -38.4%
(I)Expenditures 12662 -1771.6 -14.0% -952.4 -7.5% (I)Expenditures 8029.2 -1350.5 -16.8% -737.3 -9.2%
(I)City bonds 23825.3 -9334.5 -39.2% -8454.2 -35.5% (I)City bonds 12777.5 -2254.4 -17.6% -954.7 -7.5%
(O)Tax revenues 2780.3 0.0 0.0% 99.0 3.6% (O)Tax revenues 949.4 0.0 0.0% 0.0 0.0%
(O)Public services 51.7 0.0 0.0% 5.8 11.2% (O)Public services 44.1 0.0 0.0% 5.5 12.4%
Bibai 0.641 Yubari 0.722
(I)Employees 544 -256.7 -47.2% 0.0 0.0% (I)Employees 406 -146.9 -36.2% -108.4 -26.7%
(I)Expenditures 14462.6 -5192.4 -35.9% -3164.2 -21.9% (I)Expenditures 10183.9 -3408.9 -33.5% -2590.6 -25.4%
(I)City bonds 25707.6 -13760.9 -53.5% 0.0 0.0% (I)City bonds 14873.9 -4136.3 -27.8% -2402.2 -16.2%
(O)Tax revenues 2162.8 0.0 0.0% 234.7 10.9% (O)Tax revenues 946.7 0.0 0.0% 0.0 0.0%
(O)Public services 47.5 0.0 0.0% 14.5 30.5% (O)Public services 45 0.0 0.0% 7.3 16.2%
Rumoi 0.882 Mikasa 0.929
(I)Employees 608 -358.5 -59.0% -344.2 -56.6% (I)Employees 388 -137.7 -35.5% -129.3 -33.3%
(I)Expenditures 11490.7 -1352.6 -11.8% -718.6 -6.3% (I)Expenditures 8245.4 -1551.7 -18.8% -1372.3 -16.6%
(I)City bonds 26076 -12360.6 -47.4% -11489.4 -44.1% (I)City bonds 11051.9 -789.8 -7.2% -409.6 -3.7%
(O)Tax revenues 2706.7 0.0 0.0% 176.4 6.5% (O)Tax revenues 1026 0.0 0.0% 0.0 0.0%
(O)Public services 46.1 0.0 0.0% 2.8 6.0% (O)Public services 43 0.0 0.0% 1.6 3.7%
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5.4 Efficiency improvement projection of the CCR-DFM-GA models 

We will now provide a comprehensive picture of the results of our integrated CCR-DFM-GA model, and use Yubari 

city as a reference (‘target’) city. It should be noted that Yubari city was in a state of financial crisis in March 2007. Now, 

however, this city has a local government that is responsible for a financial reconstruction, and hence it has put local 

public finance on the road to recovery. But the city does not have resources to achieve a full efficiency improvement, as 

shown in Table 3. 

In this subsection, we will use as an inefficient reference city (DMU) Yubari city, and present an efficiency 

improvement projection result based on the CCR-DFM-GA model. We assume that the GIR uses steps from 0.0 to 1.0 

at intervals of 0.1. Next, the efficiency scores and the input reduction values and the output increase values based on the 

CCR-DFM-GA model are calculated in Table 4 and Figure 10. 

 
Table 4 Efficiency improvement projection results based on the CCR-DFM-GA model (Yubari city) 

GIR Score 
dx+s-** 

(Employees) 

dx+s-** 
(Expenditures) 

dx+s-** 
(City bonds) 

dy+s+** 

(Revenues) 

dy+s+** 

(Public services) 

Employees 

(%) 

Expenditures 

(%) 

City 

bonds(%) 

Revenues 

(%) 

Public 

services(%) 

0.0  0.722  0 0.0  0.0  0.0  0.0  0.0 0.0 0.0% 0.0 0.0 

0.1  0.746  0 0.0  -240.2  0.0  0.7  0.0 0.0 -1.6 0.0 1.6 

0.2  0.770  0 0.0  -480.4  0.0  1.5  0.0 0.0 -3.2 0.0 3.2 

0.3  0.795  0 0.0  -720.7  0.0  2.2  0.0 0.0 -4.8 0.0 4.8 

0.4  0.822  0 0.0  -960.9  0.0  2.9  0.0 0.0 -6.5 0.0 6.5 

0.5  0.849  0 0.0  -1201.1  0.0  3.6  0.0 0.0 -8.1 0.0 8.1 

0.6  0.877  0 0.0  -1441.3  0.0  4.4  0.0 0.0 -9.7 0.0 9.7 

0.7  0.906  0 0.0  -1681.5  0.0  5.1  0.0 0.0 -11.3 0.0 11.3 

0.8  0.936  0 0.0  -1921.7  0.0  5.8  0.0 0.0 -12.9 0.0 12.9 

0.9  0.967  0 0.0  -2162.0  0.0  6.5  0.0 0.0 -14.5 0.0 14.5 

1.0  1.000  -108.4 -2590.6 -2402.2  0.0  7.3  -26.7 -25.4 -16.2 0.0 16.2 

 

These results show that, if the city implements an efficiency improvement plan with a GIR amounting to 0.5 (i.e. 50 

percent of the total efficiency gap), only a reduction in the City bonds of 8.1 percent and an increase in Public services 

of 8.1 percent are required, and then the efficiency score improves from 0.722 to 0.849. Furthermore, the results of a 

plan with a GIR of 1.0 (i.e. 100 percent of the total efficiency gap) accord with the result of our CCR-DFM model in 

Table 3. Yubari city is an Input-slack type of city (i.e. s-**  is not zero). If a new plan with a GIR of 1.0 is implemented in 

this case, it would have to incorporate both a slack of Employees (-108.4) and a slack of Expenditures (-2590.6). 

These results may offer a meaningful contribution for the decision making and planning for the efficiency 

improvement of local government finance. And this new model may thus become a policy instrument that may 

have great added value for the decision making and planning of both public and private actors.  
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Figure 10 Efficiency-improvement projection results based on the CCR-DFM-GA model (Yubari city) 
 
 

6. Conclusion 

 

In this paper we have presented a new methodology for an inefficient city to reach the efficiency frontier and to 

achieve the prior goal set by a DMU. This methodology does not require a uniform reduction of all inputs, as in the 

standard model. Instead, the new method minimizes the distance friction for each input and output separately. As a 

result, the reductions in inputs and increases in outputs necessary to reach the efficiency frontier are smaller than in the 

standard model. Furthermore, our CCR-DFM-GA model can present a more realistic efficiency-improvement plan, 

and may thus provide a meaningful contribution to the decision making and planning for the efficiency improvement of 

relevant agents. The results for our Hokkaido case study are illustrative: they are able to identify the weak 

municipalities in the region and to identify the factors that are responsible for a non-optimal performance of these 

actors.  

 
 
References 
 
Angulo-Meza, L., Lins, M.P.E., “Review of method for increasing discrimination in Data Envelopment Analysis”, 

Annals of Operational Research, vol. 116, 2002, pp. 225-242. 
Banker, R. D., Charnes, A., Cooper, W.W., “Some Models for Estimating Technical and Scale Inefficiencies in Data 

Envelopment Analysis”, Management Science, vol. 30, 1984, pp.1078-1092 
Belton, V., ‘‘An Integrating Data Envelopment Analysis with Multiple Criteria Decision Analysis’’, in A. Goicoechea, 

L. Duckstein, and S. Zionts (eds.), Multiple Criteria Decision Making, Springer-Verlag, Berlin, 1992, pp. 



 21

71-79. 
Belton, V., Vickers, S.P., ‘‘Demystifying DEA-A Visual Interactive Approach Based on Multiple Criteria Analysis’’, 

Journal of Operational Research Society., vol. 44, 1993, pp. 883-896. 
Charnes, A., Cooper, W. W., Rhodes, E., “Measuring the Efficiency of Decision Making Units”, European Journal of 

Operational Research, vol. 2, 1978, pp. 429-444. 
Cooper, W.W., Seiford, L.M., Tone, K., Introduction to Data Envelopment Analysis and its Uses, Springer, Berlin, 

2006. 
Doyle, R. H., Green, J.R., ‘‘Data Envelopment Analysis and Multiple Criteria Decision Making’’, OMEGA, vol. 6, 

1993, pp. 713-715. 
Farrell, M.J., “The Measurement of Productive Efficiency”, Journal of the Royal Statistical Society, vol.120, 1957, pp. 

253-290. 
Golany, B., “An Interactive MOLP Procedure for the Extension of DEA to Effectiveness Analysis”, Journal of 

Operational Research Society, vol. 39, 1988, pp. 725-734. 
Halme, M., Joro, T., Korhonen, P., Salo, S., Wallenius, J., “A value efficiency approach to incorporating preference 

information in Data Envelopment Analysis”, Management Science, vol.45, no.1, 1999, pp. 103-115. 
Joro, T., Korhonen, P., Wallenius, J., “Structural Comparison of Data Envelopment Analysis and Multiple Objective 

Linear Programming”, Management Science, vol.44, no.7,, 1998, pp. 962-970. 
Korhonen. P., Siljamäk, A., “On the Use of Value Efficiency Analysis and Some Further Developments”, Journal of 

Productivity Analysis, vol. 17, nos. 1-2, 2002, pp. 49-64. 
Korhonen, P., Stenfors, S., Syrjänen, M., “Multiple objective approach as an alternative to radial projection in DEA”, 

Journal of Productivity Analysis, vol. 20, no. 20, 2003, pp. 305-321. 
Kornbluth, J. S. H., ‘‘Analysing Policy Effectiveness using Cone Restricted Data Envelopment Analysis’’, Journal of 

Operational Research Society, vol 42, 1991, pp. 1097-1104. 
Lins, M. P. E., Angulo-Meza, L., Moreira da Silva, A.C., “A multi-objective approach to determine alternative targets in 

data envelopment analysis”, Journal of Operational Research Society, vol. 55, 2004, pp. 1090-1101. 
Ministry of Internal Affairs and Communications, White Paper on local Public Finance, 2007, National Printing 

Center, 2007. 
Suzuki, S., Nijkamp, P., Rietveld, P., Pels, E. “Distance Friction Minimization Approach in Data Envelopment Analysis 

- An Application to Airport Performance”, Paper presented at the 20th Pacific Regional Science Conference, 
2007a. 

Suzuki, S., Nijkamp, P., Rietveld, P., Pels, E. “Efficiency Improvement by Means of BCC-DFM-Fixed Factor Model in 
Data Envelopment Analysis - An Application to the European Airports-,” Paper presented at the 54th Annual 
North American Meeting of the Regional Science Association International (RSAI), 2007b. 

Suzuki, S., Nijkamp, P., Rietveld, P. “Efficiency Improvement Through Distance Minimization in Data Envelopment 
Analysis - An Application to the Tourism Sector in Italy”, Paper presented at the Joint Congress of the 
European Regional Science Association (47th Congress) and ASRDLF (Association de Science Régionale 
de Langue Française, 44th Congress), 2007c. 

Thanassoulis, E., Dyson, R. G., ‘‘Estimating Preferred Target Input-Output Levels Using Data Envelopment Analysis,’’ 
European Journal of Operational Research, vol. 56, 1992, pp. 80-97. 

Windrum, P., Koch, P. (eds), Innovation in Public Sector Services, Edward Elgar, Cheltenham, UK, 2008. 


