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Abstract

An efficient and accurate approach is proposed for forecasting Value at Risk

[VaR] and Expected Shortfall [ES] measures in a Bayesian framework. This consists

of a new adaptive importance sampling method for Quantile Estimation via Rapid

Mixture of t approximations [QERMit]. As a first step the optimal importance

density is approximated, after which multi-step ‘high loss’ scenarios are efficiently

generated. Numerical standard errors are compared in simple illustrations and in

an empirical GARCH model with Student-t errors for daily S&P 500 returns. The

results indicate that the proposed QERMit approach outperforms several alterna-

tive approaches in the sense of more accurate VaR and ES estimates given the same

amount of computing time, or equivalently requiring less computing time for the

same numerical accuracy.
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1 Introduction

The issue that is considered in this paper is the efficient computation of accurate estimates

of two risk measures, Value at Risk [VaR] and Expected Shortfall [ES], using simulation

given a chosen model. There are several reasons why it is important to compute accu-

rate VaR and ES estimates. An underestimation of risk could obviously cause immense

problems for banks and other participants in financial markets (e.g. bankruptcy). On

the other hand, an overestimation of risk may cause one to allocate too much capital

as a cushion for risk exposures, having a negative effect on profits. Therefore, precise

estimates of risk measures are obviously desirable. For simulation based estimates of VaR

and ES there also several other issues that play a role. For ‘backtesting’ or model choice

it is important that this model choice is based on the quality of the model, rather than

the ‘quality’ of the simulation run. For example, one should not choose a model merely

because simulation noise stemming from pseudo-random draws caused its historical VaR

or ES estimates to be preferable. Next, risk measures should stay approximately constant

when the actual risk level stays about constant over time. If changes of risk measures over

time are merely caused by simulation noise, this leads to useless fluctuations in positions,

leading to extra costs (e.g. transactions costs). Also for the choice between different risky

investment strategies based on a risk-return-tradeoff it is important that the computed

risk measures are accurate. Decision making on portfolios should not be misled by sim-

ulation noise. Moreover, the total volume of invested capital may obviously be huge, so

that small percentage differences may correspond to huge amounts of money.

A typical disadvantage of computing simulation-based Value at Risk [VaR] and Ex-

pected Shortfall [ES] estimates with high precision is that this requires a huge amount

of computing time. In practice, such computing times are often too long for ‘real time’

decision making. Then one typically faces the choice between a lower numerical accuracy

- using a smaller number of draws or an approximating method - or a lower ‘modeling

accuracy’ using an alternative, computationally easier, typically less realistic model. In

this paper we propose a simulation method that requires less computing time to reach

a certain numerical accuracy, so that the latter choice between suboptimal alternatives

may not be necessary.

The approaches for computing VaR and ES estimates can be divided into three groups

(as indicated by McNeil and Frey (2000, p. 272)): non-parametric historical simulation,

fully parametric methods based on an econometric model with explicit assumptions on

volatility dynamics and conditional distribution, and methods based on extreme value
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theory. In this paper we focus on the second method, although some ideas could be useful

in the simulation-based approaches of the third method. We compute VaR and ES in

a Bayesian framework: we consider the Bayesian predictive density. A specific focus is

on the 99% quantile of a loss distribution for a 10-days ahead horizon. This particular

VaR measure is accepted by the Basel Committee on Banking and Supervision of Banks

for Internal Settlement (Basel Committee on Banking Supervision (1995)). The issues of

model choice and ‘backtesting’ the VaR model or ES model are not directly addressed.

However, as mentioned before, the numerical accuracy of the estimates can be indirectly

important in the model choice or ‘backtesting’ procedure because simulation noise may

misdirect the model selection process.

The contributions of this paper are as follows. First, we consider the numerical stan-

dard errors of VaR and ES estimates. Since VaR and ES are not simply unconditional

expectations of (a function of) a random variable, the numerical standard errors do not

directly fit within the importance sampling estimator’s numerical standard error formula

of Geweke (1989). We consider the optimal importance sampling density – that maxi-

mizes the numerical accuracy for a given number of draws – as derived by Geweke (1989)

for the case of VaR estimation. Second, we propose a particular ‘hybrid’ mixture density

that provides an approximation to the optimal importance density for VaR estimation.

The proposed importance density is also useful – perhaps even more so – as an impor-

tance density for ES estimation. This ‘hybrid’ mixture approximation makes use of two

mixtures of Student-t distributions as well as the distribution of future asset prices (or

returns) given parameter values and historical asset prices (or returns). It is flexible so

that it can provide a useful approximation in a wide range of situations. Further, it is easy

to simulate from. Moreover, the main contribution of this paper is an iterative approach

for constructing this ‘hybrid’ mixture approximation. It is automatic in the sense that it

only requires a posterior density kernel - not the exact posterior density - and the dis-

tribution of future prices/returns given the parameters and historical prices/returns. We

name the proposed two-step method, first constructing an approximation to the optimal

importance density and subsequently using this in importance sampling, the Quantile

Estimation via Rapid Mixture of t approximations [QERMit] approach. The QERMit

procedure makes use of the Adaptive Mixture of t [AdMit] approach, see Hoogerheide et

al. (2007), which constructs an approximating mixture of Student-t distributions given

merely a kernel of a target density. Hoogerheide et al. (2007) apply the AdMit approach

in order to approximate and simulate from a non-elliptical posterior of the parameters
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in an Instrumental Variable [IV] regression model. In this paper we consider the joint

distribution of parameters and future returns instead of merely the parameters. Moreover,

our goal is not to approximate this distribution of parameters and future returns but to

approximate the optimal importance density in which ‘high loss’ scenarios are generated

more often, which is subsequently ‘corrected’ by giving these lower importance weights.

Hence, the AdMit approach is merely one of the ingredients for the proposed QERMit

approach.

There are four clear differences between this paper and the existing literature on im-

portance sampling as a variance reduction technique for VaR estimation. First, typically

the distribution of future returns is simply ‘given’, i.e. the exact density of future returns

is known. We consider the Bayesian framework in which we assume that merely the

exact density of future asset prices/returns given the model parameters (and historical

prices/returns) and a kernel of the posterior density of the model parameters is known

- as is typically the case in Bayesian inference. This has a huge impact on the optimal

importance density. As will be described below, this means that the importance den-

sity should not only be focused on ‘high loss’ scenarios. The probability mass of the

importance density should be divided 50%-50% over ‘high loss’ scenarios and ‘common’

scenarios. Second, the main distinction is that we consider a flexible mixture importance

density for which we propose an automatic, iterative procedure to construct it. The speed

of the construction procedure and the flexibility of its resulting importance density are

the reason why it yields accurate and reliable estimates of VaR and/or ES in far less

computing time than alternative approaches. Third, typically only the estimation of VaR

is considered, whereas we also focus on ES estimation. The ES measure has several ad-

vantages over the VaR, as will be briefly discussed below. Fourth, the numerical accuracy

of importance sampling procedures for VaR estimation is typically assessed by repeating

many simulations and inspecting the standard deviation of the set of estimates. We also

consider numerical standard errors, estimates of this standard deviation that are quickly

and easily computed on the basis of one simulation. In practical situations one may often

not have enough time to repeat a simulation experiment many times, so that the use of

numerical standard errors may be a very convenient way to assess the numerical accuracy.

For example, Glasserman et al. (2000) specify a normal importance density based on

a quadratic ‘delta-gamma’ approximation to the change in portfolio value. Glass (1999)

uses a ‘tilted’ version of the returns distribution. They consider non-Bayesian applica-

tions, where the returns distribution of the assets within a portfolio is ‘given’, and do not
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address estimation of the ES.

The outline of the paper is as follows. In section 2 we discuss the computation of

numerical standard errors for VaR and ES estimates. Further we consider the optimal

importance sampling density (due to Geweke (1989)), which minimizes the numerical

standard errors (given a certain number of draws), for the case of VaR estimation. In

section 3, we briefly reconsider the AdMit approach (Hoogerheide et al. (2007)). Section 4

describes the proposed QERMit method. In section 5 we illustrate the possible usefulness

of the QERMit approach in an empirical example of estimating 99% VaR and ES in a

GARCH model with Student-t innovations for S&P 500 log-returns. Section 6 concludes.

2 Computation of Value at Risk and

Expected Shortfall using Importance Sampling:

numerical standard errors and

optimal importance distribution

2.1 Value at Risk [VaR] and Expected Shortfall [ES]

In literature, the VaR is referred to in several different manners. The quoted VaR is

either a percentage or an amount of money, referring to either a future portfolio value

or a future portfolio value in deviation from its expected value or current value. In this

paper we refer to the 100α% VaR as the 100(1− α)% quantile of the percentage return’s

distribution and ES as the expected percentage return given that the loss exceeds the

100α% quantile. With these definitions VaR and ES are typically values between -100%

and 0%.1

The VaR is a risk measure with several advantages: it is relatively easy to estimate

and easy to explain to non-experts. The specific VaR measure of the 99% quantile for

a horizon of two weeks - 10 trading days - is acceptable for the Basel Committee on

Banking and Supervision of Banks for Internal Settlement (Basel Committee on Banking

Supervision (1995)). This is motivated by the fear of a liquidity crisis where a financial

institution might not be able to liquidate its holdings for a two weeks period. Even

1For certain derivatives, e.g. options or futures, it may not be natural or even possible to quote profit

or loss as a certain percentage. It should be noted that the quality of our proposed method is not affected

by which particular VaR or ES definition is used.
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though the VaR has become a standard tool in financial risk management, it has several

disadvantages. First, the VaR does not tell anything about the potential size of loss that

exceeds the VaR level. This may lead to too risky investment strategies that optimize

expected profit under the restriction that the VaR is not beyond a certain threshold, since

the potential ‘rare event’ losses exceeding the VaR may be extreme. Second, the VaR is

not a coherent measure, as indicated by Artzner et al. (1999). This results since the

VaR lacks the property of sub-additivity. The ES has clear advantages over the VaR: it

does say something about losses exceeding the VaR level, and the ES is a sub-additive,

coherent measure. This property of sub-additivity means that the ES of a portfolio (firm)

can not exceed the sum of the ES measures of its sub-portfolios (departments). Adding

these individual ES measures yields a conservative risk measure for the whole portfolio

(firm).2 Because of these advantages of ES over VaR we not not only consider VaR but

also ES in this paper. For a concise and clear discussion of the VaR and ES measures we

also refer to Ardia (2008).

2.2 The ‘direct’ approach of Bayesian estimation of VaR or ES

As mentioned in the introduction, there are several approaches for computing VaR and

ES estimates. In this paper, we focus on the Bayesian approach in an econometric model

with explicit assumptions on volatility dynamics and conditional distribution. We use the

following notation. The m-dimensional vector yt consists of the returns (or asset prices)

at time t.3 Our data set on T historical returns is y ≡ {y1, . . . , yT}. We consider τ -step

(τ = 1, 2, . . .) ahead forecasting of VaR and ES, where we define the vector of future

returns y∗ ≡ {yT+1, . . . , yT+τ}. The model has a k-dimensional parameter vector θ. Fi-

nally, we have a (scalar valued) profit & loss function PL(y∗) that is positive for profits,

negative for losses.

2In order to see that the VaR measure is not sub-additive, consider the simple example of two inde-

pendent assets, both with a 4% probability of becoming worthless in the next period and 96% probability

that its value remains constant. Then the 95% VaR for the separate assets is zero, not providing any

warning signal for risk, whereas the 95% VaR for the two assets together is non-zero.

The ES is sub-additive, as due to diversification the ES measure for a portfolio will typically be smaller

than the sum of its sub-portfolios’ ES measures.
3The examples in this paper consider integrated models for the S&P 500, i.e. GARCH type models

for the S&P 500 log-returns (daily changes of the log-price) yt. In the case of mean-reverting processes,

e.g. electricity prices, one obviously uses the historical price process rather than merely the returns process

in order to forecast future returns.
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In order to estimate the τ -step ahead 100α% VaR or ES in a Bayesian framework,

one can obviously use the following straightforward approach, that we will refer to as the

‘direct approach’ of Bayesian VaR/ES estimation:

(Step 1) Simulate a set of draws θi (i = 1, . . . , n) from the posterior distribution, e.g. using

Gibbs sampling (Geman and Geman (1984)) or the Metropolis-Hastings algorithm

(Metropolis et al. (1953), Hastings (1970)).

(Step 2) Simulate corresponding future paths y∗i ≡ {yi
T+1, . . . , y

i
T+τ} (i = 1, . . . , n) from the

model given parameter values θi and historical values y ≡ {y1, . . . , yT}, i.e. from the

density p(y∗|θi, y).

(Step 3) Order the values PL(y∗i) ascending as PL(j) (j = 1, . . . , n). The VaR and ES are

then estimated as

V̂ aRDA ≡ PL(n(1−α)) (1)

and

ÊSDA ≡
1

n(1 − α)

n(1−α)∑

j=1

PL(n(1−α)), (2)

the (n(1 − α))th sorted loss and the average of the first (n(1 − α)) sorted losses,

respectively.

For example, one may generate 10000 profit/loss values, sort these ascending, and take

the 100th sorted value as the 99% VaR estimate. In order to intuitively sketch that this

‘direct approach’ is not optimal, consider the simple example of the standard normal

distribution with PL ∼ N(0, 1). If we then estimate the 99% VaR by simulating 10000

standard normal variates, and taking the 100th sorted value, then this estimate is intu-

itively speaking ‘based’ on only 100 out of 10000 draws, see Figure 1. There is no specific

focus on the ‘high loss’ subspace, the left tail. Roughly speaking, if we are only interested

in the VaR or ES, then a large subset of the draws seems to be ‘wasted’ on the subspace

that we are not particularly interested in. An alternative simulation approach that allows

one to specifically focus on an important subspace is Importance Sampling.
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Figure 1: Example of standard normally distributed profit/loss PL: if VaR and ES are

estimated by direct sampling using 10000 draws, these estimates particularly depend on

only 100 out of 10000 draws.

2.3 Bayesian estimation of VaR or ES by Importance Sampling:

numerical standard errors

In Importance Sampling [IS]4 the expectation E[g(X)] of a certain function g(.) of the

random variable X ∈ Rr is estimated as

Ê[g(X)]IS =
1
n

∑n
i=1 w(X̃i)g(X̃i)

1
n

∑n
j=1 w(X̃j)

=

∑n
i=1 w(X̃i)g(X̃i)∑n

j=1 w(X̃j)
, (3)

where X̃1, . . . , X̃n are independent realizations from the candidate distribution with den-

sity (= importance function) q(x), and w(X̃1), . . . , w(X̃n) are the corresponding weights

w(X̃) = p(X̃)

q(X̃)
with p(x) a kernel of the target density p∗(x) of X: p(x) ∝ p∗(x).5

4IS, see Hammersley and Handscomb (1964), has been introduced in Bayesian inference by Kloek and

Van Dijk (1978) and is further developed by Van Dijk and Kloek (1980, 1984) and Geweke (1989).
5The consistency of the IS estimator in (3) is easily seen from

E[g(X)] =

∫
g(x)

p(x)∫
p(x) dx

dx =

∫
g(x)p(x) dx∫

p(x) dx
=

∫
g(x)w(x)q(x) dx∫

w(x)q(x) dx
=

E[w(X̃)g(X̃)]

E[w(X̃)]
.

If we know the exact target density p∗(x), then we also have

E[g(X)] =

∫
g(x)p∗(x) dx =

∫
g(x)

p∗(x)

q(x)
q(x) dx = E

[
p∗(X̃)

q(X̃)
g(X̃)

]
,

so that we can use an alternative IS estimator of E[g(X)]:

Ê[g(X)]IS∗ =
1

n

n∑

i=1

p∗(X̃i)

q(X̃i)
g(X̃i).

8



The IS estimator V̂ aRIS of the 100α% VaR is computed by solving Ê[g(X)]IS = 1−α

with g(X) = I{PL(X) ≤ V̂ aRIS} (since P [PL(X) ≤ c] = E[I{PL(X) ≤ c}]). This

amounts to sorting the profit/loss values of the candidate draws PL(X̃i) (i = 1, . . . , n)

ascending as PL(X̃(j)) (j = 1, . . . , n), and finding the value PL(X̃(k)) such that Sk = 1−α

where Sk ≡
∑k

j=1 w̃(X̃(j)) is the cumulative sum of scaled weights w̃(X̃(j)) ≡ w(X̃(j))Pn
i=1 w(X̃(i))

(scaled to add to 1) corresponding to the ascending profit/loss values. In general there

will be no X̃(k) such that Sk = 1 − α, so that one interpolates between the values of

PL(X̃(k)) and PL(X̃(k+1)) where PL(X̃(k+1)) is the smallest value with Sk+1 > 1 − α.

The IS estimator ÊSIS of the 100α% ES is subsequently computed as ÊSIS =
1
k

∑k
j=1 w∗(X̃(j)) PL(X̃(j)), the weighted average of the k values PL(X̃(j)) (j = 1, . . . , k)

with weights w∗(X̃(j)) ≡ w(X̃(j))Pk
i=1 w(X̃(i))

(adding to 1).

Geweke (1989) provides formulas for the numerical accuracy of the IS estimator

Ê[g(X)]IS in (3). See also Hoogerheide et al. (2008) for a discussion of the numerical

accuracy of Ê[g(X)]IS. Define

t0 =
1

n

n∑

i=1

w(X̃i), (4)

t1 =
1

n

n∑

i=1

w(X̃i) g(X̃i), (5)

so that the importance sampling estimator can be written as Ê[g(θ)]IS = t1/t0. Using the

delta method, the estimated variance σ̂2
IS of Ê[g(X)]IS = t1/t0 is given by

σ̂2
IS =

(
∂Ê[g(X)]IS

∂t0

∂Ê[g(X)]IS

∂t1

)( v̂ar(t0) ˆcov(t0, t1)

ˆcov(t0, t1) v̂ar(t1)

)


∂Ê[g(X)]IS

∂t0
∂Ê[g(X)]IS

∂t1





=
t21
t40

v̂ar(t0) +
1

t20
v̂ar(t1) − 2

t1
t30

ˆcov(t0, t1), (6)

where

v̂ar(t0) =
1

n
v̂ar(w(X̃i)) =

1

n

([
1

n

n∑

i=1

w(X̃i)
2

]
− t20

)
, (7)

v̂ar(t1) =
1

n
v̂ar(w(X̃i) g(X̃i)) =

1

n

([
1

n

n∑

i=1

w(X̃i)
2g(X̃i)

2

]
− t21

)
, (8)

ˆcov(t0, t1) =
1

n
ˆcov(w(X̃i), w(X̃i) g(X̃i)) =

1

n

([
1

n

n∑

i=1

w(X̃i)
2g(X̃i)

]
− t0 t1

)
, (9)

In the sequel we will use this formula to explain that for Ê[g(X)]IS and Ê[g(X)]IS∗ different importance

densities q(x) are optimal.
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and where t0 and t1 are evaluated at their realized values. It holds for large n and under

mild regularity conditions reported by Geweke (1989) that Ê[g(X)]IS is approximately

N (E[g(X)], σ2
IS) distributed. The accuracy of the estimate Ê[g(X)]IS for E[g(X)] is re-

flected by the numerical standard error σ̂IS, and the 95% confidence interval for E[g(θ)]

can be constructed as (Ê[g(X)]IS − 1.96 σ̂IS, Ê[g(X)]IS + 1.96 σ̂IS).
6

The numerical standard error [NSE] σ̂IS,VaR of the IS estimator of the VaR or ES does

not directly follow from the NSE for Ê[g(X)]IS, as both VaR and ES are not unconditional

expectations E[g(X)] for a random variable X of which we know the density kernel.7 For

the NSE of the VaR estimator, we make again use of the delta rule. We have

P[PL(X) ≤ V̂ aR] ≈ P[PL(X) ≤ V aR]

+
∂ P[PL(X) ≤ c]

∂ c

∣∣∣∣
c=V aR

(
V̂ aR − V aR

)
⇒ (10)

1 − α ≈ P̂[PL(X) ≤ V aR] + p̂
PL

(V aR)
(
V̂ aR − V aR

)
⇒ (11)

var(V̂ aR) ≈
var
(
P̂[PL(X) ≤ V aR]

)

(p̂
PL

(V aR))2
(12)

where (11) results from (10) by substituting estimates for P[PL(X) ≤ V̂ aR], P[PL(X) ≤

V aR] and p
PL

(V aR), where p
PL

(V aR) is the density of PL(X) evaluated at V aR and

P̂[PL(X) ≤ V̂ aR] = 1−α since this equality defines V̂ aR. Substituting the realized value

of V̂ aRIS for V aR into (12) and taking the square root yields the numerical standard error

for V̂ aRIS:

σ̂IS,VaR =
σ̂

IS,P[PL≤V̂aRIS]

p̂
PL

(V̂ aRIS)
(13)

6If we know the exact target density p∗(x), then we have

var
(
Ê[g(X)]IS∗

)
=

1

n
var

(
p∗(X̃)

q(X̃)
g(X̃)

)
⇒ σ̂2

IS =
1

n

([
1

n

n∑

i=1

w(X̃i)
2g(X̃i)

2

]
−
(
Ê[g(X)]IS∗

)2
)

.

7Only if we would know the true value of the VaR with certainty, then the estimation of the ES would

reduce to the ‘standard’ situation of IS estimation of the expectation of PL(X) where X has target

density kernel ptarget(x) ∝ p(x)I{PL(x) ≤ V aR}. For an estimated V̂ aR value, the uncertainty on the

ES estimator is larger than that. This uncertainty has two sources: (1) the variation of those draws X̃i

with PL(X̃i) ≤ V aR for V aR = V̂ aR; and (2) the variation in V̂ aR.
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Figure 2: Illustration of the numerical standard error of the IS estimator for a VaR,

a quantile of a profit/loss PL(X) function of a random vector X. The uncertainty on

P [PL(X) ≤ c] for c = V̂ aRIS – on the vertical axis – is translated to the uncertainty on

V̂ aRIS – on the horizontal axis – by a factor 1
ppl(c)

, the inverse of the density function that

is the steepness of the displayed cumulative distribution function [CDF] of the profit/loss

distribution.

The numerical standard error σ̂
IS,P[PL≤V̂aRIS]

for the IS estimator of the probability P[PL(X) ≤

c] for c = V̂ aRIS directly follows from (6) with g(x) = I{PL(x) ≤ c}. Notice that in

general we do not have an explicit formula for the density p
PL

(c) of PL(X), but this is

easily estimated by Pr[PL(X)≤c+ε]−Pr[PL(X)≤c−ε]
2ε

. One can compute this for several ε values,

and use the ε that leads to the smallest estimate p̂pl(X)(c), and hence the largest (conser-

vative) value for σ̂
IS,V̂ aR

.8 Alternatively, one can use a kernel estimator of the profit/loss

density at c = V̂ aRIS. Figure 2 provides an illustration of the numerical standard error

for an IS estimator of a VaR, or more generally a quantile.

For the numerical standard error of the ES, we use that if the VaR would be known with

certainty, we would be in a ‘standard’ situation of IS estimation of the expectation of a

variable PL(X) where X has the target density kernel ptarget(x) ∝ p(x)I{PL(x) ≤ V aR}

for which the NSE σ̂IS,ES|V aR and the (asymptotically valid) normal density are easily

computed using (6). Since we do have the NSE σ̂IS,V aR and the (asymptotically valid)

normal density N
(
V̂ aRIS, σ̂IS,V aR

)
of the VaR estimator (as derived above), we can

8A convenient alternative is to compute P[PL(X)≤c+ε1]−P[PL(X)≤c−ε2]
ε1+ε2

for ε1, ε2 such that

P[PL(X) ≤ c + ε1] = (1 − α) + b σ̂
IS,P[PL≤V̂aRIS]

and P[PL(X) ≤ c − ε2] = (1 − α) − b σ̂
IS,P[PL≤V̂aRIS]

,

e.g. for b = 1, 2.
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proceed as follows to estimate the density for the ES estimator:

(1) Construct a grid of VaR values, e.g. on the interval
[
V̂ aRIS − 4σ̂

IS,V̂ aR
, V̂ aRIS + 4σ̂

IS,V̂ aR

]
.

(2) For each VaR value on the grid evaluate the NSE σ̂IS,ES|V aR of the ES estimator given

the VaR value, and evaluate the (asymptotically valid) normal density p(ÊSIS|V aR)

of the ES estimator on a grid.

(3) Estimate the ES estimator’s density p(ÊSIS) as the weighted average of the densi-

ties p(ÊSIS|V aR) in step (2) with weights from the estimated density of the VaR

estimator p(V̂ aRIS).

The numerical accuracy of ÊSIS is now estimated by considering the 95% interval of

the density p(ÊSIS); the numerical standard error is obtained as its standard deviation.

Figure 3 illustrates the procedure for estimation of the ES estimator’s density in the case

of N(0, 1) distributed profit/loss. The left panels show the case of direct sampling, where

the density p(ÊSIS|V aR) has clearly higher variance for more negative, more extreme

VaR values, resulting in a skewed density p(ÊSIS). The reason is that for these extreme

VaR values the estimate of ES given VaR is based on only few draws. The right panels

show the case of IS with Student-t (10 degrees of freedom) importance sampling, where

the density p(ÊSIS|V aR) has hardly a higher variance for more extreme VaR values. The

Student-t distribution’s fat tails assure that also for extreme VaR values the estimated ES

is based on many draws. This example already reflects an advantage of IS (with an im-

portance density having fatter tails than the target distribution) over a ‘direct approach’:

IS results in lower NSE and especially less downward uncertainty on the ES – with lower

risk of substantially underestimating risk.

2.4 Bayesian estimation of VaR or ES by Importance Sampling:

the optimal importance density

The optimal importance distribution for IS estimation of ḡ = E[g(X)] for a given target

density p(x) and function g(x), which minimizes the numerical standard error for a given

(large) number of draws, is given by Geweke (1989, Theorem 3). This optimal importance

density has kernel qopt(x) ∝ |g(x) − ḡ| p(x) (under the condition that E[|g(x) − ḡ|] is

finite). Geweke (1989) mentions three practical disadvantages of this optimal importance

distribution. First, it is different for different functions g(x). Second, a preliminary

estimate of ḡ = E[g(X)] is required. Third, methods for simulating from it would need to

12
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Figure 3: Example of standard normally distributed profit/loss PL: illustration of estima-

tion of ES estimator’s density using a N(0, 1) importance density (left) – corresponding

to the case of direct sampling – or a Student-t importance density (right). The top-left

panel gives the densities p(ÊSIS|V aR) for several VaR values. The top-right panel shows

the density p(V̂ aRIS). The bottom panel gives the density p(ÊSIS).

be devised. Geweke (1989) further notes that this result reflects that importance sampling

densities with fatter tails may be more efficient than the target density itself, as is the

case in the example above. In such cases the relative numerical efficiency [RNE], the

ratio between (an estimate of) the variance of an estimator based on direct sampling and

the IS estimator’s estimated variance (with the same number of draws), exceeds 1.9 An

interesting result is the case where g(x) is an indicator function I{x ∈ S} for a subspace

S, so that E[g(X)] = P [X ∈ S] = p̄. Then the optimal importance density kernel is given

by qopt(x) ∝ (1 − p̄) p(x) for x ∈ S and qopt(x) ∝ p̄ p(x) for x /∈ S, so that half the draws

should be made in S and half outside S, in proportion to the target kernel p(x) in both

9The RNE is an indicator of the efficiency of the chosen importance function; if target and importance

density coincide the RNE equals one, whereas a very poor importance density will have an RNE close to

zero. The inverse of the RNE is known as the inefficiency factor [IF].
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cases.10

From formula (13) it is seen that the NSE of the IS estimator for the 100α% VaR is

proportional to the NSE of the IS estimator of E[g(X)] with g(x) = I{x ∈ S}, where S

is the subspace with 100(1 − α)% lowest values PL(X). Hence the optimal importance

density for VaR estimation results from Geweke (1989): half the draws should be made

in the ‘high loss’ subspace S and half the draws outside S, in proportion to the target

kernel p(x). Figure 4 shows the optimal importance density for IS estimation of the 99%

VaR. Note the bimodality.11 A mixture of Student-t distributions can approximate such

shapes, see e.g. Hoogerheide et al. (2007). Figure 5 shows a mixture of three Student-t

distributions providing a reasonable approximation.

The VaR estimation approach proposed in this paper - Quantile Estimation via Rapid

Mixtures of t distributions [QERMit] - consists of two steps: (1) approximate the optimal

importance density by a certain mixture density q̂opt(.), where we must first compute a

preliminary (less precise) estimate of the VaR; (2) apply IS using q̂opt(.). Step (1) should

be seen as an ‘investment’ of computing time that will easily be ‘profitable’, since far

fewer draws from the importance density are required in step (2).

The optimal importance density for IS estimation of the ES does not follow from

Geweke (1989). We only mention that this will generally have fatter tails than the opti-

mal importance density for VaR estimation, just like the optimal importance density for

estimation of the mean has fatter tails than the target distribution itself (which is optimal

for estimating the median). Since we anyway make use of a fat-tailed importance density

10This result differs from the case where the exact target density p∗(x) is known. In that case

var
(
Ê[g(X)]IS∗

)
=

1

n
var

(
p∗(X̃)

q(X̃)
I{X̃ ∈ S}

)
.

is minimized by choosing q∗opt(x) ∝ p∗(x)I{x ∈ S}. In that case the IS estimator’s variance is 0 since
p∗(x)
q(x) I{x ∈ S} is constant, equal to E[g(X)]. This explains why the IS approach for variance reduction

of VaR estimation in a Bayesian framework, addressed in this paper, differs substantially from the non-

Bayesian applications of e.g. Glass (1999) and Glasserman et al. (2000). In non-Bayesian applications

one merely focuses on ‘high loss’ subspace whereas we focus ‘half-half’ on the ‘high loss’ subspace and

the rest. Intuitively speaking, we divide our attention ‘half-half’ over accurately estimating numerator t1

and denominator t0, whereas non-Bayesians only need to focus on t1.
11The optimal importance density can also have more than 2 modes. For example, if one shorts a

straddle of options, one has high losses for both large decreases and increases of the underlying asset’s

price. The optimal importance density is trimodal. It is, especially in higher dimensions where one may

not directly have a good ‘overview’ of the target distribution, important to use a flexible method such as

the AdMit approach.
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– being ‘conservative’ in the sense of assuring that our importance density does not ‘miss’

relevant parts of the parameter space – we simply reuse our approximation q̂opt(.) to the

optimal importance density for VaR estimation. In the examples this will be shown to

work well.

In the extreme case of a Student-t profit-loss distribution with 2 degrees of freedom,

the direct sampling estimator of the ES has no finite variance – just like the distribution

itself. Whereas the IS estimator using as a Student-t importance density with 1 degree

of freedom, a Cauchy density, does have a finite variance. Theoretically, the relative gain

in precision from performing IS over direct simulation in estimation of the 100α% ES can

therefore be infinite (for any α ∈ (0, 1))!

On the other hand, for VaR estimation the relative gain of precision from IS over direct

simulation (of the same number of independent draws from the target distribution) is

limited (for a given α ∈ (0, 1)). From Geweke (1989, Theorem 3) we have that (for a large

number of draws n) the variance of Ê[g(X)]IS with the optimal importance density qopt(x)

is approximately σ2
IS,opt ≈

1
n
E[|g(x) − ḡ|]2. For g(x) = I{X ∈ S} with P [X ∈ S] = 1 − α

we have σ2
IS,opt ≈ 1

n
[α(1 − α) + (1 − α)α]2 = 4

n
α2(1 − α)2. For direct simulation (of

independent draws) the variance of the estimator Ê[g(X)]DS results from the Binomial

distribution: σ2
DS = 1

n
α(1 − α). The gain from IS over direct simulation is therefore:

σ2
DS

σ2
IS,opt

≈
1

4 α (1 − α)
, (14)

which is also the relative gain for the VaR estimator’s precision (from formulas (12)-(13)).

Figure 6 depicts formula (14). For α = 1/2 formula (14) reduces to 1: for estimation

of the median the optimal importance density is the target density itself. For α = 0.99,

the α value that is under specific focus in this paper, the relative gain in (14) is equal

to 25.25. For α = 0.95 and α = 0.995 it is equal to 5.26 and 50.25, respectively. It

is intuitively clear that the more extreme the quantile, the larger the potential gain is

by focusing on the smaller subspace of interest using the IS method. The formula (14)

gives an upper boundary for the (theoretical) RNE in IS based estimation of the 100α%

VaR.12 However, one should not interpret formula (14) as an upper boundary of the gain

from the QERMit approach over the method that we name the ‘direct approach’, since

the ‘direct approach’ typically yields serially correlated draws. If the serial correlation is

high, due to non-elliptical shapes or simply due to high correlations between parameters

in case of the Gibbs sampler, the relative gain can be much larger than the boundary of

12Quoted, estimated RNE values may however exceed this boundary due to estimation error.
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formula (14). In such cases the RNE of the ‘direct approach’ may be far below 1.

First, we will briefly consider the Adaptive Mixture of t [AdMit] method which is an

important ingredient in our QERMit approach. After that the QERMit approach will be

discussed.

3 The Adaptive Mixture of t [AdMit] method

The AdMit approach consists of two steps. First, it constructs a mixture of Student-t

distributions which approximates a target distribution of interest. The fitting proce-

dure relies only on a kernel of the target density, so that the normalizing constant is not

required. In a second step, this approximation is used as an importance function in impor-

tance sampling (or as a candidate density in the independence chain Metropolis-Hastings

algorithm) to estimate characteristics of the target density. The estimation procedure is

fully automatic and thus avoids the difficult task, especially for non-experts, of tuning

a sampling algorithm. In a standard case of importance sampling the candidate density

is unimodal. If the target distribution is multimodal then some draws may have huge

importance weights or some modes may even be completely missed. Thus, an important

problem is the choice of the importance density, especially when little is known a priori

about the shape of the target density. The importance density should be close to the

target density, and it is especially important that the tails of the candidate should not

be thinner than those of the target. Hoogerheide et al. (2007) mention several reasons

why mixtures of Student-t distributions are natural candidate densities. First, they can

provide an accurate approximation to a wide variety of target densities, with substantial

skewness and high kurtosis. Furthermore, they can deal with multi-modality and with

non-elliptical shapes due to asymptotes. Second, this approximation can be constructed

in a quick, iterative procedure and a mixture of Student-t distributions is easy to sam-

ple from. Third, the Student-t distribution has fatter tails than the normal distribution;

especially if one specifies Student-t distributions with few degrees of freedom, the risk is

small that the tails of the candidate are thinner than those of the target distribution.

Finally, Zeevi and Meir (1997) showed that under certain conditions any density function

may be approximated to arbitrary accuracy by a convex combination of basis densities;

the mixture of Student-t distributions falls within their framework.

The AdMit approach determines the number of mixture components H, the mixing

probabilities, the modes and scale matrices of the components in such a way that the

16



−5 0 5
0

0.2

0.4

profit / loss density

−5 0 5
0

1

2

optimal IS candidate (Geweke (1989))

−5 0 5
0

2

4

optimal IS candidate if exact target known

VaR

VaR

Figure 4: Standard normal profit/loss density and corresponding optimal importance den-

sity for IS estimation of 99% VaR in case with only the target density kernel known and

case with exact target density known (see also footnote 10).

−5 0 5
0

0.2

0.4

0.6

0.8

profit/loss 

Figure 5: Mixture of three Student-t distributions providing an approximation to the op-

timal importance density.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

α

σ
D

S
2

 / 
σ

IS
,o

pt
2

Figure 6: Relative gain in precision of estimation of the 100α% VaR from IS with the

optimal importance density over direct simulation (using the same number of independent

draws).

17



mixture density approximates the target density p∗(θ) of which we only know a kernel

function p(θ) with θ ∈ Rk. Typically, p(θ) will be a posterior density kernel for a vector

of model parameters θ. The AdMit strategy consists of the following steps:

(0) Initialization: computation of the mode and scale matrix of the first component,

and drawing a sample from this Student-t distribution;

(1) Iterate on the number of components: add a new component that covers a part of

the space of θ where the previous mixture density was relatively small, as compared

to p(θ);

(2) Optimization of the mixing probabilities;

(3) Drawing a sample from the new mixture;

(4) Evaluation of importance sampling weights: if the coefficient of variation, the stan-

dard deviation divided by the mean, of the weights has converged, then stop. Oth-

erwise, go to step (1).

For more details we refer to Hoogerheide et al. (2007). The R package AdMit is available

online (Ardia et al. (2008)).

Until now the AdMit approach has been applied to non-elliptical posterior distribu-

tions, where the reason for non-elliptical shapes is typically local non-identification of

certain parameters. Examples are the IV model with weak instruments, or mixture mod-

els where one component has weight close to zero. In this paper the focus on the optimal

importance density for VaR estimation gives rise to situations of Importance Sampling

with non-elliptical target distributions, not only in the parameter space but also in the

space of future price processes. Figure 4 already showed a bimodal target density in the

case of normally distributed profit/loss.

4 Quantile Estimation via Rapid Mixtures of t

approximations [QERMit]

The QERMit approach basically consists of two steps. First the optimal importance

or candidate density of Geweke (1989) qopt(.) is approximated by a ‘hybrid’ mixture of

densities q̂opt(.). Second this candidate is used in Importance Sampling. In order to

estimate the τ -step ahead 100α% VaR or ES the QERMit algorithm proceeds as follows:
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(Step 1) Construct an approximation of the optimal importance density:

(Step 1a) Obtain a mixture of Student-t densities q1,Mit(θ) that approximates the pos-

terior density – given merely the posterior density kernel – using the AdMit

approach.

(Step 1b) Simulate a set of draws θi (i = 1, . . . , n) from the posterior distribution using

the independence chain MH algorithm with candidate q1,Mit(θ). Simulate cor-

responding future paths y∗i ≡ {yi
T+1, . . . , y

i
T+τ} (i = 1, . . . , n) given parameter

values θi and historical values y ≡ {y1, . . . , yT}, i.e. from the density p(y∗|θi, y).

Compute a preliminary estimate V̂ aRprelim as the 100(1−α)% quantile of the

profit-loss values PL(y∗i) (i = 1, . . . , n).

(Step 1c) Obtain a mixture of Student-t densities q2,Mit(θ, y
∗) that approximates the

conditional joint density of parameters θ and future returns y∗ given that

PL(y∗) < V̂ aRprelim, using the AdMit approach.

(Step 2) Estimate the VaR and/or ES using Importance Sampling with the following mixture

candidate density for θ, y∗:

q̂opt(θ, y
∗) = 0.5 q1,Mit(θ) p(y∗|θ, y) + 0.5 q2,Mit(θ, y

∗) (15)

The reason for the particular term q1,Mit(θ) p(y∗|θ, y) in this candidate (15) is that the

50% of draws corresponding to the ‘whole’ distribution of (y∗, θ) can be generated more

efficiently by using the density p(y∗|θ, y) that is specified by the model and approximating

merely the posterior q1,Mit(θ) than by approximating the joint distribution of (y∗, θ). This

reduces the dimension of the approximation process, which has a positive effect on the

computing time. In step 1b we actually compute a somewhat ‘conservative’, not-too-

negative estimate V̂ aRprelim of the VaR. For a too extreme, too negative V̂ aRprelim may

in step 1c yield an approximation of a distribution that covers not all of the ‘high loss’

region (with PL < V̂ aR). This conservative V̂ aRprelim can be based on its NSE, or simply

by taking a somewhat higher value of α than the level of interest.13

The QERMit algorithm proceeds in an automatic fashion in the sense that it only

requires the posterior kernel of θ, (evaluation and simulation from) the density of y∗

given θ, and profit/loss as a function of y∗ to be programmed. The generation of draws

13For this reason it does not make sense to use mixing probabilities 0.5/α and (α− 0.5)/α that would

lead to an exact 50%-50% division of ‘high loss’ draws and other draws, instead of 0.5 and 0.5 in (15).

Because V̂ aRprelim is ‘conservatively’ chosen, anyway not entirely all of the candidate probability mass

in q2,Mit(θ, y
∗) will be focused on the ‘high loss’ region.
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Figure 7: S&P 500 log-returns (100× change of log-index): daily observations from 1998-

2007.

(θi, y∗i) requires only simulation from Student-t distributions and the model itself, which is

performed easily and quickly. Notice that we focus on the distribution of (θ, y∗), whereas

the loss only depends on y∗. The obvious reason is that we typically do not have the

predictive density of the future path y∗ as an explicit density kernel, so that we have to

aim at (θ, y∗) of which we know the density kernel

p(θ, y∗|y) ∝ p(θ|y) p(y∗|θ, y) = π(θ) p(y|θ) p(y∗|θ, y)

with prior density kernel π(θ).

We will now discuss the QERMit method in a simple, illustrative example of an

ARCH(1) model. We consider the 1-day ahead 99% VaR and ES for the S&P500. That

is, we assume that during 1 day one will keep a constant long position in the S&P500

index. We use daily observations yt (t = 1, . . . , T ) on log-return, 100x the change of the

logarithm of the closing price, from January 2 1998 to April 14 2000. See Figure 7, in

which April 14 2000 corresponds to the second negative ‘shock’ of approximately -6%.

This particular day is chosen for illustrative purposes. We consider the ARCH model

(Engle (1982)) for the demeaned series ỹt:

ỹt = εt(ht)
1/2 (16)

εt ∼ N(0, 1) (17)

ht = α0 + α1ỹ
2
t−1 (18)

We further impose the variance targeting constraint α0 = S2 (1−α1) with S2 the sample

variance of the yt (t = 1, . . . , T ), so that we have a model with merely 1 parameter α1.

We assume a flat prior on the interval [0, 1).
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Step 1a of the QERMit method is illustrated in Figure 8. The AdMit method con-

structs a mixture of t approximation to the posterior density - given merely its kernel.

It starts with a Student-t distribution around the posterior mode q1(α1). After that it

searches for the maximum of the weight function w(α1) = p(α1)/q1(α1), where a new

Student-t component q2(α1) for the mixture distribution is specified. The mixing prob-

abilities are chosen to minimize the coefficient of variation of the IS weights, yielding

q1,Mit(α1) = 0.955q1(α1) + 0.045q2(α1), which in this case only provides a minor improve-

ment – a slightly more skewed importance density – over the original Student-t density

q1(α1).
14 Therefore, convergence is indicated after two steps. Note that we do not need

a perfect approximation to the posterior kernel, which would generally require a huge

amount of computing time. A reasonably good approximation is good enough. In this

simple example QERMit step 1a took only 1.2 s15.

The result of the QERMit method’s step 1b is illustrated in Figure 9. We generate

a set of draws αi
1 (i = 1, . . . , 10000) using the independence chain MH algorithm with

candidate q1,Mit(α1), and simulate 10000 corresponding draws ỹi
T+1 from the distribution

N(0, S2 + αi
1(ỹ

2
T − S2)) = N(0, 1.62 + 35.13 αi

1) since ỹT = −6.06. The 100th of the

ascendingly sorted percentage loss values PL(y∗i) = 100[exp(yi
T+1/100)−1] — since yT+1

is 100x the log-return — or a ‘conservatively’ chosen less negative value, is then the

preliminary VaR estimate V̂ aRprelim. In this simple example QERMit step 1b took only

3.4 s.

Figure 10 depicts QERMit step 1c. The top panels show the contour plots of the joint

density of (α1, yT+1) and of (α1, εT+1), where it is indicated for which values the PL value

falls below V̂ aRprelim. We will approximate the joint ‘high loss’ distribution of (α1, εT+1)

rather than (α1, yT+1). The reason is that in general it is easier to approximate the ‘high

loss’ distribution of (θ, ε∗), where ε∗ is ε∗ ≡ {εT+1, . . . , εT+τ}, by a mixture of Student-t

distributions than the ‘high loss’ distribution of (θ, y∗). Especially in GARCH type models

where the dependencies (of clustered volatility) between future values yT+1, . . . , yT+τ are

obviously much more complex than between the independent future values εT+1, . . . , εT+τ ,

it makes step 1c much faster. The ‘high loss’ subspace of parameters θ and future errors

ε∗ is somewhat more complex than for θ and y∗; for example, in Figure 10 the border

line is described by εT+1 = c/
√

1.62 + 35.13 αi
1 instead of simply yT+1 = c (for c =

100 log(1+V̂ aRprelim/100)). But it is still preferable to directly focusing on the parameters

and future realizations y∗. The bottom panels show the contour plots of the joint ‘high

14See Hoogerheide et al. (2007) for examples in which this improvement is huge. For the usefulness of

the QERMit approach it is not necessary that the posterior has non-elliptical shapes.
15An Intel Centrino Duo Core processor was used.

21



loss’ density of (α1, εT+1) and its mixture of t approximation. This illustrates that a two-

component mixture can provide a useful approximation to the highly skewed shapes that

are typically present in such tail distributions. In this simple example QERMit step 1c

took only 2.0 s.

Figure 11 shows the result of QERMit step 1, a ‘hybrid’ mixture approximation

q̂opt(α1, εT+1) to the optimal importance density qopt(α1, εT+1). Table 1 shows the re-

sults of QERMit step 2, and compares the QERMit procedure to the ‘direct’ approach.

For the ‘direct’ approach the series of 10000 profit/loss values is serially correlated, since

we use the Metropolis-Hastings algorithm. Therefore, those numerical standard errors

make use of the method of Andrews (1991), using a quadratic spectral (QS) kernel and

pre-whitening as suggested by Andrews and Monahan (1992). Note the huge difference

between the NSE’s. The RNE for the ‘direct approach’ is somewhat smaller than 1 due to

the serial correlation in the Metropolis-Hastings draws, whereas the RNE for the QERMit

importance density is far above 1. In fact, it is not far from its theoretical boundary of

25.25 (for α = 0.99). Notice that the fat-tailed approximation to the optimal importance

density for VaR estimation works even better for ES estimation, with an even higher

RNE. For a precision of 1 digit (with 95% confidence), i.e. 1.96 NSE < 0.05, we require

far fewer draws and much less computing time using the QERMit approach than using

the ‘direct approach’. This is illustrated by Figure 12. In more complicated models the

construction of a suitable importance density will obviously require more time. However,

this bigger ‘investment’ of computing time may obviously still be profitable, possibly even

more so, as the ‘direct’ approach will then also require more computing time. In the next

section we consider a GARCH model with Student-t errors.

22



posterior Student-t importance weight function

p(α1) function q1(α1) w(α1) = p(α1)/q1(α1)

0 0.2 0.4
0

2

4

6

8

α
1

0 0.2 0.4
0

2

4

6

8

α
1

0 0.2 0.4
0

0.5

1

1.5

α
1

Student-t component 2 mixture of t importance function

q2(α1) q1,Mit(α1) = 0.955q1(α1) + 0.045q2(α1) (-)

and q1(α1) (- -)

0 0.2 0.4
0

5

10

15

α
1

0 0.2 0.4
0

2

4

6

8

α
1

Figure 8: The QERMit method in an illustrative ARCH(1) model for S&P 500.

Step 1a: the AdMit method iteratively constructs a mixture of t approximation q1,Mit(.) to

the posterior density – given merely its kernel.
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Step 1b: obtain a preliminary estimate of the VaR.
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Figure 10: The QERMit method in an illustrative ARCH(1) model for S&P 500:

Step 1c: the AdMit method constructs a mixture of t approximation q2,Mit(.) to the joint

‘high loss’ density of the parameters and the future errors.
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Figure 11: The QERMit method in an illustrative ARCH(1) model for S&P 500.

Step 2: use the approximation q̂opt(.) (bottom panel) to the optimal importance density

qopt(.) (middle panel) for VaR or ES estimation. The top panel gives the joint density

p(α1, εT+1|y).
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Table 1: Estimates of 1-day ahead 99% VaR and ES for S&P 500 in ARCH(1) model (for

demeaned series under ‘variance targeting’ – given daily data of January 1 1998 - April

14 2000)

‘Direct’ approach: QERMit approach:

Metropolis-Hastings (Student-t candidate) Adaptive Importance Sampling

for parameter draws + direct sampling using a mixture

for future returns paths approximation of the optimal

given parameter draws candidate distribution

estimate (NSE) [RNE] estimate (NSE) [RNE]

99% VaR -5.744% (0.099%) [0.92] -5.658% (0.020%) [22.1]

99% ES -6.592% (0.132%) [0.86] -6.566% (0.024%) [24.9]

total time 3.3 s 10.1 s

time construction candidate 6.6 s

time sampling 3.3 s 3.5 s

draws 10000 10000

time/draw 0.33 ms 0.35 ms

required for % VaR estimate

with 1 digit of precision

(with 95% confidence):

- number of draws 151216 6408

- computing time 49.9 s 8.8 s

required for % ES estimate

with 1 digit of precision

(with 95% confidence):

- number of draws 268150 9036

- computing time 88.5 s 9.8 s
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Figure 12: Precision (1/var) of estimated VaR and ES, as a function of the amount of

computing time for ‘direct’ approach (- -) and QERMit approach (-). The horizontal line

corresponds to a precision of 1 digit (1.96NSE ≤ 0.05). Here the QERMit approach

requires 6.6 seconds to construct an appropriate candidate density, and after that soon

generates far more precise VaR and ES estimates.

5 Student-t GARCH model for S&P 500

In this section we consider the 10-day ahead 99% VaR and ES for the S&P500. We

use T = 2514 daily observations yt (t = 1, . . . , T ) on log-return from January 2 1998

to December 31 2007. See Figure 7. We consider the GARCH model (Engle (1982),

Bollerslev (1986)) with Student-t innovations:16

yt = µ + ut (19)

ut = εt(%ht)
1/2 (20)

εt ∼ Student-t(ν) (21)

% ≡
ν − 2

ν
(22)

ht = α0 + α1u
2
t−1 + βht−1 (23)

where Student-t(ν) is the standard Student-t distribution with ν degrees of freedom, with

variance ν−2
ν

. The scaling factor % normalizes the variance of the Student-t distribution

such that the innovation ut has variance ht. We specify flat priors for µ, α0, α1, β on

16We also considered the GJR model (Glosten et al. (1993)) with Student-t innovations. However,

the results suggested a negative α1 parameter for positive error values, suggesting that large positive

shocks lead to a decrease in volatility as compared with modest positive innovations. This result may

be considered counterintuitive and is a separate topic that does not fit within the scope of the current

paper.
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the parameter subspace with α0 > 0, α1 ≥ 0, β ≥ 0. These restrictions guarantee the

conditional variance to be positive. For ν we use a proper yet uninformative Exponential

prior for ν − 2; the restriction ν > 2 ensures that the conditional variance is finite.17

For the model (19)-(23) simulation results are in Table 2. Computing times refer to

computations on an Intel Centrino Duo Core processor. The first MH approach uses a

Student-t candidate distribution around the maximum likelihood estimator. The AdMit-

MH approach in step 1a of the QERMit algorithm requires 16.1 s to construct a candidate

distribution, which is a mixture of 2 Student-t distributions in this example. The AdMit-

MH draws have a slightly higher acceptance rate and for all parameters but µ a somewhat

lower serial correlation in the Markov chain of draws. The differences are however small,

reflecting that the contours of the posterior are rather close to the elliptical shapes of the

simple Student-t candidate. Figure 13 displays the estimated marginal posteriors from

the AdMit-MH output.

We also considered the Griddy-Gibbs [GG] sampler (Ritter and Tanner (1992)). How-

ever, this GG approach requires 3734 seconds, i.e. over one hour, for generating a set of

1000 draws (using modest grids of merely 40 points). Further, for the GG approach the

serial correlations are worse than for the MH methods, e.g. 0.93 and 0.95 for α1 and β1,

respectively. Since we focus on the efficient computation of VaR and ES, we discard the

GG sampler in the sequel of this paper.

Another alternative simulation method is to extend the approach of Nakatsuma (2000)

for the case of Student-t innovations, see Ardia (2008). However, this ‘MH within Gibbs’

approach makes use of auxiliary candidate distributions that must be constructed in each

step of the Gibbs sampler. For both (α0, α1) and β this requires two loops per draw, so

that four loops occur within the loop over all draws. Summarizing, the extended version

of the Nakatsuma (2000) approach is discarded for the same reason as the GG approach:

it is much slower than the MH approaches.

We now compare the results of the ‘direct’ approach and the QERMit method. Figure

15 shows the estimated profit/loss density, the density of the percentage 10-day change

in S&P500. Simulation results are in Table 3. In the QERMit approach the construction

of the candidate distribution requires 103.8 seconds. This ‘investment’ can again be

considered quite ‘profitable’ as the NSE of the VaR and ES estimators - both based on

10000 draws - are much smaller than the NSE of the estimators using the ‘direct’ approach.

Suppose we want to compute estimates of the VaR and ES (in %) with a precision of 1

17Under a flat prior for ν the posterior would be improper, as for ν → ∞ the likelihood does not tend

to 0, but to the likelihood under Gaussian innovations.
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Table 2: Simulation results for the GARCH model with Student-t innovations (19)-(23)

for S&P 500 log-returns: estimated posterior means, posterior standard deviations between

( ), and serial correlations in the Markov chains of draws between [ ].

Metropolis-Hastings Metropolis-Hastings

[MH] [AdMit-MH]

(candidate = Student-t) (candidate = mixture

of 2 Student-t)

mean (st.dev) [s.c.] mean (st.dev) [s.c.]

µ 0.0483 (0.0169) [0.4322] 0.0489 (0.0177) [0.4458]

α0 0.0086 (0.0034) [0.5463] 0.0080 (0.0033) [0.5288]

α1 0.0713 (0.0114) [0.5081] 0.0697 (0.0108) [0.4896]

β 0.9243 (0.0118) [0.5157] 0.9262 (0.0114) [0.5106]

ν 10.0953 (1.9717) [0.6632] 9.8086 (1.6801) [0.4791]

total time 47.2 s 65.4 s

time construction candidate 16.1 s

time sampling 47.2 s 49.3 s

draws 10000 10000

time/draw 4.7 ms 4.9 ms

acceptance rate 53.9% 56.2%

digit (with 95% confidence), i.e. 1.96NSE < 0.05, so that we can quote e.g. -8.3% and

-10.0% as the VaR and ES estimates from this model. In the ‘direct’ approach we would

then require over 500000 draws (over 49 minutes) for the VaR and over 1000000 draws

(over 89 minutes). However, in the QERMit approach we would require fewer than 60000

(or 75000) draws in fewer than 8 (10) minutes for the VaR (ES). Figure 14 illustrates that

the investment of computing time in an appropriate candidate distribution is indeed very

profitable if one desires estimates of VaR and ES with a reasonable precision.

Finally, notice that for the QERMit approach the RNE is much higher than 1, whereas

for the ‘direct’ approach the RNE is somewhat below 1. The reason for the latter is again

the serial correlation in the MH sequence of parameter draws.18 The first phenomenon

is in sharp contrast with the potential ‘struggle’ in importance sampling based Bayesian

inference (for estimation of posterior moments of non-elliptical distributions) to have an

RNE not too far below 1.

18One could consider to use only one in k draws, e.g. k = 5. However, this ‘thinning’ makes no sense

in this application since generating a parameter draw (evaluating the posterior density kernel) takes

certainly as much time as generating a path of 10 future log-returns. The quality of the draws, i.e. the

RNE, would slightly increase, but the amount of computing time per draw would increase substantially.
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Figure 13: Estimated marginal posterior distributions in model (19)-(23) for S&P 500
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Table 3: Estimates of 10-day ahead 99% VaR and ES for S&P 500 in Student-t GARCH

model (given daily data of January 1 1998 - December 2007)

‘Direct’ approach: QERMit approach:

Metropolis-Hastings (Student-t candidate) Adaptive Importance Sampling

for parameter draws + direct sampling using a mixture

for future returns paths approximation of the optimal

given parameter draws candidate distribution

estimate (NSE) [RNE] estimate (NSE) [RNE]

99% VaR -7.92% (0.19%) [0.76] -8.27% (0.06%) [7.34]

99% ES -9.51% (0.26%) [0.58] -9.97% (0.07%) [8.11]

total time 51.9 s 165.9 s

time construction candidate 103.8 s

time sampling 51.9 s 62.1 s

draws 10000 10000

time/draw 5.2 ms 67.2 ms

required for % VaR estimate

with 1 digit of precision

(with 95% confidence):

- number of draws 567648 58498

- computing time 2946 s (= 49 min. 6 s) 467 s (= 7 min. 47 s)

required for % ES estimate

with 1 digit of precision

(with 95% confidence):

- number of draws 1033980 74010

- computing time 5366 s (= 89 min. 26 s) 563 s (= 9 min. 23 s)
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Figure 14: Precision (1/var) of estimated VaR and ES, as a function of the amount of

computing time for ‘direct’ approach (- -) and QERMit approach (-). The horizontal line

corresponds to a precision of 1 digit (1.96NSE ≤ 0.05). Here the QERMit approach

requires 103.8 seconds to construct an appropriate candidate density, and after that soon

generates far more precise VaR and ES estimates.
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Figure 15: Estimated profit/loss density: estimated density of 10-days % change in S&P

500 (for first 10 working days of January 2008) based on GARCH model with Student-t

errors estimated on 1998-2007 data
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6 Concluding remarks

We conclude that the proposed QERMit approach can yield far more accurate VaR and

ES estimates given the same amount of computing time, or equivalently requiring less

computing time for the same numerical accuracy. This enables ‘real time’ decision mak-

ing on the basis of these risk measures in a simulation-based Bayesian framework based

on results with a higher accuracy. In the case of 1-step ahead forecasting with a portfo-

lio of several assets the proposed method can also be useful, as simulation of the future

realizations is then typically also required. So, the sensible application of the QERMit

method is not restricted to multi-step ahead forecasting of VaR and ES.

The examples in this paper only considered the case of a single asset, the S&P 500

index. In that sense, the application was 1-dimensional. However, the 10-days ahead

forecasting of a single asset’s price has similarities with 1-day ahead forecasting for a

portfolio of 10 assets. Further, the subadditivity of the ES measure implies that ES

measures of subportfolios may already be useful: adding these yields a conservative risk

measure for a whole portfolio. Nonetheless, we intend to investigate portfolios of several

assets and report on this in the near future. The application to portfolios of several assets

whose returns’ distributions are captured in a multivariate GARCH model or a copula is

of interest. Having clearly different features than the S&P 500 index, an application to

electricity prices would also be of interest.

As another topic for further research we mention the application of the approach for

the efficient simulation-based computations in extreme value theory, e.g. efficient compu-

tations in the case of Pareto distributions.
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