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Global Loss Diversi�cation in the Insurance Sector

Oleg Sheremet∗ and André Lucas†

Abstract

We study the possibility for international diversi�cation of catastrophe risk by the

insurance sector. Adopting the argument that large insurance losses may be a `globaliz-

ing factor' for the industry, we study the dependence of geographically distant insurance

markets via equity returns. In particular, we employ conditional copula theory to model

the bivariate dependence of the insurance industry. In contrast to earlier literature on

this subject, we disentangle the causes of dependence stemming from the asset side from

those from the liability side by conditioning on general market conditions. We �nd that

for both Europe�America and Europe�Asia the dependence is signi�cant. Moreover,

we �nd asymmetric e�ects: the international dependence is particularly high for losses,

even after conditioning for the asset side dependence. Finally, we investigate the time

variation in copula parameters and �nd evidence that dependence in the insurance sec-

tor has increased over time, thus reducing the scope for international diversi�cation of

large losses in this sector.

Keywords: Catastrophic insurance losses; Copula and dependence; Diversi�cation

JEL Classi�cation: C32, C52, G15

1 Introduction

During the past two decades, increased catastrophic losses have exceeded $40bn almost every

year, reaching a peak of about $230bn in 2005, according to SwissRe (2007). Only one third

of these losses was insured. Moreover, despite the worldwide increase in reinsurance capacity,

the ability of the market to adequately reinsure large catastrophic risks remains questionable,

see e.g. Cummins and Weiss (2000) and Froot (2001). In particular, reinsurance coverage

is limited and predominantly covers only lower layers of losses, see Froot (2001). It is

well-known that it is very di�cult to diversify large catastrophic losses locally due to their

typical correlation structure. The limited depth of the reinsurance industry, however, seems

to suggest that the diversi�cation possibilities for catastrophic losses are also limited on a

global scale.

∗Institute for Environmental Studies (IVM), VU University Amsterdam.
E-mail: oleg.sheremet@ivm.vu.nl.
†VU University Amsterdam, Tinbergen Institute, and Duisenberg school of �nance.
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In the present paper, we investigate whether the limited reinsurance capacity for catas-

trophic risks at a global scale is due to an increased international dependence in the insurance

industry. We �nd signi�cant dependence across di�erent world regions. This dependence

hints at one of the possible causes of limited capacity of catastrophe reinsurance via tradi-

tional reinsurers. Consequently, alternative reinsurance solutions become more important,

such as increasing reinsurance capacity directly via capital markets using, for example, catas-

trophe bonds and securitization.

A theoretical explanation for the limited scale of catastrophe reinsurance markets is

given by Froot and O'Connell (2008). They derive that the supply of reinsurance for a given

contract is reduced if the variance of losses under that contract is greater (as is the case with

catastrophe losses) or the covariance of losses under that contract with the loss distribution

of a reinsurer's portfolio is greater (e.g., due to increased cross-sectional dependence of

the reinsured catastrophic losses). So, if dependence is strong and has gradually increased

globally, reinsurers are less willing to take on new catastrophe insurance contracts, as this

would only increase the degree of dependence of their portfolio. Consequently, this limits

the scope for global reinsurance.

We empirically determine the dependence between insurance losses using the copula

approach for insurers' equity returns. We do so by constructing a dynamic copula model for

insurers' equity returns. The usefulness of copula-based methods over traditional correlation-

based methods in the �nancial risk management setting has been worked out in e.g. McNeil

et al. (2005). Via copulas we can separate the modeling process for the marginal behavior of

losses from that of the dependence structure, as was proved by Sklar (1959). Patton (2006)

has extended the copula approach to the dynamic context, such that time variation in the

dependence measures is allowed for.

As mentioned, our input to the copula consists of equity returns rather than insurance

losses. There are several reasons for this. First, catastrophic losses are typically only available

at a very low frequency. This makes it impossible to reliably estimate any dependence

measures over di�erent global regions. Second, reported losses may be subject to particular

accounting practices. For example, losses may be manipulated for pro�t smoothing purposes,

thus corrupting the dependence structure. Equity returns, by contrast, are available at high

frequencies. They constitute the clearest signals of the market's perception of an insurer's

position and value at any moment in time.

Naturally, equity returns also have some drawbacks as a proxy for insurance losses. As

explained in Slijkerman (2006), the dependence between equity returns in the insurance

sector can be the result of exposures to a broad range of similar risks, for example due to

correlated losses, but also due to holding similar globally diversi�ed investment portfolios

on the asset side of the balance sheet. Slijkerman (2006) measures lower tail dependence

among twelve European insurers and reinsurers. He �nds that in a bivariate setting insurers

demonstrate a higher degree of tail dependence than reinsurers. His conclusion is that

the systemic risk in the insurance sector is larger than in the reinsurance sector. In a
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related study, Geluk and De Vries (2006) provide interesting theoretical and empirical results

based on this idea of common risk exposures. The authors use results of Extreme Value

Theory to prove that unless all reinsurance companies hold non-connected asset and liability

portfolios, the reinsurers' equity returns exhibit tail dependence. The conclusion is that

while diversi�cation is bene�cial for small risks, it may introduce systemic risk for large

catastrophic events.

Other related work includes a number of studies on dependence from a contagion perspec-

tive. Angbazo and Narayanan (1996) analyze the impact of Hurricane Andrew on the stock

prices of 48 publicly traded property-liability insurance �rms. The impact was measured as

a three-day cumulative abnormal return. Hurricane Andrew negatively a�ected the majority

of �rms in their sample. This e�ect was unrelated to the �rms' exposure levels. Fields, Klein,

and Myskowski (1998) and Polonchek and Miller (1999) study contagion e�ects generated

by announcements about operational loss events. All of these papers found strong evidence

of contagion.

Our paper contributes to the literature in the following ways. First, we investigate

the dependence structure between insurance companies' equity returns in three globally

disconnected regions (America, Europe, Asia and Australia) to study potential problems for

the global reinsurance market brought about by catastrophic losses. Second, in contrast to

earlier literature on this subject, we try to disentangle the causes of dependence stemming

from the asset side and those from the liability side by conditioning insurers' equity returns

on general market conditions. As a measure of dependence, we use both correlation and tail

dependence coe�cients. Finally, we investigate whether the extremal dependence structure

between regions changes over time using the dynamic copula approach of Patton (2006) and

the test for possible breakpoints for copula parameters proposed by Dias and Embrechts

(2003).

We �nd that while there are no explicit jumps in dependence between di�erent geo-

graphic regions, both tail dependence and correlation show certain variability over time for

all market pairs and also have been increasing since about 2004. Also, for all market pairs

the dependence of negative returns is higher than the dependence of positive returns. This

implies a reduced scope for global diversi�cation of large losses, with the possible exception

of America�Asia market, where most of the dependence between equity returns appears to

be due to correlated asset rather than liability portfolios.

The paper proceeds as follows. Section 2 describes the methodology and general outline

of our model. Section 3 describes the data. Section 4 reports the univariate results. Section

5 then proceeds with the copula models. Finally, Section 6 concludes.
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2 Model description

2.1 Copula theory and dependence modeling

In this paper we use copulas to model the dependence between the equity returns of in-

surance companies in di�erent regions. The unconditional bivariate copula is de�ned as a

dependence function of two univariate marginal distributions, such that a joint distribution

of two variables may be decomposed into its copula and two marginal distributions:

FXY (x, y) = C(FX(x), FY (y)), (1)

where C(u1, u2) is a distribution function on the unit square, (u1, u2) ∈ [0, 1]2.

This is the so-called Sklar (1959) representation theorem. The representation in (1) allows

us to separate the modeling stage of the marginal distributions FX(x) and FY (y) from that

of the dependence function C(u1, u2). This latter function is called a copula. As highlighted

by McNeil et al. (2005), copulas are a useful extension and generalization of commonly used

approaches for modeling joint distributions, such as the correlation concept. In the bivariate

setting, copulas allow one to de�ne a range of non-parametric measures of dependence that

go beyond the linear correlation coe�cient.

For example, an important concept in the context of copulas and dependence in the

extreme tails of the distribution is the coe�cient of tail dependence. This coe�cient is

de�ned as the conditional probability of a large event in one market given a large event in

the other market. Mathematically, we de�ne the coe�cients of upper (τU) and lower (τL)

tail dependence as

τL = lim
u→0+

P (x2 ≤ F−1
2 (u) |x1 ≤ F−1

1 (u)) = lim
u→0+

C(u, u)

u
, (2)

τU = lim
u→1−

P (x2 > F−1
2 (u) |x1 > F−1

1 (u)) = lim
u→1−

Ĉ(1− u, 1− u)

1− u
= lim

u→0+

Ĉ(u, u)

u
, (3)

where Ĉ(u, v) = C(1− u, 1− v) + u+ v − 1 is a survival copula.

Patton (2006) extended the unconditional copula approach to that of a conditional copula,

FXY |W (x, y|w) = C(FX|W (x|w), FY |W (y|w)|w), (4)

where w ∈ W is the conditioning variable. The main advantage of the conditional copula

approach is that it allows us to introduce time-varying copulas and thus study changes in

dependence structures over time.

In this paper we consider a number of di�erent copulas that are used in the empirical

paper of Patton (2006) and can also be found in Denuit et al. (2005), Joe (1997), and Nelsen

(1999). In particular, we study the Gaussian, Student t, Clayton, Survival Clayton, and

Symmetrized Clayton copulas.
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The Gaussian copula is given by

CGa(u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
· exp

{
−ζ

2
1 − 2ρζ1ζ2 + ζ2

2

2(1− ρ2)

}
dζ1dζ2 (5)

where ζi = Φ−1(ui), i = 1, 2 is the inverse univariate standard normal distribution function.

Dependence for this copula is linear and measured by a single parameter: the coe�cient of

correlation ρ.

As is well known, the Gaussian copula does not permit a non-zero tail dependence coef-

�cient (unless ρ = ±1). A �rst extension that does allow for non-zero tail dependence is the

Student t copula, given by

CSt(u1, u2) =

∫ t.−1
ν (u1)

−∞

∫ t.−1
ν (u2)

−∞

1

2π
√

1− ρ2
·
(

1 +
ξ2

1 − 2ρξ1ξ2 + ξ2
2

ν (1− ρ2)

)− ν+2
2

dξ1dξ2, (6)

where ξi = t−1
ν (ui), i = 1, 2 is the inverse Student t distribution function with ν degrees of

freedom. The tail dependence coe�cient equals τ = 2tν+1

(
−
√

(ν+1)(1−ρ)
1−ρ

)
.

Both the Gaussian and Student t copulas are symmetric. To allow for non-symmetric

upper versus lower tail dependence, we consider di�erent versions of the Clayton copula.

The Clayton copula is given by

CCl(u1, u2) =
(
u−a1 + u−a2 − 1

)− 1
a , a 6= 0, (7)

with coe�cient of lower tail dependence τL = 2−1/a, and upper tail dependence τU = 0.

Similarly, we consider the survival Clayton copula Ĉ(u, v) with τL = 0 and τU = 2−1/a.

Finally, we follow Patton (2006) and also consider the symmetrization of this copula,

Csym(u, v|τL, τU) =
1

2
·
(
C(u, v|τL) + Ĉ(u, v|τU)

)
, (8)

thus allowing for (possibly di�erent) levels of upper and lower tail dependence, simultane-

ously.

2.2 Model design and estimation

As mentioned in the introduction, joint movements in equity returns of insurance companies

could be due to reasons unrelated to the insurers' liability side. For example, there could be

a general shift in risk premia across markets. Alternatively, insurance companies are likely to

hold similar, globally well-diversi�ed investment portfolios. To single out the e�ects directly

related to the liability rather than to the asset side of the balance sheet of insurance �rms,

we estimate a CAPM regression of the form

rit − rft = αi + βi(rmt − rft) + εit, (9)
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where rit is the equity return for insurance �rms in a speci�c geographic region, Europe,

North America, and Australasia. The market return rmt is a global market return in our

context. In particular, we use the MSCI Global Index return. For the risk-free rate rf , we

take the return on 3-month US T-bills. The regression in (9) e�ectively allows us to control

for any dependence coming from joint movements of stock markets in di�erent regions. By

concentrating on the residuals εit in (9), we hope to �lter out most of these e�ects.

When specifying a model of bivariate dependence between return series using a copula,

we actually have to specify three models: the univariate models for the two marginal distri-

butions and the copula model. There are several approaches to �t a copula, see e.g. McNeil

et al. (2005). In this paper we employ the so-called two-stage maximum likelihood method

(or Inference Functions for Margins or IFM method) with parametric estimators for the

marginal distributions at the �rst stage.

For the margins, we use univariate ARMA-GARCH models with skewed t-innovations

suggested by Hansen (1994). These models are �exible enough to give an adequate repre-

sentation of the marginal distribution of equity returns. We �t these models to the market

model residuals εit from (9).

The standardized residuals ẑit from the �tted ARMA-GARCH models are used to gen-

erate pseudo-samples uit = F (ẑit), i = 1, ...m, t = 1, ...n. We use the pseudo-sample for

the estimation of the copula parameters and for the selection of the best-�t copula. Under

standard conditions, the estimates obtained from the two-stage procedure are consistent and

asymptotically normal, though less e�cient than under the joint estimation of the parame-

ters of both the univariate margins and the copula. The IFM method is further described

in Joe (1997).

For testing the stability of the copula parameters over time, we employ the LR test

promoted by Dias and Embrechts (2003). This test checks for change points and their

timing in the context of parametric copula models. If there are several change points, the

detection is based on the so-called binary segmentation procedure. After a break date has

been found, the test procedure is applied to each of the subsamples before and after the

break date. For the details of the procedure and the relevant distribution theory, we refer

the reader to the above-cited paper and references provided in it.

After the estimation of the copula parameters, the analysis of its goodness-of-�t, and

the selection of the most appropriate unconditional copulas, we turn to the analysis of

conditional copulas. Following Patton (2006), we assume that the copulas are conditioned

on the past values of their parameters and the pseudo-sample. This means that only the

copula parameters are varying over time, while the functional form is �xed.

The parametrization of the time variation in the conditional copulas is de�ned as

ρ̃il,t = ωρ + βρ · ρ̃il,t−1 + αρ ·
1

k

k∑
j=1

F−1(ui,t−j) · F−1(ul,t−j), (10)

for the correlation coe�cient ρil,t = Λ̃(ρ̃il,t) in case of the Normal or Student t copulas, and
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as

τ̃L,Uil,t = ωL,U + βL,U · τ̃U,Lil,t−1 + αU,L ·
1

k

k∑
|

j=1

ui,t−j − ul,t−j|, (11)

for tail dependence coe�cients τL,Uil,t = Λ(τ̃L,Uil,t ) in case of the copulas that allow for a non-zero

tail dependence. Here Λ̃(x) = (1−e−x)/(1+e−x) and Λ(x) = (1+e−x)−1 are transformations

used to keep correlation and tail dependence coe�cients in the (-1,1) and (0,1) ranges,

respectively. The function F−1(·) is the inverse cumulative distribution function, which is

the univariate normal for the Gaussian copula, or the Student t for the Student t copula.

The evolution equations consist of an autoregressive term and a forcing variable. The

number of lags k depends on our assumptions on how persistent the variations to dependence

are in each particular case. Determining it is an empirical issue. E�ectively, the last term

in (11) plays the role of a �smoothing� parameter. We consider k = 4...26, which in our case

of weekly data is roughly in line with Patton (2006).

3 Data

We study the dependence between equity return series for three geographically distinct

insurance markets. These return series were formed by aggregating weekly asset returns for

publicly traded non-life insurance companies listed in the USA and Canada, Western Europe,

and Asia and Australia. For simplicity, we refer to these regions as America, Europe, and

Australasia.

Life and health insurance sectors were excluded from consideration. First, not every

catastrophe results in large (insured) human life losses, and so property losses represent a

more direct impact of a severe loss event on the insurance industry as a whole. Second, as

Brewer and Jackson (2002) argue, the life insurance sector di�ers in operational principles

from the non-life sector in that the former has developed closer links with the banking sector.

As a result, the life insurance sector may have easier access to external capital and thus be

more stable during large catastrophe events. On the other hand, Brewer and Jackson (2002)

and later Cummins et al. (2006) show that such a link may bring in additional dependence

between equity returns for life insurance companies, and may also channel crises from the

banking sector into the insurance sector.

The data come from the Thomson Datastream and the CRSP databases. For the US

data, we use CRSP. Our sample comprises equity returns for �re, marine, and casualty

insurance companies, which includes a broad range of damages to property. The data for

Europe and Australasia are taken from the Datastream and cover a somewhat broader range

of the insurance companies. We delete all companies with names that relate to the life

insurance industry. This selection was especially important for the Australasian market,

where most of the listed insurance companies in the data set have life insurance as their

core business. Second, we delete all companies with prolonged non-trading periods. Our
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�nal sample covers the most liquid publicly traded property insurance �rms. The American

market has 221 companies (including 73 dead �rms), the European market 129 (34 dead),

and the Australasian market 98 (11 dead).

For each region, we construct an equally weighted index of log-returns. The sample covers

weekly observations from January 1986 to December 2006, which gives us 1095 data points

for each series. Table 1 provides summary statistics of the data.

From the reported unconditional moments in the table, we see that all series are nega-

tively skewed. The skeweness parameters are highly signi�cant. This also holds for the kur-

tosis. Taken together, the empirical distributions of returns display signi�cant non-normal

behavior. The test statistics in Table 1 suggest there is signi�cant autocorrelation in the

equity return series for all three markets. In addition, heteroscedasticity tests show that

all series have signi�cant conditional heteroscedasticity. Both of these empirical stylized

facts, together with the excess skewness and kurtosis, are accounted for by the fat-tailed

ARMA-GARCH models we use for the marginal distributions.

The correlation matrix in Table 2 shows that there is a substantial positive linear de-

pendence between global insurance market returns. The correlation is strongest between

America and Europe, followed by Europe�Australasia and America�Australasia.

To get a �rst impression of the degree of tail dependence, we compute the exceedance

correlations. The exceedance correlation is de�ned as the correlation between exceedance

returns, that is between {r1 : r1 ≥ F−1
1 (θ)} and {r2 : r2 ≥ F−1

2 (θ)} for θ ≥ 1/2, and

between {r1 : r1 ≤ F−1
1 (θ)} and {r2 : r2 ≤ F−1

2 (θ)} for θ ≤ 1/2, where F−1
i (θ) denotes

the θ-quantile of the empirical distribution of ri. More details can be found in Longin

and Solnik (2001). These plots, reshaped as a di�erence between exceedance correlations

for the original returns and exceedance correlations for arti�cial series generated from the

bivariate normal distribution with the same correlation coe�cient as the empirical returns,

are displayed in the left panel of the Figure 1. Looking at the graphs, we see substantial

deviations from bivariate normality. If the returns had been generated from the normal

distribution, both positive and negative exceedance correlation di�erences would have been

close to zero for both lower and upper tails. This is not the case for our data. We can see

substantial correlation of both large negative and positive return exceedances for Europe�

America, Europe�Australasia and America�Australasia. However, the large positive returns

in all three market pairs tend to be less correlated than the large negative returns. Moreover,

for positive returns, the exceedance correlations in some cases even change sign and become

negative.

4 Univariate modeling

4.1 Accounting for asset-side dependence

In order to exclude possible assets-side dependence between the equity returns for insurance

companies operating on geographically distant markets, we need to �lter out joint equity
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movements brought about by general movements in worldwide securities markets. To do so,

we �t an international CAPM to each of our return series. Table 3 reports the results. For

all regions, the results are comparable. The constant terms are insigni�cantly di�erent from

zero, and the βs are statistically signi�cant and of similar size. The international CAPM

therefore cannot be rejected in this case.

The correlations of the original equity returns and those of the CAPM residuals are

compared in the bottom line of Table 2. As expected, the asset-side dependence indeed

contributes signi�cantly to the overall dependence of the returns. For Europe�America and

Europe�Australasia, the correlation between the CAPM residuals is about 40% lower than

between the original returns. For America�Australasia the e�ect is even more pronounced, as

the correlation falls by 78%. The fact that the results of insurance activities at the American

and the Australasian markets are almost uncorrelated implies there may be substantial scope

for diversi�cation of insurance losses across these markets. Also, after controling for asset side

dependence, the correlation between the Europe�America and Europe�Australasia markets

is very moderate (0.20�0.25), though statistically signi�cant. The correlation, however, only

captures the linear dependence between the di�erent markets. We are also interested in

other forms of dependence, particularly in the tails of the distribution. In the next section

we investigate these more general dependencies via copula modeling.

4.2 Models for marginals

Before we can specify the copulas, we have to establish the marginal models for each mar-

ket. Preliminary speci�cation tests revealed that the best models for the marginal distri-

butions are AR(2)�GARCH(1,1) for Europe, ARMA(2,1)�GARCH(1,1) for America, and

ARMA(1,1)�GARCH(2,2) for Australasia. To account for the leptokurtic nature of the data

as found in Table 1, we choose the skewed Student t distribution of Hansen (1994) as the

distribution for innovations in our univariate models. Parameter estimation is performed by

maximum likelihood using Ox and G@ARCH, see Doornik (2006) and Laurent and Peters

(2006). The estimation results are available upon request.

After the univariate modeling stage, the pattern of tail dependence of the residuals has

changed considerably. The right-hand panel in Figure 1 presents the di�erences between

exceedance correlations of the residuals obtained after the CAPM and ARMA-GARCH �l-

tering and the corresponding bivariate normal random values. Accounting for the asset

side co-movements, skewness, kurtosis, autocorrelation, and volatility clustering results in

reduced correlations of negative exceedances. In the far left tail, however, high exceedance

correlations are still observed, though these estimates are subject to a larger sampling error.

The largest losses thus show a much higher degree of extreme co-movement than implied

by the normal distribution.The higher clustering for larger losses between the markets is

worrying from a diversi�cation perspective.

In the right-hand tail, by contrast, tail behavior appears to be much closer to that of

the bivariate normal. Still, the Europe�America pair shows a switch in correlations in the
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right-hand tail. Whereas large losses tend to co-move in these regions, gains tend to o�set

each other. This is precisely the reverse of what one would hope global diversi�cation would

accomplish. The same, though to a lesser extent, holds for the pair Europe�Australasia.

Finally, the America�Australasia combination reveals higher clustering of both large losses

and large gains in these markets. Again, the former is worrysome, while the latter may be

advantageous in this case.

To conclude, we gather from the exceedance correlation plots that loss dependence in

the insurance sector may show a lack of diversi�cation for large loss sizes. The increased

exceedance correlations show up between all pairs of globally distinct regions and may limit

the scope of re-insurance or catastrophe risk swaps. We now try to capture these depen-

dencies among large losses via the copula approach and try to study more formally whether

there is extreme loss dependence, and if so, whether this dependence is stable over time.

5 Bivariate dependence models

5.1 Unconditional copulas

We start with the determination of the unconditional copulas, i.e., the static copulas with

time-invariant parameters. Following Dias and Embrechts (2003), we consider a number

of di�erent copulas, namely the Gaussian, Student t, Clayton, Survival Clayton, and Sym-

metrized Clayton copula as de�ned in (5)�(8). We thus consider copulas that allow for tail

dependence or tail independence, either in the right or left tail of the return distribution,

or in both. The estimates of the copula parameters for the complete sample 1986�2006 are

presented in Table 4.

Table 4 reveals that for the Gaussian copula the correlation parameter between Europe

and Australasia and between Europe and America are very close, 0.25 and 0.22, respectively.

As was suggested by the preliminary analysis, the correlation between America and Aus-

tralasia is much lower (0.07 only). As the Gaussian copula does not allow for asymptotic

tail dependence, we turn to the Student t copula. The estimates of tail dependence for the

Student t copula are, however, not signi�cantly di�erent from zero for any market pair. Both

the Gaussian and the Student t copula yield similar estimates of the correlation between the

�ltered returns. Both the Gaussian and Student t copula, however, are symmetric. To allow

for asymmetry in the tail dependence as suggested by the preliminary data analysis, we turn

to the Clayton copula.

Estimates of the tail dependence parameters for the Clayton and Survival Clayton cop-

ulas support our earlier preliminary results about asymmetry in the tail dependence for

Europe�America and Europe�Australasia. For both market pairs the lower tail dependence

coe�cients are statistically signi�cant and higher than the upper tail dependence. The esti-

mated degree of tail dependence is modest over globally distant regions, the probability of a

joint crash or catastrophic loss in two regions given a large loss in one region always remains

below 10%. For America-Australasia, the estimates of the tail dependence parameters are
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not statistically signi�cant. In terms of �t, the Student t and Symmetrized Clayton seem to

outperform the other copulas for all markets.

5.2 Stability of copula parameters

As one of the elements in this paper is to investigate the time stability of the global de-

pendence between insurance losses, we also present as a �rst check the estimation results

for the di�erent copulas over two subsamples, January 1986 � June 1996 and July 1996 �

December 2006, in Table 4. The only signi�cant di�erence appears for the Europe-America

pair. Closer inspection reveals that this is mainly due to increased clustering in the lower

tail, i.e., increased clustering of large losses. Also the upper-tail dependence increases over

the two subsamples, but not in a statistically signi�cant way.

The Table 4, however, only presents the results for a very speci�c choice of break date. To

allow for an endogenous choice of the break date and general possible shifts in the dependence

parameters of the unconditional copulas, we apply LR test proposed by Dias and Embrechts

(2003). The test computes the LR statistic for all possible break dates. The supremum of

all resulting values over all break dates is taken as the test statistic. Dias and Embrechts

provide the statistical theory for this supremum test. The test can be repeatedly applied

over subsamples in order to detect multiple breaks. A brief description of the test is provided

in the appendix.

Figure 2 illustrates the test statistics for the lower tail dependence parameter of the Clay-

ton copula �tted to all three market pairs over the entire 1986�2006 period. The �gure graphs

the value of the likelihood ratio versus the break date. The horizontal line indicates the crit-

ical value of the Dias-Embrechts test. It is clear from the �gure that for the Clayton copula

no signi�cant (endogenous) breaks in dependence can be detected for Europe�America. The

�gure also shows that the maximum di�erence in dependence is reached roughly halfway the

sample, as evidenced by the earlier results in Table 4.

There is a single break in dependence (signi�cant at 5% level) for Europe�Australasia

towards the end of the sample period, in April 2005. Again we see that the evidence for a

structural change in dependence mainly accumulates during the second half of the sample.

For America�Australasia, there is a signi�cant break roughly halfway the sample, though

somewhat later than the split implemented in Table 4. The results are similar for the

other copulas, the major di�erence being that we detect a second, earlier break in 1992 for

America�Australasia using the Student t copula.

We can compare the break dates with the available data on major catastrophic events in

each global region. The list of events is presented in Table 6 in the appendix and is compiled

from the annual reports published by Swiss Re, e.g., SwissRe (2007). The events are denoted

as symbols for all regions at the bottom of each panel in Figure 2. Some tentative relations

can be established based on these speci�c events. For Europe-America, there is a clear

increase in the number of joint events in the second half of the sample. This appears in line

with the earlier estimation results. We can interpret this as increased dependence caused
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by both accumulating catastrophic losses from a chain of major catastrophic events and

spreading market apprehension of increased catastrophic hazards worldwide. For Europe�

Australasia, the picture is less clear. There appears to be a higher incidence of joint events

at the start and at the end of the sample, with relatively less (joint) activity in the middle.

An illustration is the change in the dependence for Europe�Australasia that becomes most

pronounced after several hurricanes and a tsunami in Australasia in September�December

2004, followed by the winter storm in Europe in January 2005. For America-Australasia, the

list of catastrohpes provides no clear signal that the incidence of joint events has increased

or decreased over time and therefore casts some doubt on the formal statistical test results

and their economic signi�cance.

The mixed results on time variation so far can be explained in several ways. First, the

data might provide little information on changes in the extreme dependence structure given

the span of the sample period. Second, the Dias-Embrechts test might lack power to detect

smaller changes, for example if they occur very gradually over time. Finally, it may be the

case that there is genuine time variation rather than a structural change in the dependence

structure. To investigate this in more detail, we turn to the estimation of our time-varying

conditional copula models.

5.3 Conditional copulas

Drawing on the above results for the �xed copulas, we now concentrate our analysis on

the dynamics of the dependence measures. We limit the reported results to the Gaussian

and Symmetrized Clayton conditional copulas only. The estimation results for conditional

copulas are reported in Table 5 and illustrated by Figure 3. The graphs of the conditional

copula parameters are again complemented by symbols indicating the dates of major natural

catastrophes.

Though the speci�cation of conditional copulas is straightforward, their estimation is

much less so. Our analysis revealed that the estimation results for the conditional copulas

are sensistive to speci�cations of parameters in (10)�(11), as well as to starting values. The

number of lags k, which is e�ectively a smoothing parameter, in�uences the convergence

of the numerical likelihood maximization procedure. After some preliminary experiments,

we selected k = 20 for yielding the most stable estimation results, thus implicitly assuming

averaging for the dependence dynamics over events within a half year time frame. We used

various starting values to minimize the risk of ending up in a local rather than a grobal

maximum of the likelihood.

For the Gaussian copulas, Table 5 reveals a high degree of persistence. This is evidenced

by the high values of β and by the patterns in the top panels of Figure 3.

For Europe�America, the time variation of both the correlation and the lower tail de-

pendence measure agrees well with our conclusion on the basis of LR tests. The increase in

dependence was relatively gradual, with several temporary upturns during 1987�mid-1991,

1994�1997, and 2000�2004. The upper tail dependence parameter, by contrast, remained
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relatively stable on average during the whole 1986�2006 period, though with considerable

short-term noise. In particular, the upper tail dependence coe�cient exhibits spikes at the

beginning of the periods of upturns in the lower tail dependence coe�cient, but returns to

normal levels afterwards.

Comparing the dates of high dependence with the available data on natural catastrophes

in Table 6 shows that the periods of increased dependence for Europe�America are associated

with the consecutive occurrence of several catastrophic events. For example, the dependence

reaches a local peak after America was hit by several hurricanes in October�November 1989

followed by winter storms hitting Europe in December�February 1990. The next increase

in dependence in 2000�2004 started approximately after the hurricane season in America in

September 1999 followed by winter storms in Europe in December 1999. This period covered

several catastrophes that occurred closely in time. We also observe higher dependence at

the time when several major catastrophic events occur closely in time on one market, as

was the case during 1995�1997 in America. Generalizing these observations, we can say that

during the periods of several consecutive catastrophes in both regions or in the immediate

aftermath of a series of large catastrophe events on a single market the geographically distant

insurance markets of Europe and America tended to display a higher degree of comovement.

For Europe�Australasia, the dynamics of the correlation and lower tail dependence pa-

rameters are quite similar. There are two large periods of higher dependence, in particular

during 1989�1995 and 2000�2006. As for Europe�America, local peaks of dependence seem

to coincide with major catastrophes occurring closely in time in both regions or with a cluster

of catastrophic losses on one of the markets. There is also a period of reduced dependence

during 1996�1999, when there were no major catastrophic events in either region. On the

other side, the upper tail dependence coe�cient exhibits considerable short-term volatility

without any clear long-term upward or downward trend. Still, the periods of deviation from

the mean dependence are to a certain degree visible even in the chaotic dynamics of the

upper tail dependence parameter.

For America�Australasia, results on the time dynamics of the di�erent dependence mea-

sures are not easily reconciled. On one hand, the time-varying correlation parameter displays

a strong upward trend in the second half of the sample. This is clearly in line with the split

sample estimation results for the static copulas in Table 4. The results for the Symmetrized

Clayton copula, however, reveal a di�erent picture. The estimation results, however, are

highly sensitive to small changes in the speci�cation or starting values. This is in line with

the preliminary analyses and the results for the static copulas: the America�Australasia pair

shows so little clustering of catastrophic events that the data contain hardly any information

on the dependence structure, whether static or dynamic. This is further supported by the

list of catastrophic events as indicated by the symbols at the bottom of each panel.

This leads us to our overall conclusion that the scope for global diversi�cation in the

insurance sector very much depends on the regions over which one diversi�es. Australasia

and America appear to o�er the largest potential gains from bilateral diversi�cation. Also
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the other regions still have scope for loss diversi�cation. However, one of the other signals

emerging from our analysis is that the dependence structure between these regions may be

changing over time. In particular, there is some mild evidence that dependence increases

over time. Though the time span of our sample is too short to draw any �rm conclusions in

this respect, it is interesting to also consider climatic change as one of the possible causes

for this phenomenon. This would require the reinsurance market to become increasingly

cautious in exploiting global diversi�cation as a means for risk reduction.

6 Conclusion

In this paper we analyzed possibilities for global diversi�cation of large insurance risks,

looking at occurrences of loss clustering and investigating the degree of comovement of the

equity returns on non-life insurance markets in Europe, America, and Australasia. Assuming

that large losses may be a `globalizing factor' for the insurance industry, we investigate

whether the increase in economic and insured losses observed during the last two decades is

associated with increased dependence of the geographically distant insurance markets.

We found that for Europe�America and Europe�Australasia, the liability-side depen-

dence accounts for about 60% of the total observed dependence of the aggregated equity

return series for insurance markets, while about 40% is due to dependence resulting from the

stock market comovements (that is, due to asset-side dependence). However, for America�

Australasia the assets-side dependence accounts for as much as almost 80% of the total

observed dependence between aggregate equity returns for the non-life insurance companies.

Thus, even after controlling for asset-side comovements, the degree of dependence re-

sulting from insurance and reinsurance operations is still signi�cantly di�erent from zero.

We found that Europe�America and Europe�Australasia insurance markets exhibit rela-

tively similar degree of dependence estimated over the whole period 1986�2006. Moreover,

the analysis shows that the dependence is asymmetric. The estimation reveals that lower

tail dependence is higher than the upper tail dependence: clustering of large losses is more

prevalent than that of gains.

The dependence parameters are not �xed over the entire period under consideration.

Several of our tests indicate that the correlation and tail dependence parameters of the un-

conditional copulas �tted for Europe�Australasia and America�Australasia have breakpoints

or display signi�cant time-variation.

No single catastrophe in the past two decades seems to be linked to an abrupt shift

in the dependence of equity returns for insurance companies in Europe�America, Europe�

Australasia, or America�Australasia. Rather, our analysis of the dynamics of the dependence

parameters in the conditional copula framework shows that changes in the dependence are

gradual and associated with a series of natural catastrophes.

To summarize, large insurance losses indeed play the role of the `globalizing' factor, espe-

cially for Europe and America. This means that the scope for international diversi�cation of
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catastrophic losses is limited. In particular, the most severely a�ected reinsurance schemes

may be retrocession or catastrophe risk swaps. In addition, the increased dependence of

geographically distant insurance markets may undermine portfolio diversi�cation bene�ts of

catastrophe bonds, because di�erent issues of such bonds may be subject to increasingly

strong dependence, thus limiting their cross-regional diversi�cation bene�ts.

As a possible way to cope with these unfavorable developments, we suggest to look

at diversi�cation possibilities in Australasia, which in our analysis revealed the least co-

dependence with the other markets.

A LR test for detection of change points

The test below is due to Dias and Embrechts (2003).

Let u1, u2, ... un be a sequence of independent random vectors in [0, 1]d with univariate

uniformly distributed margins and copulas C(u; θ1), ... C(u; θn) respectively, where θi are the

copula parameters. Formally, we test the null hypothesis

H0 : θ1 = ... = θn

versus the alternative

H1 : θ1 = θk 6= θk+1 = ... = θn.

If we reject the null hypothesis, k is the time of the change. All the parameters of

the model are assumed to be unknown under both hypotheses. If k were known, the null

hypothesis would be rejected for small values of the likelihood ratio

Λk =

sup
∏

1≤i≤n
c(ui; θ)

sup
∏

1≤i≤k
c(ui; θ)

∏
k<i≤n

c(ui; θ′)
,

where the estimation of Λk is carried out through ML and so all necessary conditions of

regularity and e�ciency have to be assumed.

Denote

Lk(θ) =
∑

1≤i≤k

log c(ui; θ),

L∗k(θ∗) =
∑
k<i≤n

log c(ui; θ).

Then the likelihood ratio can be written as

−2 · log(Λk) = 2
(
Lk(θ̂) + L∗k(θ̂

∗)− Ln(θ̂)
)
,
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and H0 will be rejected for large values of

Zn = max
1≤i≤n

(−2 · log(Λk)) .

The following approximation holds for large critical values and small samples:

P
(
Z1/2
n ≥ x

)
≈ xpexp(−x2/2)

2p/2Γ(p/2)
×

×
(

log
(1− h)(1− l)

hl
− p

x2
· log

(1− h)(1− l)
hl

+
4

x2
+O

(
1

x4

))
, (12)

where h and l can be taken as h(n) = l(n) = (log n)3/2 /n, and p is the number of

parameters that may change under the alternative.

B List of catastrophes in 1996�2006

Catastrophic events selected for the Table 6 are taken from Sigma annual reports by SwissRe,

see, e.g., SwissRe (2007). The lower limit for losses to be included in the table was set at

USD 700mn.
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Figure 1: Graphs illustrating tail dependence of return series

The left-hand panel contains di�erences between the exceedance correlations of the original returns for insur-
ance companies in Europe�America, America�Australasia, and Europe�Australasia, and the exceedance cor-
relations of the bivariate normal random values with the same correlation coe�cient as in the empirical data.
So for normally distributed returns, the line should be �at at zero. The right-hand panel plots di�erences
between the exceedance correlations of standardized residuals after �tting both CAPM and ARMA-GARCH
marginal models, and the exceedance correlations of their bivariate normal counterparts. The horizontal
axis is scaled in terms of quantiles of the return series, which means that 0.1 corresponds to large negative
excess returns, and 0.9 corresponds to large positive excess returns.

Figure 2: Critical statistic for LR test of parameter stability for unconditional copulas

The graphs present the test statistics for the LR break test for the Clayton copula parameter, see Dias

and Embrechts (2003). The left, middle, and right-hand panel correspond to Europe�America, Europe�

Australasia, and America�Australasia, respectively. At the bottom of each panel, major catastrophic events

(insured losses exceeding USD 700mn) are displayed. Discs correspond to catastrophic events in Europe,

white triangles to events in America, and dark triangles to events in Australasia. The horizontal line indicates

the critical value of the test at the 5% level.
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Figure 3: Graphs of dependence parameters for conditional copulas

The graphs present time-varying correlations (upper panel) and lower and upper tail dependence parameters

(middle and lower panel) for conditional Gaussian and Symmetrized Clayton copulas estimated for Europe�

America (left), Europe�Australasia (center), and America�Australasia (right). Horizontal lines indicate

estimates of the corresponding �xed copula parameters and their 95% level con�dence bands. The bottom

panel of each graph shows dates of major catastrophic events for corresponding regions. Only catastrophe

events with insured losses exceeding USD 700mn were selected. Dots correspond to catastrophic events in

Europe, white triangles to events in America, and dark triangles to events in Australasia.
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Table 1: Summary statistics for aggregated weekly return series for non-life insurance mar-
kets in Europe, America, and Australasia

Data on weekly equally-weighted equity log-return indices for the non-life insurance sector over January

1986 to December 2006 come from the Thomson Datastream and the CRSP database. All returns are in

US dollar terms. JB stat means the Jarque-Bera normality test. Q-stat (10) is the Ljung-Box Q-statistics

for autocorrelation. Q-stat r2(10) means the Ljung-Box test for conditional heteroscedasticity, applied to

squared residuals (10 lags). All individual and test statistics are signi�cant at 1% level.

Statistics

Europe America Australasia

min -12.1** -13.9** -13.5**

max 7.7** 7.3** 13.5**

std.dev 2.1** 1.7** 2.6**

skewness -0.9** -0.9** -0.1**

kurtosis 6.5** 10.5** 6.5**

JB stat 703.3** 2723.0** 577.4**

Q-stat (10) 51.6** 32.6** 133.8**

Q-stat r2(10) 102.9** 179.0** 933.9**

Table 2: Correlation coe�cients for aggregated weekly returns and CAPM residuals

Correlations between the raw returns are in the top panel. Correlations between residuals after �tting the
international CAPM are in the bottom panel, together with the percentage changes compared to the

correlations in raw returns. ** indicates signi�cance at the 1% level.

Europe-America Europe-Australasia America-Australasia

original returns 0.422** 0.340** 0.254**

CAPM residuals 0.248** -41.3% 0.193** -43.2% 0.058** -78%

Table 3: CAPM estimates for aggregated weekly returns

The model is rit − rft = α+ βi(rmt − rft) + εit, where rit is an insurance sector return for each of the
geographic markets under consideration (Europe, America, and Australasia), rmt is the MSCI Global Index

return, and rft is the return on three-month US T-bills. Standard errors are given in parentheses.
Estimates marked ** are signi�cant at the 1% level.

Estimation Europe America Australasia

const 0.00046 (0.001) -0.00035 (0.000) 0.00074 (0.001)

β 0.459** (0.027) 0.420** (0.021) 0.519** (0.035)

Adj.R2 0.20 0.27 0.17
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Table 4: Parameter estimates for bivariate unconditional copulas

The table presents parameter estimates for all �ve bivariate unconditional (�xed) copulas. Standard errors
of the estimates are given in parentheses. Loglikelihood values are reported in brackets. * and ** indicate
signi�cance at the 5% and 1% level, respectively. Applied to LogL, * and ** indicate that the copula
parameters are signi�cantly di�erent over subsamples based on the likelihood ratio test statistic provided in
the last column.

Europe � America

1986 � 2006 Jan 1986 � Jun 1996 Jul 1996 � Dec 2006

Gaussian ρGa 0.222** (0.031) 0.156** (0.041) 0.285** (0.037)

LogL [27.8] [6.7]* [23.8]* 5.4

Student t ρSt 0.220** (0.029) 0.150** (0.045) 0.286** (0.044)

νSt 15.1* (7.5) 10.35 (4.96) 36.5 (56.3)

τSt 0.0054 (0.010) 0.014 (0.022) 0.0 (0.0)

LogL [30.3] [9.3]* [24.1]* 6.2

Clayton τC
L 0.066** (0.029) 0.013 (0.018) 0.153** (0.049)

LogL [26.4] [6.8]* [22.9]* 6.6

Surv.Clayton τ Ĉ
U 0.042* (0.025) 0.015 (0.022) 0.076 (0.042)

LogL [17.5] [5.0] [13.4] 1.8

Sym.Clayton τSC
L 0.109** (0.031) 0.027 (0.041) 0.172 (0.096)

τSC
U 0.012 (0.016) 0.014 (0.031) 0.018 (0.026)

LogL [30.3] [8.4]* [24.6]* 5.4

Europe � Australasia

full sample �rst half second half

Gaussian ρGa 0.249** (0.027) 0.239** (0.038) 0.261** (0.039)

LogL [35.4] [17.3] [18.3] 0.4

Student t ρSt 0.250** (0.029) 0.250 (0.144) 0.264** (0.041)

νSt 71.5** (2.4) 27.6 (2.75) 192 (15.0)

τSt 0.0 (0.0) 0.0003 (0.0001) 0.0 (0.0)

LogL [35.5] [17.7] [18.3] 1.0

Clayton τC
L 0.082** (0.031) 0.087* (0.044) 0.076 (0.043)

LogL [28.6] [16] [12.7] 0.4

Surv.Clayton τ Ĉ
U 0.066* (0.030) 0.045 (0.035) 0.094* (0.049)

LogL [22.0] [9.8] [12.6] 0.8

Sym.Clayton τSC
L 0.085** (0.028) 0.127 (0.092) 0.046 (0.055)

τSC
U 0.056 (0.047) 0.019 (0.031) 0.106 (0.096)

LogL [33.6] [18.4] [16] 1.6

America � Australasia

full sample �rst half second half

Gaussian ρGa 0.068* (0.030) 0.014 (0.043) 0.119* (0.041)

LogL [2.53] [0.05] [4.0] 3.04

Student t ρSt 0.069* (0.030) 0.012 (0.045) 0.121* (0.044)

νSt 30.6 (27.8) 19.8 (16.6) 56.7 (139)

τSt 0.0 (0.0) 0.0002 (0.001) 0.0 (0.0)

LogL [3.2] [0.85] [4.1] 3.5

Clayton τC
L 0.0005 (0.001) 0.0 (0.0) 0.007 (0.012)

LogL [4.5] [0.72] [4.7] 1.84

Surv.Clayton τ Ĉ
U 0.0 (0.0) � � 0.0002 (0.001)

LogL [0.3] � [1.0]

Sym.Clayton τSC
L 0.016 (0.011) 0.0004 (0.001) 0.044 (1.0)

τSC
U 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

LogL [4.7] [0.73] [4.7] 1.4621



Table 5: Estimates of time-varying dependence parameters of conditional copulas

The table reports parameter estimates of the conditional copula models in (10�11). Standard errors are
reported in parentheses. * and ** indicate signi�cance at the 5% and 1% level, respectively.

Europe � America Europe � Australasia America � Australasia

Gaussian
ω 0.012 (0.008) -0.021* (0.008) 0.015 (0.165)

α -0.046 (0.033) 0.104* (0.037) -0.061 (0.376)

β 1.0005** (0.003) 0.990** (0.006) 1.005** (0.002)

LogL [31.41] [43.45] [8.36]

Sym. Clayton

ωL 0.062 (0.042) -0.035 (0.080) -1.711 (2.814)

αL -0.086 (0.052) -0.013 (0.033) -0.632 (1.436)

βL 0.970** (0.025) 0.962** (0.071) 0.357 (0.669)

ωU -6.020 (3.337) -0.190 (0.615) -4.952 (9.487)

αU -1.813 (1.180) -0.285 (0.396) 1.210 (2.482)

βU 0.476 (0.278) 0.734 (0.486) 0.945** (0.039)

LogL [35.09] [35.78] [5.39]
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Table 6: Catastrophic events during 1986�2006

Date Type Loss, $mln Location:

Europe America Asia

Summer 1986 Drought 1500 x

October 15, 1987 Autumn storm 4230 x

Summer 1988 Drought 4000 x

July 6, 1988 Explosion platform Piper Alpha 2712 x

September 12, 1988 Cyclone Gilbert 1509 x

September 15, 1989 Hurricane Hugo 5427 x

October 17, 1989 Earthquake Loma Prieta 1294 x

October 23, 1989 Explosion Phillips Petroleum 1714 x

December 28, 1989 Earthquake Newcastle 902 x

January 25, 1990 Winter storm Daria 5636 x

February 3, 1990 Storm Herta 1022 x

February 26, 1990 Winter storm Vivian 3917 x

February 28, 1990 Winter storm Wiebke 936 x

August 18, 1991 Hurricane Bob 989 x

September 27, 1991 Hurricane Mireille 6542 x

October 20, 1991 Forest �re 1413 x

August 24, 1992 Hurricane Andrew 18286 x

September 11, 1992 Hurricane Iniki 1829 x

March 10, 1993 Blizzard over East coast 1943 x

Summer 1993 Floods 21000 x

September 3, 1993 Typhoon Yancy 995 x

October 26, 1993 Forest �re 1055 x

January 17, 1994 Northridge earthquake 13529 x

February x, 1994 Winter storm 3000 x

January 17, 1995 Earthquake Kobe 2603 x

January 21, 1995 Storms, �oods 1053 x

January�March 1995 Floods 3000 x

May 5, 1995 Wind, hail, �oods 1195 x

September 3, 1995 Hurricane Luis 1579 x

September 14, 1995 Hurricane Marilyn 921 x

October 4, 1995 Hurricane Opal 2211 x

January x, 1996 Blizzard, �oods 3000 x

September 5, 1996 Hurricane Fran 1637 x

December 1996�January 1997 Torrential �oods 3000 x

April�May 1997 Floods 3700 x

January 5, 1998 Cold spell 1231 x

May 15, 1998 Wind, hail, �oods 1345 x
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Date Type Loss, $mln Location:

Europe America Asia

September 20, 1998 Hurricane Georges 3530 x

April 14, 1999 Hailstorm Sydney 982 x

May 3, 1999 Tornadoes 1485 x

August 17, 1999 Earthquake in Turkey - Izmit 2000 x

September 10, 1999 Hurricane Floyd 2360 x

September 20, 1999 Earthquake Nantou 1000 x

September 22, 1999 Typhoon Bart 2980 x

December 25, 1999 Winter storm Lotar 4500 x

December 27, 1999 Winter storm Martin 2200 x

September 10, 2000 Tokai �oods 990 x

October 29, 2000 Floods after Storm Oratia 747 x

April 6, 2001 Hailstorms, �oods 1900 x

June 5, 2001 Storm Allison 3150 x

September 11, 2001 Terrorist attack on WTC 19000 x

September 21, 2001 Explosion in France 1357 x

April 27, 2002 Several tornadoes 1675 x

July 31, 2002 Flooding 700 x

August 6, 2002 Flooding 2500 x

October 26, 2002 Storm Jeanet 845 x

April 4, 2003 Hailstorms, �oods 1605 x

May 2, 2003 Tornadoes 3205 x

July 21, 2003 Hail 815 x

September 18, 2003 Hurricane Isabel 1685 x

October 21, 2003 Wild�re 975 x

October 25, 2003 Cedar �re wild�re 1060 x

December x, 2003 Floods 1009 x

May 21, 2004 Tornadoes, hail 805 x

August 11, 2004 Hurricane Charley 8000 x

August 26, 2004 Hurricane Frances 5000 x

August 30, 2004 Typhoon Chaba 956 x

September 2, 2004 Hurricane Ivan 11000 x

September 6, 2004 Typhoon Songda 3585 x

September 13, 2004 Hurricane Jeanne 4000 x

October 13, 2004 Typhoon Tokage 1119 x

December 26, 2004 Tsunami 5000 x

January 8, 2005 Winter storm Erwin 1887 x

July 6, 2005 Hurricane Dennis 1115 x

August 19, 2005 Floods 1864 x
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August 24, 2005 Hurricane Katrina 45000 x

September 20, 2005 Hurricane Rita 10000 x

October 16, 2005 Hurricane Wilma 10000 x

March 11, 2006 Tornadoes 920 x

April 6, 2006 Tornadoes, hail 1282 x

April 13, 2006 Tornadoes, hail 1850 x

September 15, 2006 Typhoon Shanshan 1024 x
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