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Abstract

This paper considers the use of ‘long-run cost fions’ for congested networks in solving
second-best network problems, in which capacity #oits are instruments. We derive
analytical results both for general cost and demdndctions and for specific functional
forms, namely Bureau of Public Roads cost functiansl constant-elasticity demand
functions. The latter are also used in a numergalulation model. We consider second-best
cases where only a subset of links in a netwosdulgect to tolling and/or capacity choice,
and cases with and without a self-financing consetraimposed. We will demonstrate that,
under certain assumptions, second-best long-runt ¢os actually: generalized price)
functions can be derived for most of the casestefést, which can be used in an applied
network model as a substitute for the conventi@malrt-run user cost functions. Doing so
reduces the dimensionality of the problem and shdlierefore be helpful in speeding up
procedures for finding second-best optima.
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1. I ntroduction

Road pricing is gaining increasing momentum asssipte instrument in dealing with traffic
congestion. The concept is firmly based in microreenic theory: Pigou (1920) was the first
to recognize that traffic congestion entails aremd! cost, and that Pareto efficiency requires
a toll equal to the marginal external congestiost€or his result remains the first-best pricing
rule when moving from single roads to full netwqrkss demonstrated by Beckmann,
McGuire and Winsten (1956), Dafermos (1973) andgramd Huang (1998); and also applies
in the long-run when link capacities are optimigstbhring and Harwitz, 1962). For practical
implementations of road pricing, however, the agsiions that underlie first-best analysis are
often unacceptably strong. These assumptions iacdludhe first place that underpricing of
congested traffic is, as it were, the only marlegtufe in the entire economy: on all markets
that are directly or indirectly related to the fi@fconsidered, prices should be equal to
marginal social cost. Therefore, if congestion esdor commuting, this assumption means
that spatial labour markets function perfectly ahdt no pre-existing labour taxes exist.
Secondly, the assumptions entail that the regulasrperfect (pricing) instruments, meaning
that all users on all links can be tolled on afiés, with perfect toll differentiation possible. In
reality, this is of course usually not the case.important example, also addressed in this
paper, concerns the case where some but not ledl iimthe network are subject to tolling, as
is the case for schemes that employ toll cordarikateas, specific toll roads, or so-called
‘pay-lanes’, for which unpriced parallel capacignrains offered. Violations of both types of
assumptions brings the analysis in the realm darsédest pricing, which means that tolls are
set to maximize a social objective (usually sosiaiplus) under one or more constraints as
described above. It is then for example not posdibloptimize prices outside the transport
network of interest, or it is not possible to cleml network users with the individually
optimal toll.

With the growing number of practical applicatiasfsroad pricing, also the study of
second-best has gained increasing interest inoe@ pricing literature. A recent overview is
provided by Small and Verhoef (2007). Specific tee ttheme of second-best network
problems are early studies by Marchand (1968) ang/ALambert (1968), who studied what
has now become known as the ‘classic two-routelenobh where unpriced parallel capacity
(a road, or a lane) is offered in addition to pii@@pacity. Various aspects of this problem
have more recently been studied. For example, \&rhNijkamp and Rietveld (1996)
considered various ownership regimes, includinggteé monopoly. Braid (1996) considered
the problem in the context of Vickrey’'s (1969) betieck model. Liu and McDonald (1998)
considered an empirical application, namely theff@alian SR-91. De Palma and Lindsey
(2000) focused on competition between operatothetwo links. Verhoef and Small (2004)
looked at heterogeneous drivers, with differentugal of time. Rouwendal and Verhoef
(2004) paid explicit attention to capacity choioeaddition to toll setting. De Borger, Proost
and Van Dender (2005) also considered capacitycehaind tolling, but in the context of a
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private duopoly. Some main conclusions from theseiss are that the second-best toll is
usually below the first-best level, and achievely @ncertain part of the possible welfare
gains from pricing — the size of which depends lasteity of demand and heterogeneity of
travelers, among other determinants. Not surprigimgivate ownership usually raises profits
and lowers welfare, compared to public operation.

The two-route problem has also been extendedrgedaetworks. Verhoef (2002ab)
considered the more general second-best netwackigrproblem, where a certain sub-set of
links in a network of undetermined size and shage lze tolled. As may be expected, the
resulting toll expressions are tedious, and depemddemand and cost elasticities in the
network, besides the marginal external congestomtscon the tolled and untolled links. This
reflects that tolls are set to optimize network-gvisbcial surplus and therefore should take
into account congestion on untolled links, as waslithe extent to which pricing on the tolled
links aggravates it. Verhoef (2002b) also studnesrelated question of which links to toll, if
only a sub-set can be tolled. This entails questitike “where should a toll cordon be
positioned?” and “should we have a cordon at aBRimalee, May and Shepherd (2005) show
that a formal approach to these questions maytleadrather different pattern of toll points
over a network, and higher welfare gains, than démeapproach based on expert opinions.

While the more recent papers on the classic twiberproblem often consider capacity
choice in addition to the toll instrument, thisuesseems to have received considerably less
attention in the context of second-best policies l&ger networks. This is an important
omission from the perspective of actual policy mgkivhich, of course, usually involves
tolling on bigger networks. Undoubtedly, the anabt complexity of combined second-best
toll and capacity setting explains at least pattiis lack of attention. And for numerical
network simulation modeling, one may expect that ¢dbmbination of two instruments on a
link may greatly complicate procedures of findingcend-best optimality, due to what is
sometimes referred to as the ‘curse of dimensign@Bellman, 1961).

In this paper we aim to show how the use of ‘loag-cost functions’ for congested
networks can help solve second-best network prabiemvhich both capacities and tolls are
instruments. We derive analytical results bothgeneral cost functions and for cost functions
with a specific functional form, namely the wellédwmn Bureau of Public Roads (BPR)
formula. We consider second-best cases where asupset of links in a network is subject to
tolling and a subset is subject to capacity optatian, where these subsets may or may not
overlap. We also consider the case where for soipessibly all — links that are subject to
both tolling and capacity optimization, a zero-grafonstraint is imposed, so that toll
revenues collected on the link are constrainedetefual to the link’s capacity cost. Our
paper has a simple structure: Section 2 will presem analytical results, and Section 3
provides a numerical application. Section 4 wilhclude.

We will demonstrate that, under the assumptiorisetspelled out below, second-best
long-run cost (or actually: generalized price) fiimes can be derived for most of the cases of
interest, which can be used in an applied netwooklehas a substitute for the conventional
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short-run user cost functions. Doing so reducesiiimensionality of the problem and should
therefore be helpful in speeding up procedures usedinding second-best optima. Of
course, two special cases of our second-best protieserve special attention, because they
produce strong benchmark insights. These are thescahere the network collapses to a
single link, and the first-best case where on gdanetwork, all capacities and tolls can be
set. We will start the next analytical section viltese two special cases.

2. Pricing, capacity and long-run cost functions: analytical results

This section presents our analytical results orreletion between pricing, capacity and long-
run cost functions for congested traffic. We withr$ simple, by reviewing the basic results
for single roads, and next move to a number of sgdiest network problems.

A number of assumptions underlie all our derivatioRirst, we consider stationary-
state (or static) traffic conditions. Road usess lmamogeneous: they have the same value of
time and the same (marginal) impact on link trairaks. The travel time on a link therefore
depends only on its aggregate use. Demand is mfgtclg inelastic, and the inverse demand
for an OD-paimm (for “market”) is denoted™(N™). The user cost(-) on a link {) depends
on the link flowN' and on the link’s capaciti'. The link capacity cost® depends o'
only. Our (Marshallian) measure for benefits is twventional area below the inverse
demand, while total costs are the combination @r ust and capacity costs. We will
consider public operators only, who seek to maxénsiacial surplus, which is defined as total
benefits minus total (user and capacity) costolAct may be levied; its receipts constitute a
transfer that in itself represents no social welfgain (such gains may, of course, arise from
toll-induced changes in demand).

Besides general formulations, in which functiorahis are not specified, we will use
more specific formulations when these yield adddiloanalytical insights and, of course, in
the numerical simulation model. For the inverse aedfunction, this specific form assumes
that it takes on a constant-elasticity form:

m my — m ml/”m
D"(N™) =3"{N")" (1)
where J" is a scale parameter and' is the elasticity of demand with respect to the
generalized price.
The specific user cost function employs the Burefalbublic Roads (BPR) travel time
function:

p=d+r =ald EP1+,8EE%j ]+f, )

WherepI is generalized pricey is the value of timet{ the free-flow travel time, ang andy
are parameters. Note thatonly contains time costs. This is one of many usest functions
exhibiting constant returns to scale in congestechnology (Small and Verhoef, 2007),
meaning that it is homogeneous of degree zerceiffithv-capacity ratioV/K'.
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The specific capacity cost function assumes neuscdle economies in road
construction:

co'(K"Y=pd, K', 3

wherep is a parameter that reflects the unit price ofacity, expressed per unit of timiee(,
it represents costs of interest and depreciatiod) @er unit of distance (represented by the
free-flow travel time, which is — for a given fréew speed — a perfect measure of distance).

2.1. Single link results

It is instructive to start our exposition with somesults for the single-link casee., ignoring
network complications. In this case, there is a-tmrene correspondence between “the” link
and “the” OD-pair, so that we can suppress indinesdl.

The first-best benchmark is the case where thelasay can set both the toll and the
capacity of the single road. A constraint is thad users will enter the road up to the point
where marginal benefit®(N) are equal to the generalized prwec(N,K)+z. The associated
Lagrangian looks as follows:

A= [D(n)dn- NN, K)= C(K+A ¢ N K+7- O N). 4)

The first three main terms define the objectiveso€ial surplus and the final term gives the
constraint just mentioned;is the Lagrangian multiplier. The set of equatide$ined by the
first-order conditions with respect 8, K, z and/ can be solved to yield the following two
well-known policy rules€.g.Small and Verhoef, 2007, p. 164):

r=NE (5a)
oN
_ c_ oC 1 (5b)
oK oK

while for the Lagrangian multiplier we find:
A=0. (5¢)

Equation (5a) stipulates that the optimal toll dHolbe set equal to the marginal external
congestion costs, while equation (5b) shows that mharginal benefits from capacity
expansion (the left-hand side) should be equahéomarginal cost (the right-hand side). In
addition, equation (5c) reflects that the constrags no impact on the level of welfare that
can be achieved (recall that the equilibrium vabfea Lagrangian multiplier gives the
marginal impact on the optimized objective from arginal relaxation of the associated
constraint).

Mohring and Harwitz (1962) have demonstrated hbevjbint application of the tax
rule (5a) and the investment rule (5b) result reeo financial surplus for the road operator,
provided three technical conditions are fulfill¢d:capacity is a continuous variable; (ii) there
are constant returns to scale in congestion teoggolso thait(N,K) can be written in the
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form ¢(N/K); and (iii) there are neutral scale economiesadrconstruction, so th&f(K) can
be written ag-K. As a matter of fact, units of capacity can alwbgschosen such that latter
condition is satisfied, namely by defining a measof capacity that is proportional to
(minimized) capacity cost; what matters is whetther combined effect of conditions (ii) and
(iii) is achieved. The quickest way to prove thehving-Harwitz result in the current setting
is to multiply both sides of (5b) big, and to replace the resulting terid-éc/oK on the left-
hand side byN-oc/oN (the equality follows from Euler’s theorem, as had from a combined
application of the chain and quotient rules of efi#intiation). The left-hand side of (5b) then
gives total toll revenues\{N-oc/oN), while the right-hand sid&-6C%/oK, gives total capacity
cost if the marginal cost of capac#€/oK is constant (and therefore equal to a constart uni
pricep).

For our purposes, it is interesting to see whethiercan derive a long-run cost
function from the solutions (5). In closed formistis possible only when the functional forms
of the cost functions and C® are specified. Consider the specific functiong2)fand (3).
Equation (5b) then becomes:

—Nm[nfwg([ﬁ%y—q%:p[ﬂf = K:NEQM%D(}M, (6a)

where a tilde (~) denotes the long-run optimal galiiote that long-run optimal capacit§
increases linearly with the level of u$&,as might be expected with neutral scale economies

Inserting K from (6a) into (2) and (3) gives long-run averager costsé and long-run
capacity cosC®. The latter can be divided by to obtain long-run average capacity coSt

while the sum ofé and ¢° gives the long-run average ‘total’ cot,. And finally, we can
determine the long-run optimal toll levél by evaluating (5a) for a ratid/K implied by (6a).
All this results in the following expressions:

X
c=t, fa+(a B [Efj” , (6b)
1 X
¢ =t, o [BOY)wi (o™, (6¢)
&=+, (6d)
7=t E@awg()ﬁ e, (6€)
P=C+T. (69)

! Equation (6a) differs from the corresponding emumtn Small and Verhoef (2007, p. 108) becausé¢hin
present case, (1) no “duration” of the peak peisodpecified (theiq is normalized to 1 here); (2) the cost of
capacity is defined per unit of distance (so thatrops out here); and (3) we define diregtlgs the per-unit-of-
time cost of a unit of capacity (they multiply astoecovery factor (which they dengieby investment costs).
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The equality ofe® and 7 shows that the road is exactly self-financinghia fong run.

A relevant second-best case for the single-link ehancerns the situation where
optimal pricing is not in place. We consider theeavhere there is no toll at all, s60. The
Lagrangian of (4) then becomes:

A= [D(ndn-NI(N, K)= C(K+AT{ ¢ N K- O N). (7)

The set of equations defined by the first-orderditions with respect ti, K, and can be
solved to yield the following investment rule:

c _oC°
_(N_A)Eg?_ oK ' o

with:

e
A= ON_
oc_oD
N ON

(8b)

These form a special case of the investment ridsgmted by Small and Verhoef (2007, p.
172), who consider a multi-period model and allew &ny arbitrary toll level (not just 0).
The interpretation of the investment rule is int@t the marginal benefits from capacity
expansion, on the left-hand side of (8a), are daled as if fewer travellers thahare present
on the road (note thdtin (8b) is positive). This reflects that additibmapacity will induce
additional demand, which in itself is however stgiandesirable (at the margin) because
congestion is underpriced. The correction factorsbadow pricei in (8b) consequently
‘deflates’ the direct benefits of capacity expansio account for undesired induced demand,
and quite naturallyi increases when congestion is more severe (in tiheerator) or when
equilibrium demand is more responsive to averag cbhanges (in the denominator). Both
would provide reason for weighting induced demdiifieices more heavily.

Does the investment rule from (8ab) imply a “setbest long-run cost function”? In
principle it does, but we were unable to derivdased-form expression for it, even for the
case with explicit functions. The second-best lamg-cost function should follow from the
solution of the following second-best variant ch)6

—a—D X+l
__ON NV _
%5 wfwmﬁKj P, (%)
ON ON

The first term, in large brackets, can be rewritisn
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oD

N  _ -n . oc/oN _ X
3 _ob - aclaN . ™M TN T T rky (9b)
N oN ¢/ N /;EQNJ 1

where we have used that, in equilibriuosD. The first term in the denominator is not
constant for the BPR function, which prevents asetbform solution from being available.
However, (9a) and (9b) together imply that the Sotuof K as a function oN depends on
the ratiok/N only, which suggests that for a model in which(@) hold, K is proportional

with N ; that is, if for instance the scale facibin (1) grows over time and capacity is
adjusted in a second-best optimal fashion, we expee second-best optimal levels of
average user cost and average capacity cost tareoastant.

2.2. First-best networks

The single-link results help interpreting the résule obtain for full networks. We will
consider a number of regimes for full networks, ethdiffer in terms of the constraints that
apply for the network regulator when setting taltal capacities. The first-best case, where no
such constraints apply at all, is the least raalistgime, but also the analytically most
transparent one. The first-best tolls and capacdiee most easily determined by imagining
that the regulator can set route-specific taflsbesides the link-specific capacitida(é, From

the resulting route-toll pattern, we can next deiee which link-specific tolls? are
consistent with the first-best tolts& We find the optimal tolls and capacities by sodyithe
following Lagrangian:

Z’f:éﬂ“mr L R R L
[ D(mdn-Y g ENr[tf[deDN", Kj—z C'(K)

1=1 r=1

N =

1

. (10)
A Eﬁidr e (idp o, K'jﬂf -3.4, 0 (£4, m]}

Note that we write OD-flowdN™ as the sum of route flows', whered is a dummy that
takes on the value of 1 if routeserves OD-paim, and O otherwise. Likewise, we write link
flows N' as the sum of route flowd, wheres; is a dummy that takes on the value of 1 if link
| is part of route, and O otherwise. Note that indiceandp are both used to denote routes;
the latter for summations over routes when keepifiged (the index will be used only in
expressions for with general functions, so wherdoes not appear as the unit price of
capacity). The first three main terms define thgdive of social surplus. The constraints
with multipliers A" are Wardropian equilibrium conditions, which wile invoked in the

optimality conditions below only for “active” rowtgwith 5 =1), defined as routes that users

may choose in equilibrium because the generalizae gquals the minimum for that OD-
pair. These are the first-order conditions:
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ZJ [IDm([ﬂ—ZL:J,, E:'(D]—iidr g, N? M]

aNr m=1 1=1 1=1 p=1 oN'

: (11a)
R L { m
Sawlss 006,000 o
P= =]

/AN o SN U CC'(D] Za/*m quM—o al, (11b)

K = oK'
N _

o Or:o% =1, (11c)
L
M =Y o, & ()+1 —25 D" ())=0 Or:of =1, (11d)
1=1
while:
L M
h=0 iff > g @' (J+r =>4, D" (J>0. (11e)
1=1 m=1

The result that all Lagrangian multiplietSare zero is typical for first-best probleneg,
Small and Verhoef, 2007, p. 141). It greatly sifd the solution of (11). In particular,
substitution of (11c) and (11d) in (11a), and (lihd)11b), gives the following policy rules:

{
=Yg N E—I;% Or: 9 =1, (12a)
|
| c,|
N g"’_a; :_%i all (12b)

where we usé\' to denote link-flows (which in (11) were still weén in function of the
appropriate route flows). The optimal toll rule(@Ra) implies that first-best link tolls are not
necessarily uniquebut that one possible solution in terms of linkstés the straightforward
generalization of the single-link toll of (5a):

|
PN o (124)
oN'

From this point onward, we assume that the tok i1l2a) is operationalized as specified in
(124).

The first-best policy rules for links full networlre therefore a straightforward
extension of the single-link results. This meara the long-run optimum can be found using
the long-run function already identified for th@gle-link model. For a setting in which the
specific functional forms (1)-(3) apply, this means

2 An example would be two serial links carrying ekathe same travelers. A constant can then bedatiméhe
toll on the one link and subtracted from that om dther, without changing route tolls and therefwbaviour.
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K'=N' [ﬁmﬂjﬂ (13a)
0
¢ =t, Pa+(aB)i cﬁﬁjm , (13b)
X
1 X
¢ =t, la [B D)1 [p**, (13c)
=g+, (13d)
' =t o 58@()%1 Doxiﬂ, (13e)
B =c+7. (13f)

Because (13f) contains constant parameters ongynéiwork optimum can be determined
very easily, by replacing the conventional short-generalized price functions by their long-
run counterparts of (13f). The resulting levels Nf imply the long-run capacitie&' via

(13a). Applying these long-run capacities in thigiaoal short-run cost functions should then
result in a network that has toll levels of (13é30aas the short-run optimal tolls; that is,

satisfying (129, which for the BPR function implies:
o N'Y'
r'=al D?D([ﬁWJ : (139)

It is easily verified that (13g), with the ratid'/K' as implied by (13a) substituted fisl/K’,
indeed produces a toll level equal to (13e).

For the specific functional forms chosen, the lomg optimum can therefore be
determined as the equilibrium of a network modethwihe flat link-specific long-run
generalized price functions replacing the converishort-run generalized price functions.

2.3. Second-best pricing and capacity choice

2.3.1. No self-financing constraint

We next consider the situation where not all linkke subject to toll and capacity
optimization. The regulator then faces a problerat tis characterized by the following
Lagrangian:

R

2, om '
A= z D™ (n)dn~ 225 [me:'( >3, N7 K" |-> ce(K")
m= 0 1=1 r=1 1=1 . (14)

)
W EEidr EEC'(Z5 EN"KJ J o (£ EN)J

r=1 1=1 m=1
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Compared to the first-best problem in (10), we neark with link-based tolls from the
outset. Denote links at which a toll can be sefimss for which 5" =1, and for which
capacity can be set a§ = (foth dummies are zero otherwise). The Lagrangiai4) is

similar to those considered in Verhoef (2002ab)pwtudies second-best tolling on a sub-set
of links, but for given capacities. These are ih&-brder conditions:

@C (!

=33, D"-5, B -4 @, N

aNr m=1 1=1 1=1 p=1 N
. ) D" ( , (15a)
+25§WL€Z 055 MJ oo =1
< = N’ N’
| c,l |
N e O DS o P migr=1,  sh)
aK r=1 ' aK aK r GK
R
a—/\lzzd’*mﬁr "' =0 Ol:of =1, (15¢)
=1
M |—1 s, e [+ )= 5m D"()=0 Or: " =1, (15d)
while:
L M
5h=0 iff Yo de'(@+r')-Y 6, m([F>o0. (15€)
=1 m=1

In contrast to the first-best case, the Lagrangmitipliers A are now not all individually
equal to zero. Recall that the equilibrium value aofLagrangian multiplier reflects the
marginal impact of a relaxation of the associatedstraint upon the optimized value of the
objective. A non-zero value df therefore denotes that social surplus could beeased by
introducing a marginal route-specific toll ¢f >0) or subsidy (if2" <0) in addition to the
existing link tolls in the second-best optimum. Minperfect pricing, there will generally be
routes for which this is indeed the case.

It turns out that the possibility to control sowfethe link capacities does not simplify
the second-best toll formula that can be deducewh ff15a)—(15e), which was presented by
Verhoef (2002a). Of course, second-best optiminadfocapacities will affect the second-best
equilibrium toll levels, and the achievable socsalrplus, but the general toll expression
remains unaltered. Because this formula is tedéng has no closed-form solution with the
Lagrangian multipliers" substituted out, we will not repeat it here. Theition behind the
unchanged toll formula is, in fact, rather straighward. The toll was originally determined
for arbitrary capacities. Obviously, these capasittould have been set optimally by pure
chance, in which case the toll formula should b#llcorrect. The result is also consistent with
toll choice being a short-run decision, while cayachoice is a long-run decision.
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Because there is no closed-form solution for thatipliers 1', it may seem that also
the investment rule of (15b) yields little furthasight. But this ignores that for links at which
both capacity and toll is optimized, substitutidr(1bc) in (15b) implies:

-N' d’(;;—(,[ﬂ:ag:l(m O 8¢ =g =1. (15h)

Comparing (151 with (12b), we find that the second-best investtirale for a link on which
both capacity and toll can be set, on an othermiteperfectly priced network, is the same as
for first-best policies (nevertheless, because sﬁlm}vgenerally differ between the first-best
and the second-best optimum, the actual equilibrezapacity levels will of course also
generally not be equal). The intuition is that,hnit link toll ¢ available, the regulator can
perfectly control the generalized pripbon that link, and therefore the floW. Whichever
combination §', N} the regulator chooses, social surplus is alwayaximized if that
combination is achieved against minimized (averag®jial cost. And this induces the
regulator to operate ‘along the long-run cost fiorct which is defined by the minimization
of social cost given the flon', as represented by (1%b

For our specific functional forms model, we caniekethe same long-run average cost
components as we found in the first-best case:

K'=N' [ﬁmﬂjxl (16a)
Yo
¢ =t Ma+(a w)ﬁ [ﬁﬁjﬁl , (16b)
X
1 X
¢ =t, a CB DY) [p*™, (16¢)
¢ =g+, (16d)

However, since there is no closed-form solutiontf@ second-best tolf', we also do not

have a closed-form solution for the long-run gelieed price p'; i.e, no equivalent
expressions for (13e) and (13f) can be derived.

To what extent, then, is the solution in (16) helph applied modelling? Probably it
still is. Knowing the optimal ratio between secdrest optimal flow and capacity in advance
greatly simplifies numerical procedures to find tlsecond-best optimum, since the
dimensions are reduced by one: capacity is imgdedow. This, of course, is true only for
capacities on links that are also tolled. For lifdkswhich capacity can be adjusted, but no toll
can be set, equation (15b) implies that the investmule depends on equilibrium values of
the Lagrangian multipliersi’. Because there are no closed-form solutions faseh
multipliers, there will also be no closed-form d@uas for the associated long-run cost
functions.
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2.3.2. Self-financing constraint
As a final case we consider the second-best siualescribed above with an additional
constraint added, namely that some of the linksafioich the toll and capacity are set should
be self-financing. For a first-best network and emtthe appropriate conditions, this constraint
will be satisfied automatically, as already disedsabove. But for the second-best case where
untolled links exist, the toll formulae change cargd to the first-best case of Pigouvian
taxes equal to marginal external costs, while tivestment rule for a tolled link remains the
same — as the comparison of ()5bith (12b) revealed. We can therefore no longereet
exact self-financing to apply for links on whichthathe toll and capacity is optimized.
Imposing it as a constraint, therefore, may be etgqueto affect both the link’s second-best
toll and its capacity.

Denote the links for which the self-financing ctast is imposed with a dummy
variable " =1 (again, it is zero otherwise). Note that we assuhs a self-financing

constraint will apply only for links on which bothe tolls and the capacity can be set, but that
there may be links without a self-financing conistran which either the toll, or the capacity,
or both can be set. The associated Lagrangian fslidasely the one specified in Appendix
A of Verhoef (2007), who considered the case whaly for one link in a generalized
network the toll and capacity can be set undelfdiaancing constraint. It reads as follows:

PN
Az;r | DT(ndn- lleZld mr[ﬁ[;qu,m}; C'(K)
R [Ezdf [ECI id"w’wj#}i%w(i(% m]} an

v Zdr N [ Cf‘(K')j

The final constraint is the self-financing consttaand a non-zero value dfreflects that the
constraint is binding. The first-order conditions:ar

=3 4. 0"0-Y 4 ©'g-3 > g @, N @

aNr m=1 =1 =1 p=1 oN'
R L { m
Somfysm e 5, 20 (18a)
=1 =1 oN' ON'
L
+> 0, @ A'd =0 Or:5t =1
=1
R c,l
a—/\,:—zcgrm e oc (D]+25Am 3, 90
oK ™ oK (18b)

cI
g A (L 0ok =1

oK'
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ar Zd’*mﬁr DMZ@ [ IN'(A' =0 Ol =1, (18c)
M Eﬁc O+ 7' ) Jm D" (Jj=0 Or: 0" =1, (18d)
M 25 IN'G'-C'(K')=0 dl:9" =1, (18e)
while:

5A=0 iff id,, e ([)]+r')—i5,m " (> 0. (18f)

Despite the tedious appearance of this set ofdidér conditions, they imply a simple and
intuitive investment rule, and a corresponding lomg cost function, for those links on which
a self-financing constraint applies (and the talll @apacity can therefore both be set). To see
this, first observe that (18c) implies:

R
N'@' ==Y 3 3, O Ol:g" =1. (18¢)
=1

Substitution of (18¢ into (18b) implies:

(1+/1')[E LA C aCCI(D]J Ol:g7 =1. (19a)

oK' oK'

This means that for any value #f the conventional first-best investment rule oL
applies. Multiplying both terms inside the largeditets withK', observing that the second
term then gives (minus) total capacity c&86C*/oK', and using Euler's theorem (implying
that K"ac'/oK' = N'-ac'/oN') as we did before under (5), it is easily demaristt that exact

self-financing for the links witid" =1 requires:

r' =-K' E—I;’W N' [—la—l Ol:9™ =1. (19b)
Equation (19b) implies that self-financing on théis&s requires the toll to be set exactly
according to the Pigouvian rule, which also appiiethe first-best case. In other words, for
these links, on which the toll and capacity carmpgmized under a self-financing constraint,
the conventional first-best rules apply; independsnwhether there are other links in the
network on which a toll is set, capacity is optigdz or a self-financing constraint applies. For
our specific example, this means that equationg)({B3g) apply for these links, so that
second-best equilibrium results should be relagieglsy to find.

3. Numerical application

We now turn to a discussion of numerical resul&t thustrate our main analytical findings.
Besides a small exercise with a single-link motled, same network model is used throughout



14 Pricing, capacity and long-run cost functions fost-best and second-best network problems
this section. It is designed to capture the mogtoirtant types of link interactions in the

simplest possible configuration, and therefore Inath serial and parallel links. The network
is illustrated in Figure 1.

Link 1 Link 2

| : |
A Link 3 B Link4 ¢
Figure 1. The network for the numerical example

There are two origin-destination paidC and BC, and four links labelled 1-4. The two
inverse demand functions have the constant-elgstmim of equation (1). We use a demand
elasticity ofy=—0.35 for both OD-pairs. The scale paramefeamount to 4.06300" for AC
and 1.4056.0"% for BC (these are in fact rounded values; they were el to produce a
base equilibrium with flows of 4000 fé«C and 3000 foBC, respectively).

The user cost functions take on the BPR form ofaéqo (2) for all links. We set
£=0.15 andy=4, which are conventional values for the BPR fiorct Furthermore, we
assume that each link has a length of 60 kilomgtmsch, with a free-flow speed of 120
km/hr, corresponds with=30 for all links (we measure time in minutes). MAtlks have an
initial capacity ofK'=1500. This was chosen to approximate one highwa;z:l&'=1500
implies a doubling of travel times at a flow of anal 2400 vehicles per lane per hour. This is
roughly in accordance to the flow at which, emgiliig, travel times double for a single
highway lane and the maximum flow on a lane is hedcg.g. Small and Verhoef, 2007,
Figures 3.2 — 3.4). A maximum flow, however, ireltsis not defined for BPR functions.
With travel times measured in minutes, the valugmé « was set at 0.125 (Euros), implying
a value of time of 7.5 Euros per hour, which isime Iwith the “official” Dutch value.

The capacity cost function is as shown in (3). Othlg parametep needs to be
determined. We follow Verhoef and Mohring (2007hoaproposed a unit price of capacity of
7 Euros for a 60 km road, for use with a BPR funcifi@ecause we definein this paper as a
value that is to be multiplied witly andt; equals 30 minutes for a 60 km road, wepsat/30
(approximately 0.233).

Table 1 shows the equilibrium values of the keyialdes in the resulting base-
equilibrium. Clearly, there is a divergence betwewerage and marginal user costs on all
links, reflecting the unpriced congestion exteltyali

® They wrote: “With a unit of time of one hour, thiarameter ought to reflect the hourly capital s0%b derive
a value from empirical construction cost estimatsassumption has to be made on whether the ragdslto
represent stationary traffic conditions througheutday, or during peak hours only. Our parametedrat
concerns the latter. The value of 7 was then ddrbyedividing the estimated average yearly cagitst of one
highway lane kilometre in The Netherlands (€ 0.8iom) by 1100 (220 working days times 5 peak hopes
working day; assuming two peaks) and next by 1586 @qumber of units of capacity corresponding veth
standard highway lane), and finally multiplying 6§ (the number of kilometres corresponding withesefflow
travel time of half an hour).”
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Volume
Average | Marginal Capacity | capacity
Flow user cost§ cost€ Toll € Capacity] Revenug € cost € ratio
Link 1 2 000 5.53 12.64 0 1500 0 10 500 1.33
Link 2 3500 20.42 87.12 0 1500 0 10 500 2.33
Link 3 2 000 5.53 12.64 0 1500 0 10 500 1.33
Link 4 3500 20.42 87.12 0 1500 0 10 500 2.33
OD-pairAC| 4000 25.95
OD-pairBC| 3000 20.42

Table 1: Numerical model: base equilibrium

3.1. Single-link results

For the single link model, we used the link-basathmeters specified above, while the single
OD-related demand parameters were the same asftrabe OD-pairAC. We use the model
to verify our expectation just below (9b), statihgt because the solution &f as a function

of N depends on the ratk/N only, K will be proportional toN . That is, if for instance the
scale factop in (1) grows over time and capacity is adjusted second-best optimal fashion,
we expect the second-best optimal levels of avetessge cost and average capacity cost to
remain constant. We test this hypothesis for thiemand elasticities: the base value;af
0.35, a low elasticity case witf¥—0.1, and a high elasticity case with—0.7. We present the
long-run average user cost and the long-run average capacity costfor different values
of ¢ for each of these elasticities, and also show,ctomparison,é and ¢° as they would
apply under optimal tolling, from (6b) and (6c).

D: Szyooo ] O O Fal O O O O O O
2 50,000 ©
2
8 48,000
>
2 46,000 . . . . . . . . N N
23 44,0001 - = » = - ' = . . ]
% & 42,000 & ! = ! = = = ! = 8
@ 2 - - - - - ™ - - " o
$ & 40,0004
> ®© o
i § 38,000 2 ® * ® 2 $ 9 ® $ *
5 < 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2
S Factor Applied to Delta
o
g —H— LR Average User Cost (Low Elasticity) —#— LR Average Capacity Cost (Low Elasticity)
- —&— LR Average User Cost (Base Elasticity) —&— LR Average Capacity Cost (Base Elasticity)

—6— LR Average User Cost (High Elasticity) —@— LR Average Capacity Cost (High Elasticity)

----+--- LR Average User Cost (First-Besty - LR Average Capacity Cost (First-Best)

Figure 2. Long-run average costs for the singldclinodel: second-best (no tolling) under various
demand elasticities, and first-best
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Figure 2 shows the results. We draw two conclusidiee first is that, as expected, the
second-best long-run average cost functions are $ia also without pricing these are
constants, independent of equilibrium demand leviddle second is that the second-best long-
run average cost levels approach their first-beshterparts more closely as demand becomes
less elastic. This is consistent with the expresgienfound for the Lagrangian multipliér
associated with the user equilibrium condition, eiquation (8b), which showed that the
adjustment made to the conventional first-beststwent rule diminishes as demand becomes
less elastic. Note that the average user cbsige, without pricing, above the first-best level,
and increasingly so when demand becomes more elds$te average capacity cods, in
contrast, are below the first-best level, and iashmegly so when demand becomes more
elastic. Both results reflect the finding of eqoat (8a) and (8b), namely that a greater
correction factori is applied to the actual floW, and therefore less capacity per user is
supplied, when demand is more elastic and shoelcetore be discouraged more strongly to
limit socially unwarranted induced demand effects.

3.2. First-best networks

We now move to first-best pricing and capacity ckoior a full network. As noted above,
because (13f) contains constant parameters orgynétwork optimum can be determined
very easily, by replacing the conventional short-generalized price functions by their long-
run counterparts of (13f). The resulting levels df imply the long-run capacitie&' via
(13a). Applying these long-run capacities in thigioal short-run cost functions should then
result in a network that has toll levels of (13é30aas the short-run optimal tolls; that is,
satisfying (13g) for the BPR functions used here.

Volume
Average | Marginal Capacity | capacity
Flow |usercost§ cost€ Toll € Capacityl Revenug € cost € ratio

Link 1 4 240.61 5.14 10.72 5.58 3379.44 23 656.18 626.10 1.255

Link 2 7 999.45 5.14 10.72 5.58 6374.96 44624.7@ 624.70 1.255

Link 3 35.46 5.14 10.72 5.58 28.26 197.81 197.81 258,

Link 4 35.46 5.14 10.72 5.58 28.26 197.81 197.81 253.
OD-pairAC| 4 276.07 10.28
OD-pairBC| 3 758.84 5.14

Table 2: Numerical model: first-best optimum

Table 2 shows the resulting flows, costs, tolls eaplacities resulting from the application of
this process. All links are self-financing andtttiee volume capacity\/K') ratio is constant
for all links. The first-best solution is charactel by an increase in total capacity on both
sections of the network. The fact that the capacaidinks 3 and 4 have become small, while
those of 1 and 2 have increased, is meaninglesssdhution in Table 2 is just one of an
infinite number of possible solutions. Due to tgenmetry of the network there is no unique
optimum in terms of individual link capacities afhows. Only the sum of capacities for links
1 and 3, and 2 and 4, matter under first-bestngici
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The total welfare change compared to the base bguii is € 92 868.75. We next
verify that this is an optimum, at least locally, perturbing the optimal tolls and capacities
by a small positive or negative valtieTable 3 shows the welfare values for perturbatiufns
+/- 1%. The results confirm that we have indeeahtban optimum welfare solution. The
welfare surface is, not surprisingly, rather fledund this optimum, and that for perturbations
of the low capacities (3,4) the welfare levels rearly identical to the original solution.

The example thus illustrates how the long-run dosttions can indeed be used to
easily identify the long-run optimum for a congesteetwork, with both tolls and capacities
optimized. We have already applied the same metutessfully on a bigger network,
namely one for Edinburgh, and solved this modifieaffic assignment problem using the
SATURN (Van Vliet, 1982) model. For reasons of spage will not present these results
here.

Perturbation +19 Social surplus ga € Perturbatior-1% Social surplus gai€

Toll Link 1 92 868.5¢ Toll Link 1 92 868.5¢

Toll Link 2 92 868.30 Toll Link 2 92 868.29
Toll Link 3 92 868.70 Toll Link 3 92 868.70
Toll Link 4 92 868.70 Toll Link 4 92 868.70
Cap. Link 1 92863.7¢ Cap. Link1 92 863.7¢
Cap. Link 2 92859.9: Cap. Link Z 92 859.6¢
Cap. Link ¢ 92868.7¢ Cap. Link ¢ 92 868.7¢
Cap. Link 4 92 868.74 Cap. Link 4 92 868.74

Note: First-best social surplus gain is € 92868.75

Table 3: Numerical model: perturbations around tfibest optimum

3.3. Second-best pricing and capacity choice
For the second-best policies, we consider the wésze only link 2 is subject to tolling and

capacity choice. The network configuration makesesthiat our example allows for
interaction with both a parallel link and with serinks.

3.3.1. No self-financing constraint

As pointed out in Section 2.3.1, there is genenatlyclosed-form solution for the second-best
toll when no self-financing constraint applies. Foe present small network, a closed-form
expression might still be available, but we prééepretend to be in the situation that will also
be faced when working with bigger networks, so thaherical methods have to be applied to
find the second-best tolls. In this situation, wancuse the so-called ‘cutting constraint
algorithm’ (CCA) of Lawphongpanich and Hearn (2002t solve for the second-best toll and
capacity. For details of how this is implemented: wefer to Koh, Shepherd and Sumalee
(2007). This algorithm is mathematically guaranteedonverge to a local equilibrium point

of the problem. Table 4 shows the results obtairyedsing the CCA algorithm.

* Each variable (toll or capacity) is perturbedasagely with all others held at the optimal valéresn Table 2.
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Capacity
Social surplug Capacity costimplied by flow
Toll (€) Capacity Flow gain (€) Revenue (€ (€) and (16a)
81679 17 467.55 36 538.93 5222.84
2.67 5219.85 (N/ELS?::SL.;ZS) (87.95% of
e first-best)

Table 4: Second-best pricing and capacity choicéifi&x 2 alone (no self-financing constraint):
results for link 2

Table 4 shows that in this case, second-best tdimges are insufficient to cover the capacity
costs. The social surplus gain of € 81 679 comptydlle base equilibrium is approximately
88% of the first-best gain. This gain is therefquete large, which is a direct consequence of
the assumed network configuration and the factithiéal base capacities are relatively small.
The final column gives the capacity that equatiddajlwould give for the flow level

obtained by the CAA. This is practically equal te #apacity that the algorithm itself finds.
This confirms the validity of equation (16a), anggests that its use directly in the algorithm
might make it more rapid as it reduces the dimerssaf the optimization problem. We intend
to investigate this possibility further in follonpuesearch.

3.3.2. Self-financing constraint

The final case concerns the above second-best pmobligh an additional self-financing
constraint. The discrepancy between revenues aratitagost in Table 4 of course indicates
that the constraint will be binding. To find the @dated toll and capacity, we can use the
rules given in (13a) to (13f). As for the first-basase, we thus we solve a standard user
equilibrium traffic assignment problem, with thelydifference that for link 2 we replace the
conventional short-run user cost function by then@tant) generalized price of (13f). Again,
once we have found the link-flow from this adaptedwork problem, the capacity on the link
to be optimised (link 2) can be inferred from (13&)d the tolls can be computed from either
(13e) or (13g), which should give the same answer.

Social surplus
Toll (€) Capacity Flow gain (€) Revenue (€) | Capacity cost (€)
7861¢€
5.58 4 408.08 (N?stiiggs) (84.65% of first: 30 856.54 30 856.54
e best)

Table 5: Second-best pricing and capacity choicdifitk 2 alone with self-financing constraint:
results for link 2

The results (for link 2) are shown in Table 5. Ndtattthe gain in social surplus is now
84.65% of the first-best case, and therefore lothan that without the binding additional
constraint on self-financing.

We have verified the results from Table 5 by solvimg same problem with the CCA,
which indeed produced the same results. Moreoweretify that the solution we have found
is at least optimal locally, we carried out a pdyation analysis for the toll and capacity
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shown in Table 5. When perturbing the toll (capadibr link 2, we applied a bisection search

method to find a corresponding level of capaciofithat would preserve the self-financing

result. The results are reported in Table 6 beldws klear that all the other perturbation

levels and the accompanying capacities that satisfyself-financing constraint would not

provide a higher level than the welfare that wenfibuAgain, the region around this second-
best optimum is rather flat, and the welfare sohsdiare very close. Note that the capacity
perturbation of +1% and the toll perturbation of4&re nearly identical; the same is true for
the two —1% perturbations.

Toll €5.5¢ Adjusted Capacil Toll Revenu Capacity Cos Welfare
+1%: 5.63 4 451.83 31 162.82 31162)81 78 607.59
-1%: 5.52 4 363.66 30 545.64 30 545/65 78 607.19
Capacity 4408.C Adjusted Tol Toll Revenu Capacity Cos Welfare
+1%: 4 452.1¢ 5.62 31 165.11 31 165.11 78 607.4.
—1%: 4 364.00 5.52 30 547.95 30 547)97 78 607.39

Note: Second-best social surplus gain is €78 &k Table 5)

Table 6: Second-best pricing and capacity choicdifitk 2 alone with self-financing constraint:
perturbations around second-best optimum

4., Conclusion

This paper considered the use of ‘long-run costtions’ for congested networks in solving

second-best network problems, in which capacity tfid are instruments. We considered
second-best cases where only a subset of linksi@tvaork is subject to tolling and a subset is
subject to capacity optimization, where these sisbsgay or may not overlap. We also

considered cases with and without a self-financimgstraint imposed.

Our results demonstrate that, under certain assonsptsecond-best long-run cost (or
actually: generalized price) functions can be dtifor most of the cases of interest, which
can be used in an applied network model as a sultestor the conventional short-run user
cost functions. Doing so reduces the dimensionalftyhe problem and therefore helps in
speeding up procedures used for finding seconddpsha.

The most straightforward cases were the first-besblpm, in which tolls and
capacities can be set on all links, and the sebesd-problem where a self-financing
constraint applies on a link for which both instemts can be set. It turned out that the long-
run cost functions for these two cases are intfeeisame. To find the optimum in a network
of any size or shape, it suffices to replace theveational short-run user cost functions by the
long-run generalized price function. From the rasgl network equilibrium, optimal
capacities and tolls can be immediately derived.

For the second-best cases where only the tollexc#pacity can be set, no such easy
answers are available. Nevertheless, for the chgdliog, it is true that the ratio of second-
best optimal link flow and link capacity can be etetined beforehand, which is valuable
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information that of course should be exploited lgpathms designed to find the second-best
optimum. But there is no closed-form expressiontf@ long-run second-best optimal toll.
The same is true for second-best capacity for lwkbout tolling. The latter result was
shown in the context of a single-link model, buerth is no reason to expect that the
conclusion would change in a bigger network. EMeough things are more complicated in
these cases, we can observe that the combinatioordindings is that for the most general
second-best network problem — where only tolls lsarset on some links, only capacities on
some other links, and both on yet a third subséin&t — there is at most one ‘instrumental
dimension’ for each link: either toll, or capacity, toll with capacity implied immediately by
the link flow. This reduction in dimensionality sHduhave positive consequences for the
speed of solution algorithms. The extent to whigis is indeed the case is an issue that we
intend to address in a follow-up paper.
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