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Auctions under Payo¤ Uncertainty: The Case with Heterogeneous
Bidder-Aversion to Downside Risk

Abstract

This paper characterizes the optimal �rst-price auction (FPA) and second-price auc-

tion (SPA) for selling rights, contracts, or licenses that involve ensuing payo¤ uncertainty

for the winning bidder. The distribution of the random payo¤ is common knowledge,

except that bidders have private degrees of aversion to downside-risk. In this model, the

optimal FPA entails a lower reserve price, a higher expected revenue, and higher expected

utilities for at least some or all bidders than the optimal SPA does, which suggests that

FPA dominates SPA in terms of both allocative and Pareto e¢ ciency. Increasing risk or

risk aversion generally leads to lower equilibrium bids.

Key words: auction, downside risk, risk aversion, payo¤ uncertainty, allocative e¢ -

ciency, Pareto e¢ ciency

JEL classi�cation: D44
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1 Introduction

A good number of auctions involve payo¤ uncertainty for the winning bidder. From an-

tique, �owers, wine that are bought for resale, to licenses, rights, contracts for business,

the winner�s (monetary) payo¤ depends on the unknown prices and market conditions,

among other factors, in the future. When every bidder is risk neutral and knows the

expected value of the auctioned object to himself that is independent of other bidders�

evaluations, such payo¤ uncertainty is immaterial and the situation can be analyzed as

though the privately assessed payo¤ is certain. Indeed, risk-neutrality has been a crucial

assumption in the development of auction theory, as it helps generate scores of valuable

insights into important issues regarding, e.g. competitive bidding behavior, comparative

revenue performance, and optimal auction design (e.g., Vickrey, 1961; Wilson, 1977; My-

erson, 1981; Riley and Samuelson, 1981; Harris and Raviv, 1981; Milgrom and Weber,

1982; McAfee and McMillan, 1987). The same issues where bidders are risk averse and

the winning bidder is subject to ensuing payo¤ uncertainty, however, have received far less

attention.

Among the existing work that considers bidders�risk aversion, the focus is on the

cases in which each bidder has a sure private value assigned to the auctioned object�

consequently, the involved risk is related to the uncertainty of winning or losing in the auc-

tion only (e.g., Holt, 1980; Riley and Samuelson, 1981; Harris and Raviv, 1981; Matthews,

1983, 1987; Cox et al., 1982, 1988; Smith and Levin, 1996).1 In these sure-value models,

increasing bidders�degree of risk aversion leads to more aggressive bidding in the �rst-price

auction (FPA), whereas bidding up to one�s private value remains a dominant strategy in

the second-price auction (SPA).2 Thus, from the seller�s point of view, the FPA is more

1See also Milgrom and Weber (1982, Section 8), Holt and Sherman (2000), and Goeree and O¤erman

(2003) for analyses about bidder risk aversion in common-value auctions; Waehrer (1998) and Eso and Futo

(1999) about risk-averse seller�s choice; and Eso (2005) about risk-averse bidders with correlated private

values.
2 In this article, the FPA refers to both the �rst-price sealed-bid auction and the Dutch (descending)
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attractive than the SPA because it generates greater expected revenue when the buyers are

risk averse rather than risk neutral. This comparative revenue implication can be directly

derived from the famous revenue equivalence theorem (e.g., Myerson, 1981), which states

that under certain conditions, the expected revenues from di¤erent standard auctions are

the same when buyers are risk neutral and furthermore, share the common belief that

everyone else is risk neutral.

The aim of the present study is to incorporate payo¤ uncertainty, or ensuing risk,

into standard auction models and investigate the bidding behavior and optimal reserve

prices with risk-averse bidders. The one well-known model that is related to this study is

the �Case 3�preference considered in Maskin and Riley (1984). These authors present a

fairly general model of private-value auction design with risk averse buyers.3 In Maskin

and Riley�s Case 3 preference, the bidders are interpreted to have the same utility function

but privately known distributions of the uncertain payo¤of the object. These distributions

are ranked in the sense of �rst-order stochastic dominance, which means that the most

eager buyer is the one who has a payo¤ distribution that dominates all others�. Since

Maskin and Riley are mainly concerned with the general properties of optimal mechanism

that hold for a fairly large class of preferences, they do not single out this Case 3 and

auction, where the winner pays the price equal to his bid. The SPA refers to both the second-price sealed-

bid auction (or Vickrey auction) and the English (ascending) auction, where the winner pays the price

equal to the second-highest bid. A careful discussion of the conditions under which each pair of these

auction forms entail the same equilibrium strategies can be found in Milgrom and Weber (1982).
3Payo¤ uncertainty is naturally present in the common value models where bidders receive only imper-

fect information about the value of the auctioned object. The issue of risk aversion in this area, however,

has been mainly studied through experimental research focusing on explaining the �winner�s curse,� the

tendency of the bidders to bid �too high� in �rst-price auctions. The issue turns out to be highly con-

tentious (e.g., Harrison, 1989, 1992 and the references therein), part of the di¢ culty being acknowledged to

be due to �the lack of theory about the behavior of common-value auctions with risk aversion�(Lind and

Plott, 1991, p.344). Recent theoretical models include Holt and Sherman (2000) and Goeree and O¤erman

(2003b), where bidders have the same utility function and the distributions of signals are uniform and

normal, respectively.
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study its speci�c implications. Therefore, what we learn from Maskin and Riley (1984)

are more about general conclusions, such that revenue-maximization implies a trade-o¤

between incentives and risk sharing, with the less eager buyers bearing more risk than the

more eager buyers (see also Matthews, 1983; Moore, 1984).

The main di¤erence of our model from Maskin and Riley�s is that we assume a com-

mon distribution of uncertain payo¤s with heterogeneous degrees of bidder risk aversion.

In situations where substantial risks are involved, it is conceivable that the bidding �rms

or the �rm managers may exhibit considerable di¤erences in their attitudes toward risk.

For one thing, the degree of risk aversion can be shaped by the bidding �rm�s ideosyncratic

conditions or by the �rm manager�s personal preferences, which are likely to be private

information to the bidder.4 The assumption of common payo¤ distribution, on the other

hand, captures the essential feature of the mineral rights or common value models �that

is, �to a �rst approximation, the values of these mineral rights to the various bidders

can be regarded as equal� (Milgrom and Weber, 1982, p.1093). More precisely, though,

bidders have common expected value of future payo¤s. Owing to possible di¤erences in

risk attitudes in the present context, the bidders�reservation values may still di¤er.5

In order to make sense of interpersonal comparison that is an essential characteristic

of auctions, the �rst thing one needs seems to be a cardinal measure of risk or utility.

In light of empirical evidence that much of the risk-averse behavior can be explained

by aversion to losses,6 we focus on downside risk aversion7 and examine its e¤ects on

4When the object for sale is a business license and the bidders are �rms competing in the same industry,

the systematic risk of the future random payo¤s of the license, on which investors require a risk premium,

may be seen as associated with the average of the �rms�private degrees of risk aversion.
5We leave the more general case in which the bidders have di¤ering estimates of the common payo¤

distribution for future work. To our knowledge, auctions with heterogeneous risk averse bidders have only

been studied for the sure-value cases (e.g., Cox et al., 1982, 1988) and the present model setup that also

acknowledges ensuing payo¤ uncertainty is relatively new.
6See, e.g., Kahneman and Twersky (1979), Benartzi and Thaler (1995), Schmidt and Traub (2002),

Shalev (2000), Rizzo and Zeckhauser (2004), and Kobberling and Wakker (2005).
7The mean-variance model (e.g., Markowitz, 1952) may be another modelling choice, but it does not
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competitive bidding behavior, expected payments, optimal reserve prices, and bidders�

expected utilities. Downside risk aversion has been incorporated in various studies, dating

back to the classic of Domar and Musgrave (1944) on portfolio choice and taxation, and

Bawa and Lindenberg�s (1977) asset-pricing models. Closely related to the downside risk

models are models of loss aversion as propounded in prospect theory (Kahneman and

Tversky, 1979; Tversky and Kahneman, 1992). Both notions of downside risk and loss

aversion refer to the similar observation that people are more sensitive to losses than to

gains. The di¤erence, in our opinion, lies in that the notion of loss aversion is nested in

a set of more general behavioral assumptions, such as probability transformation (e.g.,

Prelec, 1998) and status-quo bias (e.g., Samuelson and Zeckhauser, 1988), which we do

not consider. We focus instead on the mean-downside risk preferences with risk associated

with �below-target payo¤s�in the sense of Fishburn (1977). The reference level, or target,

is the payment for the object when the bidder wins. As such, our approach remains

congruent with expected utility theory, as demonstrated by earlier proponents of downside

risk models (e.g., Bawa, 1975, 1976; and Fishburn, 1977).

The problem we consider involves n bidders who have private degrees of downside-

risk aversion that are independently and identically distributed. The distribution of the

future payo¤ of the auctioned object is common knowledge. Thus, the bidders�valuation

of the object has two components: a pure common-expected value component v and a

pure private-risk aversion component h (cf. Goeree and O¤erman, 2002, 2003a). The

mathematical formulation of the problem turns out to be isomorphic to a single dimension

private value model thanks to a one-to-one relation between the private degree of risk

aversion h and the private reservation value. In terms of economic implications, however,

our model applies to a richer class of situations in which players face two dimensional

uncertainties: the unknown future payo¤ as well as reservation values of the competitors.

The seller is assumed to be risk neutral, and we consider two possible cases of the

seller objectives. In Case 1, the object must be sold and hence the seller does not have any

seem to be appealing, nor simplifying, for the analysis of auctions.
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role in the model except the choice between FPA and SPA. This may be the case where

the object is a contract or license about the development of certain projects that are of

vital importance for the nation, such as those involved with military, defence, or national

security systems. In Case 2, the revenue from the sale is also important, as in the sales of

mineral or spectrum rights, so that the seller chooses a reserve price to maximize expected

revenue under either the FPA or SPA policy.8

Our analysis yields several testable predictions. First, the more is the object�s risk

or the bidder�s risk aversion, the less are the bids and hence the seller�s expected revenue.

This prediction is, indeed, quite intuitive given that risk or risk aversion reduces one�s

eagerness to pay. However, it is worth noting that this result is opposite to a wide-spread

conclusion in the existing literature, as mentioned above, that risk aversion leads to more

aggressive bidding in the FPA. This apparently paradoxical conclusion relies critically on

the assumption that the auctioned object has a sure private value to the bidder, so that

no one expects any monetary loss in standard auctions. A reason for there to be no

�middle ground�between the existing and our conclusions is that in this study, bidders

are assumed to dislike the downside risk only. Thus, in the absence of expected losses,

the bidders would behave as though they were risk neutral. Second, the seller�s expected

revenue is always higher in the FPA than in the SPA. This prediction is not new, except

that it extends the same �nding in the existing literature to the case with ensuing risk of

payo¤s to the winner. Third, if the seller chooses the same reserve price for both FPA and

SPA (Case 1), then all active bidders strictly prefer the SPA to the FPA.

The fourth prediction of our analysis says that if the seller wishes to maximize

expected revenue (Case 2), then the optimal reserve price must be lower in the FPA than

in the SPA. This result derives from a property that the marginal expected revenue with

8We do not consider possible partnership or pro�t sharing between the seller and the license winner.

Potential agency problems, although not modelled in the present context, can be invoked to justify exclud-

ing these considerations here. Otherwise, the auctioned object could become a �labor contract� in which

the seller bears all residual risks and the winning bidder agrees to work for the seller on the basis of �xed

wages.
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respect to the screening level in the FPA is always higher than in the SPA. We discuss

insights into this property in more detail in the main text. An important implication

here is that the FPA is allocatively more e¢ cient, for a lower reserve price reduces the

probability of no-sale. The prediction also suggests that caution should be made in drawing

conclusions about auction forms in non-standard contexts. It is well-known that the

benchmark model (symmetric risk neutral bidders with independently distributed private

values; see Milgrom, 2004) predicts that the optimal reserve price is the same for all

standard auction forms (at least under the regularity condition). Perhaps for this reason,

the reserve price is typically assumed to be the same in discussing or comparing between

the FPA and SPA forms� even under bidder risk aversion. When the seller is also an

active player who wishes to maximize revenue, however, it is necessary to check optimal

choices of both the seller and the buyers before drawing any conclusion.

The �nal prediction is that, as long as the reserve price is e¤ective in precluding

some high risk-averse bidders from bidding, there exists always a portion, and possibly

all, of the active bidders who prefer FPA to SPA. In other words, some bidders, namely

bidders who are relatively more risk averse and hence less eager to bid, always share the

same preference with the seller in favor of the FPA. The result that both the seller and

bidders may jointly prefer the same auction policy, i.e., the FPA, is appealing, for then

the FPA Pareto dominates the SPA. Put di¤erently, in these cases a shift from the SPA

to the FPA improves all players�expected utilities (cf. Smith and Levin, 1996).

The rest of the paper is organized as follows. Section 2 introduces the model. Section

3 investigates the bidding strategies under the FPA and the SPA. The reserve price is

assumed to be given in the derivation of the strategies at this stage. In Section 4, then,

we derive the seller�s optimal reserve prices taking into account the strategic responses of

the bidders. In Section 5, the two auction formats are compared in terms of the expected

utilities of the bidders, as well as the expected revenues of the seller. Section 6 concludes

the paper.
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2 The Model

An indivisible object, e.g., a contract or a license, is to be sold to one of n (� 2) po-

tential bidders through either a FPA or a SPA. The winner of the object will receive a

random monetary payo¤ ev in the future, e.g., through subsequent business activities. The
probability distribution of ev is publicly known to be Q, with density function Q0 that is
assumed to be continuous on its support [0;1). The expected payo¤ of ev is denoted by v
(� E(ev) > 0).9

Each bidder i 2 N = f1; :::; ng has a mean-risk preference, with risk associated with

below-target payo¤s. Speci�cally, we normalize each bidder�s status-quo utility to be zero

and assume that if bidder i wins the object and pays a price c, his utility equals

U(c; hi) �
Z 1

0
(ev � c)dQ(ev)� hi Z c

0
'(c� ev)dQ(ev) (1)

where hi 2 [0; H] (H > 0) is the bidder�s private degree of downside-risk aversion.10 The

downside risk, denoted by L, is measured by (see Fishburn, 1977)11

L(c) �
Z c

0
'(c� ev)dQ(ev) (2)

where the paid price c (� 0) serves as the target, and ' : R+ ! R+ is the disutility function

of losses that is assumed to be strictly increasing, (weakly) convex, twice di¤erentiable,

and normalized to take values '(0) = 0 and '0(0) = 1.

9The lower bound of ev can be any �nite real number without a¤ecting the results; it is assumed to be
zero for convenience, which is consistent with limited liability. We also abstract away any intertemporal

discounting in this model.
10The lower bound of hi is assumed to be zero in order to include the special case of risk neutrality.

Since a rational player never likes to lose money, we rule out negative values of hi.
11As Fishburn (1977, p. 118) argues: �The idea of a mean-risk dominance model [...] seems rather

appealing since it recognizes the desire to come out well in the long run while avoiding potentially disastrous

setbacks or embarrassing failures to perform up to standard in the short run.�Another advantage of the

mean-downside risk model is its relative simplicity, which turns out to be very useful for deriving sensible,

yet tractible, results in this paper.
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The hi of the n bidders are assumed to be stochastically independent random vari-

ables. The cumulative distribution of hi is F with density function f that is continuously

di¤erentiable and strictly positive on (0; H). The whole situation is assumed to be common

knowledge, except that hi is known to bidder i only. It is common belief that each bidder

will act to maximize expected utility de�ned in (1). For expositional convenience, we call

hi bidder i�s type. The subscript i will be dropped hereafter for notational convenience,

unless needed for clarity.

Since the model presented above is relatively new in the auction literature, we take a

closer look at the properties of L and its relation to stochastic dominance. By assumption,

L is a strictly increasing and convex function of payment c:

L0(c) =

Z c

0
'0(c� ev)dQ(ev) > 0,

L00(c) = Q0(c) +

Z c

0
'00(c� ev)dQ(ev) > 0

More precisely, the downside risk measure L de�ned in (2) depends on both the disutility

function ' and the distribution function Q. Given any function ', we say that L is the

downside risk associated with distribution Q. In the present context, if another distributionbQ has the same mean as Q, and the downside risk bL associated with bQ satis�es bL(c) � L(c)
for all c 2 [0; v], we say that bQ is (weakly) more risky than Q and hence is dominated by

Q. Recall that the condition for Q to dominate bQ in the sense of second-order stochastic

dominance (SSD) is Z c

0
Q(ev)dev � Z c

0

bQ(ev)dev (3)

for all c � 0 with strict inequality for some c (see Rothchild and Stiglitz, 1970; Hardar and

Russel, 1969, 1971). The SSD condition (3) has been shown to be a su¢ cient for all risk

averse individuals to prefer Q to bQ.12 The connection between SSD and the more risky

12Hardar and Russel (1969, p.32) even argue that �any result within the framework of the theory of

risk aversion can be established directly by means of SSD. Conversely, any case of preference under risk

aversion must imply SSD; if the latter condition fails to hold, then the result must necessarily be due to a

special assumption about the functional form of the utility function.�
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relation in the present context can be seen fromZ c

0
Q(ev)dev = Q(c)c� Z c

0
evdQ = Z c

0
(c� ev)dQ(ev)

Therefore, if ' is a linear function and if bL(c) � L(c) for all c � 0, then Q also dominatesbQ in the sense of SSD. Conversely, condition (3) implies that bQ is more risky than Q in

that

bL(c)� L(c) =

Z c

0
'(c� ev)d� bQ�Q�

=

Z c

0

� bQ(ev)�Q(ev)�'0(c� ev)dev
=

Z c

0
'0(c� ev)d Z ev

0

� bQ(s)�Q(s)� ds!

=

Z c

0

� bQ(s)�Q(s)� ds+ Z c

0
'00(c� ev) Z ev

0

� bQ(s)�Q(s)� ds! dev � 0
where the inequality follows from (3) and the assumption that '0(0) = 1 and '00 � 0. It is

worth noting that, since the more risky relation in our context is de�ned more generally

than SSD (e.g., by restricting c 2 [0; v]), the ensuing comparative results in Proposition 2

hold for a larger class of situations.

3 Bidding strategies

We �rst derive the bidding strategies assuming that an arbitrary reserve price r is given.

Any tie is assumed to be randomly resolved. Since in the present context a tie happens

with zero probability, the case will be neglected henceforth. Since the lowest bidder, i.e.,

the one who bids the reserve price r, expects zero pro�t, the relation between reserve price

and the screening level or threshold type H, i.e., the type who bids r, can be derived from

U(r(H);H) = 0 or r(H) = v �HL(r(H)) (4)
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The last equation in (4) de�nes r as a function of H 2 [0; H]. Since U is continuously

di¤erentiable, so is r. Di¤erentiating gives

r0(H) = � L(r)

1 +HL0(r)
< 0 (5)

which con�rms that there is a monotonic negative relation between r andH. The threshold

type H implies that bidders with h > H will abstain from bidding. This derives from the

fact that U(r(H); h) < U(r(H);H) = 0 for all h > H. We say that a bidder is active

if his type h � H, i.e., it is optimal for him to participate in the auction. On the other

hand, it is obvious that no rational bidder will bid higher than v. If all bidders were risk

neutral (H = 0), then the model would reduce to a pure common-value special case of,

e.g., Wilson (1977), Milgrom and Weber (1982), and Pesendorfer and Swinkels (1997).

Competition would then allow the seller to extract all expected pro�ts from the buyers.

For a bidder of type h, the probability that all the other n�1 bidders have (weakly)

higher types than h is

G(h) �
Y
j 6=i
Pr(hj � h) = (1� F (h))n�1

Note that G is a decumulative distribution and its derivative is negative:

g(h) � G0(h) = �(n� 1) (1� F (h))n�2 f(h) < 0

3.1 Second-price equilibrium strategy

We start with the SPA. Arbitrarily given any bidder of type h, let y denote the lowest type

among the other n� 1 bidders, i.e., y = minfhj jj 6= i; j 2 Ng. For every active bidder of

type h 2 [0;H], de�ne function a(h) implicitly by a(h) = v � hL(a(h)) and interpret a to

be the bidder�s reservation value. From (4), it is clear that a(h) � r(h) for all h 2 [0;H]

(although the two functions have di¤erent interpretations).

Lemma 1 In a SPA with reserve price r, (i) it is a (weakly) dominant strategy for a

bidder with type h to bid a(h) if a(h) � r and to abstain from bidding if a(h) < r; (ii) the

12



expected payment by the bidder of type h � H is

mII(h;H) � r(H)G(H)�
Z H

h
a(y)g(y)dy (6)

and (iii) the bidder�s expected utility of type h � H equals

U II(h;H) �
Z H

h
G(y)

[1 + hL0(a(y))]L(a(y))

1 + yL0(a(y))
dy (7)

Proof. The proof of (i) is standard, using the argument that bidding up to U(a(h); h) = 0

weakly dominates all other strategies. The details of this argument are analogous to Vick-

rey (1961), hence omitted. (ii) Given any bidder of type h � H, the term r(H)G(H)

equals his expected payment when y � H, in which case the bidder pays the reserve

price. The expected payment when y 2 (h;H) is
R h
H a(y)dG(y) = �

R H
h a(y)g(y)dy.

Thus, adding the two terms gives the total expected payment in (6). (iii) The bid-

der�s expected utility also has two terms,
R H
H (v � r � hL(r)) dG(y) for y 2 [H;H] andR h

H [v � a(y)� hL(a(y))] dG(y) for y 2 (h;H). Adding yields

U II(h;H) = (v � r � hL(r))G(H) +
Z h

H
[v � a(y)� hL(a(y))] dG(y)

= vG(h)� (r + hL(r))G(H)�
Z h

H
[a(y) + hL(a(y))] dG(y)

= �
Z H

h
G(y)

�
1 + hL0(a(y))

�
a0(y)dy

where in the last equation we used integration by parts and the property that v � a(h)�

hL(a(h)) = 0 for all h � H. Substituting a0(y) = �L(a)=(1 + yL0(a)) gives (7).

Clearly, the more risk averse a bidder is (i.e., with a higher h), the less is his bid. In

the limiting case where the bidder is risk neutral with h = 0, he bids the expected value

v.

3.2 First-price equilibrium strategy

In the benchmark model where all bidders are risk neutral (e.g., Myerson, 1981), the

reserve price maximizing the seller�s expected revenue is the same for all standard auctions.
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Although the bidding strategy in the FPA generally increases with the reserve price, this

dependency does not cause any serious complication in the analysis of the benchmark

models. When bidders are risk averse, however, such a dependency becomes endogenous

in the derivation of the optimal reserve price, as will be seen in Section 4. Therefore, we

de�ne bidding strategies in the FPA as a two-dimensional function b : (h;H) 2 [0; H]2 !

b(h;H) 2 [0; v].

Fixing any threshold type H � H, suppose that each bidder uses a bidding strategy

b = b(h;H) that is a strictly decreasing and continuous function of h on [0;H]. The

bidder�s expected utility by bidding b(z;H) for any z 2 [0;H], given his true type h, is

then equal to

U(z; h) � G(z)U(b(z;H); h) = G(z) (v � b(z;H)� hL(b(z;H)))

Lemma 2 In a FPA, (i) the unique symmetric equilibrium is characterized by bidding

strategy

b(h;H) = v � hL(b(h;H))� 1

G(h)

Z H

h
G(y)L(b(y;H))dy (8)

if h � H and bidding nothing if h > H; (ii) the expected payment by the bidder of type

h � H is

mI(h;H) � b(h;H)G(h) (9)

and (iii) the bidder�s expected utility of type h � H equals

U I(h;H) �
Z H

h
G(y)L(b(y;H))dy (10)

Proof. (i) For h > H, U(r(H); h) < U(r(H);H) = 0. Thus it is optimal for the bidder

to bid nothing. For h � H, if b = b(h;H) is a symmetric (Bayesian-Nash) equilibrium
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strategy, then by the envelope theorem (e.g., Milgrom and Segal, 2002)

dU(h; h)

dh
= U2(z; h)jz=h = �G(h)L(b(h;H))

) U(H;H)� U(h; h) = �
Z H

h
G(y)L(b(y;H))dy

) U(h; h) = G(h) (v � b(h;H)� hL(b(h;H))) =
Z H

h
G(y)L(b(y;H))dy

) b(h;H) = v � hL(b(h;H))� 1

G(h)

Z H

h
G(y)L(b(y;H))dy

(ii) Straightforward by de�nition of expected payment. (iii) Rearranging terms in (8) gives

directly

U I(h;H) � G(h) (v � b(h;H)� hL(b(h;H))) =
Z H

h
G(y)L(b(y;H))dy (11)

As in the existing literature on the FPA with risk-averse bidders, the bidding strategy

b here can only be de�ned implicitly. To obtain a (numerical) solution, it is often convenient

to study the di¤erential equation by di¤erentiating b in (8) with respect to h, taking each

value of H as �xed. This gives

b1(h;H) =
g(h)

G(h)

(v � b� hL(b))
(1 + hL0(b))

= �(n� 1)f(h) (v � b� hL(b))
(1� F (h)) (1 + hL0(b)) (12)

Since in equilibrium the bidder must expect a positive expected utility, v� b� hL(b) > 0.

Consequently, b1 < 0 for all h < H. Also, the right side of (12) has a continuous partial

derivative with respect to b for all h < H, which is uniformly bounded on the range of the

bids [0; v]. Therefore, by the Theorem of Cauchy there exists a unique function b satisfying

(12) and the initial condition b(H;H) = r(H).

The results obtained so far are relatively straightforward; still, it is worth noting

that the general conclusion b1 < 0 for all h < H is opposite to the one that is made in the

existing literature (e.g., Holt, 1980; Riley and Samuelson, 1981; see also Krishna, 2002),

which predicts that higher risk aversion leads to more aggressive bidding in the FPA. This

existing prediction relies critically on the assumption that the auctioned object has a sure
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private value to the bidder. If, instead, the object carries ensuing risk of payo¤s, we �nd

that higher risk aversion leads to less aggressive bidding in the FPA.

Unlike in the SPA, a risk neutral bidder bids strictly lower than v. This can be seen

by substituting 0 for h in (8) to get b(0;H) = v �
R H
0 G(y)L(b(y;H))dy < v. Intuitively,

this result is due to the expectation that other bidders may be risk averse, so a risk neutral

bidder has a strictly positive expected utility in equilibrium. To see how b changes with

H, rewrite (8) as

[b(h;H) + hL(b(h;H))� v]G(h) = �
Z H

h
G(y)L(b(y;H))dy

Di¤erentiating with respect to H then yields

�
1 + hL0(b)

�
G(h)b2(h;H) = �G(H)L(r)�

Z H

h
G(y)L0(b(y;H))b2(y;H)dy (13)

or b2(h;H) = � G(H)L(r)

[1 + hL0(b)]G(h)
�
R H
h G(y)L0(b(y;H))b2(y;H)dy

[1 + hL0(b)]G(h)

It is easily seen that for h = H,

b2(H;H) =
�L(r)

1 +HL0(r)
= r0(H) < 0 (14)

The next lemma establishes that b is a strictly decreasing function of H in general, for all

h � H. This property will be useful for the analysis in the next two sections.

Lemma 3 For all h and H such that 0 � h � H � H, b2(h;H) � 0 , with strict inequality

for at least some h and H.

Proof. It can be shown that b12 exists (e.g., Lemma 4). Since b2(H;H) < 0 as shown

in (14), b2(h;H) < 0 at least for some h and H by continuity. Suppose there were some

values of h and H such that b2(h;H) > 0. Then, by continuity of b2 again, there must

exist some bh 2 (h;H) such that b2(y;H) > 0 for all y 2 (h;bh), and b2(bh;H) = 0 (since
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b2(H;H) < 0). But this is impossible since, from (13), we would then have

0 <
�
1 + hL0(b)

�
G(h)b2(h;H)

= �G(H)L(r)�
Z H

h
G(y)L0(b(y;H))b2(y;H)dy

= �G(H)L(r)�
Z bh
h
G(y)L0(b(y;H))b2(y;H)dy

�
Z H

bh G(y)L0(b(y;H))b2(y;H)dy

< �G(H)L(r)�
Z H

bh G(y)L0(b(y;H))b2(y;H)dy

=
h
1 + bhL0(b)iG(bh)b2(bh;H) = 0

What Lemma 3 says is that the equilibrium bids are pushed higher as the reserve

price increases. The main reason is that the bidder whose type equals the threshold type

H has to bid up to the reserve price that equals his reservation value, whereas he would

bid below this payment if the reserve price were lower. Thus, increasing the reserve price

results in a �ratcheting e¤ect,�forcing every active bidder to bid higher.

3.3 E¤ects of increasing risk aversion and the screening level

The general e¤ects of increasing risk aversion h and increasing the screening level H can

be derived straightforwardly by di¤erentiating the expected payments and utilities.

Proposition 1 For all h and H such that 0 < h < H � H, and for A 2 fI; IIg,

mA
1 (h;H) < 0, m

A
2 (h;H) < 0, U

A
1 (h;H) < 0, and U

A
2 (h;H) > 0.

Proof. Using the subscript to denote the partial derivative with respect to the corre-

sponding argument, we get from (9) that

mII
1 (h;H) = a(h)g(h) < 0 (15)

mII
2 (h;H) = � G(H)L(r(H))

1 +HL0(r(H))
= G(H)r0(H) < 0 (16)
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Di¤erentiating (7) gives

U II1 (h;H) = �G(h)L(r(h))�
Z H

h
G(y)dL(a(y))

= �G(H)L(r(H)) +
Z H

h
L(a(y))g(y)dy < 0 (17)

U II2 (h;H) = �G(H)
�
1 + hL0(r)

�
r0(H) > 0 (18)

Similarly, di¤erentiating (9) and (10) yields

mI
1(h;H) = b1(h;H)G(h) + b(h;H)g(h) < 0 (19)

mI
2(h;H) = b2(h;H)G(h) < 0 (20)

U I1 (h;H) = �G(h)L(b(h;H)) < 0 (21)

U I2 (h;H) = G(H)L(r(H)) +

Z H

h
G(y)L0(b(y;H))b2(y;H)dy

= �
�
1 + hL0(b)

�
G(h)b2(h;H) > 0 (22)

Thus, according to Proposition 1, in both FPA and SPA the bidders with lower

types h (or lower degrees of downside-risk aversion) have higher expected payments and

higher expected utilities; whereas in general, increasing reserve price r (hence lowering H)

hurts all bidders. A subtile di¤erence between FPA and SPA, however, can be discerned

by comparing (16) with (20). Namely, that the marginal change of expected payment

with respect to H is the same for all types h < H in SPA, but it varies with h in FPA.

This di¤erence, as will be seen, leads to di¤erent optimal reserve prices in the two auction

forms.

To �x ideas, consider a simple numerical example.

Example 1 Assume n = 2, F (h) = h on [0; 1], Q(ev) = ev on [0; 1] (so that v = 0:5), and
'(x) = x. Thus G(h) = 1� h and

L(c) =

Z c

0
(c� ev)dev = c2

2

a(h) = v � ha
2(h)

2
=
1

h

�p
2hv + 1� 1

�
18
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Figure 1: The bidding strategies are inversely related to degree of risk aversion h. The

second-price bidding strategy is una¤ected by the reserve price or the threshold type H,

whereas the �rst-price bidding strategy increases as H decreases.

The �rst-price bidding function can be solved numerically from the di¤erential equation

with initial condition b(H) = r(H) = 1
H

�p
H + 1� 1

�
, treating H as a constant in each

of the computations:

b0 = �
�
v � b� hb2=2

�
(1� h) (1 + hb)

As shown in Figure 1, a is invariant with the reserve price whereas b is.

3.4 E¤ects of increasing risk

We conclude this section by examining how risk a¤ects the bidding strategies and expected

payments. Intuitively, when the payo¤becomes more risky (keeping the mean as constant),
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the object becomes less attractive to all risk averse bidders and hence lower equilibrium

bids are to be expected. This intuition is indeed correct, as shown in the next proposition.

Proposition 2 Let two payo¤ distributions Q and bQ be given that have the common mean
v. Assume that L(c) � bL(c) for all c 2 [0; v], i.e., that Q dominates bQ in the sense of

having less downside risk. Then, under both FPA and SPA, bQ entails lower equilibrium

bids (hence, expected revenue) than Q.

Proof. Let the �hat�symbol designate the association with bQ of the relevant functions.

We want to show that for all h 2 (0;H) and all H � H, (i) a(h) � ba(h) and (ii) b(h;H) �bb(h;H).
(i) The bidding function a(h) and ba(h) are given by

a(h) = v � hL(a(h)), ba(h) = v � hbL(ba(h))
Subtracting gives

a(h)� ba(h) = �h hL(a(h))� bL(ba(h))i � �h hbL(a(h))� bL(ba(h))i (23)

where the last inequality uses the assumption that bQ is more risky than Q. We prove the
claim by contradiction. If a(h) < ba(h) for some h, then bL(a(h)) < bL(ba(h)). But then the
term on the right side of (23) is strictly positive, indicating that a(h) > ba(h). (ii) From
(11), we have

U I(h;H) = [v � b(h;H)� hL(b(h;H))]G(h)

=

Z H

h
G(y)L(b(y;H))dy

bU I(h;H) =
h
v �bb(h;H)� hbL(bb(h;H))iG(h)

=

Z H

h
G(y)bL(bb(y;H))dy

We prove a stronger claim that L(b(h;H)) � bL(bb(h;H)) for all h, which implies b(h;H) �bb(h;H). This is because if L(b(h;H)) < bL(bb(h;H)) for some h, then by continuity, there
20



exists some z 2 (h;H] such that L(b(y;H)) < bL(bb(y;H)) for all y 2 (h; z). Moreover, if
z < H then L(b(z;H)) = bL(bb(z;H)), or else z = H. In any case, U I(z;H) � bU I(z;H)
because for z = H, U I(H;H) = bU I(H;H) = 0, and for z < H, L(b(z;H)) = bL(bb(z;H))
implies b(z;H) � bb(z;H), which in turn implies U I(z;H) � bU I(z;H). A contradiction

then follows:

0 < U I(h;H)� bU I(h;H) = Z H

h
G(y)

�
L(b(y;H))� bL(bb(y;H))� dy

=

Z z

h
G(y)

�
L(b(y;H))� bL(bb(y;H))� dy

+

Z H

z
G(y)

�
L(b(y;H))� bL(bb(y;H))� dy

=

Z z

h
G(y)

�
L(b(y;H))� bL(bb(y;H))� dy + U I(z;H)� bU I(z;H) < 0

Somewhat surprisingly, the proof of Proposition 2 is more involved than one might

expect � especially with the FPA strategies. The reason is that the characterization of

bidding function b is implicit, which prevents a direct comparison of the two functions,

b and bb. Note that Proposition 2 also predicts that increasing risk generally reduces the
seller�s expected revenue under either the FPA or the SPA. This is true even if we allow

the seller to choose di¤erent reserve prices for Q and bQ, for then H can be interpreted in

Proposition 2 as the optimal threshold type that the seller sets for the case with bQ.
4 The seller�s problem

We assume that the seller is risk neutral and consider two cases of seller objectives. In

Case 1, the object must be sold and therefore the threshold type is H. In Case 2, the seller

imposes a reserve price to maximize expected revenue. In this second case, the seller must

run the risk of not selling the object and be able to credibly commit to it, as we assume.

In general, the two cases can be combined together by assuming that if the seller fails to

sell the object, there will be a deadweight (social) loss so that the reserve value to the
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seller is v0 (< v). Then, Case 1 can be associated with a signi�cantly low (or negative)

value of v0, and Case 2 with a v0 that is moderately lower than v.

In order to ensure that the seller�s problem of maximizing expected revenue is well

de�ned, we invoke the following assumption.

Assumption 1 For all h 2 [0; H], 1 +
�
F (h)
f(h)

�0
� L0(v)

(1+hL0(v))
F (h)
f(h) .

Assumption 1 implies that the seller�s objective function in the SPA is quasi-concave

in H. This property can then be used for the comparative analysis about optimal reserve

prices between the two auction forms. The somewhat peculiar condition in Assumption 1

is probably due to the fresh model in the present study, which has not been formulated

before. This condition is actually �tight�if the derived results are to hold for all possible

seller valuations v0 � v, as will be seen in the proof of Proposition 3. The condition does

not imply, nor is implied by, the more familiar conditions such as the regularity or the

logconcavity conditions (e.g., Krishna, 2002). However, many familiar distributions can

be veri�ed to satisfy Assumption 1, including uniform, exponential, and more generally

the gamma distributions with properly delineated parameters. Note that Assumption 1 is

about the primitives only.

4.1 Seller�s problem in the SPA

For arbitrary threshold type H � H, the seller�s expected utility can be written as

V II(H) � (1� F (H))nv0 + n
Z H

0
mII(h;H)dF (h) (24)

= (1� F (H))nv0 + n
Z H

0

�
r(H)G(H)�

Z H

h
a(y)g(y)dy

�
dF (h) (25)

The �rst term on the right side of (24) is related to the no-sale event, which happens with

probability (1� F (H))n when all bidders have types h > H. The last term in (24) is the

total expected payment from the n bidders; the possibility of no bids (higher than the
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reserve price) is taken into account in the integration, which runs from 0 to H (rather

than H).

The seller�s problem is

max
H
V II(H) subject to 0 � H � H (26)

To facilitate notation, we de�ne a function � : H 2 [0; H]! R by

�(H) � r(H)� L(r(H))

1 +HL0(r(H))

F (H)

f(H)
(27)

Proposition 3 Assume that v0 < v and that Assumption 1 holds. Then the optimal

reserve price rII under the SPA is given by rII = r(H) if �(H) � v0, and rII = r(H)

with H satisfying �(H) = v0 if otherwise �that is,

r(H) = v0 +
L(r(H))

1 +HL0(r(H))

F (H)

f(H)
(28)

Proof. The derivative of V II with respect to H is given by, noting that a(H) = r(H),

dV II

dH
= �nG(H)f(H)v0 + n

�
mII(H;H)f(H) +

Z H

0
mII
2 (h;H)dF (h)

�
= �nG(H)f(H)v0 + n

�
r(H)f(H) + r0(H)F (H)

�
G(H) (see (16))

= nG(H)f(H)

�
r(H)� v0 �

L(r)

1 +HL0(r)

F (H)

f(H)

�
= nG(H)f(H) (�(H)� v0) (29)

The �rst-order condition for maximizing (26) is thus

nf(H)G(H) (�(H)� v0)� � = 0

where � is the Lagrangian multiplier associated with constraint H � H. The constraint

H � 0 is not binding because, under the assumption that v0 < v, the term in (29) is

strictly positive for H = 0. Consequently, the candidates H for an optimal solution are

given by �(H) = v0 with � = 0, or H = H with � � 0. Whenever an interior solution H

satisfying �(H) = v0 exists, note that

d2V II

dH2
j�(H)=v0 = n�

0(H)f(H)G(H)
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Thus, if we can show that �0(H) < 0 whenever �(H) = v0 for H < H, then H will be a

unique global optimal solution to (26). To proceed, write

�(h) = r(h) + r0(h)
F (h)

f(h)
(30)

Di¤erentiating yields

�0(h) = r0(h)

�
1 +

�
F (h)

f(h)

�0�
+ r00(h)

�
F (h)

f(h)

�
(31)

where

r00(h) = �L
0(r)r0 [1 + hL0(r)]� L(r)[L0(r) + hL00r0]

[1 + hL0(r)]2

= ��L
0(r)L(r)� L(r)[L0(r) + hL00r0]

[1 + hL0(r)]2

=
2L0(r)L(r) + L(r)hL00r0

[1 + hL0(r)]2

= � 2L0(r)r0

[1 + hL0(r)]
� hL00r02

[1 + hL0(r)]

= � L0(r)r0

[1 + hL0(r)]

�
2 +

hL00r0

L0

�
=
L0(r)r0

L(r)

�
2 +

hL00r0

L0

�
r0 (32)

Substituting the last term in (32) for r00 in (31) gives

�0(h) = r0(h)

��
1 +

�
F (h)

f(h)

�0�
+
L0(r)

L(r)

�
2 +

hL00r0

L0

��
F (h)

f(h)

�
r0
�

(33)

Alternatively, (30) and �(h) = v0 implies

r0(h) =
f(h)

F (h)
(v0 � r) ( = � L(r)

(1 + hL0(r))
) (34)

Therefore, substituting (34) for r0 in (33), and recalling that r0 < 0, showing �0(h) < 0 is

equivalent to showing that for all v0 such that �(h) = v0,�
1 +

�
F (h)

f(h)

�0�
>
L0(r)

L(r)

�
2� hL

00

L0
f(h)

F (h)
(r � v0)

�
(r � v0) (35)

The right side of (35) is a concave function of v0. Its maximum is attained when h satis�es

the �rst order condition, yielding

hL00

L0
f(h)

F (h)
(r � v0) = 1
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Consequently, (35) holds for all v0 < v if and only if (which suggests that Assumption 1

is �tight�)

1 +

�
F (h)

f(h)

�0
>
L0(r)

L(r)
(r � v0) =

L0(r)

(1 + hL0(r))

F (h)

f(h)
(36)

where the last equality comes from (34). Finally, noting that r � v and that the term on

the right side of (34) is a strictly increasing function of r, we conclude that Assumption 1

implies that H satisfying �(H) = v0, or equivalently, (28), attains a global maximum for

(26).

Although the optimal reserve price is characterized only implicitly in (28), it is clear

that this reserve price is always higher than the seller�s reserve value v0. This result is

analogous to the one obtained in the risk-neutral benchmark model (e.g., Krishna, 2002),

except that the derivation, especially the process of identifying a tight su¢ cient condition

for global maximization, is much more complicated here. We shall denote by HII the

threshold type that solves problem (26). We say that the reserve price is e¤ective if

HII < H, in which case the �rst-order condition �(HII) = v0, together with the second-

order condition �0(HII) < 0, de�nes HII implicitly as a decreasing function of v0. Figure

2 shows the relations between H, v0, and r(H).

Example 2 Assume the case in Example 1. We have

�(H) =
1

H

�p
H + 1� 1

�
�

1
H

�p
H + 1� 1

�2
=2

p
H + 1

=
1

2
p
H + 1

Therefore

�(HII) = v0 ) HII(v0) =
1

4v20
� 1

The upper bound of H is H = 1 in this example, so the seller will choose an e¤ective

reserve price only if
1

4v20
� 1 � 1 or v0 �

1

4

p
2 = 0:353 55

The optimal reserve price can then be solved as a function of v0 2 (0:35355; 0:5), i.e.,

brII(v0) � r �HII(v0)
�
=

1

HII(v0)

�q
HII(v0) + 1� 1

�
=

2q
1
v20
+ 2
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Figure 2: The seller�s reserve value v0 and the optimal threshold type H are negatively

related via a one-to-one relation. For example, if v0 = 0:4, then H = 0:5625 and the

reserve price r(0:5625) = 0:44.

For instance, for v0 = 0:4, the threshold type is H = 0:5625 and the reserve price is

r(H) = 0:4444.

4.2 Seller�s problem in the FPA

Unlike in the SPA, the bidder�s strategy in the FPA depends on both his own type h

and the threshold type H � H, which is b(h;H) for h 2 [0;H] as derived in (8). Before

deriving the optimal reserve price in the FPA, we present a lemma that will be useful
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later.

Lemma 4 For all h 2 (0;H) � [0; H], mI
12(h;H) < 0.

Proof. Recall from (12) that

b1(h;H) =
g

G
� (v � b� hL(b))

(1 + hL0(b))
< 0

Di¤erentiating b1(h;H) with respect to H yields

b12(h;H) = �
g

G
�
�
1 +

(v � b� hL(b))hL00

(1 + hL0(b))2

�
b2(h;H) < 0

where b2(h;H) < 0 by Lemma 3. It follows that

mI
12(h;H) = b12(h;H)G(h) + b2(h;H)g(h)

= g(h)b2(h;H)� g
�
1 +

(v � b� hL(b))hL00

(1 + hL0(b))2

�
b2(h;H)

= �g(h)
�
(v � b� hL(b))hL00

(1 + hL0(b))2

�
b2(h;H)

By inspecting the signs, we obtain

mI
12(h;H)

8<: < 0 if h 2 (0;H)

= 0 if h 2 f0;Hg

Note that mI
2(h;H) is the marginal expected payment in the FPA with respected

to the threshold type H. It can be veri�ed that in the risk-neutral benchmark model

(e.g., Myerson, 1981), this term depends only on the threshold type and not on each

bidder�s private type. Under risk aversion, the SPA preserves this property as can be seen

from (16) or mII
12(h;H) = 0. Lemma 4 shows, however, that this is no longer the case

when bidders are risk averse in the FPA. Speci�cally, the marginal expected payment with

respect to H is found to be a decreasing function in each bidder�s private type h. The sign

of mI
2(h;H) being negative (see (20)) suggests that increasing reserve price leads to higher
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expected payment by each active bidders. The sign of mI
12(h;H) being negative for all

h < H suggests, however, that the e¤ect of increasing the reserve price (or decreasing the

threshold type) weakens as h becomes lower. This observation helps explain the �nding

in the next proposition that it is optimal to set a lower reserve price in the FPA than in

the SPA.

The seller�s expected utility in the FPA equals, for any H � H,

V I(H) � (1� F (H))nv0 + n
Z H

0
mI(h;H)dF (37)

= (1� F (H))nv0 + n
Z H

0
b(h;H)G(h)f(h)dh (38)

The seller�s problem is thus

max
H
V I(H) subject to 0 � H � H (39)

Similar to the previous analysis, de�ne 	 : H 2 [0; H]! R by

	(H) � r(H) + 1

G(H)f(H)

Z H

0
b2(h;H)G(h)dF (h) (40)

Proposition 4 Assume that v0 < v and that Assumption 1 holds. Then (i) the seller�s

expected utility is strictly higher in the FPA than in the SPA; (ii) the optimal threshold

type in the FPA, denoted by HI , is strictly higher than HII whenever HII < H; and (iii) if

HI < H, then 	(HI) = v0 or equivalently, the interior optimal threshold type necessarily

satis�es

r(H) = v0 �
1

G(H)f(H)

Z H

0
b2(h;H)G(h)dF (h) (41)

Proof. See Figure 3. The derivative of V I with respect to H equals

dV I

dH
= �nG(H)f(H)v0 + n

�
r(H)G(H)f(H) +

Z H

0
b2(h;H)G(h)dF (h)

�
= nG(H)f(H) (	(H)� v0) (42)
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0

Figure 3: The slope of the seller�s expected utility in the FPA, or V I , is always higher

than that in the SPA, or V II . Therefore the optimal threshold type HI is greater than

HII , indicating that the reserve price in the FPA is lower than in the SPA.
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Applying integration by parts, and using (14), we observe that

	(H) � r(H) +
1

G(H)f(H)

Z H

0
b2(h;H)G(h)dF (h)

= r(H) + r0(H)
F (H)

f(H)
� 1

G(H)f(H)

Z H

0
F (h)

@

@h
(b2(h;H)G(h))dh

= �(H)� 1

G(H)f(H)

Z H

0
F (h)mI

12(h;H)dh (43)

with �(�) de�ned in (27). It follows from Lemma 4 that 	(H) > �(H). Comparing (42)

with (29), we obtain dV I=dH > dV II=dH for all H 2
�
0; H

�
.

(i) Since V I(0) = V II(0) = v0, 	(H) > �(H) implies that V I(H) > V II(H) for all

H 2 (0; H], and hence the conclusion. (ii) Again from 	(H) > �(H), 	(HII) > �(HII) =

v0. We know from Proposition 3 that �(H) > v0 for all H < HII , so it is also true for

	(H). It follows that HI > HII as long as HII < H. (iii) Assuming an interior solution,

the �rst-order condition for the maximization problem in (39) implies 	(H) = v0. Thus

the optimal reserve price necessarily satis�es (41) unless HI = HII = H.

The fact that mI
12(h;H) < 0 drives the results in Proposition 4, as can be seen in

(43). Since in the SPA the marginal e¤ect of increasing H (or reducing the reserve price)

is the same for all types h < H, whereas in the FPA this e¤ect diminishes in intensity

as type h becomes smaller (or the bidder more eager to pay), it is an intuitive conclusion

that the seller prefers to set a lower reserve price in the FPA.

Note that we have not attempted to �nd a su¢ cient condition in the proof of Propo-

sition 4 for HI . It seems unavoidable that any su¢ cient condition for the general case will

have to involve the bidding function in it (cf. Maskin and Riley, 1984, condition (45)).

Fortunately, establishing the optimal screening level HII for SPA in Proposition 3 together

with the observation that mI
12(h;H) < 0 in Lemma 4, we are able to characterize H

I in

Proposition 4 without invoking a su¢ cient condition; the di¤erentiability of the objective

function V I and the fact that HI is chosen from a closed interval [0; H] turns out to be

su¢ cient for the results.

A corollary concerning the expected revenue for the seller follows.
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Corollary 1 Assume v0 < v. Then the seller�s expected revenue is strictly higher in the

FPA than in the SPA.

Proof. By Proposition 4, HI � HII and hence (1�F (HI))nv0 � (1�F (HII))nv0. Since

V I(HI) > V II(HII), we must have n
R HI

0 mI(h;HI)dF > n
R HII

0 mII(h;HII)dF for all

n � 1 and v0 < v.

Since the reserve price r is higher than the seller�s reserve value v0, it entails potential

allocative ine¢ ciencies in case the object is not sold. In view that the seller chooses a lower

reserve price in the FPA than in the SPA, the former entails a lower probability of no-sale.

In this sense, the FPA is allocatively more e¢ cient than the SPA.

5 Bidders�preferences for the auction forms

We now turn to the bidders�preferences for the auction forms (cf. Matthews, 1987; Smith

and Levin, 1996). In the existing literature, the seller�s preference for the FPA has been

established for the case in which bidders have sure private values concerning the auctioned

object. In these situations, Matthews (1987) shows that a buyer need not prefer the SPA

even though the seller prefers FPA. The reason is that the bidder�s payment is a riskier

random variable in the SPA than it is in the FPA.

Revenue (or utility) comparison between the FPA and SPA is usually conducted

under the assumption that the reserve prices for the two auctions are the same (e.g.,

Maskin and Riley, 1984; and Matthews, 1987). This assumption is valid only in our Case

1, however, where the reserve price is ine¤ective and the threshold type is H under both

auction forms. As soon as the seller �nds it optimal to set an e¤ective reserve price in any

of the auctions, the matter becomes more involved.

We �rst show some comparative marginal e¤ects on bidders�expected payments and

utilities as type h changes.

Lemma 5 Suppose 0 < HII < H. Then (i) mI
1(h;H

I) < mII
1 (h;H

II) for all h 2 [0;HII ],

and (ii) U I1 (h;H
I) > U II1 (h;H

II) for all h 2 [0;HI ].
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Proof. Since L00 > 0, the following inequality holds for all a > b :

L(a)� L(b) > (a� b)L0(b) (44)

(i) Assume h 2 [0;HII ]. From the proof of Proposition 1), mI
1(h;H

I) < mII
1 (h;H

II) is

the same as

b1(h;H
I)G(h) + b(h;HI)g(h) < a(h)g(h)

Substituting (12) for b1(h;HI) and recalling that g(h) < 0, we need to show that

(v � b� hL(b))
(1 + hL0(b))

> a� b (45)

For a = a(h), however, v� b� hL(b) = a� b+ hL(a)� hL(b). Substituting into (45) and

cancelling terms, we �nd that (45) reduces to (44). Hence the conclusion.

(ii) Assume �rst h 2 [0;HII ]. The expected utilities U I(h;HI) and U II(h;HI) are

given in Lemma 2 and Lemma 1, respectively. Twice di¤erentiating with respect to h

yields

U I11(h;H
I) = � @

@h

�
G(h)L(b(h;HI)

�
(46)

= �L0(b)(v � b� hL(b))
(1 + hL0(b))

g � L(b)g

U II11 (h;H
II) = �L(a(h))g(h) (47)

We show that U I11(h;H
I) < U II11 (h;H

II), which is equivalent to

L0(b)
(v � b� hL(b))
(1 + hL0(b))

� L(b) < L(a)

or L0(b) (a� b+ h(L(a)� L(b))) < (L(a)� L(b))
�
1 + hL0(b)

�
for a = a(h). Cancelling the term (L(a) � L(b))hL0(b) on both sides reduces the above

inequality to (44), thus

U I11(h;H
I) < U II11 (h;H

II)
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Integrating between h and HII yields

U I1 (H
II ;HI)� U I1 (h;HI) < U II1 (H

II ;HII)� U II1 (h;HII)

or U I1 (h;H
I)� U II1 (h;HII) > U I1 (H

II ;HI)� U II1 (HII ;HII)

= G(HII)
�
L(r(HII))� L(b(HII ;HI))

�
> 0 (since b(HII ;HI) < r(HII))

Finally, for h 2 (HII ;HI ], bidders do not bid in the SPA; hence from Proposition 1,

U I1 (h;H
I) > U II1 (h;H

II) = 0.

In words, Lemma 5 says that the marginal expected payment with respect to h is

lower, and the marginal expected utility is higher, in the FPA than in the SPA. These

inequalities do not arise in the risk-neutral benchmark model because of the revenue

equivalence theorem (Myerson, 1981, p.65). From Lemma 5, an immediate corollary is

that if the seller chooses the same reserve price in both auctions, then all bidders have

higher expected payments and lower expected utilities in the FPA than in the SPA. This

is shown in the next proposition.

Proposition 5 If the threshold type H (� H) is the same in both FPA and SPA, then

mI(h;H) > mII(h;H) and U I(h;H) < U II(h;H) for all h 2 (0;H).

Proof. Since mI(H;H) = mII(H;H) = r(H) and U I(H;H) = U II(H;H) = 0, us-

ing Lemma 5 and integrating both sides of the inequalities mI
1(y;H) < mII

1 (y;H) and

U I1 (y;H
I) > U II1 (y;H

II) for y between h and H yields the results.

The unambiguous result in Proposition 5, once again, is due to the assumption that

only downside risks matter for the bidders. Thus, the kind of indeterminacy with general

concave utility functions, as shown in Matthews (1987), concerning bidder preferences over

auction forms does not arise in the present context.

Now we turn to the Case 2 of seller preference in which the seller chooses reserve

prices optimally. As the next two propositions show, the FPA will then be preferred by

33



both the seller and at least some of the bidders with relatively higher degrees of risk

aversion. Figure 4 illustrates the results graphically.

Proposition 6 Suppose HII < H. Then either (i) mI(h;HI) < mII(h;HII) for all h 2

[0;HII ] or (ii) there exists a unique H1 2 [0;HII) such that mI(H1;H
I) = mII(H1;H

II),

mI(h;HI) < mII(h;HII) for all h 2 (H1;HII ], and mI(h;H) > mII(h;H) for all h 2

[0;H1) if H1 > 0.

Proof. See Figure 4. A type-HII bidder has an expected payment equal to r(HII) in

the SPA, and an expected payment b(HII ;HI)G(HII) in the FPA. Since b2(h;H) � 0,

b2(H
I ;HI) < 0, and HII < HI , we have

b(HII ;HI) < b(HII ;HII) = r(HII) and

mI(HII ;HI) = b(HII ;HI)G(HII) < r(HII)G(HII) < r(HII) = mII(h;HII)

By continuity, there exists H1 < HII such that mI(h;HI) < mII(h;HII) for all h 2

(H1;H
II ]. If H1 = 0, then we are done. If H1 > 0, then mI(H1;H

I) = mII(H1;H
II).

The rest is to show that H1 is unique. This follows from Lemma 5 that mI
1(h;H

I) <

mII
1 (h;H

II). Integrating both sides of the inequality between h and H1 yields mI(h;H) >

mII(h;H) for all h 2 [0;H1).

In words, either all bidders, or a proportion of the more risk averse bidders (with

types h 2 (H1;HII ]), expect to pay strictly less in the FPA than in the SPA. Note that

Proposition 6 concerns the interim expected payments by the bidders. Therefore it does

not counteract the prediction in Proposition 3 that the ex ante expected payments are

higher in the FPA in general.

A similar interim result holds as with the bidders� expected utilities as shown in

the next proposition. It says that as long as the reserve price is e¤ective, then there is a

cut-o¤ point H0 such that bidders with h > H0 prefer the FPA to the SPA.
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UIUII

mII

mI

0
H0 HII HIH1

Figure 4: There is a cut-o¤ type H1 � 0 such that the expected payment mI in the FPA

is higher for type h < H1 and lower for h > H1 than mII in the SPA. Likewise, provided

H1 > 0, there is a cut-o¤ type H0 < H1 such that the expected utility U I in the FPA is

lower for type h < H1 and higher for h > H1 than U II in the SPA. If H0 = H1 = 0, then

all bidders prefer the FPA to the SPA.
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Proposition 7 Suppose HII < H. Then there exists a unique H0 2 [0;H1), with H1
given in Proposition 6, such that U I(h;HI) > U II(h;HII) for all h 2 (H0;HI ] and, if

H0 > 0, U I(h;H) � U II(h;H) for all h 2 [0;H0] with strict inequality for h 2 [0;H0).

Proof. See Figure 4. First notice that U I(h;HI) > U II(h;HII) = 0 for all h 2 [HII ;HI ]

since these types do not bid in the SPA. By continuity, then, there exists H0 < HII

such that U I(h;HI) > U II(h;HII) for all h 2 (H0;HI ]. If H0 = 0, then we are done.

Otherwise, de�ne H0 by U I(H0;HI) = U II(H0;H
II). From Lemma 5, integrating both

sides of U I1 (h;H
I) > U II1 (h;H

II) from h to H0 yields U I(h;HI) < U II(h;HII) and from

H0 to higher h yields U I(h;HI) > U II(h;HII). Thus H0 is unique. What remains is to

show that H0 < H1 whenever H1 > 0. From Lemmas 1 and 2,

U I(H1;H
I) = vG(H1)�mI(H1;H

I)�H1L(b(H1;HI))G(H1)

U II(H1;H
II) = vG(H1)�mII(H1;H

II)

�H1

 
L(r(HII))G(HII)�

Z HII

H1

L(a(y))g(y)dy

!

Since mI(H1;H
I) = mII(H1;H

II), U I(H1;HI) > U II(H1;H
II) if and only if

L(b(H1;H
I))G(H1) < L(r(H

II))G(HII)�
Z HII

H1

L(a(y))g(y)dy (48)

From the proof of Lemma 5, e.g., (46) and (47), @
@h

�
G(h)L(b(h;HI)

�
> L(a(h))g(h).

Integrating both sides of this inequality between H1 and HII veri�es that the inequality

in (48) does hold true. It follows then, from the preceding analysis, that H0 < H1.

According to Propositions 6 and 7, the type set [0; H] can be partitioned into a

number of intervals (assuming H0 > 0), as shown in Figure 4, in which the relative

magnitudes of the expected payments, mI vs. mII , and of the bidders�expected utilities,

U I vs. U II , are ranked unambiguously.

The next example shows a case where H0 = H1 = 0, that is, all bidders prefer the

FPA to the SPA. In these situations, the FPA dominates the SPA in terms of Pareto

e¢ ciency as well as allocative e¢ ciency.
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Example 3 Continue to assume n = 2 and F (h) = h on [0; 1], so that G(h) = 1 �

h, g(h) = �1; and '(x) = x, as in the previous examples. But we change the payo¤

distribution to Q(ev) = ev=100 on [0; 100] (so that v = 50) in order to enlarge the numbers
and make the di¤erences more discernible. The same previous examples generate the same

qualitative results but the di¤erences are to small. Working out the numbers, we have

L(c) =

Z c

0
ev=100dev = 1

800
(c+ 100)2

a(h) =
1

h

�
100
p
h+ 1� 100

�
b0 = � 100

(hb+ 100) (h� 1)

�
1

200
hb2 + b� 50

�
The following table summarizes the numerical results.

H0 = H1 = 0 HII = 0:5625 HI = 0:5645

mI 45: 883 19: 438 19: 348

mII 45: 887 19:444 0

U I 4: 117 0:0086 0

U II 4:113 0

v0 = 0:4, U I0 = 44: 115 , U
II
0 = 44: 086

We see in the above table that at H = 0, the risk-neutral bidder�s expected payment is

lower, and thus the expected utility higher, in the FPA than in the SPA. This implies from

Propositions 6 and 7 that H0 = H1 = 0, hence all bidders prefer the FPA to the SPA. In

the bottom row of the table, the values also con�rm that the seller prefers the FPA to the

SPA. The di¤erence, however, is surprisingly small in this example.

6 Conclusion

This paper is a �rst attempt to incorporate both payo¤ uncertainty and bidders�private

degrees of risk aversion into standard auction models. In line with the empirical evidence

that risk-averse behavior can be largely explained by aversion to losses, we have focused

on the case in which the bidders have the mean-downside risk preferences.
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An important conclusion is that the reserve price that maximizes the seller�s expected

revenue is strictly lower in the FPA than in the SPA� provided it is optimal to preclude

some more risk averse bidders from bidding. Several testable predictions with clear policy

implications are then derived, showing superiority of the FPA over the SPA in the present

setup. For the seller, the FPA dominates the SPA in generating higher expected revenue�

with or without an e¤ective reserve price. For the bidders, given that the reserve price is

optimally chosen and e¤ective, at least part of the bidders�namely the more risk-averse

types�also derive higher expected utilities in the FPA than in the SPA. It is possible that

all bidders prefer the FPA as well, in which case the FPA Pareto dominates the SPA.

Finally, from the society�s point of view, since the FPA entails a lower probability of

no-sale, it dominates the SPA in terms of allocative e¢ ciency.

Pragmatically, however, the SPA has a salient advantage that bidders need less

information and hence are less prone to errors (e.g., Vickrey, 1961). Since in private

values models the equilibrium is characterized by dominant strategies in the SPA (i.e.,

bidding up to one�s reservation value), a bidder only needs to know his own type and

need not estimate the other bidders�types.13 Combining Vickrey�s insight with the new

observations from our analysis, we conclude that the SPA is likely to be more appropriate

in circumstances where the auctioned object entails little or no payo¤ uncertainty to the

winner, or where assessing the other bidders�types in addition to one�s own is di¢ cult.

On the other hand, the FPA may be more appropriate where the bidders have a similar

estimation of the expected value of the object, or where large payo¤ uncertainty remains

after winning.

The above conclusions seem to be consistent with general practices. For example, in

the United States, federal oil, gas, or mineral rights (conceivably, with high payo¤ uncer-

tainty) have been sold exclusively through �rst-price sealed-bid auctions, whereas timber

rights, �ne art, or non-durable consumer goods (conceivably, with low payo¤ uncertainty)

13 In our model, though, if the optimal reserve price is to be chosen in a SPA, the seller still needs a good

assessment of both the downside-risk function L and the ratio (F=f) of the distribution of bidders�types.
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have traditionally been sold through oral, or second-price, auctions.

A promising line of future research is to extend the present model to the more general

case in which the bidders have di¤ering estimates of the common payo¤ distribution, as

well as di¤ering degrees of risk aversion. Since a lower degree of risk aversion contributes

to a higher bid (given the same payo¤ estimate), the winning bidder in this general case

need not have the highest payo¤ estimate. An unveri�ed conjecture is that incorporating

heterogeneous risk aversion may alleviate some �winner�s curse�as observed in empirical

and experimental studies based on traditional common value models (see Crawford and

Iriberri, 2007; and the references therein).
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