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Abstract

In this article we develop an Instrumental Variable estimation procedure that corrects
for possible endogeneity of a variable in a duration model. We assume a Generalized Ac-
celerated Failure Time (GAFT) model. This model is based on transforming the durations
and assuming a distribution for these transformed durations. The GAFT model encom-
passes two competing approaches to duration data; the (Mixed) Proportional Hazard
(MPH) model and the Accelerated Failure Time (AFT) model. The basis of the Instru-
mental Variable Linear Rank estimator (IVLR) is that for the true GAFT model the
instrument does not influence the hazard of the transformed duration. The inverse of an
extended rank test provide the estimation equations the IVLR estimation procedure is
based on. We discuss the large sample properties and the efficiency of this estimator. We
discuss the practical issues of implementation of the estimator.

We apply the IVLR estimation approach to the Illinois re-employment bonus exper-
iment. In this experiment individuals who became unemployed were divided at random
in three groups: two bonus groups and a control group. Those in the bonus groups could
refuse to participate in the experiment. It is very likely that this decision is related to
the unemployment duration. We use the IVLR estimator to obtain the effect of these
endogenous claimant and employer bonuses on the re-employment hazard.
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1 Introduction

Social scientists have a long tradition of exploring the substantive implications of endogeneity in

both methodological work and empirical work. Endogeneity is troublesome because it precludes

the usual causal kinds of statements social scientists like to make. A canonical example is the

evaluation of the effect of training programs of unemployment individuals on earnings and

employment status. In general, the indicator for those who were trained is endogenous, because

those individuals who choose to get training perceive the training as beneficial for earning

or employment status. Other examples include the effect of union status and childbearing

on labor market outcomes. All these problems have a treatment-control flavor. The notion

that treatment status is endogenous reflects the fact that simple comparisons of treated and

untreated individuals are unlikely to have a causal interpretation.

In recent years, social experiments have gained popularity as a method for evaluating so-

cial and labor market programs (see e.g. Meyer (1995), Heckman et al. (1999) and Angrist and

Krueger (1999)). In experiments the assignment of individuals to the treatment can be manipu-

lated. If assignment is random, the average impact of the treatment can be estimated. However,

a randomized assignment may be compromised, if the individuals can refuse to participate, ei-

ther by dropping out, if they are to receive the treatment, or by obtaining the treatment, if

they are in the control group. If this non–compliance to the assigned treatment is correlated

with the outcomes in the treatment or control regimes, the observed effect of the treatment

is a biased estimate of the treatment effect. Thus, even with random assignment the actual

treatment status can be endogenous.

Most of the evaluation literature has focused on static treatments, i.e. treatment that is

administered at a particular point in time or in a particular time interval. If the outcome is

a duration the treatment or its effect can be dynamic, i.e. it can be switched on and off over

time. Examples are the unemployment insurance experiments (see Meyer (1995) for a survey)

in which the unemployed receive a cash bonus if they find a job in a specified period. Another

example is a temporary cut in unemployment benefits of unemployed individuals who do not

expend sufficient effort to find a job (e.g. see Van den Berg et al. (2004) for The Netherlands,

Lalive et al. (2005) for Switzerland and Ashenfelter et al. (2005) for the U.S. ).

The problem of endogeneity in duration models is similar to other statistical models: when

endogeneity is present the standard interpretations given by any statistical model generally do
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not hold. If the training is perceived beneficial those individuals who choose to get training

differ ex ante from those who choose not to get training. Similarly, unemployed who choose to

be eligible for a cash bonus if they find a job in time, differ both in observed and unobserved

characteristics that may influence their job finding probability. For linear models the problem

of endogeneity can be solved if an instrument is available. The only requirement is that such

an instrument affects the endogenous variable but is not correlated with the errors of the

regression. We extend that notion to duration models that are inherently non-linear and propose

an estimation technique.

In this article we assume the durations follow a Generalized Accelerated Failure Time

(GAFT) model, a model introduced by Ridder (1990). The GAFT model is based on trans-

forming the duration and assuming some distribution for this transformed duration. The trans-

formation is related to the integrated hazard of a PH model. The AFT model is obtained by

restricting the transformation. The AFT does not restrict the distribution of the transformed

duration, while the MPH model restricts this distribution to a mixture of exponentials. The

regression coefficients in a GAFT model can be interpreted in terms of the effect of regressing

on the quantiles of the distribution of the transformed duration for the reference individual.

In an AFT model the relation between the quantile of a individual with observed characteris-

tics X and the quantile of the reference individual is the acceleration factor. In a GAFT this

acceleration factor is multiplied by the ratio of the ‘duration dependence’ at the two quantile

durations.

The basis of the proposed Instrumental Variable Linear Rank estimator (IVLR) is that

for the true GAFT model the instrument is independent of the transformed duration. The

intuition behind this idea can be clarified by considering the simple example of a re-employment

experiment with random assignment to treatment and a selective compliance. Assume that both

the assignment and the compliance decision are made at the start of the study. If the treatment

has no impact on the re-employment hazard, then the probability of observing an individual

from the treatment group among those still unemployed at a given unemployment duration

should be equal to the treatment assignment probability at the start. However, if the treatment

has a positive effect on the hazard the probability of observing an individual from the treatment

group among those still unemployed declines with the duration, because the treated individuals

find a job faster. A GAFT model transforms the duration and for the true transformed durations

the hazard of these transformed durations does not depend on the treatment group. This implies
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that the proportion of people in the treatment group on the transformed duration time remains

the same, and is equal to the treatment assignment probability.

The IVLR estimation method uses the inverse of the rank test to obtain the parameters of

the GAFT model, including the effect of the endogenous variable. The rank test is a commonly

applied method to test the significance of a covariate on the hazard. The test is based on (pos-

sibly weighted) comparisons of the estimated non-parametric hazard rates. It is also equivalent

to the score test for significance of a (vector of) coefficient(s) that arises from the Cox partial

likelihood. The test rejects the influence of the covariate(s) on the hazard when it is ‘close’ to

zero. Tsiatis (1990) shows that the inverse of the rank test can be used as an estimation equa-

tion for AFT models. The inverse of the rank test is the value of the (vector of) coefficient(s)

that makes the rank-test equal to zero. Here we extend the inverse rank estimation to a GAFT

model, which also includes the parameters of the transformation.

A common feature of duration data is that the durations are (right)-censored, the sense that

we only know that their realisation exceeds the censoring time. The existence of endogenous

covariates implies (possible) dependence between the transformed duration and the censor-

ing time. This implies that the IVLR estimator, which exploits the independence between the

transformed durations and the instruments, may give biased results. We can often make the

assumption that the (potential) censoring time is known at the start of the study. In the re-

employment bonus data, for example, we can only observed the unemployed while receiving

UI benefits. In this case the potential censoring time for all individuals is at 26 weeks, the

maximum duration of UI benefits in Illinois at the time of the experiment. With known (po-

tential) censoring time we can modify the GAFT transformation by introducing additional

censoring such that this modified transformation and the instruments become independent for

the uncensored observations. Then, the IVLR estimator on this modified transformation leads

to consistent estimators.

The IVLR estimation is based on a vector of mean restrictions on weight functions of the

covariates, instrument and the transformed durations. Thus the IVLR is also related to GMM

estimation. In GMM estimation it is feasible to get the most efficient GMM estimator in just

two steps. In the first step directly observed weighting matrices lead to a consistent, but not

necessary efficient estimator. From this consistent estimator we can consistently estimate the

efficient weighting matrices. It is then possible to obtain an efficient estimate of the parameters

involved in just one additional step. A similar reasoning applies to the IVLR-estimator. In the
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first step we use simple weighting functions to obtain consistent estimates of the parameters of

the GAFT model. From these parameters we can estimate the distribution of the transformed

durations, which are needed to calculate the most efficient weighting functions. Then, in just

one additional step the efficient IVLR is obtained.

For our empirical application we use data from the Illinois unemployment bonus experi-

ment. These data have been analysed before with increasing sophistication by Woodbury and

Spiegelman (1987), Meyer (1996) and Bijwaard and Ridder (2005). In this experiment a group

of individuals who became unemployed during four months in 1984 were divided at random

in three groups of about equal size: two bonus groups and a control group. The unemployed

in the claimant bonus group qualified for a cash bonus if they found a job within 11 weeks

and would hold this job for at least four months. In the employer bonus group, the bonus was

paid to their employer. The members of the two bonus groups were asked whether they were

prepared to participate in the experiment. About 15% of the claimant bonus and 35% of the

employer bonus groups refused participation. It is very likely that the decision to be eligible

for a bonus is related to the unemployment duration. This makes the participation indicator

an endogenous variable in relation to the unemployment duration.

The outline of the article is as follows. Section 2 discusses the problems associated with

endogenous variables in duration models. We introduce the GAFT model and discuss the in-

terpretation of the parameters of a GAFT model. We also give the intuition for the idea that

transforming of the durations, inherent in the GAFT model, provide the basis for estimating the

effect of endogenous covarites. In Section 3 we introduce the IVLR estimator, derive its asymp-

totic properties and discuss the efficiency and the practical implementation of the estimator.

Section 4 discusses the empirical application of the IVLR estimator to the re-employment bonus

experiment. We conclude with a summary and discuss possible avenues for further research in

Section 5.

2 Endogenous Covariates in Duration Models

For many economic and demographic phenomena the timing of a transition from one state into

another state is important. Examples include the time till re-employment of an unemployed

individual, the time till marriage and the time till death. Two important features of such

transition data are that relevant characteristics of the individual may change over time and

that, due to a limited observation window, we do not observe the completed duration for
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all individuals. In a duration model the timing of a particular event is modeled and it is

straightforward to incorporate time-varying variables and allow for (right)-censoring.

The key variables in duration analysis are the duration till the next event, T , and the

indicator of censoring, δ. The observed durations may be right–censored, i.e. we observe T̃ =

min(T, C) with C the censoring time. The possible time–varying covariates are given by the

vector Xi(t) where i refers to a member of the population. The path of the covariates are

predetermined. Thus X(t) = {X(s); 0 ≤ s ≤ t} does not depend on future events.

Two competing approaches for the analysis of duration data has been the (Mixed) Propor-

tional Hazard (MPH) model and the Accelerated Failure Time (AFT) model. The MPH model

assumes that the covariates and the unobserved heterogeneity affect the baseline hazard pro-

portionally (see Van den Berg (2001) for a recent overview). The AFT model assumes that the

covariates affect the duration proportionally. An AFT model implies that the distribution of

the duration of an individual with covariate vector X and the transformed duration distribution

of e−β
′XT are the same (see a.o. Brännäs (1992), Kalbfleisch and Prentice (2002)). Thus the

covariate accelerates the duration, when the coefficient β is smaller than zero, or decelerates

the duration, when the coefficient is greater than zero. This is equivalent to a linear regression

model for the log-duration.

2.1 The Generalized Accelerated Failure Time Model

A class of duration models that generalizes the AFT models in such a way that it also in-

cludes the MPH models is the Generalized Accelerated Failure Time (GAFT) model. The

GAFT model, , introduced by Ridder (1990), is not specified by the distribution of the log-

duration. Instead, we transform the duration, and assume that this transformed duration has

some distribution, either known or unknown. The transformation of the duration is related

to the integrated hazard in a PH-model. The GAFT model is also related to the generalized

regression model proposed by Han (1987).

The GAFT model assumes that the relation between the duration T and the covariates is

specified as
∫ T

0

λ(s;α)eβ
′X(s) ds = U (1)

where λ(t;α) is a non–negative ‘baseline’ function on [0,∞). In the sequel we assume that λ is
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the piecewise constant function, i.e.

λ(t, α) =
J

∑

j=0

eαjI(tj < t ≤ tj+1) (2)

with t0 = 0 and tL+1 = ∞ and the hazard on the last interval is normalized to 1, αL = 0. Other

λ-functions are also possible. The non–negative regression function eβ
′X(s) captures the effect

of the covariates.

The GAFT model is characterized by these baseline and regression functions and by the

distribution of the non–negative random variable U . We denote the survivor function of U0, the

transformation in the true population parameters α0 and β0, by G0(u) and its hazard function

by κ0(u). We assume that the distribution of U0 is absolutely continuous and independent of X.

The semi–parametric estimators considered in this article avoid assumptions on the distribution

of U0.
1

As mentioned, the GAFT model contains as special cases the AFT, the PH and the MPH

models. The AFT model restricts the transformation to λ(t;α) ≡ 1, but leaves the distribution

of U0 unrestricted (with the exception of that U0 should be non–negative, see e.g. Cox and

Oakes (1984)). The (M)PH model restricts the distribution of U0, but leaves the λ unrestricted

(non–negative). The distribution of U0 is an unit exponential distribution (PH) or a mixture of

exponential distributions (MPH).

We can interpret the GAFT model in terms of the effect of regressing on baseline quantiles,

the quantiles for the reference individual. To illustrate this let tq(X) be the q–th quantile of the

distribution of duration with covariate history X. Let tq be the q–th quantile for the reference

individual (i.e. with X(t) identically equal to zero). Then the ratio of the change in quantiles is

d tq(X)

d tq
= e−β

′

0X
(

tq(X)
)

λ
(

tq;α0

)

λ
(

tq(X);α0

) (3)

In an AFT model the ratio of the quantiles is the acceleration factor e−β
′

0X . Thus, in the GAFT

model the ratio of the change in the quantiles is the acceleration factor multiplied by the ratio

of the values of the baseline λ(t) evaluated at the q–th quantile of the reference duration and

the q–th quantile of the duration with covariate X.

In the MPH model we can interpret λ(t) as the baseline hazard, i.e. the factor in the

proportional hazard that captures the (duration) time variation in the hazard function. Thus,

in the MPH model the ratio in (3) can be interpreted as the ratio of baseline hazards. The

1In appendix A we show when the parameters of GAFT model are identified.
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regression parameter, β, is the proportional change in the hazard rate due to a unit change in

X(t) for a unit with unobserved heterogeneity V .

2.2 Endogenous Covariates in GAFT Models

It can rarely be defended that a study on unemployment durations includes all the relevant

characteristics of the individuals looking for a job. For example, consider our application of

analysing the effect of a cash-bonus on the re-employment probability. Because such a bonus

increases the reward of leaving unemployment it gives an incentive to search more intensively

and therefore it increases the re–employment hazard. However, the search intensity of the

unemployed individuals is usually not observed. Suppose that the unemployed have to choose

at the start of their unemployment spell whether they want to be eligible for a bonus. If

they choose to be eligible they have to fill in some forms, notify their new employer and

provide a proof that they held that new job for at least four months. Thus, joining the bonus

program implies some administrative duties for the unemployed and cooperation with their

new employer. This might refrain some individuals from joining the bonus program. It is very

likely that the unobserved motivation to return to work has an impact on both the decision to

join the bonus program and the search intensity. This implies that the indicator of joining the

bonus program is an endogenous variable for the analysis of the unemployed duration. Without

adjusting for this (self)-selection standard duration analysis give biased results of the effect of

the bonus on unemployment duration.

A way of adjusting for an endogenous variable is the conventional instrumental variable

method that assumes instrument–error independence and an exclusion restriction. A familiar

example of an instrumental variable is the treatment assignment–indicator of a randomly as-

signed treatment in which the actual treatment still depends on a decision by the agents (or on

decisions made by those who execute the program). For instance, long–term unemployed can

be randomly assigned to a training program, but for many programs they can still decide not

to join, or the training manager can decide to withhold some training from some people. Then,

the assignment indicator is an instrument for the actual indicator of training received.

The method of instrumental variables (IV) is widely used in econometrics. For illustration

consider the simple linear model

Y = β ′X + γD + ǫ

where Y is observed outcome, X is a vector of exogenous variables, D is an endogenous variable,
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and ǫ is a disturbance with mean 0. If D and ǫ are correlated OLS gives biased estimates of

θ = (β, γ). The conventional IV method uses an instrument R that affects D but is uncorrelated

with ǫ, like the assignment indicator in a random but compromised experiment. If we denote

Z = (X,R) and X̃ = (X,D) the IV estimator is

θ̂IV =
(

Z ′X̃
)−1

Z ′Y

Complications arise if the outcome variable of interest is a duration variable, like the unemploy-

ment duration. Models for duration data are usually non-linear in the mean. Then the standard

IV-methods can not be applied. An important issue in duration models ia that the value of

the endogenous variable may depend on information that accumulates during the evolution of

the duration. The common approach to accommodate such time-varying variables is to relate

them to the hazard rate. Another issue is that duration data are usually (right)-censored, due

to a limited observation window. The hazard rate is invariant to censoring and is therefore the

natural choice for the analysis of duration data.

In this paper we provide an instrumental variable method for duration data based on infer-

ence on the hazard rate. Let D(t) be the value of the endogenous variable at duration t. The

GAFT model with endogenous variables is

∫ T

0

λ(s;α) exp
(

β ′X(s) + ψ(s,D(s), γ)
)

ds = U = h
(

T,X(T ), D(T ), θ
)

(4)

where ψ(t, D(t), γ) captures the effect of the endogenous variable and θ = (β ′, α′, γ′)′ is the

whole parameter vector. Without loss of generality we assume that the endogenous variable

is binary and only changes at prediscribed durations. We also assume that the effect of the

endogenous variable may change over the duration. Then a flexible functional form for the

‘treatment’ function is

ψ(t, D(t), γ) =

J
∑

j=0

γj ·Dj · Ij(t) (5)

where Ij(t) = I(tj < t ≤ tj+1) are interval indicators with t0 = 0 and tJ+1 = ∞.

If D were exogenous, standard techniques for the analysis of survival time data could be used

to estimate the γ’s. For example, we can use a Mixed Proportional Hazards model and estimate

γ using (semi–parametric) Maximum Likelihood procedures, depending on the assumptions we

make about the distribution of the unobserved heterogeneity, V , and the baseline hazard. If the

model is correctly specified the MLE yields a consistent estimate. However, we will get biased
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estimation results for the parameters if the covariate is endogenous. The problem is that those

who comply with their assigned treatment differ in observed and unobserved characteristics

from those who do not comply.

Since physical randomization implies that at time zero all attributes of the two treatment

groups are (in expectation) identical, a commonly used solution to this problem is to ignore the

post–randomization compliance and rely on the analysis of the treatment assignment groups.

This intention–to–treat (ITT) analysis replaces the actual value of the endogenous variable, D

by the instrument, R in the estimation procedure. Further, if the model is correctly specified

the estimated γ’s effect will correspond to the overall effect that would be realized in the

whole population, under the assumption that the compliance rate and the factors influencing

compliance in the sample are identical to those that would occur in the whole population.

The major drawback of the intention–to–treat analysis is that the estimated effect is a

mixture of the population effect and the effect on the compliance. Hence, if the treatment

effectively raises the re–employment hazard, the intention–to–treat measure of this effect will

diminish as non–compliance increases. Another disadvantage is that compliance is very likely

to depend on the perceived effects of the treatment. If, for example, the unemployed know that

being eligible for a re–employment bonus does not stigmatize them, they will be more prone to

participate. Thus, when the pattern of compliance is a function of the perceived efficacy of the

treatment the estimated intention–to–treat will not represent the overall effect of the treatment

had it been adopted in the whole population.

2.3 Intuition for Instrumental Variable estimation

The basis of the proposed Instrumental Variable Linear Rank estimator (IVLR) is that for the

true GAFT model the instrument is independent of the transformed duration. This implies that

the proportion of people in the treatment group, R = 1 on the (true) transformed duration

time remains the same, and is equal to the treatment assignment probability. Thus, for the true

transformed duration U0 = h
(

T,X(T ), D(T ), θ0
)

we have

Pr
(

R = 1 | U0 ≥ u
)

= Pr
(

R = 1 | U0 = 0
)

, (6)

This implies that the hazard of the true transformed duration is independent of the instrument.

This independence only holds for the true parameters and we can therefore build an estimation

procedure that exploits this conditional independence. In the next section we introduce our
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proposed method based on this condition independence assumption.2. First we discuss the

implications of right-censoring on these independence assumption.

A common feature of duration data is that some of the observations are censored. Assume

the censoring time, C, is (potentially) known. For example, in the analysis of unemployment

duration based on administrative data the duration is often only observed while the individual

receives unemployment benefits. Usually, the maximum duration of receiving benefits is based

on the labor market history of the individual and is recorded in the data. Then, the potential

censoring time is known and the observed durations are T̃ = min(T, C) and ∆ = I(T ≤ C),

where ∆ is one if T is observed.

One is tempted to define the censored transformed durations by the minimum of the

transformed time till (potential) censoring and the transformed time till the event occurs,

Ũ(θ) = min
(

h(T ; θ), h(C; θ)
)

= h(T̃ ; θ). However, the existence of endogenous covariates and

censoring makes some of the orthogonality conditions fail to hold. This can be illustrated by a

simple example: Consider a fixed censoring time, all individuals have the same maximum dura-

tion of receiving benefits. Then for all individuals, irrespective of their value of the endogenous

variable, censoring occurs at time C. Suppose the binary endogenous variable, D, and other

covariates all be determined at the start of the study and have a constant effect on the hazard.

Finally, we assume that except for γ the effect of the endogenous variable, all parameters, β0

and α0, are known. Then, the transformation is

U0 = eγ0D+β′

0XΛ0(T ) (7)

with Λ0(t) =
∫ t

0
λ(s, α0) ds. Hence, if D = 0 censoring in the transformed time occurs at

eβ
′

0XΛ0(C), but if D = 1 censoring occurs at eβ
′

0X+γ0Λ0(C). Thus, if γ0 > 0, then all trans-

formed durations in the interval [eβ
′

0XΛ0(C), eβ
′

0X+γ0Λ0(C)] have D = 1 (for γ0 < 0 the bound-

aries are reversed). The hazard of U0 on this interval clearly depends on D and hence on

R. The independence of the hazard of U0 and R only holds up to the lower bound of the

interval. This implies that in the IVLR, which exploits this independence, the transformed

durations that fall in the problematic interval have to be censored. In Appendix B we derive

the additional censoring required in a more general setting. This additional censoring, CU(θ),

depends on the (unknown) parameters. The IVLR estimation method is than based on the

2Here we only concentrate on a static binary instrument and a discrete, but possible time-varying according
to a prescribed protocol, endogenous variable. It is not difficult to extend the analysis to more, discrete, levels
of both the instrument and the endogenous variable and to have a sequential instruments.
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(transformed) durations Ũ(θ) = min
(

U(θ), CU (θ)
)

, with U(θ) given in (4) and the censor-

ing indicator ∆U(θ) = I
(

U(θ) < CU(θ)). Then for the ‘uncensored’ observations, that is for

∆U(θ) = 1, the transformed duration Ũ(θ) is independent of the instrument. This is explained

in more detail in Appendix B.

3 Instrumental Variable Linear Rank Estimation

In this section we introduce an Instrumental Variable method for duration models that adjusts

for the possible endogeneity of the intervention, without suffering the problems of the intention–

to–treat method. The basis of this IVLR estimator is that for the true GAFT model the

instrument does not influence the hazard of the transformed duration. A typical way to test

the significance of a covariate is the rank-test, see Prentice (1978). The test is based on (possibly

weighted) comparisons of the estimated non-parametric hazard rates. It is also equivalent to

the score test for significance of a (vector of) coefficient(s) that arises from the Cox partial

likelihood. The test rejects the influence of the covariate(s) on the hazard when it is ‘close’ to

zero. Tsiatis (1990) shows that the inverse of the rank test can be used as an estimation equation

for AFT models. The inverse of the rank test is the value of the (vector of) coefficient(s) that

puts the rank-test equal to zero. Here we extend the inverse rank estimation to a GAFT model,

which also includes the parameters of the duration dependence.

3.1 The IVLR estimator

Before we turn to the general model we discuss a simple AFT example to provide more insight

into the inverse rank estimation approach. Suppose we would like to test whether a covariate X

influences the hazard. If the covariate does not influence the hazard, the mean of the covariate

among the survivors does not change with the survival time, i.e. E[X|T ≥ t] = E[X]. Define

the observation indicator, that is the indicator that individual j is still alive (unemployed) at

time t, by Yi(t) = I(ti ≥ t). Then the rank test-statistic is (assuming no censoring)

n
∑

i

[

Xi −
∑

j Yj(ti)Xj
∑

j Yj(ti)

]

where the second term is the mean of the covariate among those individuals still alive at ti.

Thus for each observation of the covariate we compare the observed value with its expected

value among those still alive (under the hypothesis of no effect of the covariate) and sum over

all observations. If this sum is significantly different from zero, we reject the null of no influence.
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Now assume that the true model is an AFT-model with U = eβXT . Then, for the true

parameter β = β0 the hazard of U does not depend on the covariate X. This implies that the

rank statistic for the true parameter on the transformed U–time is zero. However the β0 is

unknown and an inverse rank estimate β̂ of β0 is the value of β for which

n
∑

i

[

Xi −
∑

j Y
U
j (Ui)Xj

∑

j Y
U
j (Ui)

]

= 0

with Ui = eβ̂Xiti and Y U
j (u) = I(Uj ≥ u), the observation indicator on the (transformed)

U–time. Tsiatis (1990) derives the asymptotic properties of this estimator. Robins and Tsiatis

(1991) discuss how the rank estimator can be used to estimate the effect of an endogenous

variable in an AFT-model.

We extend the method of Robins and Tsiatis (1991) to GAFT models. We use the transformed

GAFT durations in (4) and adjust them for censoring, see Appendix B. Just as in the example

above, we have that for the population parameter vector θ0 the hazard of the implied trans-

formed duration U0, which is κ0(u), is independent of the covariate and instrument history up

to h−1
0 (u). Because this is true only for θ = θ0, we can use the inverse of the rank statistic to

get an estimate of θ0. Note that for notational convenience we suppress the dependence on θ in

censored durations Ũ(θ).

The estimating equations that defines the IVLR estimator contain a left–continuous vector

weight function W . The weight function may depend on Ũi(θ) = Ũi, X
U

i (u) and R. Typical

examples are W =
(

Wβ,Wγ,Wα

)

with Wβ = X for the coefficient vector β of the exogenous

variables and Wγ = R, the instrument, for a dummy endogenous variable D and Wαj
= Ij(u) =

I
(

h(tj) < u ≤ h(tj+1)
)

for a piecewise constant baseline hazard on intervals (tj , tj+1]. The

variance of the IVLR estimator depends on the choice of the weight-function and in section 3.2

we discuss the optimal choice of this function. For a given choice of the weight-function and

possible additional censoring the IVLR estimator is defined by the estimating equations

Sn(θ;W ) =

n
∑

i=1

∆U
i

{

W
(

Ũi, X
U

i

(

Ũi
)

, Ri; θ
))

−W (Ũi; θ)
}

(8)

where

W (Ũi; θ) =

∑n
j=1 Y

U
j (Ũi)W

(

Ũi, X
U

j

(

Ũi
)

, Rj ; θ
)

)

∑n
j=1 Y

U
j (Ũi)

,

is the average weight function among the individuals still at risk at the transformed duration
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Ũi(θ). Note that we use ∆U
i instead of ∆i to assure independence of the instruments and the

transformed durations for all uncensored observations.

The interpretation of the estimation equations is that it compares the value of the weight

function at a transformed duration Ũi(θ) to the average of the weight functions for those in-

dividuals that are still at risk at that particular transformed duration. For the true parameter

vector θ0 = (β0, α0, γ0) the expected difference of the weight function and its average for those

still at risk is zero. Thus, the statistic Sn(θ;W ) has mean zero for the true parameters. We

therefore base our estimator on the roots of Sn(θ;W ) = 0, which is the inverse of the extended

rank statistic. However, the estimating functions are discontinuous, piecewise constant, func-

tions of θ and a solution may not exist. For that reason we define the Instrumental Linear Rank

estimator (IVLR) θ̂n(W ) as the minimizer of the quadratic form, i.e.

θ̂n(W ) = inf{θ | Sn(θ;W )′Sn(θ;W )} (9)

To ensure weak consistency and asymptotic normality of the IVLR estimator we make the

following assumptions. The random variable R is an instrument that is determined at the start.

We restrict both the instrument, R, and the endogenous variable D, to be binary. The other

assumptions can be found in appendix C.

If Sn(θ;W ) were differentiable with respect to θ, then asymptotic normality can be proved

using Taylor series expansion in a neighborhood of θ0. Tsiatis (1990) showed that, if Sn(θ;W )

is not differentiable, as in the current problem, we can still use a linear approximation of

n−1/2Sn(θ;W ). Using this approximation and the asymptotic normality of Sn(θ0;W ), we can

show that
√
n(θ̂n(W ) − θ0) is asymptotically normal. For the derivation of the asymptotic

properties we use counting process theory (see Appendix B). Let a(u; θ0) be the probability

limit of the average weight function (see assumption A6), C0 the transformed censoring time

for θ = θ0. Let di0(u) the derivative of the hazard of U(θ) w.r.t. θ, i.e.

di0(u) =
∂κUi (u; θ)

∂θ

∣

∣

∣

θ=θ0

and V (u, θ) is the probability limit of

1

n

n
∑

i=1

[

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
]

× di0(u)
′Y U
i (u)

The asymptotic properties of the IVLR estimator are summarized in the following two theorems.
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Theorem 1 (Consistency).

If assumptions C1 to C7 hold θ̂n(W ) converges in probability to θ0.

Proof: See Appendix C.

Theorem 2 (Asymptotic Normality).

If assumptions C1 to C9 hold and Q(W ) has full rank, then

√
n
(

θ̂n(W ) − θ0
) d→ N

(

0, Q−1(W )Ω(W )Q′−1
(W )

)

(10)

where

Ω(W ) =

∫ C0

0

a(u; θ0)κ0(u) du (11)

is the asymptotic variance of n−1/2Sn(θ0;W ) and,

Q(W ) =

∫ C0

0

V (u, θ0) du (12)

the limiting covariance matrix of the processes W (u,Xi0(u), Ri) and di0(u)/κ0(u).

Proof: See Appendix C.

3.2 Efficiency of the IVLR estimator

Many different choices of the weight functions lead to consistent estimates of the parameters. By

properly choosing the weight function the asymptotic variance of the IVLR can be minimized.

Tsiatis (1990) has shown that for the AFT model with exogenous covariates weight functions

proportional to uκ′0(u)/κ0(u)X, with κ0(u) is the hazard of the true transformed durations

U0, minimize the asymptotic variance of the estimated regression parameters. In general the

distribution of the true transformed duration, U0, is unknown. This distribution can consistently

be estimated from the implied transformed durations induced by IVLR-estimation with a weight

function that does not depend on the transformed durations.

The IVLR estimation is based on a vector of mean restrictions on weight functions of

the covariates, the instrument and the transformed durations. GMM estimation is also based

on moment conditions and in GMM estimation it is feasible to get the most efficient GMM

estimator in just two steps. A similar reasoning applies to the IVLR-estimator. This justifies

an adaptive construction of an efficient estimator. In the next section we address the practical

implementation of an adaptive estimation procedure. First, we introduce the optimal weight

function.
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Theorem 3 (Optimal weight function in IVLR).

The weight–function that gives the smallest asymptotic variance for θ̂n(W ) is

Wopt(u,X(u), R) ∝ ∂ lnκU(u; θ)

∂θ

∣

∣

∣

∣

θ=θ0

=
di0(u)

κ0(u)
(13)

The asymptotic covariance matrix of the optimal IVLR estimator reduces to

Ω−1(Wopt) = Q−1(Wopt). (14)

Proof of theorem 3. From

1√
n

(

Sn(ϑ0;W )
Sn(ϑ0;Wopt)

)

D→ N

(

0,

(

Ω(W ) Q(W )′

Q(W ) Ω(Wopt)

))

follows that the matrix

Z =

(

Ω(W ) Q(W )′

Q(W ) Ω(Wopt)

)

is non–negative definite, the same is true for its inverse. In particular, the submatrices on the

main diagonal of the inverse are non-negative definite. Hence the matrix

Q−1(W )Ω(W )Q′−1
(W ) − Ω−1(Wopt)

is a non-negative definite matrix.

Consider, for example, a GAFT model with a piecewise constant λ function as defined in (2).

Assume that the model has a constant coefficient for the endogenous variable then by (13) the

optimal weight functions are

Wopt,β = X(u)

[

1 + u
κ′0(u)

κ0(u)

]

(15)

Wopt,αj
=

(

1 + u
κ′0(u)

κ0(u)

)

·
(

RI1
j (u) + (1 − R)I0

j (u)
)

+ (16)

+R

[

(

1 + uκ0(u)
)f0(u|1, R) − f0(u)

f0(u)
+ u

f ′
0(u|1, R) − f0(u)

f0(u)

]

I1
j (u) +

+ (1 −R)

[

(

1 + uκ0(u)
)f0(u|0, R) − f0(u)

f0(u)
+ u

f ′
0(u|0, R)− f0(u)

f0(u)

]

I0
j (u)

Wopt,γ = R

[

1 + u
κ′0(u)

κ0(u)

]

+ (17)

+R

[

(

1 + uκ0(u)
)f0(u|1, R) − f0(u)

f0(u)
+ u

f ′
0(u|1, R) − f0(u)

f0(u)

]

where f0(u|D,R) is the density of U0 given D and R, f ′
0(·) is the derivative of the density and

IDj (u) = I
(

mj(X,D) < u ≤ mj+1(X,D)
)

for

mj(X,D) =

∫ tj

0

λ(s, α)eβ
′X(s)+γD ds
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3.3 Estimation in practice

The statistic Sn(θ;W ) is a multi–dimensional step–function. Therefore, the standard Newton–

Raphson algorithm cannot be used to solve the minimizer of the quadratic form of the estimation

equations in (9). One of the alternative methods for finding the roots of a non–differentiable

function is the Powell-method. This method (see Press et al. (1986, §10.5) and Powell (1964))

is a multidimensional version of the Brent algorithm.3

An additional difficulty in solving the estimation equations is that the (optimal) weight-

functions may depend on the, unknown, distribution of U0. However, a consistent first stage

estimator based on weight-functions that are independent of the distribution of U0 is easy to

find. For example, in a GAFT model with a piecewise constant λ and a time-invariant co-

efficient of the endogenous variable, the choice for the first-step weight functions could be:

W =
(

X,R, I1(u), . . . , IJ−1(u)
)

, with X is the weight-function for the effect of the exoge-

nous covariates, R is the weight-function for the (time-constant) endogenous variable and,

I1(u), . . . , IJ−1(u) are the weight-functions for the parameters of the piecewise constant baseline

hazard. Then based on the first stage estimator we can calculate the optimal weight functions.4

Related to the computation of optimal weight function is the estimation of the variance

matrix for an arbitrary weight function.5 The difficulty in estimating the covariance matrix lies

in the calculation of the matrix Q(W ) and not in the calculation of the variance matrix of the

estimating equation. The latter can be consistently estimated by

Ω̂ =
1

n

n
∑

i=1

∆Û
i

[

W
(

u,X
Û

i (u), Ri

)

−W (u, θ̂)
][

W
(

u,X
Û

i (u), Ri

)

−W (u, θ̂)
]′

(18)

where Û is the value of U(θ̂).

Thus, the optimal weight functions, the covariance matrix and the most efficient estimators

are estimated in two steps. The first step consists of obtaining a consistent estimate of θ0

using a weight function that does not depend on the distribution of U0. The second step

concerns the estimation of the unknown distribution of U0, based on the transformed durations

implied by the first step estimates. Many different methods are available to get a reasonable

estimate of an unknown distribution. We shall not apply the commonly used kernel based

3See the site of Bo Honore http://www.princeton.edu/honore/ for the Powell method in Gauss.
4The estimation procedures written in Gauss are available upon request from the author.
5Robins and Tsiatis (1991) suggested to use a numerical derivative of n−1Sn(θ; W ) that does not need an

estimate of the optimal W–function to get Q̂(W ). This numerical derivative is sensitive to the choice of the
difference in θ. We found it hard to get stable results.

17



method. Although kernel–smoothed hazard rate estimators have been developed and adjusted

to deal with the boundary problems inherent to hazard rates these methods can be difficult to

implement due to the choice of the bandwidth. It is also unclear how the boundary corrections

can be incorporated in the kernel estimates of the derivative of the hazard. We therefore choose

to use a series approximation of the distribution.

Suppose the distribution of U0 can be approximated arbitrary well using orthonormal poly-

nomials. We base our approximation on Hermite polynomials using the exponential distribution

as a weighting function:

g0(u) =
ae−au

∑L
l=0 b

2
l

[

L
∑

l=0

blLl(u)
]2

(19)

where

Ll(u) =
l

∑

k=0

(

l

k

)

(−au)k
k!

(20)

are the Laguerre polynomials. The unknown parameters of this approximation are a and

b0, . . . , bL. If bl ≡ 0 for all l > 0 the distribution of U0 is exponential. Even for L as small

as three (19) allows for many different shapes of κ0(u) and its derivative. Both can be derived

analytically given the estimates of the parameters. The parameter estimators can be obtained

from standard maximum likelihood procedures on the observed transformed durations implied

by the first step estimates.

If a consistent but inefficient estimator θ̂n(W ) of θ0 is available, e.g. the first stage estimator,

and we have estimated the parameters of the polynomial approximation of the distribution of

U0 we can obtain an efficient estimator θ̂opt in just one additional step. From the linearization

of the estimating equations, given in (C.3), we obtain an efficient estimator from

θ̂opt = θ̂n(W ) − Q̂(W )−1Sn(θ̂n(W );Wopt)/n (21)

This procedure is related to obtaining an efficient GMM estimator in two steps from a consistent,

but possible, inefficient GMM estimator. It also possible to obtain the efficient estimator directly

from minimizing the quadratic form. However, this involves again the minimization of a multi–

dimensional step function.
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4 Application to the Illinois Re-employment Bonus Ex-

periment

Between mid–1984 and mid–1985, the Illinois Department of Employment Security conducted

a controlled social experiment.6 This experiment provides the opportunity to explore, within a

controlled experimental setting, whether bonuses paid to Unemployment Insurance (UI) ben-

eficiaries or their employers reduce the time spend in unemployment relative to a randomly

selected control group. In the experiment, newly unemployed claimants were randomly divided

into three groups: a Claimant Bonus Group, a Employer Bonus Group and, a control group.

The members of both bonus groups were instructed that they (Claimant group) or their em-

ployer (Employer group) would qualify for a cash bonus of $500 if they found a job (of at

least 30 hours) within 11 weeks and, if they held that job for at least four months. Each newly

unemployed individual who was randomly assigned to one of the two bonus groups had the

possibility to refuse participation in the experiment.

Woodbury and Spiegelman (1987) concluded from a direct comparison of the control group

and the two bonus groups that the claimant bonus group had a significantly smaller average

unemployment duration. The average unemployment duration was also smaller for the em-

ployer bonus group, but the difference was not significantly different from zero. These results

are confirmed in Table 1. Note that the response variable is insured weeks of unemployment.

Because UI benefits end after 26 weeks, all unemployment durations are censored at 26 weeks.

In Table 1 no allowance is made for censoring. In the table we distinguish between compliers,

those who agreed to be eligible for a bonus if assigned to a bonus group, and non-compliers.

We see that the claimant bonus only affects the compliers and that the average unemployment

duration of the non-compliers and the control group are almost equal.

Table 1: Average unemployment durations:control group and (non-)compliers.

Control Claimant Employer
Group Bonus Bonus

All Compl. Non-compl. All Compl. Non-compl.

Benefit
weeks

18.33 16.96 16.74 18.18 17.65 17.62 17.72

(0.20) (0.20) (0.22) (0.50) (0.21) (0.26) (0.35)
N 3952 4186 3527 659 3963 2586 1377

standard error of average in brackets.

6A complete description of the experiment and a summary of its results can be found in Woodbury and
Spiegelman (1987).
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About 15% of Claimant group and 35% of the employer group declined participation. The

reason for this refusal is unknown. Bijwaard and Ridder (2005) showed that the participation

rate is significantly related to some observed characteristics of the individuals that also in-

fluence that re–employment hazard. Hence, we cannot exclude the possibility of unmeasured

variables that affect both the compliance decision and the re–employment hazard. Meyer (1996)

analyzed the same data using a PH model with a piecewise constant baseline hazard. He used

the randomization indicator instead of the actual bonus-group agreement indicator as an ex-

planatory variable. Thus he used the ITT estimator. He found a significantly positive effect of

the claimant bonus. However, as shown by Bijwaard and Ridder (2005), the ITT may have a

downward bias.

We calculate the IVLR estimate of the effect of the claimant and employer bonus on the

unemployment duration in a GAFT model and compare these estimates with the IVLR esti-

mates of an AFT model, with ITT estimates in an MPH model and the ML estimates of an

MPH model that ignores the endogeneity of the decision to participate in the bonus group.

We consider the two interventions separately: thus Claimant Bonus group versus Control group

and Employer Bonus group versus Control.

We shall consider two alternative specifications for the effect of the bonus on unemployment

duration: (i) constant effect and, (ii) a change in the effect after 10 weeks, in line with the end

of the eligibility period of the bonuses. Thus, the implied transformed durations are

U(θ) =

∫ T

0

λ(s;α)eβ
′X+(γ1I1(s)+γ2I2(s))Dds (22)

with I1(t) = I(0 ≤ t < 11) and I2(t) is its complement. Note that the covariates are all time–

constant because the individual characteristics available in the data are all determined when the

individuals register at the unemployment office. We include the following: the logarithm of the

age (LNAGE), the logarithm of the pre–unemployment earnings (LNBPE), gender (MALE= 1),

ethnicity (BLACK= 1), and the logarithm of the weekly amount of UI benefits plus dependence

allowance (LNBEN). We employ two different specifications for λ(t;α0): (i) AFT model, i.e.

λ(t;α0) ≡ 1; and (ii) GAFT model with a piecewise constant λ on six intervals 0–2, 2–4, 4–6,

6–10, 10–25 and 25 and beyond.

For identification we need to set one of the parameters of the piecewise constant λ equal to

one (or the log equal to zero). We let the base interval, the interval on which λ = 1, start on

the last week before the end of the observation period, at 25 weeks. This allows us to capture
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the spike in the observed unemployment duration just before the UI eligibility period ends. The

end of the UI eligibility period, at 26 weeks, is for all individuals the same and thus provides

the potential censoring time.

For both the AFT and the GAFT specifications we estimate a first stage IVLR using

the Powell-method and the one step optimal IVLR. The first stage IVLR uses the values of

the covariates, X, the interval indicators on the transformed duration (only for the GAFT-

model), Ij(u) and, the bonus group assignment indicator times the interval indicators on the

transformed duration, R · I1(u) and R · I2(u), as the weight functions. From these first stage

IVLR’s the implied transformed duration are obtained. Then, we estimate the parameters of

the polynomial approximation of the distribution of U conditional on R and D as mentioned

in section 3.3. From these estimated parameters we calculate the hazard and its derivative of

the transformed duration. These functions are then used as inputs to derive the optimal weight

functions (see Theorem 3), which in turn are necessary to calculate the covariance matrix. We

also calculate the 1-step efficient estimates with these optimal weight functions. In the case of

a constant bonus effect, the optimal weight function are given in (15)–(17). When we assume

that the effect of the bonus changes after 11 weeks the optimal weight function in (17) is more

complicated and therefore not spelled out here.

The estimation results for the bonus effects are reported in Table 2. The results for the

piecewise constant λ and for the regression coefficients in the AFT and GAFT models can be

found in appendix D. A comparison of the results shows that AFT overestimates the effect

and that both ML and ITT estimators underestimate the effect of the employer bonus. For the

claimant bonus the ML and ITT estimates are very close to the IVLR estimates. This indicates

that endogeneity of the compliance decision is rather limited for the claimant group. The

compliance rate in the claimant group is much higher and most probably the compliance decision

of the individuals in the claimant bonus group is less related to their expected unemployment

duration. The results clearly indicate that the bonuses only influence the chances to find a job

in the first ten weeks. This is in line with the bonus eligibility period: those who find a job

after that period would not get the bonus. The effect of the Claimant Bonus increases from

about 10% higher probability to find a job at every unemployment duration to about 15%

higher probability to find a job in the first ten weeks (and no effect thereafter). The bonus for

the Employer group raises the job finding probability with about 7% at every unemployment

duration or with about 12% in the first ten weeks of unemployment.
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Table 2: Instrumental Variable Linear Rank estimates for the effect of the Bonus
Claimant group

Constant effect
AFT GAFTa MLE ITT

First stage 0.1446 0.1024 - -
(0.0493) (0.0523) - -

1–step optimal 0.1596 0.0932 0.1039 0.1117
(0.0460) (0.0380) (0.0285) (0.0303)

Time varying effect
First stage
0-10 0.2955 0.1433 - -

(0.0523) (0.0907) - -
10+ -0.0720 0.0063 - -

(0.0608) (0.0886) - -
1–step optimal
0-10 0.3865 0.1439 0.1601 0.1516

(0.0486) (0.0578) (0.0361) (0.0378)
10+ -0.0437 -0.0411 - -

(0.0572) (0.0850) - -

Employer group

Constant effect
AFT GAFTa MLE ITT

First stage 0.1011 0.0721 - -
(0.0646) (0.0470) - -

1–step optimal 0.1332 0.0696 0.0387 0.0516
(0.0612) (0.0425) (0.0318) (0.0307)

Time varying effect
First stage
0-10 0.2304 0.1103 - -

(0.0710) (0.0736) - -
10+ -0.0783 -0.0048 - -

(0.0836) (0.1253) - -
1–step optimal
0-10 0.6334 0.1279 0.0881 0.0800

(0.0674) (0.0521) (0.0402) (0.0384)
10+ 0.0330 -0.0747 - -

(0.0745) (0.0882) - -
a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10, 10–25,
25 →; Notes: Standard error in brackets.

In the GAFT (and AFT) model the effect of the bonus is defined in terms of the change in the

quantiles, see (3). In an AFT model with a time-constant coefficient for the bonus this effect is

constant and independent of the other covariates. In a GAFT model the λ function influences
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this effect directly and indirectly as the other covariates determine the quantiles. Using the

distribution of U0, already calculated to estimate the optimal IVLR and the variance-covariance

matrix, we can derive the effect of the bonus in the GAFT depending on the quantile of the

distribution. In Table 3 we present the effect of the bonus on the unemployment duration at the

80%, 60% and 40% survival for the reference individual and for a black individual, together with

the AFT effect (first stage). Figure 1 till Figure 4 depict the change over the whole 90%-25%

survival range of the effect of the bonus in the GAFT model.

Table 3: Effect of the Bonus on the length of unemployment duration

Claimant Employer

Constant Time-varying Constant Time-varying
AFT 0-10 0.865 0.744 0.904 0.794

10+ 0.865 1.075 0.904 1.081
GAFT reference individual
80% tq(0) 3.9 3.7 2.8 4.3

tq(1) 3.5 2.9 2.5 3.7
effect 0.911 0.866 0.933 0.823

60% tq(0) 12.8 12.6 8.9 12.7
tq(1) 10.4 9.4 7.8 10.0
effect 0.911 0.571 0.933 1.078

40% tq(0) 25.7 25.7 20.7 24.3
tq(1) 22.8 23.1 18.3 22.5
effect 1.772 1.973 0.933 1.078

GAFT black individual
80% tq(0) 7.5 6.8 4.8 8.1

tq(1) 6.5 5.3 4.1 6.4
effect 0.911 0.681 0.933 0.880

60% tq(0) 25.3 24.4 18.44 24.22
tq(1) 22.1 21.0 16.2 22.5
effect 1.772 1.042 0.933 1.078

40% tq(0) 35.6 35.1 30.7 34.2
tq(1) 32.9 33.8 28.90 33.9
effect 0.911 1.042 0.933 1.078
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Figure 1: Effect of Bonus on quantiles of unemployment duration, d tq(1)

d tq(0)
(constant γ)
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Figure 2: Effect of Bonus on quantiles of unemployment duration, d tq(1)
d tq(0)

(time-varying γ)
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Figure 3: Effect of Bonus on quantiles of unemployment duration of BLACKS, d tq(1)
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Note that an effect smaller than one indicates that the bonus decreases the duration till

re-employment and an effect bigger than one increases the duration. We see from the table

(and more pronounced in Figure 1 and Figure 3) that even for a time-constant γ the effect

of the bonus on the unemployment duration in the GAFT model changes with the duration.

The huge spike in the effect at the survival quantile of 40% for the claimant group is because

the re–employment rate exhibits a spike just before the time that unemployment benefits are

exhausted, which is at 26 weeks. For the individuals in the control group the 40% survival time

is just before 26 weeks, while in the claimant bonus group it is at 23 weeks. Thus the control

group individuals are in the re-employment spike while the claimant bonus group are not. The

interval boundaries of the other intervals of λ also cause, although not as pronounced, spikes.

These spikes are downward because the λ is jumping to a lower level at these boundaries. The

spikes are also visible in the effect of a time-varying coefficient of the bonus, see Figure 2 and

Figure 4. Here, the change in γ at a duration of 10 weeks, after which the coefficient is negative,

is reflected is a upward shift of the effect curve.

An indication that the AFT is not the right model is the difference between the first stage

and one–step optimal estimators for the AFT model. For a correctly specified model both

estimators are consistent and, therefore, do not differ much. In the GAFT model the first stage

and one–step estimator are of the same magnitude. The estimated standard errors of the latter

are, as expected, substantially lower in most situations.

Although the focus in this article is on the estimation of the effect of a possibly endogenous

variable on the duration we also give a short discussion on the estimation results of the other

parameters. These estimators can be found in the tables in appendix D. The regression pa-

rameters are overestimated (in absolute terms) if we assume an AFT model. These regression

parameters hardly change from a model with constant bonus effect (Table 5) to a model with

time–varying bonus effect (Table 6). The regression parameters for the Claimant data and

the Employer data (both including the control group) are almost identical. Gender, MALE,

is the exception; Gender has no significant influence on the re–employment probability in the

Employer data. The shape of the estimated λ’s indicate a U–shaped λ.

We end with a discussion on the selectivity in the bonus data. The compliance rate in the

Claimant group, 85%, was much higher than the compliance rate in the employer group, 65%.

Many individuals in the Employer group, apparently and contrary to our findings, did not

perceive a bonus paid to their new employer beneficiary for their job search. Following Moffitt
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(1983) this partial compliance may be explained by a stigma effect. However, this is a tentative

explanation because our analysis only adjust for (possible) selective compliance. It does not

provide a model for the selection process. Thus, both an advantage and a drawback of our

method is that we do not make any assumptions on the selection process and therefore cannot

tell why individuals make such a selective decision.

5 Conclusion

In this article we proposed and implemented an instrumental variable estimation procedure

for duration models. We show how the effect of an endogenous variable on the duration in

a Generalized Accelerated Failure Time (GAFT) model can be estimated. The GAFT model

is based on a transformation of the durations that encompasses both the Accelerated Failure

Time (AFT), very popular in biostatistics, and the Mixed Proportional Hazards (MPH) model,

very popular in econometrics. The interpretation of regression coefficients in the GAFT is in

terms of shifting the quantiles of the distribution.

The basis of the Instrumental Variable Linear Rank estimator is that for the true GAFT

model the instrument does not influence the hazard of the transformed duration. This implies

that a rank test on the significance of the effect of instrument on the hazard of the transformed

duration is zero. The IVLR estimation procedure is based on the inverse of an extended, in-

cluding all the parameters of the GAFT model, rank-test. The estimation procedure is related

to the rank estimation procedures of Robins and Tsiatis (1991) and of Bijwaard and Ridder

(2005). The Two Stage Linear Rank procedure of Bijwaard and Ridder (2005) is based on a

semi-parametric MPH and requires preliminary estimates of the baseline hazard. The Rank

Preserving Structural Failure Time Model of Robins and Tsiatis (1991) is based on the strong

version of the Accelerated Failure Time model. Their model imposes a strong non-interaction

assumption. This implies that if two individuals have the identical observed durations and ob-

served treatment histories then they would have had identical durations had treatment always

been withheld. The IVLR estimator does neither impose the non-interaction assumption nor

requires preliminary estimates of the baseline hazard.

The estimation procedure is also related to quantile-regression, in particular Koenker and

Bilias (2001) and Koenker and Geling (2001). It is, however, unclear how these methods can

handle time-varying endogenous variables. Because the IVLR is based on a vector of mean re-

strictions it is related to the well-known GMM estimation procedure. Similar to the application
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of GMM estimation choosing the right weight functions can improve the efficiency. However,

again similar to the GMM, these optimal weight functions are not directly observable. Fortu-

nately, an adaptive (or even 2 step) procedure can provide the efficient IVLR.

We can give a causal interpretation to the effect of the endogenous variable the IVLR

identifies for the GAFT model. However, the causal effect is defined in terms of shifting the

quantiles of the outcome distribution and not in terms of the (Local) Average Treatment Effect,

common in the treatment evaluation literature. But averages are less usefull to base treatment

effects on for duration data, due to censoring and time-varying treatment.

The empirical application shows that the ML and ITT estimates for the employer group,

in which the new employer of the claimant receives the bonus, are downward biased due to

endogeneity. In the claimant group, in which the claimant himself receives the bonus, the ML

and ITT estimates are close to the IVLR estimates. This might indicate that the endogeneity

of the decision to participate in this group is rather small. Incorrectly assuming an AFT model

can give misleading conclusions about the effects of a bonus on the re–employment hazard. In

the Illinois bonus re-employment experiment many unemployed found a job just before their

UI-benefits expires. This induces a spike in the re-employment hazard. In the GAFT, even with

a constant regression coefficient, such a spike leads to an effect that changes over the quantiles.

This has important implications for the evaluation of the effect of a possible endogenous variable

on a duration.

Social experiments may provide instruments for an endogenous variable. With good instru-

ments available the proposed method can be very useful in analyzing the effects of a possible

endogenous variable on an inherently duration outcome. Examples in population studies in-

clude the effect of training programs on the unemployment duration, policies to increase the

birth rate and migration policies.

There are several issues that need further research. First, the current approach to adjust for

endogenous censoring implies loss of information and depends on the (unknown) parameters

of the model. An important improvement would be to find a method to adjust for endogenous

censoring that is parameter independent and minimizes the loss of information. Another related

issue is that if the IVLR assumes that the censoring time is (potentially) known in advance.

Further research on more general censoring patterns deserve attention. Second, in our empirical

application we have, because of random assignment, a perfect assignment. Such an instrument

is, however, not always available. Finding good instruments is therefore an important issue just
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as the influence of weak instruments on the properties of the estimator. A final issue for further

research is the extension of the IVLR to recurrent duration data, like repeated unemployment

spells.
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A Identification of the GAFT model

Assume that the regression function in the GAFT model is log–linear. Then, the model is

characterized by the non–negative function λ(t;α) defined on [0,∞), the distribution of U0 and

the regression parameter β. Ridder (1990) has shown that if the covariates are time constant, all

observationally equivalent GAFT models, i.e. models that give the same conditional distribution

of T given X, have regression parameters dβ, integrated transformation c1

(

∫ t

0
λ0(s;α0) ds

)c2

and U0 distribution G0

(

(

u
c1

)1/c2
)

for some constants c1, c2 > 0. The equivalent class follows from

the fact that a GAFT model with time constant covariates can be expressed as a transformation

model

ln
(

∫ T

0

λ0(s;α0) ds
)

d
= −β ′

0X + lnU,

and the constants c1, c2 correspond to addition of ec1 to and division by c2 of the left– and

right–hand sides.

With time–varying covariates, the set of observationally equivalent GAFT models is gener-

ally smaller. In particular, the power transformation that gives an observationally equivalent

model if the covariates are time constant, in general does not result in a GAFT model. As

an example consider the GAFT model with time–varying regressors that differ between two

groups. In group I

X(t) =

{

1 if 0 ≤ t ≤ 1,

0 if t > 0.

and in group II, X(t) = 0; t ≥ 0. Moreover λ0(t;α) = αtα−1. With time constant regressors the

parameter α is not identified. It can be shown that the observationally equivalent GAFT models

have transformation c1t
α and U–distribution with survival Gu

(

u
c1

)

. Hence, with time–varying

covariates α is identified (and so is β).

We conclude that identification depends on whether the covariates are time constant or time–

varying. If the covariates are time constant we can identify the transformation h(T,X(T ); θ0)

up to a power and β up to scale (with the power and the scale being equal). Moreover, if we

fix the power we can identify h(T,X(T ); θ0)
c2 up to scale and the distribution of U0 up to the

same scale parameter.

If the covariates are time–varying we can, except in special cases, identify h(T,X(T ); θ0)

and the distribution of U0 up to a common scale parameter. Because we leave the distribution

of U0 unspecified in our estimation method, we can not use restrictions on U0 to find the scale

parameter. For that reason we normalize h(T,X(T ); θ0) by setting h(T, 0; θ0) = 1 for some t0 >
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0. With time constant regressors we need the same normalisation, but in addition we need to

set one regression coefficient equal to one. Of course, we could choose a class of transformations

that is not closed under the power transformation. This amounts to identification by functional

form.

Finally, we need a condition on the sample paths of X in the population. If we rewrite (1)

as
∫ T

0

elnλ(s;α0)+β′

0X(s)ds = U0 (A.1)

we require that

Pr
(

lnλ(s;α0) + β ′
0X(.) = 0

)

= 0 (A.2)

where the probability is computed over the distribution of X as a random function of t and 0

is the zero function. In other words, lnλ is not collinear with X.

For the identification in the GAFT model with endogenous variables we need additional

assumptions on the instrument. First, the instrument should only affect the duration through

the endogenous variable and not directly. Second, the value of the instrument should influence

the value of the endogenous variable in a non-trivial way. For example, if both the instrument

and the endogenous variable are binary then Pr(D = 1|R = 1) > 0 and Pr(D = 0|R = 0) > 0.

B Counting process interpretation

The density and the survival function of a duration T can be expressed as functions of the

hazard rate. These expressions can be used to obtain a likelihood function. In this appendix

we use a different (but of course equivalent) representation of the relation between the hazard

rate and the random duration. In particular, we use the framework of counting processes (see

e.g. Andersen et al. (1993) and Klein and Moeschberger (1997)). The main advantage of this

framework is that it allows us to express the duration distribution as a regression model with

an error term that is a martingale difference. This simplifies the analysis of the estimator. The

conditions for non selective observation can be precisely stated in this framework. The same is

true for conditions on time–varying covariates.

The starting point is that the hazard of T is the intensity of the counting process {N(t); t ≥
0} that counts the number of times that the event occurs during [0, t]. The counting process

has a jump +1 at the time of occurrence of the event7. A jump occurs if and only if dN(t) =

7The sample paths are assumed to be right-continuous.
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N(t) − N(t−) = 1. For duration data, the event can only occur once. In many unemployment

studies the individuals are only observed until re-employment. So, at most one jump is observed

for any unit. To account for this we introduce the observation indicator Y (t) = I(T ≥ t) that

is zero after re–employment. By specifying the intensity as the product of this observation

indicator and the hazard rate we effectively limit the number of occurrences of the event to

one. We assume that the observation indicator only depends on events up to time t. The

observation process is assumed to have left–continuous sample paths. We define the history of

the process up to time t by H(t) = {Y (t), D,X(t)}, where Y (t) = {Y (s), 0 ≤ s ≤ t}. The

history H(t) only contains observable events.

Let V be some unobserved variables that both influence the endogenous variable and the

duration. An example is the, usually, unobserved search intensity of unemployed looking for a

job. We assume that V and X(t) are stochastically independent. Denote HV (t) = {H(t), V },
the history that also includes the unobservables. As with dynamic regressors in time-series

models, the time-varying X(t) may depend on the dependent variable up to time t but not

after time t (conditionally on V ). Thus D only depends on HV (t) and X(t) only on H(t). In

the counting process literature such a time-varying covariate is called predictable. We will use

the econometric term predetermined.

If the conditional distributions of N(t) given HV (t) or H(t) are well-defined (see Andersen

et al. (1993) for assumptions that ensure this) we can express the probability of an event in

(t− dt, t] as8

Pr(dN(t) = 1 | HV (t)) = Y (t)κ
(

t | X(t), D, V
)

dt (B.1)

with κ(t | ·) is the hazard of T at t given X(t), D and V . By the Doob-Meier decomposition

dN(t) = Y (t)κ
(

t | X(t), D, V
)

dt+ dM(t) (B.2)

with {M(t); t ≥ 0} a (local square integrable) martingale. The conditional mean and variance

of this martingale are

E
(

dM(t) | H(t)
)

= 0 (B.3)

Var
(

dM(t) | H(t)
)

= Y (t)κ
(

t | X(t), D, V
)

dt (B.4)

The (conditional on H(t)) mean and variance of the counting process are equal, so that the

8Because the sample paths of {Y (t), X(t), t ≥ 0} are assumed to be left-continuous (as is the baseline hazard),
we can substitute t for t − dt in (B.1).
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disturbances in equation (B.2) are heteroscedastic. The probability in equation (B.1) is zero, if

the individual is not at risk.

A counting process can be considered as a sequence of Bernoulli experiments, because if dt

is small equations (B.1) and (B.4) give the mean and variance of a Bernoulli random variable.

The relation between the counting process and the sequence of Bernoulli experiments is given

in equation (B.2), which can be considered as a regression model with an additive error that is a

martingale difference. This equation resembles a time-series regression model. The Doob-Meier

decomposition is the key to the derivation of the distribution of the estimator, because the

asymptotic behavior of partial sums of martingales is well-known.

The GAFT model transforms the observed duration T to a transformed duration U0. The

transformation involved a parameter vector θ0 = (β ′
0, γ

′
0, α

′
0)

′. We denote the transformation

for parameter vectors θ 6= θ0 by U(θ) with U0 = U(θ0). The distribution of U(θ) can also

be represented by a (transformed) counting process {NU (u); u ≥ 0}. The relation between

the original and transformed counting process, the observation indicator, and the time-varying

exogenous covariates is

NU (u; θ) = N
(

h−1(u; θ)
)

Y U(u; θ) = Y
(

h−1(u; θ)
)

XU(u; θ) = X
(

h−1(u; θ)
)

IUk (u; θ) = Ik
(

h−1(u; θ)
)

with h(T ; θ) = h
(

T,X(T ), D(T ); θ
)

, defined in (4), and Ik(t) = I(tk < t ≤ tk+1). For θ = θ0 we

denote h0(T ) = h(T ; θ0). The corresponding history isHU(u; θ) = {Y U
(u; θ), X

U
(u; θ), I

U

k (u; θ), D}.
In the sequel we suppress θ and write Y U(u), NU(u), X

U
(u), I

U

k (u) and HU(u) for θ 6= θ0 and

Y0(u), N0(u), X0(u), Ik0(u) and H0(u) for θ = θ0. The intensity of the transformed counting

process with respect to history HU(u) is obtained by the innovation theorem (see Andersen

et al. (1993), p. 80, 87)9

Pr
(

dNU(u) = 1 | HU(u)
)

= Y U(u)E

[

λ
(

h−1(u; θ);α0

)

λ
(

h−1(u; θ);α
) e(β0−β)′XU (u)

× exp
(

K
∑

k=1

(γk0 − γk)I
U
k (u)D

)

κ0

(

h0

(

h−1(u; θ)
)

)

∣

∣

∣

∣

HU(u)

]

du (B.5)

9If U = h(T ) and κT is the hazard rate of the distribution of T , then the hazard rate of the distribution of
U is

κU (u) = κT

(

h−1(u)
) 1

h′

(

h−1(u)
)

35



We implicitly integrate with respect to the distribution of the unobserved V conditional on

HU(u). Note that these unobserved covariates are only introduced to ascertain the predictabil-

ity of the endogenous covariate process. Although the distribution of those variables determines

the distribution of U0, the consistency of the IVLR is independent of that distribution. Un-

fortunately, even for the population parameters θ0 the hazard of U0, κ0(u), still depends on

the intervention path (through the correlation with V ). If we condition on the history of the

instruments instead of the actual endogenous covariates we do get the desired independence.

We must add the instrument R to the conditioning variables in (B.5) if we consider instru-

menting the endogenous variable. Let the UR–history,HUR(u) = {Y U(s), XU(s), R; 0 ≤ s ≤ u},
be the history on the transformed durations in which the endogenous variable D is replaced by

the instrument. Then, another application of the innovation theorem gives the intensity of the

transformed process on the UR–history

Pr
(

dNU(u) = 1 | HUR(u)
)

= Y U(u)E

[

λ
(

h−1(u; θ);α0

)

λ
(

h−1(u; θ);α
) e(β0−β)′XU (u)

× exp
(

K
∑

k=1

(γk0 − γk)I
U
k (u)D

)

κ0

(

h0

(

h−1(u; θ)
)

)

∣

∣

∣

∣

HUR(u)

]

du (B.6)

which for the population parameters simplifies to Y U
0 (u)κ0(u)du with HUR

0 (u) = HUR(u; θ0).

Note that (B.5) and (B.6) only differ in the history the intensities are conditioned on.

For further reference we denote the intensity in (B.6) by κUi (u; θ) such that

Pr
(

dNU(u) = 1 | HUR(u)
)

= Y U(u)κUi (u; θ)du

which reduces to κ0(u) for the population parameters.

A common feature of duration data is that some of the observations are censored. Assume the

censoring time, C, is (potentially) known. Then, the potential censoring time is known and the

observed durations are T̃ = min(T, C) and ∆ = I(T ≤ C), where ∆ is one if T is observed.

Assume the piecewise constant structure for the effect of the endogenous variable in (5).

This implies that for tk < t ≤ tk+1, the coefficient of D = 1 is eγk . We define the transformed

censoring time CU(θ) (possibly depending on the observed history of other covariates) such

that: (a) T ≥ C implies h(T ; θ) ≥ CU(θ) and (b) U0 and R are independent on the interval

bounded above by CU(θ).

Note that we either observe T ≤ C and ∆ = 1, or T > C and ∆ = 0. If some of the

other covariates are also time–varying we have another identification problem, because these
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covariates are only observed up until T̃ . The transformed censoring times (conditional on T, C >

tk) that take all these considerations into account are the sum of the transformed duration up

to tk, h(tk; θ) and the censoring adjustment, i.e

CU(θ) =

{

∫ C

0
λ(s;α)eβ

′X(s)P (s; γ) ds if T > C,
∫ T

0
λ(s;α)eβ

′X(s)P (s; γ) ds+
∫ C

T
λ(s;α) ds if T ≤ C.

(B.7)

where P (s; γ) = I(s ≥ tk)
∏k

j=0 min(eγj , 1). From the last term on the right–hand side of (B.7)

we see why we need to know C even for the uncensored observations. Otherwise we can not

compute CU(θ) for these observations. We can estimate the parameters of the Instrumental

GAFT model from the following observed data

Ũ(θ) = min
(

U(θ), CU(θ)
)

, ∆U (θ) = I
(

U(θ) < CU(θ))

and Y U(u; θ) = I
(

Ũ(θ) ≥ u
)

. Now Ũ(θ0) is independent of R for ∆U(θ0) = 1. Note that if,

at least, one of the γ’s is different from zero, we introduce extra censoring on the transformed

durations, because then some units with ∆ = 1 have ∆U(θ) = 0.

The counting process interpretation allows for an alternative formulation of the estimating

equations in (8). The relevant counting measure, NU
i (u), can be seen as a discrete ’probability

distribution’ that assigns weight unity to uncensored transformed durations and is zero else-

where. Then the estimating equations can be expressed as an integral with respect to that

counting process

Sn(θ;W ) =
n

∑

i=1

∫ CU
i

0

{

W
(

u,Ri

)

−W (u; θ)
}

dN Ũ
i (u) (B.8)

where CU
i is the transformed censoring time defined in (B.7).

C Asymptotic properties of the IVLR

In this section we discuss the asymptotic behavior of the Instrumental Variable Linear Rank

estimator. The counting process framework simplifies the derivation of these asymptotic prop-

erties. We assume a piecewise constant λ for the GAFT model.

We make the following assumptions:

C1: The covariate processX(t) is predetermined, i.e. its distribution is independent of {H(s), s >

t}. The sample paths of the covariate process are bounded and at least one of time–varying

covariates is a continuous variable.
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C2: The observation process Y (t) is cadlag and Y (t) is predetermined. Moreover,

Pr
(

dN(t) = 1 | Y (t) = 1, H(t)
)

= Pr
(

dN(t) = 0 | Y (t) = 0, H(t)
)

C3: The population distribution of T given X and D satisfies
∫ T

0

λ(s;α0)e
β′

0X(s)+ψ(s,D;γ0) ds = U0

The absolutely continuous distribution of U0 does not depend on X or R. The p.d.f. of

U0 is bounded.

C4: The transformed observation process Y U(u) = I
(

Ũ(θ) ≥ u
)

is cadlag and predetermined,

with Ũ(θ) = min
(

U(θ), CU
)

and CU defined in (B.7).

C5: The instrumental function W is bounded and left–continuous.

C6: The intensity of U(θ), κUi (u) given history HUR(u) in (B.6) can be linearized in a neigh-

borhood of θ0 as a function of θ, i.e. there exist µ(u) and ǫ > 0 such that for ‖θ − θ0‖ < ǫ

∣

∣κUi (u; θ) − κ0(u) − (θ − θ0)
′di0(u)

∣

∣ ≤ ‖θ − θ0‖2 µ(u)

for u ≤ C0 = CU(θ0) with

di0(u) =
∂κUi (u; θ)

∂θ

∣

∣

∣

θ=θ0

C7: There exists a continuous function a(u; θ) of θ in a neighborhood B of θ0 such that

sup
u≤C0

sup
θ∈B

∥

∥W (u; θ) − a(u; θ)
∥

∥

p→ 0

where

W (u; θ) =

∑n
j=1 Y

U
j (u)W

(

u,X
U

j (u), Rj

)

∑n
j=1 Y

U
j (u)

C8: There exists a continuous matrix function A(u; θ) of θ in a neighborhood B of θ0 such that

sup
u≤C0

sup
θ∈B

∥

∥

∥

∥

1

n

n
∑

i=1

[

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
]

×
[

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
]′

Y U
i (u) −A(u; θ)

∥

∥

∥

∥

p→ 0

C9: There exists a continuous matrix-function V (u; θ) of θ in a neighborhood B of θ0 such

that

sup
u≤C0

sup
θ∈B

∥

∥

∥

∥

1

n

n
∑

i=1

[

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
]

× di0(u)
′Y U
i (u) − V (u; θ)

∥

∥

∥

∥

p→ 0
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The starting point is (B.8), which can, for θ in a small neighborhood of θ0, be rewritten as

Sn(θ;W ) =

n
∑

i=1

∫ Ci0

0

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

dNU
i (u)

+
n

∑

i=1

∫ Ci0

CU
i

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

dNU
i (u) (C.1)

Substitution of the Doob–Meier composition in the first term on the right for NU
i gives

Sn(θ;W ) =

n
∑

i=1

∫ Ci0

0

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

dMU
i (u)

+
n

∑

i=1

∫ Ci0

0

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

κUi (u)Y U
i (u) ddu (C.2)

We consider both terms separately. The first term is, for θ close to θ0, close to Sn(θ0;W ) and

for the second term we have

(θ − θ0) ·
n

∑

i=1

∫ Ci0

0

{

W
(

u,X
U

i (u), Ri

)

−W (u; θ)
}

× ∂κUi (u)

∂θ

′

Y U
i (u) du+Op

(

‖θ − θ0‖2)

Returning to (C.1) we note that the second term in this equation equals

n
∑

i=1

{

[

W
(

Ci0, Xi0(Ci0), Ri

)

−W
(

Ci0; θ0
)

]

×θ0(Ci0)Yi(Ci0)
}

+Op

(

‖θ − θ0‖2)

The term between brackets is the covariance between θ0(Ci0) and W
(

Ci0, Xi0(Ci0), Ri

)

which

is zero. Thus this whole term is zero for θ close to θ0 and we have

Sn(θ;W ) ≈ Sn(θ0;W ) + n

∫ C0

0

Z(u; θ0) du · (θ − θ0) (C.3)

Hence, approximately for the IVLR estimator θ̂n(W )

√
n(θ̂n(W ) − θ0) =

[
∫ C0

0

Z(u; θ0) du

]−1
1√
n
Sn(θ0;W ) (C.4)

The proof of the consistency and asymptotic normality are both based upon the asymptotic

linearity of Sn(θ;W ) in the neighborhood of the true value θ0. We follow the reasoning of

Tsiatis (1990). Instead of a mean and variance condition, we have a mean and three covariance

conditions. Let S̃n(θ;W ) be the right-hand side of (C.3). The following lemma shows that the

linearization in (C.3) is uniformly close to the original estimating function

Lemma 1. In neighbourhoods of O(n−1/2) of θ0

n−1/2
∥

∥

∥
S̃n(θ;W ) − Sn(θ;W )

∥

∥

∥

converges uniformly to zero.
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This lemma implies that n−1/2S̃n(θ;W ) and n−1/2Sn(θ;W ) are asymptotically equivalent in

a neighbourhood close to θ0.

Proof: This can be proved in lines of Tsiatis (1990) Lemma (3.1) and (3.2) and theorem (3.2)

and this is, because of the analogy, not repeated here.

Proof of theorem 1 and theorem 2. According to lemma 1 are n−1/2Sn(θ;W ) in a neighbour-

hood close to θ0 asymptotically equivalent to n−1/2S̃n(θ;W ). Then the estimates θ∗ and θ̂, with

S̃n(θ
∗;W ) = 0, will also be asymptotically equivalent. Clearly, θ∗ converges in probability to θ0.

Hence, if we show that
√
n(θ̂−θ∗) p→ 0 then this would imply that θ̂ also converges in probability

to θ0. Tsiatis (1990) argues that lemma 1 suffices to proof this. This proves theorem 1.

According to the Mann–Wald theorem convergence in probability implies convergence in

distribution. We note that
√
n(θ∗−θ0) = n−1/2Q−1(W )Sn(θ0;W ) clearly converges to a normal

distribution with mean zero and variance matrix Q−1(W )Ω(W )Q′−1(W ). This completes the

proof of theorem 2.

Remark. To establish detailed conditions on when S̃n(θ;W ) has a unique root is rather

tedious; however Ying (1993) gave an excellent general treatment on rank estimation, which

can also be used for the estimating equations in this article.
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D Additional tables for the IVLR of reemployment bonus

experiment

Table 4: Descriptive statistics for Control,Claimant Bonus and Employer Bonus group.

Control Claimant Employer
Group bonus bonus

White 0.632 0.651 0.647
Black 0.271 0.251 0.256
Other 0.097 0.099 0.097

Male 0.547 0.563 0.538

Age 20–29 0.425 0.436 0.424
Age 30–39 0.333 0.324 0.326
Age 40–49 0.179 0.185 0.187
Age 50–54 0.063 0.054 0.064

Weekly benefit
-$51 0.088 0.085 0.084
$52–$90 0.201 0.212 0.217
$91–$120 0.169 0.176 0.179
$121–$160 0.190 0.196 0.181
$161– 0.353 0.331 0.339

Dependence allowance 0.323 0.345 0.332
Average pre–claim 3188 3222 3215
earnings
Average age 33.0 32.9 33.1

Average weekly 119.9 118.8 118.5

N 3952 4186 3963
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Table 5: Instrumental Variable Linear Rank estimates for the regression coefficients of the
Illinois data (Constant Bonus Effect)

First stage Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE -0.5718 -0.3424 -0.5219 -0.3379
(0.0734) (0.0897) (0.0717) (0.0699)

LNBPE 0.3528 0.2146 0.3188 0.2036
(0.0510) (0.0601) (0.0512) (0.0482)

BLACK -0.6636 -0.3770 -0.6264 -0.3792
(0.0526) (0.0842) (0.0510) (0.0641)

MALE 0.1135 0.0663 0.0464 0.0295
(0.0377) (0.0330) (0.0376) (0.0305)

LNBEN -0.5841 -0.3558 -0.6263 -0.4010
(0.0867) (0.1011) (0.0871) (0.0865)

One step Optimal

Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE -0.5204 -0.3612 -0.4733 -0.3110
(0.0693) (0.0653) (0.0683) (0.0603)

LNBPE 0.3537 0.2266 0.3133 0.1871
(0.0473) (0.0449) (0.0483) (0.0424)

BLACK -0.6162 -0.3982 -0.5646 -0.3574
(0.0509) (0.0510) (0.0495) (0.0443)

MALE 0.1293 0.0691 0.0698 0.0227
(0.0355) (0.0303) (0.0355) (0.0303)

LNBEN -0.5924 -0.3692 -0.6040 -0.3610
(0.0813) (0.0762) (0.0826) (0.0727)

a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10,
10–25, 25 →; Notes: Standard error in brackets.
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Table 6: Instrumental Variable Linear Rank estimates for the regression coefficients of the
Illinois data (Time–varying Bonus effect)

First stage

Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE -0.5361 -0.3285 -0.5233 -0.3355
(0.0693) (0.0897) (0.0706) (0.0763)

LNBPE 0.3313 0.2139 0.3153 0.2029
(0.0481) (0.0617) (0.0506) (0.0530)

BLACK -0.6086 -0.3665 -0.6268 -0.3771
(0.0494) (0.0861) (0.0501) (0.0740)

MALE 0.1036 0.0668 0.0461 0.0294
(0.0352) (0.0337) (0.0371) (0.0304)

LNBEN -0.5470 -0.3564 -0.6187 -0.3989
(0.0820) (0.1043) (0.0859) (0.0959)

One step Optimal

Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE -0.4861 -0.3288 -0.4529 -0.3660
(0.0653) (0.0664) (0.0675) (0.0622)

BPE 0.3332 0.2061 0.3017 0.2236
(0.0442) (0.0455) (0.0474) (0.0434)

BLACK -0.5644 -0.3615 -0.5286 -0.4189
(0.0476) (0.0533) (0.0488) (0.0480)

MALE 0.1176 0.0626 0.0622 0.0283
(0.0332) (0.0304) (0.0349) (0.0302)

LNBEN -0.5501 -0.3343 -0.5813 -0.4284
(0.0765) (0.0770) (0.0815) (0.0752)

a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10,
10–25, 25 →; Notes: Standard error in brackets.
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Table 7: Estimated λ in GAFT model for the Bonus data
Claimant

Constant Bonus effect Time varying Bonus effect

interval first opt. first opt.
0–2 0.8098 0.7500 0.8625 0.9328

(0.4638) (0.2052) (0.5262) (0.2409)
2–4 0.3146 0.2348 0.3542 0.2309

(0.3691) (0.1462) (0.4048) (0.1799)
4–6 -0.0782 -0.0415 -0.0390 0.0318

(0.2646) (0.1220) (0.3015) (0.1552)
6–10 -0.2743 -0.1859 -0.2341 -0.2085

(0.2392) (0.1133) (0.2807) (0.1369)
10–25 -0.6868 -0.6655 -0.6077 -0.6345

(0.1626) (0.1006) (0.1758) (0.1261)

Employer

Constant Bonus effect Time varying Bonus effect

interval first opt. first opt.
0–2 0.7095 0.8929 0.7088 0.5647

(0.3063) (0.1450) (0.4375) (0.1716)
2–4 0.2540 0.4451 0.2542 0.1464

(0.2134) (0.0939) (0.3344) (0.1227)
4–6 -0.1217 -0.1178 -0.1195 0.0875

(0.2008) (0.0925) (0.2330) (0.1050)
6–10 -0.4552 -0.2707 -0.4526 -0.4098

(0.1516) (0.0751) (0.2255) (0.0975)
10–25 -0.7492 -0.6826 -0.7180 -0.6057

(0.0971) (0.0372) (0.1015) (0.0491)

Notes: Standard error in brackets.
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