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1. Introduction

A firm’s ability to innovate is increasingly the result of
both internal R&D efforts and external knowledge
sourcing (Gambardella, 1992; Freeman, 1991).
External knowledge sourcing can be performed through
informal  personal interactions, formal
collaborations, spin-out (and later spin-in)
companies and consultancy or through job
mobility (Abramovsky et al, 2007). Especially

in the biopharmaceutical industry the
complementarities between internal R&D and external
sourcing through formal collaborations play an
important role in large pharmaceutical innovation
strategies (Arora & Gambardella, 1990; Henderson &
Cockburn, 1996; Pisano, 1990).

Until recently, externally sourcing of R&D has been
considered a substitute for in-house R&D activities, i.e.
R&D has been perceived as either a make-, or a buy
decision of the firm. Exemplifying in this respect is the
seminal work of Pisano (1990) on the R&D boundaries
of the firm. Although the author acknowledges
complementarity between in-house R&D activities to
be important, potential complementarities beyond the
boundaries of the firm are ignored (Pisano, 1990).

Our study fills an important gap in the literature. While
there exists a rich theoretical literature on
complementarities between R&D activities, limited
data availability has so far constrained empirical testing
of some key features of these theories. Using unique
data on more than 1300 early stage research projects of
large pharmaceutical firms, we empirically study two
important issues from the literature.

First, we investigate conditions under which in-house
and external research are complementary to one

another. Complementarity between two activities is
defined" as “Adding an activity while the other activity
is already performed has a higher incremental effect on
performance than adding the activity in isolation”
(Cassiman & Veugelers, 2006 pp. 70).> While the
above definition of complementarity is elegantly
simple, it does not provide any direction about when to
expect complementarity and how these activities come
about to be complementary. We therefore turn to Cohen
and Levinthal’s notion of absorptive capacity, which is
similar to the notion of complementarity. The authors
state that firms with a sufficient stock of relevant in-
house R&D are better able to achieve
complementarities from combining internal with
external R&D. Internal know-how is used to effectively
screen and absorb external knowledge and to exploit
these findings internally (Cohen and Levinthal, 1989).
So far, existing empirical work has not provided any
answer as to what defines which knowledge is
‘relevant’ internal knowledge and how much

! Complementarity between two activities A, and
A, arises only if [[(1,1) - T1(0,1) > [1(1,-) - [1(0,0),
whereby H(A1 R Az) represents performance, and each

activity A4 either takes place (1) or does not (0).

2 Milgrom and Roberts (1990) have first coined the
term complementarity to describe synergies among
organizational practices within the firm. In the strategy
literature the concept of complementarity is better
known as ‘strategic fit’ (Porter, 1980). Strategic fit is
defined as: 'the degree to which the needs, demands,
goals, objectives, and/or structures of one component
are consistent with the needs, demands, goals,
objectives, and/or structures of another component'
(Nadler and Tushman, 1980: 36)



knowledge is a ‘sufficient’ stock of knowledge. Our
results indicate which types of pharmaceutical R&D
knowledge are relevant to achieve complementarities
and, more importantly, we indicate a critical mass of
prior R&D that is necessary for complementarities to
occur.

Second, we investigate in detail how these
complementarities occur. According to the theory of
absorptive capacity (Cohen & levinthal, 1989; van den
Bosch et al, 1999) there is a two-way knowledge flow
between internal know-how and external knowledge
that underlies the relationship between
complementarities and performance. Knowledge flows
or spillovers between activities cause learning effects
and subsequently increase marginal returns on firm
performance’. On the one hand, internal know-how is
claimed to increase the marginal return to external
sourcing through an increased ability to effectively
screen and contribute to external projects knowledge
(Lane & Lubatkin, 1998). On the other hand, external
knowledge that has been absorbed needs to return into
the organizations internal knowledge base in order to
truly increase internal innovations. We will refer to the
former as knowledge outflow and to the latter as
knowledge inflow. We test both knowledge flows and
their effect on performance directly. First, we measure
how the performance of external R&D projects changes
when the firm has generated sufficient in-house R&D
in a similar knowledge domain. Second, we measure
how internal R&D project performance changes when
‘sufficient’ external R&D is undertaken in a similar
knowledge domain. Our findings are in line with the
theory on absorptive capacity. This means that
sufficient internal knowledge does not improve the
performance of external R&D projects. External R&D
projects that are selected do perform exceptionally
well, but the main improvement occurs amongst the in-
house R&D projects once a few (probable well
screened) external projects are added to the ‘group’ of
internal R&D projects. In other words, having a
sufficient stock of internal R&D in a relevant
knowledge domain enables the firm to screen (attract)
the right external R&D projects from which it can learn
and subsequently increase its marginal return on
internal R&D. Finally, our findings indicate that this
knowledge flow (or spillover) only occurs when
relatively few external projects are added to the group
of in-house R&D. We strongly suspect that the
knowledge that is ultimately responsible for realized
absorptive capacity does not flow or spill over between
projects or even researchers, but only travels because
the same people who are working on externally sourced
projects are applying the obtained knowledge
internally. This would naturally limit the number of
external projects in relation to in-house capacity.

3 Additionally it might be the case that complementarity
raises competition (or tournament effects) between
activities which leverages efficiencies and reduces
organizational slack. Another potential driver of the
relationship between complementarities and
performance might be that investment in one activity
improves selection capabilities for other activities®
(Veugelers, 1997).

2. Literature

A number of elementary studies have identified
complementarities and some studies have, what might
be even more important, identified circumstances that
drive complementarity. With our study, we hope to
further our current understanding of why and how
complementarities occur among research activities
within-, and beyond the boundaries of the firm.

The earliest work on complementarities between
different research activities goes back to Coase’s
(1937) work, where he argues that as a firm
accumulates R&D experience internally the costs of
internalizing new R&D decreases. More specifically,
Nelson & Winter (1974) state that the ‘ease’ of
internalizing new R&D depends on whether prior
accumulated R&D is similar to the newly acquired
R&D, and that the costs of these activities are reduced
because of learning curve effects (Pisano, 1990). Also
Milgrom and Roberts (1990) have focused their work
on complementarities within the boundaries of the firm,
although their definition of complementarity has been
applied in some of the more fundamental work on
complementarities between internal R&D and
externally sourced R&D knowledge as well. The
seminal work on complementarities between internal
R&D and external sourcing of knowledge is the paper
by Cohen and Levinthal (1989) on the two faces of
R&D. The authors state that firms invest in R&D
primarily to generate internal innovations. More
interestingly, they discover that a side-effect of R&D
investment is that it enables firms to appropriate
external, publicly available spillovers more easily than
firms which invest in R&D to a lesser extend. This
side-effect is termed ‘Absorptive capacity’. It is defined
as a firm’s relevant stock of prior knowledge that
enables it to identify, assimilate and exploit knowledge
from the environment. While the emphasis is on
knowledge influx (absorbing external knowledge in),
empirical work that followed from this study has often
looked at the effect of internal R&D on successful
external knowledge sourcing, which implies knowledge
outflow (Lane & Lubatkin, 1998; Arora &
Gambardella, 1990). The literature review on
absorptive capacity by Zahra and George (2002) has
brought structure to a growing conceptual ambiguity
around absorptive capacity. The authors identify three
stages within the construct of absorptive capacity which
are essentially already incorporated in the original
definition of Cohen & Levinthal (1989), namely:
identification of external knowledge through external
sourcing activities. Second, the assimilation or
conversion of this knowledge back into the firm, and
third the exploitation of the absorbed knowledge to new
or improved products and processes. Based on these
three phases, most existing work can be grouped as
focusing on potential absorptive capacity (phase one
and two) or on realized absorptive capacity (phase
three) (Zahra & George, 2002). An interesting study
that does cover all three phases of absorptive capacity
(identification, incorporation and exploitation) is the
study by Cassiman & Veugelers (2006). The authors
find that firms which ‘make and buy’ R&D have a
higher marginal return on innovation than firms who



only ‘make’ or only ‘buy’, especially if they are more
heavily involved in basic R&D. More precisely, a 10%
increase in reliance on basic R&D increases the
likelihood of combining internal and external sourcing
by 2.7 % (Cassiman & Veugelers, 2006 pp. 77).

The studies described above have convincingly argued
that complementarities exist among R&D activities
within and between firm boundaries. An important
condition for complementarities to occur, as Cohen &
Levinthal already mentioned, is that internal and
external knowledge are relevant to one another. With
two exceptions, existing contributions have largely
ignored this condition of knowledge relevance. One
exception is the work of Arora and Gambardella (1994)
who test whether firms use their external linkages as
complements. While complementarity itself is not
precisely defined in this study, it is assumed that
different types of external linkages are complements if
they do not have overlapping (knowledge) purposes.
Moreover, the authors argue that external linkages such
as research agreements with universities and
acquisitions of biotech firms are complementary
strategies because they serve different purposes but are
still correlated. While indeed, it is generally
acknowledged that activities which are completely
overlapping in terms of purpose or knowledge domain
are considered as substitutes, it is not very clear
whether non-overlapping features defines them as
complements (Besanko, 2007). A more precise
investigation into the relevance of knowledge between
R&D activities is provided in the work of Lane and
Lubatkin (1998). These authors argue that a firm’s
absorptive capacity is often seen as a firm-specific
characteristic that determines its innovativeness vis-a-
vis others to a large extent. However, Lane and
Lubatkin (1998) state that a firm’s ability to absorb
external knowledge depends on the ‘type’ of external
knowledge (and the partner carrying this knowledge)
the firm is absorbing. In other words, absorptive
capacity is a relational characteristic rather that an actor
characteristic of the firm, since it differs with each
external partner. A firm’s absorptive capacity in this
sense depends on the knowledge (cognitive) similarity
between internal knowledge (experience), and external
knowledge, and thereby becomes a relational
characteristic of the firm. This ‘new’ notion of
absorptive  capacity  furthermore implies  that
innovativeness, which is increased by absorptive
capacity, differs for each activity where a firm is
tapping into a new external source of knowledge. An
important implication of this finding is that measuring
absorptive capacity requires project-level information.

Our study differs and enriches these existing studies in
a number of ways. To start with, all above mentioned
studies are performed at the level of the firm, while our
study enables a direct measure of performance at
project level. Having project level information has
important advantages. Not the least advantage is that it
allows us to circumvent the danger of firm
heterogeneity driving endogenous decisions of which

projects are selected’. Furthermore, while being
specific for the pharmaceutical industry in which our
research is situated, we identify the type of knowledge
where learning curve effects and subsequent
complementarities occur. Most importantly however is
that while previous studies have convincingly shown
the existence of complementarity as a binary choice,
our study allows us to treat complementarity as a
continuous variable. More specifically, we identify a
size threshold over which complementarities occur,
which concretizes Cohen & Levinthal’s (1989) notion
of the ‘sufficient’ stock of knowledge required for
achieving complementarities. Given the existence of
complementarity, our data allow us to empirically
disentangle whether these complementarities represent
potential absorptive capacity (arising from improved
external sourcing) or whether the firm has indeed
managed to reintegrate and exploit external knowledge,
which represents realized absorptive capacity.

3. Empirical setting: the pharmaceutical
industry

A number of developments in the pharmaceutical
industry over the last decade have made the quest for a
strategy  that achieves complementarities and
subsequent innovation capacity an important and
largely unanswered question in this industry. Within
big Pharma there is an increased pressure on R&D due
to decreased R&D productivity and approaching patent
expirations. Along the pressure for big pharma to
maximize shareholder value, strategies have shifted in
the last two decades from being research driven to
being market driven (Drews, 2003). In a research
driven environment, emphasis of decision making was
within R&D departments, where managers were geared
at innovations originating from deep knowledge of
disease pathways and pharmacology. While the
industry was consolidating in the beginning of the
nineties, the gravity of decision making has shifted
toward marketing and finance departments (Drews,
2003). This strategic shift implied a more quantity
based approach toward research whereby drug
discovery was increasingly considered a statistical
event (Booth & Zemmel, 2004). Today, it appears that
this quantitative approach toward research is not yet
paying off in terms of productivity, and analysts are
revaluating the early days’ in vivo empiricism based on
disease knowledge (Erickson, 2003).

Furthermore, a series of findings suggest that
alternatives to the traditional in-house R&D model of
big pharma might be more successful. The first finding
concerns the higher success probabilities of (new)
biotechnologies. The proportion of newly admitted
compounds using biotechnologies has increased with
20 -25% compared to the more traditional chemical

4 For additional information on how to deal with the
problem of unobserved firm heterogeneity we refer to
Cassiman & Veugelers, 2006.



based compounds’. Biotechnologies are mainly
exploited by small-, and medium sized biotechnology
firms, while chemical based compounds mainly
originate from big pharma. Second, newly developed
compounds that are discovered in-house are being
outperformed by compounds that are produced
externally or through external collaborations®.
Moreover, as biotechnologies increase the scope of
research, big pharma increasingly realize that it is
impossible to cover the whole spectrum of technologies
themselves. While research for new drugs was
traditionally conducted in-house, large pharmaceutical
firms have by now build research portfolios where
internal R&D efforts are combined with external R&D
collaborations. Some analysts even go as far as to state
that Pharma companies should be virtual in research,
which means that they in-license all compounds from
preclinical testing onwards.

Against the background of these developments it has
become questionable whether big pharma still has to
play a role in research. Wouldn’t it be better if big
pharma narrows down its core competences to
downstream drug development and employ a virtual
research model? Or are there still advantages to be
obtained from in-house research? If the latter is true,
which portfolio would generate complementarities
between internal and externally sourced research
projects?

4. Empirical strategy

Our empirical strategy is summarized in figure 1 below.

[insert figure 1]

4.1 Data selection

We selected the 20 highest R&D  spending
pharmaceutical firms in 2005 from Evaluate Pharma, a
frequently used database in the pharmaceutical industry
for forecasting and analysis services. Of the selected
firms, we used Pharma Projects database to extract the
whole research portfolio per firm at a certain time.
PharmaProjects is a privately held project monitoring
firm which continuously searches for information on
both internal and externally sourced projects of large
pharmaceutical firms through a number of search
channels. Primarily, PharmaProjects visits events and
conferences where pharmaceutical firms meet to
exchange information about the projects running
through their pipelines. This information is then
verified and updated with press releases, website
information and annual reports. Telephone surveys are
regularly conducted to verify the accuracy of their
database. As a deliberate strategy, no use is made of

> Tufts Center for the Study of Drug Development (95
—99) New Biopharmaceuticals in the US

¢ ‘“Improving the pharma research pipeline’ McKinsey
Quarterly, August 2004.

patent information, since “often..”, our informant
claims, “..the firm files patents on anything that lies
around in the lab to create a smoke screen and hide
their actual R&D strategy” (information based on
telephone interview with  Pharmaprojects data
manager).

We focus our analysis on research projects that are
active’ at the earliest stage of research before entering
clinical testing. In doing so, we follow earlier work by
Pisano (1990) who convincingly argues that from
clinical testing onwards, external contracting is often
done by technological licensing instead of R&D
contracting. Technological licensing and R&D
contracting are two fundamentally different contracts.
R&D contracts are typically long-term agreements
where knowledge exchange and learning effects take
place, while technological licensing agreements are
one-time exchanges to obtain rights to an already
developed technology (Pisano, 1990 pp. 163). As in our
study we are interested in complementarities arising
from learning through knowledge spillovers between
and within organizations, we restrict our analysis to
these early stage research projects. Another reason for
this restriction is that our dependent variable
(probability to enter clinical I) is more reliable when
restricted to early stage research. If we were to measure
the probability of a project to reach the market for
example, we would be wunable to distinguish
complementarities from many other factors affecting
whether a projects survives the 12 year (or longer) ride
through the pharmaceutical production process.

4.2 Buiding a research portfolio

To determine each firm’s research portfolio of 2002,
we summed all research project that were announced as
annual newly entering projects in early research from
2000 until 2002. We thereby follow a study by Phelps
(2003) who shows that the average duration of R&D
projects is three years (see also: Phlippen & van der
Knaap, 2007). As a result, all newly announced projects
in 2000, 2001 and 2002 are assumed to be part of a
firm’s 2002 research portfolio. Our choice of
constructing the 2002 research portfolio and not a more
recent portfolio is related to our dependent variable
‘probability to reach clinical testing’. A project in early
research can take (on average) up to four years to reach
clinical testing which makes it necessary to track each
project until the end of 2006 to know whether it has
been successful in reaching clinical testing on humans.
Our initial sample consisted of 1328 early stage
research projects (before clinical testing I). Leaving out
projects of which no success probability was known
reduced our sample to 977 projects. Furthermore, we
excluded all projects where no disease area information
was given, which reduced our final work set to 762
projects.

7 Projects only entered the database if they had a solid
chemical structure and a therapeutic goal had been
identified.



4.3 Variables

4.3.1 Depedent variable: success probability

Each project is defined as either successful, failure or
unknown in reaching the first stage of clinical testing
(SUCCESS). If we didn’t find the project in our
database for 4 years or longer, we decided to label it as
a failure. Projects were labeled unknown if there was
no information between 1 and 3 years. We used Binary
logistic regression analysis to model the success
probabilities of a research project.

4.3.2 Control variables

In every regression we controlled for a number of
variables that are strongly associated with the
probability of a project reaching clinical testing
successfully (see: empirical setting). The first is the
variable indicating whether a project is being developed
in-house  or  through  external  collaboration
(EXTERNAL), as previous work has shown external
collaborations to perform better on average than
internal projects over the whole production process®. A
second control variable indicates whether a project
involves chemicals or biotechnologies (BIOTECH), as
biotechnology based compounds are found to
outcompete compounds based on chemical substance.
We further controlled for the effect of a project aiming
at a reformulation of an existing drug or aiming at a
new drug (FORMULATION), since the former are
assumed to be more likely to reach clinical testing.
Each project is focused at a certain disease area. To
prevent the disease area (e.g. anticancer or
inflammation) itself to be driving the success
probabilities of our projects we included dummies for
all disease areas in most of our regressions (ANTICAN,
INFLAM etc). At the level of the firm, we control for
firm heterogeneity simply by adding dummies for all
firms in most of our regressions (ROCHE, GSK, etc).

4.3.3 Explanatory variables

There are two main sets of explanatory variables. The
first set is aimed at identifying the conditions for
complementarity to arise, and the second set is aimed at
understanding sow complementarities occur between
internal projects and external projects, i.e. whether they
result from potential (knowledge outflow) or from
realized absorptive capacity (knowledge inflow).

Conditions for complementarity

As we have argued in our introduction, Cohen &
Levinthal (1989) and the work thereafter has
emphasized the importance of a firm’s ‘sufficient stock
of relevant prior knowledge’ in order to absorb external

¥ ‘Improving the pharma research pipeline’ McKinsey
Quarterly, August 2004

knowledge effectively. We test what constitutes a
‘sufficient’ stock and what knowledge is ‘relevant’ to
obtain complementarities.

Where to look for complementarities?

Which type of knowledge similarity generates
complementarities? While it is typically assumed that
projects aiming at similar therapeutical areas might
compete and/or learn from each other and create
complementarities by doing so, we test 3 other potential
types of knowledge areas where complementarities
might occur. First we add disease area as a potential
knowledge area that might be an alternative for
therapeutic area. TAsize (therapeutic area) is a more
broadly defined group than DAsize (disease area). For
example the therapeutical area named ‘cognition
enhancer’ consists among others of the disease area
‘Alzheimer’.  Another knowledge area  where
complementarities might occur is the target that a drug
in a project is aiming at (TARGETsize). A drug target
can be the protein which the drug binds to, inhibits or
activates (eg receptor subunits or enzymes). Finally we
tested whether the pharmacological activity, which
describes the beneficial or adverse effects of a drug on
living matter (i.e. it describes how the drug works)
might generate complementarities (PHARMACOsize).
Based on each of these four knowledge areas we
grouped all projects within each firm and tested
whether more projects in each of these knowledge areas
(within a firm) increases the average performance of
projects.

When is a stock of knowledge sufficiently large?

The aim is to determine the effect of the number of
‘similar’ projects in a firm’s research portfolio (SIZE)
on the probability of a project reaching clinical testing.
The knowledge area to which ‘similarity’ applies is to
be defined as a first step in our analysis. This variable
(SIZE) is categorized as either ‘no or just one similar
project” (SMALL), 2-9 similar projects (MEDIUM), or
containing 10 or more similar projects (LARGE)’.
Complementarities arise when more similar projects
leads to higher average success probabilities. We thus
expect that projects in category LARGE perform better
than projects in category MEDIUM. Projects
categorized as SMALL contain (nearly) isolated
projects, which by definition do mnot measure
complementarity. However, being a relatively large
group of projects, we used this category as our
reference category to benchmark our two other
categories against.

? We explored different size categories and the
currently used categories were most able to
discriminate amongst success probabilities.



How do complementarities arise between internal and
external projects?

The theory of absorptive capacity provides guidance on
how complementarities are expected to arise between
internal research and externally sourced research
projects. While a firm’s absorptive capacity implies
knowledge flowing outside in, this theory argues that
internal knowledge is first used to screen and absorb
external knowledge, and as a second step the firm
reintegrates the absorbed knowledge internally to
improve internal R&D. We measure both parts of this
process separately by identifying:

1. How the performance of external projects changes
when a ‘sufficient’ amount of ‘similar’ internal projects
are running (EXTERN_SUCCESS).

2. How the performance of internal projects changes
when a ‘sufficient’ amount of ‘similar’ external
projects are running (INTERN_SUCCESS).

The question about ‘sufficient’ amounts of internal and
externally sourced projects essentially asks how a firm
should design its research portfolio with regard to the
ratio of internal and external R&D investment.
Surprisingly we found no study that deals with this
question explicitly and hence we explored the ‘optimal’
external/ internal ratio among ‘similar’ projects
ourselves.

5. Results

5.1 Effect of individual project
characteristics

Our analysis starts with the assessment of individual
project characteristics that have in previous studies
been identified as having a significant impact on the
success probabilities of R&D. The two main
characteristics are whether a project is conducted in-
house or through external sourcing, and second whether
a project builds on chemicals or on biotechnologies' ''.

[insert figure 2]

Externally sourced projects are significantly more
likely to reach clinical testing (our indicator of success)
than internal projects. While previous studies have
already shown this differences between internal and
externally sourced projects at the development stages in
R&D (clinical T to IIT) (DiMasi, 2001), our findings
indicate that the advantage of external collaboration
already occurs during early research. We further found
that projects involving biotechnologies, such as
recombinant DNA technologies or monoclonal
antibodies are also significantly more likely to be

1 See “empirical setting: the pharmaceutical industry”
for an overview.

"' We also tested the effect of a project being a new
formulation of an existing drug or a ‘real’ new drug.

successful compared to projects based on chemical
compounds. Figure 2 illustrates these findings by
showing the differences in average success rates related
to external collaborations and biotechnologies.

5.2 Conditions for complementarities

Identifying ‘relevant’ knoweldge

Our data allowed us to test four knowledge areas
where  complementarities might occur. More
specifically, we grouped projects around the same
disease area, the same target, the same pharmacological
activity and around the same therapeutic area (within a
company). For each grouping we then analyzed the
effect on success probabilities, as is shown in table 1.
After controlling for individual project characteristics
we found that only disease area grouping has a positive
significant impact on success probabilities, and that
neither grouping by target, by pharmacological activity
or by therapeutic area has a significant impact on
success probabilities'>. From here on, our analysis
focuses on projects grouped around disease areas, as it
appears to be the only relevant knowledge area for
achieving complementarities.

[insert table 1]

Identifying a sufficiently large stock of knowledge

Previous work on complementarities has provided clear
evidence that adding an R&D project to an already
existing stock of R&D has a higher incremental effect
on innovation than adding an R&D project in isolation
(Milgrom & Roberts, 1990). Going one step further, we
analyze whether the size of the existing stock of
knowledge matters for achieving these
complementarities. Intuitively, one could imagine that a
critical mass of relevant knowledge must be achieved
in order to truly benefit from complementarities. In
order to test whether this is indeed the case we
categorized projects as either belonging to a large
disease area group, (i.e. containing 10 projects or more
per firm), to a medium sized disease area group
(containing 2 to 9 projects within the same disease area
per firm), or as focusing on a (nearly) isolated disecase
area. In the latter category success probabilities are not
caused by complementarities. Based on the actual
distribution of projects over disease areas by our set of

12 Interestingly, grouping based on therapeutic area
appears to have a significant negative effect on success
probabilities. It might be the case that on the higher
aggregation level that therapeutical area represent,
competition outweighs learning effects.



firms in figure 3 we chose the boundary between large
and medium sized groups.

[insert figure 3]

Figure 3 reveals that the largest R&D spending
pharmaceutical firms invest 46 percent of their total
research projects in disease areas with on average 10
projects or more (within the 2 largest disease areas). If
one can speak of a critical mass of knowledge that
drives complementarities, we expect the boundaries to
be around 10 or more projects?.

Table 2 shows the binomial Logit regression results on
the effect of the group size to which a project belongs
on the probability that the project reaches clinical
testing.

[insert table 2]

In order to exclude any effect of either firm
heterogeneity or effects that are specific for any disease
area, we added firm dummies and disease area
dummies next to the usual project characteristics as
control variables. To keep our results readable, we used
a stepwise selection method for our variables with entry
testing based on the significance of the score statistic,
and removal testing based on the probability of a
likelihood-ratio statistic based on the maximum partial
likelihood estimates. Our main variable of interest is
LARGE, which is offset against our base variable
MEDIUM. As table 2 reveals, the variable LARGE is
significant at the 10 percent level which indicates that
projects active in a disease area where at least 10 other
projects are running are more likely to reach clinical
testing compared to projects in a disease area where
only 2 to 9 similar projects are running. This finding
confirms that projects in which a firm has built a
critical mass of disease knowledge have a higher
marginal return to performance than projects in which a
firm has not built such a critical mass. More generally,
complementarities between research projects arise once
a firm has built a critical mass of knowledge in a
similar knowledge domain.

However, one could argue that there is a critical danger
of endogeneity driving our results i.e., projects do not
become more successful because of complementarity
effects, but the management of a firm puts its ‘golden
eggs’ in one basket, namely in its main disease areas.
This would imply that the expected success of certain
projects drives management to focus their attention on
these projects and create a large number of similar
projects around these ‘golden eggs’. To test whether
this is the case, we analyze the effect of each firm’s two
main disease areas' on the success probabilities of
projects in these DA’s. Table 3 shows the results of this
test, whereby we replicated the test on size effects
(table 2) while interchanging the categories LARGE,

'3 We also explored shifting the boundaries to 9 or
more projects and to 12 or more projects.

14 Again, we chose to analyze a firms two main DA’s
since these represent 46 % of all research projects,
while the third largest disease areas and beyond are
strongly decreasing their contribution to the firms
research portfolio (see figure 3).

MEDIUM, SMALL with the categories DA2largest and
OTHER (reference category)".

[Insert table 3]

DA2largest measures whether a project is part of a
firms two main disease areas or not. As becomes clear
in table 3, projects that belong to one of the firm’s two
most important disease areas does not increase their
probability of reaching clinical testing. Moreover, there
seems to be a negative effect from being part of a
firm’s 2 main disease areas. This effect might be
caused by the fact that the firms in our sample differ
with respect to their R&D investment strategy. While
some firms choose (or are able) to built a critical mass
in a few disease areas, other firms rather spread their
R&D projects over different disease areas. These
strategy differences become clear when looking at
figure 3. The number of projects that form a firm’s 2
largest disease areas range from 2 to 37 projects.
Interestingly, the strategy of spreading projects over
different disease areas, referred to as risk
diversification strategies, is appearing to be paying off
as well. Although this study investigates
complementarity effects among projects, the highly
significant positive effect of nearly isolated projects
(SMALL) in table 2 raises our suspicion that aiming for
complementarities by building a critical mass of disease
knowledge is not the only rewarding strategy.

5.3 How do complementarities arise between
internal and external projects?

So far, we have found that complementarities arise
from grouping a relatively large amount of research
projects around a disease area. As a next step, we focus
on these large disease area groups to find out how the
ratio of internal R&D and external R&D affects
complementarities among internal projects and
externally sourced projects separately'®. The ratio
between internal and external R&D has been
surprisingly little discussed within the literature on
absorptive capacity. We argue however that it is a
fundamental question since the capacity to absorb
larger amounts of external information must depend
greatly on a larger internal capacity to absorb this
information. To some extend the work of Lane and
Lubatkin (1998) recognizes the importance of this ratio
by focusing on relative absorptive capacity. However,
they do so at the level of the dyad (i.e. a relation

'3 To prevent our main variable of interest DA2largest
to be excluded from the results based on restricted entry
testing used in table 2, we unconditionally let the
variable DA2largest and the BIOTECH,
FORMULATION and EXTERNAL variables enter our
equation.

18 By reducing our sample to projects in large disease
areas we are unable to control for firm-, and disease
fixed effects. This is due to the fact that only few firms
are able to create a large number of projects in a few
disease areas (e.g. anticancer and infection).



between internal R&D and one externally sourced
project).

Once the ratio of internal versus external projects that
generates complementarities is determined, we can test
whether external projects or internal projects are most
responsible for the increased success probabilities. In
this part of the analysis we use a subsample of our data,
namely only projects belonging to a firm’s large
disease area (10 or more similar projects).

A Firm’s internal / external R&D ratio for
large disease areas

Figure 4 below plots the number of projects that firms
run in large disease areas at different internal / external
ratios.

[insert figure4]

Based on the above plot we divided projects as either
belonging to a disease area with few external projects
and many internal projects (ratio externals 20/80 or
less) or vice versa (ratio externals 20/80 or more)'.
Dividing our projects into these to categories allows us
to test if projects perform differently in each category.
If they do, we can test whether internal projects benefit
from a specific internal/external ratio or whether
external projects benefit from this ratio. Projects in the
‘poor performing’ category serve as our benchmark.
The results of these tests are displayed in table 4.

[insert table 4]

In table 4, the variable FEWEXTERNALS shows that
projects in a disease area with an external ratio of 20/80
or less perform significantly better than projects in a
disease area with a higher externals ratio. While this
variable does not distinguish among internal and
external projects, the addition of our interaction term
(FEWEXTERNALS by EXTERNALS) controls for the
(slightly negative) effect that external R&D projects
have in the disease areas with a low external ratio. To
put it differently, the higher performance of projects in
DAs with low externals ratio is mainly attributable to
the improved performance of internal projects. To
clarify this point we add a fifth table where we only
consider the subsample of internal projects in large
disease areas.

[insert table 5]

Here, in table 5 the variable (INTERNAL SUCCESS)
indicates the performance of internal projects in large
disease areas with a low external ratio in comparison to
other internal projects in large disease areas. The results
confirm the findings displayed in table 4, that internal
projects perform better if they are part of a large
disease area with few externally sourced projects
involved.

'7 Obviously this choice is somewhat arbitrary. We
explored different ratios and found this division to be
discriminating our success probabilities.

6. Conclusions

For more than a decade firms in research driven
environments such as the pharmaceutical industry,
experience an increased pressure on R&D due to
decreased R&D productivity and approaching patent
expirations (Drews, 2001). In response to this, firms are
exploring alternative ways to organize their R&D
portfolio. While traditionally early stage R&D has been
conducted mainly inside the firm’s own R&D
laboratories, the last decade has brought forward a huge
increase in R&D collaborations with market based
firms at all stages of the drug development process.
This raises the question whether the make-or-buy
decision of the firm should be replaced by a make-and-
buy decision of the firm. The answer depends crucially
on the extend to which internal R&D (make) and
externally sourced R&D (buy) can be complementary,
i.e. whether performing internal R&D in combination
with external R&D generates higher marginal
performance than only internal or only external R&D.
In theory, complementarity between internal and
external R&D exists if a firm has built a sufficient stock
of relevant internal knoweldge to effectively absorp
external knoweldge (Cohen & Levinthal, 1989). Our
study is the first empirical work that has investigated
the conditions for complementarity to arise, and the
process through which it occurrs. More specifically, we
examined what ‘type’ of knowledge is relevant for
complementarity, how much of this knowledge is
sufficient, and lastly we examined Aow this knoweldge
flows between internal and externally sourced R&D.
As it turns out, large pharmaceutical firms can achieve
higher marginal returns on their R&D projects, if they
group a relatively large number of projects (more than
10) around a specific disease area. By focussing on a
specific disease area firms can develop deep in-house
expertise, attract the best talent, and be a preferred
partner for deal-opportunities outside the firm.
Moreover, we conclude that if no more than 20 percent
of these projects are externally sourced,
complementarity effects are highest. This is caused by
the fact that internal projects perform better when the
number of externally sourced projects is relatively low.
The reason for this might be that knowledge can only
be transferred from external projects to internal projects
if the same expert scientists are involved in both
internal and external partners work. This would
naturally limit the number of externally sourced
projects. This interpretation is in line with the notion
that knowledge required for pharmaceutical drug
discovery is highly tacit and embedded in the scientists
involved, which makes transfer of this knowledge
between people leave alone projects difficult.

7. References



Abramovsky L., R. Harrison and H. Simpson (2007).
University Research and the Location of Business
R&D, The Economic Journal, 117 (519) 114-141.

Arora, A. and A. Gambardella, (1990).
Complementarity and external linkages: the strategy of
large firms in biotechnology. Journal of Industrial
Economics 38.361-379.

Arora, A. and A. Gambardella (1994). Evaluating
technological information and utilizing it: Scientific
knowledge, technological capability and external
linkages in biotechnology.

Journal of Economic Behavior and Organization
24(1) 91-114.

Booth, B., and R. Zemmel (2004). Prospects for
productivity. Nature Reviews Drug Discovery 3 451-
457.

Cassiman, B., and R. Veugelers. (2006) In search of
complementarity in the innovation strategy: Internal
R&D and external knowledge acquisition. Management
Science 52 (1) 68-82.

Coase, R. (1937). The Nature of the Firm.
Economica 4(16) 386-405.

Cohen, W., and D. Levinthal, (1989). Innovation and
learning: the two faces of R&D. The Economic Journal
99 569-596.

DiMasi J. (2001). Risks in New Drug Development:
Approval success Rates for Investigational Drugs.
Clinical Pharmacology & Therapeutics. May 297-307.

Drews, J. (2003). Strategic trends in the drug
industry. Drug Discovery Today. 8 (9) 411-420.

Erickson, D. (2003) Wanted: drug hunters. In Vivo
45.

Freeman, C. (1991). Networks of innovators: a
synthesis of research issues. Research Policy 20(5)
499-514.

Gambardella, A. (1992). Competitive advantages
from in-house scientific research: The US
pharmaceutical industry in the 1980s. Research Policy
21 391-407.

Henderson R, Cockburn 1. (1996). Scale, scope, and
spillovers: The determinants of research productivity in
drug discovery. RAND Journal of Economics. 27 32-
59.

Lane, P. J. and M. Lubatkin (1998). Relative
absorptive capacity and interorganizational learning.
Strategic Management Journal 19 461-477.

Milgrom, P. and J. Roberts (1990). The Economics
of Modern Manufacturing: Technology, Strategy and

Organization. American Economic Review 80(3) 511-
528.

Nadler, D., and Michael Tushman. (1980). A Model
for Diagnosing Organizational Behavior.
Organizational Dynamics 9(2) 35-51.

Nelson, R.R., and S.G. Winter (1974). Neoclassical
vs Evolutionary Theories of Economic Growth:
Critique and Prospectus. Economic Journal, 84 886-
905.

Phelps, C. (2003) Technological exploration: A
longitudinal study of the role of recombinatory search
and social capital in alliance networks. Dissertation
New York University, Graduate School of Business
Administration.

Phlippen, S. & G.A. van der Knaap (2007). When
Clusters Become Networks. Tinbergen Institute
Discussion Paper No. 2007-100/3

Pisano PG. (1990). The R&D Boundaries of the
Firm: An Empirical Analysis. Administrative Science
Quarterly 35. 153-176.

Porter, M.E. (1980) "Competitive Strategy", The
Free Press, New York, 1980

Van den Bosch, F. H. J, HW. Volverda & M de
Boer. (1999) Coevolution of Firm Absorptive Capacity
and Knowledge Environment: Organizational Forms
and Combinative Capabilities. Organization Science.
10(5) 551 - 568.

Veugelers, R. (1997) Internal R&D Expenditures
and External Technology Sourcing. Research Policy,
Vol. 26(3). 303-315.

Zahra, S. A. and G. George (2002). Absorptive
capacity: A review, reconcepualisation, and extension.
Academy of Management Review 27(2) 185-203.



10

Figure 1. - Empirical strategy

Select big pharma
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drug (FORMULATION)
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— Unknown if no info for 1- INFECTION)
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characteristics to each project:

— Size of group* (SIZE)

— Share of external projects

in group
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regression analysis define
which group-, and project
characteristics have higher
probability of success

* Number of projects that belong to same disease area (DASIZE), target (TARGETSIZE), therapeutic area (TASIZE) or pharmacological
(PHARMACOSIZE) activity

** All stages of preclinical investigation including discovery, research, lead optimization.

*** Following Phelps (2003)5 we assume a project duration of three years. As a result, all projects that started between 2000 and 2002 make

up the 2002 research portfolio.

Figure 2. — Individual project characteri
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Table 1. — Identifying relevant knowledge areas: effect of grouping by therapeutic area, pharmacological activity,
disease area, and target on a projects success probability.

B S.E. Sig. Exp(B)

1S(t:)P BIOTECH 724 234 002 2.064
FORMULATION 1.129%* 378 .003 3.092
EXTERNAL .360* 195 .065 1.434
Tasize -.049 016 .003 .952
PharmacoclusterSize -.015 011 168 .985
Dasize 034 017 044 1.035
TARGETSsize .089 .071 .209 1.093
Daexternals -.082 .050 102 921
Constant -1.008 164 .000 365

a Variable(s) entered on step 1: BIOTECH, FORMULATION, EXTERNAL, TAsize, PharmacoclusterSize, DAsize,
TARGETSsize, DAexternals.
Notes: coefficients significant at 1%***, 5%**, 10%*

Figure 3. — Number of projects per disease area.
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Table 2. — Identifying a sufficient stock of knowledge: the effect of the group size to which a project belongs on
its success probability.

B S.E. Sig. Exp(B)

1S(t:)p BIOTECH 524 198 008 1.689
FORMULATION 1 227 363 .001 3.409
EXTERNAL 375 164 .023 1.454
LARGE 367 211 .082 1.444
SMALL 1.020 181 .000 2.773
INFECTION 461 230 .045 1.585
Constant -1.815 145 .000 .163

g(tg)p BIOTECH 518+ 199 009 1.679
FORMULATION 4 pog++ 363 .001 3.417
EXTERNAL 375* 165 .023 1.456
LARGE 371* 211 .079 1.448
SMALL 1.035*** 182 .000 2.814
Astrazeneca B38** 318 .045 1.893
INFECTION 495** 230 .032 1.640
Constant

-1.862 148 .000 155

a Variable(s) entered on step 1: INFECTION.

b Variable(s) entered on step 2: Astrazeneca.
Notes: coefficients significant at 1%***, 5%**, 10%*
Notes2: N = 977.

Table 3. — Effect of projects belonging to a firm’s 2 largest disease areas on success probabiltities.

B S.E. Sig. Exp(B)

13::)9 BIOTECH 510 221 021 1.665
FORMULATION 1 206 374 .001 3.407
EXTERNAL 243 183 183 1.276
DA2largest -311 A70 .068 733
Wyeth 703 .336 .036 2.020
Constant -1.046 124 .000 .351

g(tte);) BIOTECH 510** 221 021 1.665
FORMULATION 1 245++ 375 .001 3.472
EXTERNAL 237 183 196 1.268
DAZlargest -.333* A71 .052 717
GSK 548* 278 .049 1.730
Wyeth 759 338 025 2.136
Constant

-1.089 126 .000 336

a Variable(s) entered on step 1: Wyeth.

b Variable(s) entered on step 2: GSK.

Notes: coefficients significant at 1%***, 5%**, 10%*
Notes2: N = 977.
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Table 5. - Effect of (internal) projects belonging to a large disease area with less than 20% external R&D projects
on success probability. N =136

B S.E. Sig. Exp(B)

?{i)" BIOTECH 1.416%* 508 005 4.120
FORMULATION -20.317  40192.970 1.000 .000
EXTERNAL 1.022* 561 .069 2.778
FEWEXTERNALS 1.040** 493 .035 2.829
EXTERNAL by
FEWEXTERNALS -1.071 1.062 313 343
Constant -1.907 .391 .000 .148

a Variable(s) entered on step 1: BIOTECH, FORMULATION, EXTERNAL, FEWEXTERNALS, EXTERNAL *
FEWEXTERNALS .
Notes: coefficients significant at 1%***, 5%**, 10%*

Table 6. - Internal project performance in large clusters with few externals compared to other internal projects.

B S.E. Sig. Exp(B)
1S(t:;) BIOTECH 923+ 418 027 2516
FORMULATION .380 1.182 748 1.463
INTERNAL_SUCC
ESS 581 353 100 1.788
Constant -1.479 .254 .000 228

a Variable(s) entered on step 1: BIOTECH, FORMULATION, DA _large_extcat2_internalll.
Notes: coefficients significant at 1%***, 5%**, 10%*
Notes2: N = 182





