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Abstract

When analysing the volatility related to high frequency financial data, mostly non-
parametric approaches based on realised or bipower variation are applied. This article
instead starts from a continuous time diffusion model and derives a parametric analog at
high frequency for it, allowing simultaneously for microstructure effects, jumps, missing
observations and stochastic volatility.

Estimation of the model delivers measures of daily variation outperforming their non-
parametric counterparts. Both with simulated and actual exchange rate data, the fea-
sibility of this novel approach is shown. The parametric setting is used to estimate the
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1 Introduction

1.1 Motivation

With the advent of available intra-day financial time series data, interest in analysing these

high frequency series sparked over the last decade. These high frequency time series offer the

opportunity to study in more detail the evolution of volatility over time, improving on earlier

variance estimates.

Even on a daily (or lower) frequency, time varying volatility is a major characteristic of

financial time series. Moving to hourly or higher frequencies, several other important aspects

arise. For intra-day data, characteristic findings include foremost, the time varying volatility,

of a stochastic nature. Apart from that, intra-daily there is also time varying volatility, of a

deterministic, seasonal, nature, related to time-of-day effects and opening/closing of markets.

There exists micro-structure noise on the price process, and further unexplained apparent

jumps, which are both especially observed with higher frequency data. Finally, for higher

frequencies of data one can usually not escape the non-equal time spacing between successive

observations, as markets are closed over weekends or holidays, or no quotes are available occur

for thinly traded stocks and assets.

Treatment of this full set of characteristics of financial data occurs in a strand of literature

which looks at realised variance, integrated variance, and related concepts (see for an overview

the articles in Shephard (2005); more details in subsequent sections). This leads to the

development of non-parametric methods to estimate the daily (integrated) volatility, and to

a test for the occurrence of jumps within a specific day.

Though jumps in financial series are often not immediately explicable, at times they might

also seem to be connected with announcements made on macro-variables, like on the future

of the interest rate or the state of the unemployment. The precise link between such macro-

announcements and the probability of a jump cannot be investigated in a non-parametric

setting. The ultimate holy grail of this article will be to start with a parametric setting which,

in the end, would allow for inclusion of explanatory variables in the jump process. This in

turn would allow measuring the effectiveness and importance of certain announcements, with

respect to the probability of a jump in the series and the related jump size.

For this purpose, a parametric technique is applied. After a literature overview, in Section
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1.2, a diffusion model and its discretisation at high frequency is presented in Section 2, together

with several concepts from the non-parametric approach which can serve as a baseline for

comparison.

After a first look at the data in Section 3, the implementation of the Markov chain is

discussed in Section 4, with a simulation exercise to investigate the properties of the algorithm

in Section 5.1. An application on Euro/U.S. Dollar exchange rates follows in Section 6. Section

7 summarises and outlines the range of possibilities to continue this research.

1.2 Literature overview

The literature related to this article is large, and growing at a high rate, especially during the

last decade. Without any intention of giving a complete overview, this section identifies the

most important strands of literature, and how they are interrelated. It ends with a description

of the contribution of this article to the literature.

Clearly, one major topic is stochastic volatility (SV). As an alternative to the generalised

autoregressive conditional heteroskedasticity (GARCH) approach of modelling time varying

volatility, allowing a separate source of uncertainty, it was introduced into the econometrics

literature by Harvey et al. (1994) and Jacquier et al. (1994), though the ideas can be traced

back to an article by Taylor (1982). The GARCH approach, including jumps, is presented in

Drost et al. (1998), but in its original form dates back to Engle (1982) and Bollerslev (1986).

The comparison between GARCH and SV is made in Kim et al. (1998), and also in Bos

et al. (2000). An overview over the history of the SV model, and present research, is given in

Shephard (2005).

Most stochastic volatility models are set up with the daily (or lower) frequency in mind.

For higher frequencies, very quickly the switch to continuous time diffusion models is made.

And if a price process can be considered as a continuous time process, observed in discrete

(preferably evenly spaced) time points, then measures like realised volatility or bipower vari-

ation can be used to estimate the daily stochastic volatility.

Both Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002) use intra-day

data to help in estimating SV. Other articles by the these and many other authors (Andersen

et al., 2002; Barndorff-Nielsen and Shephard, 2004b, 2006a,b) extend the knowledge on using

high frequency returns for calculating integrated variance on a daily basis, in a ‘model-free’
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manner.

One important aspect of using continuous time models, and their approximation through

realised variance-type measures is the effect of microstructure noise or the occurrence of jumps

on the estimates. Apart from the previously mentioned articles, Aı̈t-Sahalia et al. (2005a)

and Aı̈t-Sahalia et al. (2005b) discuss the possible effects of microstructure noise on estimates

of (integrated) volatility. Extracting the jumps in a non-parametric fashion is the topic of

articles by Andersen et al. (2007), Barndorff-Nielsen and Shephard (2004b, 2006a), Haung

and Tauchen (2005), or Lee and Mykland (2008), among many others. Eraker et al. (2003) use

a discretisation of the diffusion model to a daily frequency, allowing for jumps and stochastic

volatility, in a parametric fashion.

Parametric estimation of intra-day time series is seldomly done. Elerian et al. (2001)

and Andersen et al. (2002) use simulated intra-day data to estimate daily returns of either

exchange rates or the S&P500 index. The model is a discretisation of a diffusion process with

SV, while the latter paper extends the model to include jumps. The first authors apply a

Bayesian simulation method, in the second paper a simulated method of moments approach

is used. The Bayesian approach is described in more detail in Jacquier et al. (1994) and

Chib et al. (2002, 2006), and is also the methodology used in this article. Alternatively, one

can use simulated maximum likelihood using importance sampling, as e.g. in Sandmann and

Koopman (1998). All these articles effectively estimate daily SV models, not using intra-day

information.

An exception to the rule that SV models do not use intra-day information is the article by

Koopman et al. (2005), where the intra-day realised variance is used as an explanatory variable

for estimating a daily SV model, so the intra-day information is used in an indirect manner.

In Jungbacker and Koopman (2006) one day of second-by-second data is estimated at a time

using a model-based approach including microstructure noise and stochastic volatility. No

link is made between subsequent days. More purely intra-day and parametric is Rydberg and

Shephard (2003), who model a larger sample of tick-by-tick data. Here the price process is

modelled through the (discrete) steps up or down taken at each trade. A different approach

is taken by Aı̈t-Sahalia and Kimmel (2007), who use either an implied volatility proxy or

option prices implying a volatility estimate through a pricing formula, to get to a closed form

maximum likelihood estimator.

4



Table 1 about here

The interest in these diffusion or stochastic volatility models is driven by the interest in

measuring, with as much precision as possible, the volatility in the market, for risk man-

agement, pricing options, monetary policy evaluation and making, and many other causes.

These models also improve our understanding of the price process, and the microstructure

foundations of it. Lyons (2001) discusses this approach to foreign exchange rate modelling.

With the advent of high frequency data sets and the growth in computational possibilities,

we can model and test ever finer structures. A good application of this microstructure ap-

proach is found in Andersen et al. (2003). On a daily basis, within a multivariate setting, the

effect of Central Bank interventions is measured parametrically in Beine et al. (2007); this is

exactly the type of analysis which could be done with more detail if an intra-day evaluation

would be possible. As an example, the application in this article revisits a finding in Ranaldo

(2007), who finds indications of a time-of-day pattern in intra-day exchange rate returns using

non-parametric methods.

Table 1 recaps the discussion of this section in a structured manner: It indicates for a

subset of the articles mentioned here whether the approach can be called parametric, if intra-

day data is used for estimation, whether the underlying model is a diffusion model, if there is

attention for microstructure effects, if jumps are allowed in the model, and if there is explicit

modelling of a stochastic volatility structure. A ‘+’ indicates a ‘yes’, a ‘-’ indicates ‘no’, and

a ‘±’ stands for a ‘sometimes/partly’.

What is missing from the table is a row for an article taking the parametric approach

for a high frequency dataset. In such a case, the model is best derived from a continuous

time diffusion model. Any application should then allow for both the possibility of jumps,

and for some microstructure noise, together with a flexible specification for the volatility of

the process. And that is exactly what the contribution of this article will be: It will look

look into the possibility of putting an entry in the table with only ‘+’ everywhere. For this

purpose, the next section will introduce the diffusion model, and its operationalisation in

discrete time (Sections 2.1–2.3), comparing it to daily variance measures in Section 2.4. After

an intermediate section on the evidence of jumps in exchange rate data, and the thickness

of the tails of the return distribution in Section 3, implementation of the model is discussed

in Section 4. Both a simulation exercise and an application follow in Sections 5.1–6, with
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conclusions in Section 7.

2 Theory of diffusion processes and related literature

2.1 Jump-SV-Diffusion

A log-price process of a financial asset can be modelled through a diffusion, as is done in e.g.

Barndorff-Nielsen and Shephard (2004a) and Andersen et al. (2007) through

p(t) = p∗(t) + ǫ(t), ǫ(t) ∼ i.i.d.(0, σ2
ǫ ), (1)

dp∗(t) = µ(t)dt + σ(t)dW1(t) + κ(t)dq(t), 0 ≤ t ≤ T. (2)

Such a diffusion process states that

• the underlying price p∗(t) is observed with error ǫ(t) as p(t);

• the underlying price evolves according to a trend component µ(t), often fixed at zero

for simplicity. In Section 2.3, µ(t) introduces deterministic trend effects into the model;

• plus a volatility element σ(t)dW1(t), with Brownian motion W1(t); instantaneous volatil-

ity is σ(t), which may contain intra-day or intraweek seasonality;

• plus a jump component; q(t) is a counting process with intensity λ(t), and κ(t) ≡
p∗(t) − p∗(t−) the corresponding instantaneous jump size.

In the aforementioned articles, the volatility process σ(t) is only restricted to be a strictly

positive càdlàg sequence; that is all that is necessary in order to derive the integrated daily

variance.

As here the object of interest is the full volatility sequence, also intra-day, more assump-

tions on the process are necessary. Here we assume an independent diffusion for the log-

volatility h(t), combined with a separate deterministic mean process g(t) describing intra-day

or intraweek seasonality of the variance:

log σ2(t) = h(t) + g(t), (3)

dh(t) = µh(h(t); θ)dt + σξdW2(t) (4)
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with W2(t) a second Brownian motion. The variance of the volatility diffusion, σ2
ξ , is assumed

constant, and for the moment the price, volatility and jump processes are taken to be inde-

pendent apart from the direct link between them in the price diffusion. At a later stage, this

assumption can be relaxed further.

2.2 Discretisation through Euler expansion

To operationalise the model, the diffusion has to be linked to the (discrete) observations.

Given observations pi at times Tn = {0 = t1, .., tn = T} with time distances δi = ti+1 − ti

between observations, an Euler approximation of the process gives

pi = p∗i + ǫi, (5)

p∗i+1 − p∗i = µ(pi; θ) + si

√

δiηi +

qi
∑

j=1

κi,j , (6)

log s2
i = hi + gi, (7)

hi+1 − hi = µh(hi; θ)δi + σξ

√

δiξi (8)

with

ǫi, ηi, ξi ∼ i.i.d.(0, 1),

κi,j ∼ N (0, σ2
κ), (9)

qi ∼ Po(δiλ). (10)

The choice of density for κi,j for jump j in time interval [ti, ti + δi] is an approximation to

the density proposed in e.g. Andersen et al. (2002), who use

log(1 + κi,j) ∼ N (−0.5σ2
κ, σ2

κ). (11)

For small variances, densities (9) and (11) correspond as Chib et al. (2002) show, while the

normal specification for κ in (9) is more convenient computationally.

The number of jumps per time period is specified as a Poisson process. In practice

not more than one jump is expected within a short time interval. Hence in most cases

specifying a Bernoulli density with probability δiλ is sufficient, and considerably simpler in

implementation.
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Aı̈t-Sahalia (2002) discusses other discretisations for diffusion processes, which are more

precise and quicker than the Euler expansion. However, these methods are limited to a

diffusion process without micro-structure noise or stochastic volatility. Secondly, as in the

application the frequency of the data will be high, the approximation error on the volatility

process can be expected to be relatively small.

2.3 Refinements and final specification

The above model is still missing the definitions of the drift components, and the specific

distributional choices of ǫi, ηi, ξi. To start with the last, take

ǫi, ξi ∼ i.i.d. N (0, 1),

ηi ∼ i.i.d.

√

ν − 2

ν
tν .

A fully Gaussian choice would allow for the model to be cast into a (non-linear) state space

framework (Harvey, 1989; Durbin and Koopman, 2001), which lends itself to straightforward

implementation of differing time distances δi. However, as a generalisation a Student-t density

(standardised to unit variance) is implemented for the transition equation. This delivers extra

flexibility as returns might display a heavier tail than the normal, without these returns being

so extreme that they should count as true jumps.

From the original (Gaussian) diffusion model, a Student-t density in cannot be derived

through discretisation. The introduction of the heavy tails here is done on pragmatic grounds.

In the application it will be found that Gaussian densities throughout the model are not

sufficient to distinguish ‘large’ jumps from more standard behaviour of the price process.

One could consider the Student-t process however as a high frequency jump component with

relatively low variance, and consider the jump component κi as a low-frequency high variance

jump effect.

As the fully (conditionally) Gaussian state space model is more convenient for imple-

menting the model, the unobserved states can be augmented by an inverse Gamma random

variable zi. This zi is used as the standard deviation of the disturbance ηi in the transition
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equation, as in

zi ∼ IG-1

(

αz =
ν

2
, βz =

2

ν − 2

)

,

ηi|zi ∼ N (0, z2
i ).

Bauwens et al. (1999, Theorem A.7) show how this corresponds (unconditionally) to the

rescaled Student-t density for ηi as defined before.

Chib et al. (2002) extend a stochastic volatility model to allow for Student-t errors and

jumps, though only at a daily frequency. Their findings indicate that, on this daily frequency,

the inclusion of Student-t errors obviates the need for the inclusion of jumps, either with or

without the Student-t disturbances. On the intra-daily frequency used here, it may become

even harder to clearly distinguish between the occurrence of a jump or an observation from

the heavy tail of a Student density.

The first drift component, of the evolution of prices, is simple: In the applied section atten-

tion is paid to exchange rates, and the log-exchange rate is not supposed to drift (disregarding

any interest rate disparities), so a logical choice would be to take

µ(pi; θ) ≡ 0.

To test for an intra-day deterministic drift in exchange rates, one could specify alternatively

µ(pi; θ) ≡ Xiβ (12)

with Xi a vector of explanatory variables measuring the trending effect.

For the volatility specification, a reasonable drift could be

µh(hi; θ) ≡ (φ − 1)hi (13)

which for time difference δi ≡ 1 leads to

hi+1 = φhi + σξξi, (8’)

the standard AR(1) specification for the stochastic volatility equation.

For general time difference δi, the Euler expansion gives

hi+1 =

(

φ − 1 +
1

δi

)

hi + σξ

√

δiξi, (8”)
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see Andersen et al. (2004, Section 3.1.2). This compares with the multi-step AR(1) equation

of

hi+1 = φδhi + σξ

√

√

√

√

δi−1
∑

j=0

φ2j ξi, (8”’)

which is a refinement of the Euler approximation along the lines of the augmentation of the

grid in Elerian et al. (2001).

For the deterministic part of volatility, gi ≡ Miγ, a periodic spline (Poirier, 1973; Stoer

and Bulirsch, 1991) is taken, allowing smooth variation of the volatility throughout the week.

The full model, combining all previous equations and the final notation, is repeated below.

For clarity, each equation is labelled with a term indicating the concept to which the equation

relates; these terms will be used extensively in later sections.

pi = log(Pi) = p∗i + ǫi, ǫi ∼ N (0, σ2
ǫ ), [Observations] (14)

p∗i+1 = p∗i + bi + κi + σiηi, ηi ∼ N (0, z2
i ), [Transition] (15)

σ2
i ≡ δi exp(hi + gi), zi ∼ IG-1

(

αz =
ν

2
, βz =

2

ν − 2

)

, [Variance] (16)

κi ∼ N (0, qiσ
2
κ), qi ∼ Po(δiλ), [Jumps] (17)

bi = Xiβ, gi = Miγ, [Trend & Season] (18)

hi+1 = φδihi + ξi, ξi ∼ N



0, σ2
ξ

δi−1
∑

j=0

φ2j



 , [Volatility] (19)

for N observations, time difference δi = ti+1 − ti between observations, and i = 1, . . . ,N .

Mi is one row of matrix M containing the periodic spline. M is of size N × k, with k the

number of knots in the spline. Similarly, Xi is a row of matrix X with explanatory variables

governing the trending behaviour of the exchange rate. Estimation is done using a Markov

chain Monte Carlo (MCMC) method. Details are to be found in Section 4.

2.4 Daily variation

In financial markets, the current daily variation is an important input for gauging the risk

of portfolios. Though an estimate from a GARCH or SV model on daily data can be used

as a first impression of the variation at the daily level, the introduction of intra-day data

in the measures of non-parametric realised variation, led to a large increase in precision of
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the estimates. This theory was developed concurrently and independently in Andersen and

Bollerslev (1998), Comte and Renault (1998) and Barndorff-Nielsen and Shephard (2001).

If there are a maximum of D observations within a day, such that [ti, ti+D] is an interval

of 24 hours, assuming that there is no microstructure noise, then

[r, r]ti =

∫ ti+D

ti

σ2(s)ds +
∑

ti<s≤ti+D

κ2(s)

is the quadratic variation of the price process, consisting of the sum of the integrated variance

and the squared jumps occurring during the day.1 This

Using realised variation (RV), the quadratic variation at the day starting at ti, over D

observations, can be estimated as

RVti(D) =

D−1
∑

j=0

r2
i+j →

∫ ti+D

ti

σ2(s)ds +
∑

ti<s≤ti+D

κ2(s),

whereas the bipower variation (BPV) can be used to estimate only the integrated variance,

excluding the jump process:

BPVti(D) =
D−1
∑

j=1

|ri+j||ri+j−1|/µ2 →
∫ ti+D

ti

σ2(s)ds, µ ≡
√

2/π.

Hence, the integrated/summed quadratic jump process can be estimated as the difference

between the RV and the BPV, following Barndorff-Nielsen and Shephard (2004b) to get rid

of negative squared jumps as

Jti(D) ≡ max (RVti(D) − BPVti(D), 0) . (20)

To test whether a jump is significant, Barndorff-Nielsen and Shephard (2006a, BN-S for short)

use (among others) a test statistic which they call the feasible linear jump statistic Ĝti(D),

Ĝti(D) =
BPVti(D) − RVti(D)√

δθQPV
→ N (0, 1), (21)

QPVti(D) =
1

δ

D−4
∑

j=4

|ri+j ||ri+j−1||ri+j−2||ri+j−3|/µ4 →
∫ ti+D

ti

σ4(s)ds,

with QPV the realised quadpower variation and θ ≡ π2/4 + π − 5.

1For simplicity of presentation, this section assumes that there are exactly D observations each day; if not,

the returns have to be scaled accordingly, with negative effects on the precision of the estimates of quadratic

variation.
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A second option to test for jumps is the statistic introduced by Lee and Mykland (2008,

L-M, with a small change in notation for consistency with previous results). This test adjusts

a return by an estimate of the instantaneous standard deviation, the latter calculated through

the square root of the average BPV over the previous D observations, as

Lti(D) =
ri

ŝi−1
, ŝ2

i−1 ≡ 1

D
BPVti−1

(D).

By using the BPV over D previous observations, the variance estimate is robust for jumps,

especially for a jump at time ti as this return itself is not included in the calculation of the

variance.

The statistic itself Lti(D), in the absence of jumps, follows a N (0, 1) distribution. It

enables one to test for jumps at each moment in the sample. To check whether a specific time

interval, say a day, contains a jump, a max statistic Lm
ti (D) is derived, with

Lm
ti (D) =

maxj∈[i,..,i+D−1] |Ltj (D)| − Cn

Sn

a∼ Gumbel(0, 1), (22)

Cn =
√

2 log D − log π + log log D

2
√

2 log D
, Sn =

1√
2 log D

.

The asymptotic density of the test statistic is the standard Extreme Value-I or Gumbel

density.

The theory of realised variation and bipower variation, and also the test of Lee and

Mykland (2008), assumes that the price process is observed without error from possible mi-

crostructure effects. Alternatively, the multiscale realised volatility measures developed by

Zhang et al. (2005) and Zhang (2006) allow for estimation of the integrated variance robust to

microstructure effects. These measures, however, do not explicitly take jumps into account.

Based on the model of Section 2.3, alternative estimators can be constructed integrating

directly over the estimated intra-day variances and jumps. The expected integrated model

variation is

IMVti(D) = E
D−1
∑

j=0

exp(hi+j + gi+j) ≈
1

S

S
∑

s=1

D−1
∑

j=0

exp(h
(s)
i+j + g

(s)
i+j)

where a posterior sample of size S is assumed. Likewise, the posterior variance of the IMV

can be evaluated, or other functions of the posterior density.

Such an IMV measure is directly comparable to the bipower variation, at least in theory.

Differences between the two are errors in the approximation of the BPV to the true inte-
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grated variance on the one hand (among them, the effect of microstructure noise), and model

misspecification and estimation errors on the part of the IMV measure.

3 Data description and evidence of jumps

In the next section the performance of the model is analysed using data on the 2005 Euro/US

Dollar exchange rate. Before moving to this analysis, this section takes a first look at the

characteristics of the data and the type of jumps the model might find.

The data was provided by DiskTrading, who constructed the 5-minute data from tick-by-

tick data. As observation at time t the price of the first trade in the 5-minute interval preceding

t is reported. The prices Pi are transformed into pi = 100 × log(Pi), with (percentage)

returns ri = pi+1 − pi. No further cleaning or transforming of the data has taken place. All

observations between 2005/1/1, 0:00h and 2005/12/31, 23:55h are taken, using GMT+1 as

the timing. This time period contains effectively 76,339 prices. No trading took place between

Saturday 0:00h and Sunday 21:45h.

Table 2 about here

The moments of the percentage returns are presented in Table 2. As usual with financial

data, there is virtually no mean return. There is some negative skewness, and a huge kur-

tosis, indicating the thick tails of the return distribution. Figure 1 presents the percentage

returns in the first panel. Several large returns are apparent. The usual shape of high versus

low volatility periods is less obvious from the return plot. The second panel displays the

autocorrelation of the squared returns. This panel clearly indicates the intra-day volatility

movement, with high correlation in volatility at the daily frequency. The last panel compares

the return distribution to the Student-t density. The QQ-plot indicates that for values in the

.1%-99.9% quantile of the returns (between -8.3 and 8.3 on the y-axis in the last panel) the

Student-t with ν = 3.5 degrees of freedom fits the data.

Figure 1 about here

Figure 2 about here

Figure 2 displays the exchange rate over the full year 2005, the month of January, the
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third week, and day 12/12, with increasing frequency (indicated between parentheses within

the graphs). What is clear from such a figure is that on a yearly basis using only daily data,

one hardly notices the missing data in the weekends and there are no apparent sudden shifts.

With data concerning one month, the missing weekends are starting to become a problem, as

the gaps are relatively large compared to the available information. One might wonder about

sudden shifts in the data, but they are not fully clear yet.

When a week of hourly data is used, one does notice a sharp increase on January 12, but

it cannot be judged clearly whether it was an increase over a number of hours or a sudden

jump. Only in the bottom right panel with intra-day data at the 5-minute frequency, it is

seen that in the interval from 14:30h-14:35h the exchange rate jumped suddenly by 0.7%.

Though a 0.7% increase sounds small, on a daily basis (multiplying by
√

288, to adapt for

the number of observations within a day) it would correspond to a sudden 12% increase in

exchange rate, which is considerable.

From the plot of the returns, and the QQ-plot of returns versus the Student-t density, it

was found that there could be many jumps in this data set. Applying the feasible jump test

statistic (20) or the version of Lee and Mykland (2008), (22), on the 5-minute data for the

above series, indeed leads to numerous jumps being detected. On a standard significance level

of α = 5%, the tests indicate between 43 and 86% of the days as containing (one or more)

jumps. Decreasing the significance level, even up to α = .005% still leads to 10–35% of days

rejecting the hypothesis of the absence of jumps. Table 3 presents an overview of significance

levels and rejections.

Table 3 about here

When studying these results on the jump test statistics, one should keep in mind that

these tests do not (explicitly) allow for microstructure effects. In the application below, the

goal is to study what a parametric approach can tell us about the possible jump process.

When the model is parametrised fully, the timing of the jumps comes out as a side-product

of the estimation procedure, and it would be possible to relate jumps to external effects like

announcements at a later stage.

2This date is chosen as having the largest 5-minute absolute return of all days in 2005
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4 Implementation of the Markov chain

In Section 2.3 the full parametric model of the log-price process is given in Equations (14)–

(19). Implementing a MCMC algorithm for this model is not straightforward. Several issues

arise when moving from daily data to high frequency data. This section describes first the

general approach, in Section 4.1, with further details on the initialisation in Section 4.2.

4.1 General procedure

The model referred to above is an unobserved components model (Harvey, 1989; Durbin and

Koopman, 2001), linking log-prices p to unobserved components p∗, q, κ, z and h (for the

underlying price, number of jumps, jump size, Student-t effect and stochastic volatility, re-

spectively), and parameters θ = (σǫ, σκ, λ, β, γ, φ, σh, ν), with the long-run standard deviation

σh ≡ σξ/
√

1 − φ2.

The unobserved components model is convenient in this situation as it is relatively straight-

forward to use in a situation with missing observations, or, according to the notation in (14)–

(19), when the time difference δi = ti+1 − ti between successive observations is not constant.

In the notation below, and in subsequent sections, dependence of the parameters or states on

this fixed vector δ of time differences, and likewise on the matrices X and M describing the

trend in mean and the periodic spline for the volatility, is suppressed for clarity.

The parameters are estimated using a Bayesian approach applying data augmentation

(Tanner and Wong, 1987; Gelfand and Smith, 1990) for the unobserved components p∗, q, κ, h

and z. Conditional on parameters β and γ, the trend b = Xβ and seasonality g = Mγ are

fixed, so these are not counted among the unobserved components.

In order to use a Bayesian method, prior densities for the parameters have to be specified.

For the parameters conjugate priors are taken as far as possible, choosing IG-1 densities for

the parameters σǫ, σκ and σh, normal for β, γ, and Gamma for the jump frequency parameter

λ. For φ, a Beta density is most logical, also to limit prior mass to the range [0, 1]. The

degrees-of-freedom parameter ν has to be larger than 2 for the variance to exist. The prior

density for ν − 2 is conveniently taken to be exponentially distributed.

Furthermore, the states h0 and p∗0 need initial distributions. The initial value of h0 is

taken to be distributed according to h0 ∼ N (0, σ2
h), its long-run distribution, whereas p∗0 is

initialised uninformatively as p∗0 ∼ N (0,K),K → ∞. The IG-1 density specified for z in
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Equation (16) can be considered its prior distribution. This distribution is combined with

the likelihood to derive the posterior density of z.

The full MCMC algorithm consists of the following steps:

i. Initialise states p∗, q, κ, h, z and parameters θ, see Section 4.2, and set the simulation

counter s = 0.

ii. Sample new states p∗, q, κ, z, h successively, using

(a) the simulation smoother (De Jong and Shephard, 1995; Durbin and Koopman,

2002) for p∗|p, q, κ, h, z, θ;

(b) a mixed continuous-discrete sampling step for drawing qi, κi, zi|hi,∇p∗i , θ for i =

1, . . . , N − 1, with ∇p∗i ≡ p∗i+1 − p∗i . Only few jumps can occur per time interval,

usually qi ∈ {0, 1}, though the implementation does allow for more jumps. See

below for further details;

(c) a Metropolis-Hastings (MH) step (Metropolis et al., 1953; Chib and Greenberg,

1995) for sampling hi|hi−1, hi+1,∇p∗i , qi, κi, zi, θ, again for i = 1, . . . ,N − 1, as in

Jacquier et al. (1994) and Kim et al. (1998).

iii. Sample new parameters θ, using the following substeps:

(a) Draw σǫ|p, p∗ from a IG-1 density;

(b) Sample γ|∇p∗, κ, h, z, β from its full conditional posterior. Take e as the vector of

residuals of the state transition equation (15). Then this posterior can be approx-

imated in a point γ̃ (e.g. the last sampled value of γ) by a normal density

pa(γ) ∼ N (µa,Σa)
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with

µa = −H−1(g−Hh∗), Σa = −H−1,

g ≡ ∂ logL(e; . . . )

∂γ

⌋

γ=γ̃

, H ≡ ∂2 logL(e; . . . )

∂γ2

⌋

γ=γ̃

,

logL(e; . . . ) = C − 1

2

∑

(

h + Mγ +
e2

z2
i δi exp(h + Mγ)

)

,

∂ logL(e; . . . )

∂γ
= −1

2
M ′

(

1 − e2

z2
i δi exp(h + Mγ)

)

,

∂2 logL(e; . . . )

∂γ∂γ′
= −1

2
M ′ diag

(

e2
i

z2
i δi exp(hi + Miγ)

)

M,

for e ≡ ∇p∗i − Xiβ − κi and some constant C. A short Metropolis-Hastings chain

is used to adapt for the difference between the approximate normal density pa(γ)

and the target density of γ;

(c) Sample β|p, κ, g, h, z from a Normal density;

(d) Sample λ|q, from a Gamma density;

(e) Draw σκ|q, κ, h, θ. This density is effectively IG-1, depending on the number and

size of the sampled jumps;

(f) Draw φ, σh conditionally on the standardised disturbances u of the SV process by

1. filtering

ui ≡
hi+1 − φδ

i hi

σi
,

σ2
i ≡ (1 − φ2)σ2

h

δi−1
∑

j=0

φ2j ,

to get the standardised disturbances u;

2. sampling φ, σh|p, p∗, u, q, σǫ, σκ, β, γ using a random walk MH step with a nor-

mal candidate density, conditional on those u;

3. inverting filter iii(f)1. to reconstruct the corresponding series of h|φ, σh, u,

adapting for the change in SV parameters.

See Bos and Shephard (2006) for details on the conditioning on the disturbances.

It is found that conditioning on h, as is normally done, does not lead to conver-

gence in high frequency/large sample applications, as the volatility process h is too

informative on the values of φ, σh, and the sampler mixes too slow if at all.
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(g) For ν, the posterior density is not of a known form. However, if the number of

observations in the sample is large, the posterior will be approximately normal, and

a simple random walk Metropolis-Hastings step with a normal candidate density

suffices;

iv. Save sampled parameters θ(s) = θ and possibly the states, increase s, and repeat from

ii. until sufficient parameter vectors are collected.

The general outline of the sampling scheme is not much different from earlier samplers in

e.g. Kim et al. (1998) or Chib et al. (2002), apart from the introduction of the jumps and

the unobserved underlying price process. What makes the true difference, however, is the

level of detail with which the data is modelled. In standard SV models the return sequence

immediately provides information on the volatility. Here the volatility sequence has to be

estimated as the volatility of the increments of an unobserved process, after extracting jumps

occurring very infrequently but at unobserved time periods. At the same time, one has to

take care to adequately handle variation of volatility within the week and within the day.

The increase in frequency from daily data to intra-day data at the 5 minute frequency

leads to a sample of around 75,000 observations for a full year of data. This implies that

standard samplers for the SV parameters φ, σh no longer converge. Here the transformation

from Bos and Shephard (2006) to condition on the SV disturbances is found to be essential.

In the above algorithm, it is not specified in detail how to sample jointly from qi, κi, zi.

How can the algorithm decide for one observation whether the return came far from the tail

of the Student-t density, or whether there has been a jump? And if there was a jump, what

size could it have been? If the model would be simplified to have normal disturbances, then

the size of the jump can be integrated out of the model, and the marginal density of ∇p∗|q is

p(∇p∗i |q, β) =

∫

κ
p(∇p∗i |qi, β, κ)π(κ)dκ = N (Xiβ, δi exp(hi + gi) + qiσ

2
κ).

The discrete distribution of qi|∇p∗i , hi, θ would be easily constructed from the above marginal

density and the prior π(qi).

A draw from this approximate distribution of qi|∇p∗i , hi, θ can be supplemented by a

draw from ki|qi,∇p∗i , hi, θ, again using the normal assumption. To correct for the error in

the sampling distribution, a Metropolis-Hastings step is used to weigh in the effect of the
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Student-t density.3 The resulting sample from qi, ki|∇p∗i , hi, θ is then augmented by a draw

from zi|∇p∗i , qi, ki, hi, θ, which is IG-1, such that in the end a sample from the correct density

is obtained.

Improved mixing of the chain can be achieved by repeating each step which uses an ap-

proximating density with MH a number of times before continuing. This lowers the correlation

induced by possibly low acceptance rates of the MH sequence. The repetition of sampling σǫ

is done in a loop together with the sampling of the underlying price process p∗, as these two

are heavily correlated. By blocking them together, and repeating the sampling of [p∗|p, σǫ, ...]

and [σǫ|p, p∗, ...] together, correlation in the chain is found to drop considerably.

Kim et al. (1998) discuss the importance of the method used in sampling a new vector of

h. Their suggestion of using a mixture density in an approximate parametric model is not

easily applicable to the present situation, due to the effects of the jumps on the squared return

sequence. This mixture density also applies an extra unobserved indicator for the mixture,

implying further cause for correlations in the chain. An alternative to step iic. is to implement

a multi-move sampler (Shephard and Pitt, 1997), where a block of (hi, .., hi+K) are drawn

jointly, conditional on the values hi−1 and hi+K+1 at the end points. This method does not

have the disadvantage of applying an extra unobserved component, but has not proven itself

on high frequency data sets.

4.2 Initialisation of the chain

The initialisation of the parameters and states is important, as the MCMC algorithm itself

may mix slowly. This may be particularly acute when initialised from bad starting values.

The initialisation for the parameters is based on a rough quasi maximum likelihood ap-

proach. First, parameters β for the trend can be estimated by OLS, disregarding microstruc-

ture effects and stochastic volatility all together. Though not efficient, such estimates should

be consistent.

3When no jump occurs, there is no need to sample ki and the Metropolis-Hastings step can be circumvented.

When a jump is found, the Metropolis-Hastings step adapting the candidate Gaussian density towards the

Student-t density theoretically has bad properties, as the candidate has thinner tails than the target. In

practice, this implies that the effective density implemented here of the returns conditional on a jump of size

k has thinner tails than the theoretical tν .
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Secondly, to estimate the volatility spline, one can use

∇p∗i ∼ N (Xiβ, δi exp(Wiγ)), ⇔ log(∇p∗i − Xiβ)2 = Wiγ + ξi,

ξi ∼ i.i.d.(−1.27, π2/2),

see Harvey et al. (1994). Using the the observed log squared returns (adapting for the trend

and the time distance between successive observations, disregarding jumps and microstructure

noise), a first estimate of γ can be computed using OLS. As this is far from efficient, it can be

followed by an optimisation of γ over the approximate likelihood of the returns themselves.

Given the trend and volatility spline, still disregarding the microstructure effects, daily

realised volatility measures can be extracted for each day in the sample. Using the feasible

jump test (20) of Section 2.4, days are selected at which a jump is found using a significance

level of α = .1%. At these days, the largest return is initially flagged as a jump, with size

equal to the return. The fraction of jumps λ is initialised according to the number of jumps

found, and the jump standard deviation σκ is extracted likewise.

For the stochastic volatility parameters, the original quasi maximum likelihood method

of Harvey et al. (1994) is used, adapting for the trend, jumps and time distance δ between

observations. This method also provides a first estimate of the intra-day volatility sequence

h.

Conditionally on the volatility, a fully Gaussian state space model can be estimated to

extract the variance σ2
ǫ of the microstructure effects in observation equation (14). From the

Kalman filter equations, a filtered estimate of the efficient price p∗ is extracted. The degrees

of freedom parameter ν is estimated from the increments ∇p∗i , adapted for SV, time distances

δ, jumps κ and volatility seasonality Wγ. This estimate for the degrees of freedom parameter

will be positively biased in general, as the returns in the price process are extracted under

the assumption of normal disturbances. It remains a good proxy for a first estimate. The

Student-t tail component z is initialised at 1, as it is not too influential for the start-up of

the Gibbs algorithm of Section 4.1.
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5 Performance in a simulated setting

5.1 Simulating intra-day returns with jumps and diffusion

As the model is fully specified, a choice of parameters and initial conditions is sufficient to fix

a DGP. For simplicity, the parameters and their prior choices are collected in Table 4. These

parameters correspond to values that could be found in practice. Some further discussion

of the parameter values and sample sizes, relating to the simulation results, is postponed to

Section 5.3.

Table 4 indicates, for each parameter, what setting is chosen for the DGP, followed by

the prior density, the parameters of the prior density, and the mean and standard deviation

of the prior. Note that for the degrees-of-freedom parameter, the prior for ν − 2 is specified

as exp(.25), with expectation E(ν − 2) = 4. The value used in the DGP is ν = 6 degrees-of-

freedom. Furthermore, in this simulation, the specification for the trend is not used at all, so

β is fixed at 0 both in generating the data and simulating the parameters.

Parameters are presented at the daily frequency, e.g. a value of λ = .1 indicates on

average one jump every 10 days, even though multiple observations per day are generated.

Likewise, the autocorrelation of the SV component is φ = 0.97 per day, implying a correlation

of φ1/D = 0.99989 between two successive 5-minute observations. All innovations in the price

increments ∇p∗i have been transformed by multiplying them by
√

D, to effectively measure

volatility at the daily frequency. This implies that the jump standard deviation of σκ = 5

also refers to this daily frequency.

Table 4 about here

The spline used for creating a seasonality effect within the volatility is given knots through-

out the working days at every six hours, repeating the daily shape from Monday until Friday.

In the weekend, only a knot in the middle of the weekend is specified. The level of the spline

is modelled after the volatilities found in the next section, with exchange rate data.

From this DGP a data set of 365 days, with a maximum of 288 observations per day,

is generated. As in a real data set, some of the observations will be missing. Throughout

the weekend, no observations are preserved, while randomly around 95% of the observations

throughout the working days are retained. This resulted in a dataset of 71,225 generated

prices. Of these prices, 45 (slightly more than the expected 36) contain a jump. Through the
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specification of the process, 13 of those jumps fell within the (missing) weekend, such that

their effect might be harder to recognise.

5.2 Discussion of simulation results

A sample from the posterior distribution is collected as described in Section 4. After ini-

tialising, a burn-in sample of size 5,000 of states is drawn repeatedly, until all means of the

parameters in the first and last third of the sample lie within 1.96 standard deviations of

eachother. Subsequently a final sample of 50,000 parameter vectors is collected. Within each

iteration, each MH sampling step is repeated 5 times to further lower correlation in the chain.

Such a setup takes around 12 hours of time to complete using a combination of Ox (Doornik,

2006), SsfPack (Koopman et al., 1999) and C, on a 2.4Ghz AMD64 machine.

Table 5 about here

Table 5 reports statistics on the posterior distribution for the model parameters. Missing

in the table are the remaining intra-week spline parameters, as their posterior is very similar

to the density of γMon 0:00h. From the table it can be seen that estimation of these parameters

is not easy. Most clearly this is seen from the inefficiency measures4 in the last column.

Especially for the SV parameters φ and σh, correlation within the chain is still rather high.

On the other hand, these inefficiencies are a large improvement over a sampler without the

transformation to SV disturbances mentioned in Step iiif. of the algorithm in Section 4.1

(results not reported here). Without the transformation, inefficiencies surge to levels around

2,000, for the parameters φ and σh.

Apart from the inefficiencies, the table also reports the parameters according to the DGP,

and the posterior mode, mean, standard deviation, and the lower and upper 2.5% quantile,

which give a good approximation to the 95% highest posterior density (HPD) region. Apart

from the parameter σh, the values of the DGP lie within the interquantile ranges. The latter

parameter is however still estimated reasonably close to the value according to the DGP.

4The inefficiency measure compares the posterior sample variance to the variance adapted for autocorre-

lation in the chain, using a window width of (in this case) 2,000 observations. A value around 1 indicates a

fully efficient estimator, with effectively independent draws from the posterior. High values indicate that the

posterior sample is less informative due to high correlation; see also Shephard and Pitt (1997), Kim et al.

(1998) and Bos and Shephard (2006).
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Figure 3 about here

Figure 3 displays the posterior density of the main parameters together with their priors,

and the value of the DGP. It is seen that most parameters are retrieved from the data

remarkably well, though the uncertainty on the jump parameters λ and σκ remains large.

The jump process is hard to recognise when jumps are this infrequent, in a model with heavy

tails. More on the uncertainty related to these parameters follows below in Section 5.3. Note

however that the data is informative on these parameters, in the sense that the posterior

clearly moves away from the prior.

Figure 4 about here

When plotting the sampled parameters against the index (not reproduced in the article),

the parameters do not trend. Different starting values, longer or shorter samples, all lead to

the same posterior densities. The sampler clearly converged without much of a problem for

the data of this DGP.

Figure 4 studies the relation between estimated jumps and the true jumps from the DGP.

In the first panel, for each 5-minute return, the posterior probability of a jump occurring

in that time interval is given, for all 75,000 intervals. Most of the returns of those intervals

are deemed to come from the standard Student-t distribution, with a few intervals which are

deemed highly suspect. There is also a range of observations with a posterior probability of a

jump of around 0.2. These are the observations just before the weekend, where the combined

uncertainty of the whole weekend without observations makes it plausible that a jump could

have occurred.

The second panel plots the absolute value of corresponding expected jump sizes, with

one standard deviation error bands, for those intervals with a jump probability of at least

0.75. Without error bands, the true jumps of the DGP are plotted. For some jumps, the

estimated jump sizes are correct, but smaller jumps and those occurring in the weekend are

not detected.

The third panel displays the relation between the true jump size, horizontally, and the

estimated jump probability, split out between weekdays (for which most neighbouring obser-

vations are available) and just before the weekends (with many missing observations, making

it harder to recognise jumps). Of the 45 jumps generated throughout the year, 13 intra-week
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jumps are recognised correctly; jumps below a size of 3 tend not to be recognised at all,

neither are jumps in the weekends.

Figure 5 about here

Given that the important jumps can be found, one can wonder whether the model-based

estimation can reconstruct the integrated variation over the day. Figure 5 displays the esti-

mates of integrated variation using realised variance (RV), bipower variation (BPV) and the

integrated model variation (IMV), together with the underlying integrated variation from the

DGP. The left panel displays all measures against time, whereas the right panel compares

either BPV or IMV to the underlying integrated variation.

From the figure, little is learned, apart from the fact that all measures appear to differ

little from the underlying integrated variation. To formalise this, Table 6 reports results

on the Mincer-Zarnowitz (Mincer and Zarnowitz, 1969; Andersen et al., 2005) regressions

explaining IV from one of the other measures.

Table 6 about here

The MZ-regression indicates the validity of the IMV approach. The IMV approach results

in the highest R2. When explaining the integrated variation using the IMV, the estimated

parameters β0, β1 are not significantly different from 0 and 1, respectively. For the BPV,

a t-test does indicate a difference of the parameters from their theoretical values. The RV

measure does not account for jumps, and hence is not supposed to deliver an estimate of the

IV better than the BPV in the present setting. It is only included for comparison.

5.3 Considerations on choices for the DGP

Several remarks could have been made before when the settings of the DGP were chosen,

in Section 5.1, but these are better related to the estimation results of the previous section.

First, there is the length of the data sample. Most articles estimating SV models use between

500-3,000 daily or weekly observations. Moving to 5-minute data, the year of data used both

in the DGP above, and in the application below, should provide sufficient information for

estimating the (weekly) spline. Shortening the sample to e.g. a quarter could be problematic

for these parameters.

The jump process can be harder to estimate than the spline parameters, for two reasons.
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First, the number of jumps in an applied data set is expected to be low. Andersen et al. (2007)

report between 0.083-0.137 jumps per day (at a significance level of α= 0.1% resp. 0.01%;

this corresponds roughly to the fraction of jumps found using the test of BN-S in Table 3).

Over the year of data sampled here, 45 jumps were generated, and from those the parameters

λ and σκ of the jump process should be estimated. Clearly, the amount of information on

these parameters is going to be limited. Increasing the frequency of the data set could help in

distinguishing the jumps from the non-jumps, as the jump variance is not dependent on the

frequency of the data set, but the non-jump return variance is. Aı̈t-Sahalia (2004) discusses

this effect. Even though this article settled on the 5-minute frequency, initial estimations

indicate that there are few problems to move towards 1-minute or even tick-by-tick data.

Secondly, it can be hard to distinguish the jumps from the standard returns, especially in

combination with a Student-t density for the disturbance term. Financial returns are often

found to be heavy tailed, even in the absence of jumps. For daily observations on S&P500

data, Chib et al. (2002) report degrees-of-freedom parameters ν between 12-15, though they

also refer to other articles (Sandmann and Koopman, 1998; Jacquier et al., 1995) with lower

values of 7.9 or 11, using different time periods of the same series. Given that the daily returns

are composed of a large number of intra-day returns, by a central limit theorem, these daily

returns can be expected to be ‘more normal’ than the intra-day returns themselves. The

resulting parameter ν for the intra-day data would end up even (considerably) below 7.9,

assuming the exchange rate data used below is comparable to the tail behaviour of the S&P

500. In the DGP, the value of ν = 6 was chosen, even though the description of the data in

Section 3 indicates a possibly lower degrees-of-freedom parameter.

To see how hard it can be to distinguish a jump from a standard return, simplify the

model to

p∗i+1 = p∗i + qiκi + ηi, ηi ∼ t

(

0, ν,
exp(γ)

D

)

,

qi ∼ Bern(λ), κi ∼ N
(

0,
σ2

κ

D

)

,

with λ = 0.1 jumps per day, with D = 288 5-minute returns ∇p∗, ν = 6 and γ = −1.4 fixing

the variance of the Student-t density. For the jump process, use σκ = 5 as in the DGP. In
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such a case, the following probabilities for observing a large return are easily calculated:

P
(

|∇p∗i | > σκ/
√

D|qi = 0
)

= 2

(

1 − Ft

(

σκ

exp(γ)

√

ν

ν − 2

))

= 0.017h ≡ A,

P
(

|ki| > σκ/
√

D|qi = 1
)

= 2 (1 − FN (1)) = 317h ≡ B,

P
(

|∇p∗i | > σκ/
√

D
)

≈
(

1 − λ

D

)

A +
λ

D
B = 0.128h.

Unless normality can be assumed or the degrees-of-freedom parameter of the Student-t density

is large, the jump-process standard deviation σκ needs to be factors of magnitude larger than

the non-jump standard deviation, to clearly distinguish between true jumps and non-jumps.

Even so, it was found that a data series including microstructure noise, infrequent jumps

and heavy tails can be estimated using the present setup. The model-based approach even

delivers a closer approximation to the true integrated variation than either bipower variation

or realised variation. This provides a good starting point for the next section, looking into

the possibility of using this same model on a time series concerning the Euro/U.S. Dollar

exchange rate.

6 An empirical illustration: Exchange rate and jumps

6.1 Data and setup

In Section 3, the exchange rate of the EUR/USD over the year 2005 was presented. In

this section the discretised jump-diffusion-SV model with microstructure noise, (14)–(19), is

estimated on this exchange rate using 5 minute frequency for the observations.

The model at hand gives a full parametric specification for the evolution of prices and

volatility within the day. To put these to use, consider the findings in Ranaldo (2007). This

author found that exchange rates tend to trend within the day according to the market which

is more active. Roughly, the Dollar appreciates against the Euro between 9-13h GMT+1,

during European active trading hours. Vice versa, the Dollar is found to depreciate again

from 17-21h GMT+1, when only the U.S. market is open. Testing for such an effect can be

done simply by introducing two dummies in X (see Equation (12)), multiplying the trend

parameters in β for these different periods of the day.

In order to start the analysis, first the priors on the parameters have to be specified. The

DGP in the previous Section 5.1 was set up in such a manner that the same priors from
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Table 4 can be used for the present situation. The data used are the log-prices pi presented

in Section 3. A sample of size 50,000 is drawn from the Markov chain after initialising the

parameters and the states as before.

6.2 On convergence with FX data

When using the simulated data in Section 5.1, the Markov chain converged without problems,

and a decent sample was collected after the burn-in period. When the same algorithm is run

on the FX data, initially a sample is found where the parameters φ, σh and ν seem to trend

throughout the 50,000 iterations of the chain. A decrease in φ seems to be offset by increases

in σh and ν. The movement of the parameters is however relatively slow, with φ decreasing

from an initial value of 0.96 to 0.83 at the end the sample. Continuing the chain for another

50,000 or even 150,000 iterations does not lead to convergence either, with φ decreasing ever

further towards zero.

The behaviour of a low φ, high σh, and increasing ν indicates some short-run bursts of

volatility, modelled through a temporary increase or decrease of the SV component instead of

through the Student-t tail of the density. In the extreme case, with φ ↓ 0, the instantaneous

extra volatility originating from the SV is indistinguishable from the tail effects of the Student-

t density (cf. in Section 2.3 where the Student-t density is implemented using a mixture of a

Gaussian density and an instantaneous random variance component z2
i ).

When estimating the model on simulated data the algorithm was stable, converging rapidly

towards the parameter values used in the DGP. In the present application the model is the

same, the sample size is the same, and most of the parameter estimates will result to be

similar as well. This leaves two options for the lack of convergence in the present situation.

Either the model is misspecified for the data at hand, or there is a difference in parameter

settings which makes the model unidentified in the present case. The main difference between

the parameters used before for the DGP in Section 5.1 and present preliminary estimates is

found in the degrees-of-freedom parameter. Instead of ν = 6, in the DGP, here a value of ν

between 3.2 and 3.4 is found.

A similar convergence problem estimating this FX data is found when ν is fixed at 3.4,

when a Gaussian transition density (corresponding to ν → ∞) is used, or for a model where

the SV process is forced to be integrated with φ ≡ 1. In these three cases the standard
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deviation of the SV process very slowly increases during the iterations of the sample.

These results point in a similar direction. The long run variance of the volatility is not

well identified from the data. Given a degrees-of-freedom parameter estimated around 3.4,

this does not have to be a surprise. For the Student-t density, such a value of ν implies that

the fourth moment of the (unobserved) returns does not exist. Correspondingly, the second

moment of the volatility, related to its long-run variance σ2
h, is not defined as well.

As the long-run variance cannot be estimated from the intra-day data, the SV parameters

φ, σh are fixed at a combination of plausible values, related to estimates at a daily frequency.

The estimated volatility sequence hi effectively will be a weighted average of neighbouring

observations, where the weights are fixed through the parameters of φ and σh. This however

still allows for more freedom than the non-parametric approach, where volatility is estimated

using equal weights throughout a day, weight zero outside the specific day.

For the SV parameters values of φ = 0.98 and σh = 0.5 are chosen. Such values correspond

with common findings for estimates of SV models on daily data, relate back to the values

found during the initialisation stage, and also correspond to values found for these parameters

when estimating daily EUR/USD exchange rates over a longer time period.

6.3 Resulting posterior

A collection of 50,000 vectors of parameters was sampled, while retaining information on the

sampled price, volatility and jump processes. Before moving on to the results in terms of

the jumps and integrated model variation, some statistics on the posterior densities of the

parameters are presented in Table 7. The densities of the main parameters are plotted in

Figure 6, together with their priors.

Table 7 about here

Figure 6 about here

From the densities in Figure 6, it is seen that the posteriors are smooth. This is a

first indication of a well-behaved sample from the posterior. The data is informative on the

parameters, as the posteriors are concentrated relative to the priors. A plot of the parameters

against the index (not reproduced here) confirms that the sampler has converged.5 Also the

5To check the robustness of the results against the choice of the SV parameters, φ was fixed alternatively
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inefficiency measures, in the last column of Table 7 indicate little remaining autocorrelation

in the chain.

Concerning the size of the parameters, σǫ is estimated around 0.01. This implies that the

difference between pi = 100 × log Pi and the underlying p∗i has a standard deviation of 0.01,

which can be read as a 0.01% difference in the prices corresponding to one standard deviation.

For the number of jumps, a value of λ̂ = 0.42 results. Some jump occurs a posteriori about

every 2.4 days, or 690 observations. The standard deviation of the jump size is estimated at

σ̂κ = 3.4, again measured on a daily scale, implying that the intra-day standard deviation

is σκ/
√

288. That is to say, a one-standard deviation jump would correspond on a daily

scale to a jump in the daily underlying price of around 3.4%, slightly smaller than the value

assumed in the simulation exercise. Linked to the frequency of the jumps and the jump size

is the degrees-of-freedom parameter. The estimate of ν̂ = 3.4 implies far heavier tails than

found by Sandmann and Koopman (1998) or Chib et al. (2002) for daily S&P 500 data. It

corresponds closely to the findings in Section 3, where a first look at the data was taken.

Such an estimate implies that the third moment of the returns still exists, but the kurtosis of

the Student-t density is infinite. The trend parameters β, governing the trending behaviour

within the trading day, are estimated very precisely and with high efficiency. A discussion on

these parameters is postponed to Section 6.6.

Figure 7 about here

The volatility spline is modelled through the parameters γ, fixing the height of the periodic

spline at the knots. Estimating γ(Sun, 0:00h) is difficult, judging from the wide bounds on

the 95% interquantile range in Table 7. Intra-week γ’s are estimated more precisely, with

similarly low inefficiencies. Instead of tabulating the values for all the knots, Figure 7 plots

the estimates at each of the knots (indicated by the vertical lines) and the resulting spline,

together with a one standard deviation error band. Over the weekend, volatility appears

to be low but imprecisely measured. Throughout the weekdays, volatility is highest during

at 0.97 or 0.99. In the latter case, all remaining parameters were estimated at very similar values as the ones

presented here, and the same jumps (see below) were found. For φ ≡ 0.97, the SV process becomes more

flexible, picking up a larger part of the jumps. Estimates for the parameters are λ̂ ≈ 0.07, σ̂κ ≈ 5.5, ν̂ ≈ 3.18

when φ ≡ 0.97. Only the most severe jumps are found in this case, other larger returns are accounted for by

the tails of the Student-t density.
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the (European) afternoons, and can be estimated far more accurately. There are some small

differences between the weekdays. The expected variance of the percentage price increase

moves between exp(−2.2) ≈ 0.11% at night and exp(−0.7) ≈ 0.5% during daytime, again

measured on a daily scale.

6.4 Jumps and sizes

The object of this article is to see whether it is feasible to construct a model-based estimator

for the occurrence of jumps in a high-frequency diffusion-type model. The jumps in this

model are governed by the unobserved vector of q, the number of jumps occurring at each

time point.

Figure 8 about here

Figure 8 displays the jumps, with in the first panel the posterior mean of qi, the probability

of a jump occurring within a specific five minute interval. Clearly a large number of intervals

could have had a minor jump, resulting in a low value of qi. On the other hand, there are

a reasonable number of observations where E(qi) ≈ 1, such that a jump is indicated by the

algorithm to have occurred with high probability.

A distinction is made in the panel for days with possible jumps during the week (indicated

with a plus sign), and jumps over the weekend (the crosses). The observations around E(qi) =

0.38, in the left-most panel, almost entirely stem from observations around Friday 23:55h,

when the last observation before the weekend comes in. The model has a hard time deciding

over the weekend whether there might have been a jump (among the almost 2 × 288 missing

observations) or whether the change was caused by the normal diffusion process. Hence, an

estimate of E(qi) ≈ 0.38 results in many of these cases.

The second panel plots the absolute expected jump size, for those jumps with E(qi) > .75.

The jump at January 12 2005 stands out, with a size corresponding to the value found in

Section 3. Many other jumps are detected by the algorithm as well.

The final panel of the figure relates posterior jump probability to estimated (absolute)

jump size (as the underlying true jump sizes are not available, in contrast to the case of the

simulation exercise). Obviously, larger jumps are more easily detectable. The distinction

between intra-week and weekend data is significant. If a possible jump is detected at the

start of the weekend, its size is relatively small, below 3% in all cases. Intra-week jumps are
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clearer both in estimated posterior probability and jump size.

6.5 Comparison with non-parametric measures

From the model, measures for the intra-day integrated variation including jumps, for the vari-

ation excluding jumps, and for the integrated squared jump process itself, can be constructed.

These are comparable to the realised variation, bipower variation, and the difference between

the two.

Figure 9 about here

Figure 9 plots these measures, both against time (top panels) and against each other

(bottom panels, with the non-parametric measures on the vertical axes). In the left column,

realised variation is compared with the model-based daily integrated variation+jumps mea-

sure, followed by the bipower variation versus integrated model variance in the middle column,

and the jump measure in the third column of plots. Though the correspondence is not 1-on-1,

clearly the measures are strongly related. If pressed one could find that the model-based vari-

ation measures tend to underestimate the non-parametric measures. This is partly due to the

definition of variance in the model. The variance is comprised of the elements δi exp(hi + gi),

and does not account for variability due to the Student-t component. Likewise, these smaller

jumps which the model attributes to the non-Gaussian transition density are depicted by the

non-parametric measures as possible jumps. The righthand panels consequently display more

NP- than model-based jumps.

6.6 Intra-day behaviour

Modelling intra-day returns in a fully parametric manner allows for a straightforward test of

the hypothesis that the exchange rate trends within the day. Instead of measuring only the

returns over fixed periods in the day and taking averages of those, in the present model the

trend in the exchange rate can be allowed to change between the morning hours (fixed here

at 9-13h GMT+1, when the European markets are most active) or the late afternoon period

of 17-21h GMT+1, when most trading occurs on U.S. markets. Outside these periods, the

standard assumption of a random walk without trend for the exchange rate is kept.

Introducing the trend through the parametrisation of Equations (15)–(18), a posterior

density for the parameters β as in Figure 10 is found (see also the posterior statistics at the
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bottom of Table 7). Both for the morning and afternoon period, a clear non-zero trend is

found. For the morning-parameter, 99.2% of the posterior mass lies below zero, giving a very

clear signal of the direction of the trend. For the afternoon, the signal of a positive trend is

also clear, with 96.6% of the posterior mass at positive values of β.

Figure 10 about here

Over the 48 intervals of 5-minutes during morning and afternoon hours, in total the price

drifted approximately 0.0102 × 48/
√

D ≈ 0.029% downwards in the morning, and 0.0077 ×
48/

√
D ≈ 0.022% upwards in the afternoons. Such shifts are hardly discernible on a specific

day. Figure 11 displays the exchange rate, trend and volatility components at a tranquil date

halfway the sample, at June 30, 2005. The exchange rate drifted as in the left panel of Figure

11, where both the (log-) exchange rate p and the unobserved price process p∗ are drawn.

The difference between the two, due to the microstructure noise, is minimal. The cumulative

trend line resulting from the intra-day trending is also drawn at the same scale. Though

significant in the long run, on a specific day the effect is very small indeed.

Figure 11 about here

The right hand panel of the figure displays the components hi (for the stochastic volatility,

on the left axis) and hi + gi (for the SV and spline jointly right axis) of the variance σ2
i ≡

δi exp(hi + gi). The stochastic part moves slowly (for this day, over a range of 0.1). Including

the seasonality the volatility moves over a range of 1.8 points in total. This occurs on most

other days as well, that deterministic movements in volatility are far larger than the stochastic

part of the variability.

6.7 Overview of FX results

The model-based approach to estimating the evolution over time of exchange rate prices and

volatilities applied to high frequency data is new. It allows for a wealth of different and

detailed viewpoints on the estimation results. This sections intends to summarise the main

findings concerning the estimation of the model on exchange rate data.

The section started off finding problematic convergence for the parameters when the model

was estimated without any constraints. This was caused by the thickness of the tails of

the return distribution, with a degrees-of-freedom parameter ν dropping below 4. As the
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kurtosis did not exist for these returns, the long-run variance of the SV component driven

by parameters σh and φ had to be fixed at values linked to estimates at the daily frequency.

Remaining parameters could be estimated well, with reasonable efficiency of the sample, given

the refined MCMC algorithm applied here.

The parametric approach was able up to detect the jumps in the financial series. This of

course does depend on the model assumptions. Allowing more flexibility in the SV process (by

lowering φ or increasing σh) lowers the number of jumps detected, whereas assuming Gaus-

sianity of the returns process would increase the number of detected jumps strongly (detailed

results not reported here, but available upon request). With the variance parameters fixed

at present values, integrated volatility measures comparable to the non-parametric realised

variance and bipower variation resulted.

An advantage of a model-based approach is the ability to estimate jointly intra-day effects,

like the trend-effect in exchange rates here. Day-to-day the effect is minimal, but like in

Ranaldo (2007) a clear trending effect is found differing between morning and late afternoon

trading hours. With the present approach, it is straightforward to include further dummies,

checking for a trend component in each separate hour of the day.

Lastly, and possibly most importantly, this application shows that it is doable to extract

intra-day volatility estimates in a sensible manner. These could eventually be used as input

into financial models on portfolio optimisation, related to option prices etc. The extra level

of detail in modelling can open up many other areas of research.

7 Conclusions and future work

This article studied the feasibility of a model incorporating micro-structure effects and jumps

to approximate a jump-diffusion process. By modelling these aspects of the data at high

frequency, statistics similar to the realised variation, bipower variation and related jump mea-

sures can be derived without having to take the non-parametric route. In both a simulation

exercise and in an application this feasibility was found.

In the case of a simulated example, the underlying integrated variation process could be

estimated from the data, even though a large number of observations were missing from the

data set throughout the weekends. The model-based estimates delivered a better R2 than

non-parametric estimates in rebuilding the simulated integrated variation. Only with the
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parametric approach did the parameter estimates not differ significantly from 0 and 1 for the

intercept and the variance measure, respectively.

Apart from the Gaussian disturbance process with jumps for returns, it was found neces-

sary to introduce also the possibility of a heavy-tailed returns process. The Student-t density

that is implemented accounts for shocks of intermediate size and higher frequency than the

jumps related to the separate jump process. In the simulation, with ν = 6 according to the

DGP, all parameters could be recovered from the data set quite precisely. The exchange rate

data at the 5-minutes frequency however indicated a value for the degrees-of-freedom param-

eter of ν̂ < 4. Such a value implies that the kurtosis of the return process does not exist,

and indeed it was found that the model was not able to estimate the volatility of volatility as

measured by SV parameters φ and σh. Instead, these had to be fixed at values derived from

estimates of SV at a daily frequency, using a longer series of EUR/USD exchange rates. The

implication of the non-existence of the kurtosis for the non-parametric measures of variance

remains to be investigated.

In the application, only a rather simple use of the parametric setup for detecting the

intraday trends was made. Combining this approach with e.g. data on macro-economic

announcements would allow to measure the effect of surprises in the market on financial time

series to a far higher precision. One of the driving factors for pursuing the present line of

research were findings in Beine et al. (2007), were the impact of central bank interventions

could only be modelled at a daily frequency. An intra-day analysis of a similar data set could

shed further light on such issues.

The latter article uses a multivariate approach to modelling the time series. Such an

extension of the present model is conceptually straightforward, delivering joined estimation

of the volatilities of exchange rates or assets in a portfolio. The volatilities extracted here

were constructed conditional on the full data set. Instead they could be filtered using an

approach as the particle filter (Pitt and Shephard, 1999; Godsill et al., 2004). This in turn

would allow to track intra-day, online, the risk of a portfolio of assets, and could lead to an

alternative approach for pricing options.
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Aı̈t-Sahalia (2002), Aı̈t-Sahalia et al. (2005a) - + + + - -
Aı̈t-Sahalia et al. (2005b) - + + + - ±
Aı̈t-Sahalia and Kimmel (2007) + - + + - +
Andersen et al. (2003) + + - + ± -
Andersen et al. (2007) - + + + + +
Barndorff-Nielsen and Shephard (2002) ± ± + - - +
Barndorff-Nielsen and Shephard (2004b) a.o. - ± + - + +
Drost et al. (1998) + - - - + -
Elerian et al. (2001) + - + - - -
Eraker et al. (2003) + - + - + +
Harvey et al. (1994),Jacquier et al. (1994) + - - - - +
Jungbacker and Koopman (2006) + + + + - +
Lyons (2001) ± + + + ± ±
Rydberg and Shephard (2003) + + - + - -

Table 2: Moments of exchange rate returns
Moment

N 76, 339
Mean −0.000

Standard deviation 0.035
Skewness −0.150
Kurtosis 17.410

Table 3: Non-parametric jump test statistics
α BN-S L-M % BN-S % L-M

5.000 111 224 42.7 86.2
1.000 86 184 33.1 70.8
0.500 77 172 29.6 66.2
0.100 57 145 21.9 55.8
0.050 52 130 20.0 50.0
0.010 31 101 11.9 38.9
0.005 26 92 10.0 35.4

The table reports, for different significance levels, the number of days (out of
a total of 260 days with sufficient observations) where a jump was detected
either by the feasible jump test (20) or the L-M max test (22), indicating in
the latter columns the percentages of days.
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Table 4: DGP parameters and prior settings
Parameter DGP Prior a b µπ σπ

σǫ .01 IG-1 2 7500 .01 .005
λ .1 Gamma 1 10 .1 .1

σκ 5 IG-1 2 .03 5 2.7
φ .97 Beta 32 3.5 .9 .05

σh .5 IG-1 2 3 .5 .27
ν − 2 4 Exp .25 4 4

β 0 N 0 1 0 1
γSun 0:00h −4 N 0 4 0 2
γWk 0:00h −2 N 0 4 0 2
γWk 6:00h −1.5 N 0 4 0 2

γWk 12:00h −1 N 0 4 0 2
γWk 18:00h −1.2 N 0 4 0 2

Table 5: Posterior statistics using simulated data
Parameter DGP Mode Mean σ [Q2.5%, Q97.5%] Inefficiency

σǫ .01 0.0101 0.0101 (0.000) [0.010, 0.010] 29.702
λ .1 0.1192 0.1254 (0.029) [0.075, 0.188] 109.843

σκ 5 4.3766 4.5779 (0.662) [3.517, 6.085] 39.357
φ .97 0.9712 0.9711 (0.002) [0.968, 0.974] 414.572

σh .5 0.4721 0.4725 (0.012) [0.449, 0.497] 450.896
ν 6 5.9879 5.9880 (0.164) [5.678, 6.318] 33.803

γ(Sun,00:00h) −4 −1.2913 −1.1539 (2.136) [-5.281, 3.063] 5.253
γ(Mon,00:00h) −2 −2.0007 −2.0001 (0.077) [-2.153,-1.850] 37.339

The table reports the values of the parameters in the DGP, the posterior mode, mean, standard
deviation, 95% interquantile range and a measure of inefficiency.

Table 6: Mincer-Zarnowitz regression results
β0 β1 [R2]

RV 0.0175 0.7768 [0.742]
(0.009) (0.029)

BPV −0.0376 1.0678 [0.871]
(0.007) (0.026)

IMV 0.0073 0.9786 [0.906]
(0.005) (0.020)

The table reports the regression results, both the estimated parameters β and
their standard deviations (between parentheses) together with the R2, regress-
ing the integrated variation on a constant and either realised variance, bipower
variation or the integrated model variation.
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Table 7: Posterior statistics using exchange rate data
Parameter Mode Mean σ [Q2.5%, Q97.5%] Inefficiency

σǫ 0.0103 0.0103 (0.000) [0.010, 0.011] 34.676
λK 0.4178 0.4251 (0.057) [0.322, 0.544] 272.174
σK 3.4213 3.4962 (0.256) [3.041, 4.047] 75.778

φ 0.98 (fixed)
σh 0.5 (fixed)
ν 3.3920 3.3900 (0.061) [ 3.272, 3.512] 89.788

β(9-13h) −0.0102 −0.0105 (0.004) [-0.019,-0.002] 5.026
β(17-21h) 0.0077 0.0077 (0.004) [-0.001, 0.016] 1.185

γ(Sun,00:00h) −3.1609 −3.1700 (1.980) [-7.104, 0.669] 37.911
γ(Mon,00:00h) −2.2163 −2.2130 (0.054) [-2.319,-2.108] 36.477

See Table 5 for a description of the entries in the table.
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Figure 1: Returns through time, autocorrelation of squared returns, and QQ-plot of returns
vs. Student-tν=3.5 density.
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1 Introduction


1.1 Motivation


With the advent of available intra-day financial time series data, interest in analysing these


high frequency series sparked over the last decade. These high frequency time series offer the


opportunity to study in more detail the evolution of volatility over time, improving on earlier


variance estimates.


Even on a daily (or lower) frequency, time varying volatility is a major characteristic of


financial time series. Moving to hourly or higher frequencies, several other important aspects


arise. For intra-day data, characteristic findings include foremost, the time varying volatility,


of a stochastic nature. Apart from that, intra-daily there is also time varying volatility, of a


deterministic, seasonal, nature, related to time-of-day effects and opening/closing of markets.


There exists micro-structure noise on the price process, and further unexplained apparent


jumps, which are both especially observed with higher frequency data. Finally, for higher


frequencies of data one can usually not escape the non-equal time spacing between successive


observations, as markets are closed over weekends or holidays, or no quotes are available occur


for thinly traded stocks and assets.


Treatment of this full set of characteristics of financial data occurs in a strand of literature


which looks at realised variance, integrated variance, and related concepts (see for an overview


the articles in Shephard (2005); more details in subsequent sections). This leads to the


development of non-parametric methods to estimate the daily (integrated) volatility, and to


a test for the occurrence of jumps within a specific day.


Though jumps in financial series are often not immediately explicable, at times they might


also seem to be connected with announcements made on macro-variables, like on the future


of the interest rate or the state of the unemployment. The precise link between such macro-


announcements and the probability of a jump cannot be investigated in a non-parametric


setting. The ultimate holy grail of this article will be to start with a parametric setting which,


in the end, would allow for inclusion of explanatory variables in the jump process. This in


turn would allow measuring the effectiveness and importance of certain announcements, with


respect to the probability of a jump in the series and the related jump size.


For this purpose, a parametric technique is applied. After a literature overview, in Section
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1.2, a diffusion model and its discretisation at high frequency is presented in Section 2, together


with several concepts from the non-parametric approach which can serve as a baseline for


comparison.


After a first look at the data in Section 3, the implementation of the Markov chain is


discussed in Section 4, with a simulation exercise to investigate the properties of the algorithm


in Section 5.1. An application on Euro/U.S. Dollar exchange rates follows in Section 6. Section


7 summarises and outlines the range of possibilities to continue this research.


1.2 Literature overview


The literature related to this article is large, and growing at a high rate, especially during the


last decade. Without any intention of giving a complete overview, this section identifies the


most important strands of literature, and how they are interrelated. It ends with a description


of the contribution of this article to the literature.


Clearly, one major topic is stochastic volatility (SV). As an alternative to the generalised


autoregressive conditional heteroskedasticity (GARCH) approach of modelling time varying


volatility, allowing a separate source of uncertainty, it was introduced into the econometrics


literature by Harvey et al. (1994) and Jacquier et al. (1994), though the ideas can be traced


back to an article by Taylor (1982). The GARCH approach, including jumps, is presented in


Drost et al. (1998), but in its original form dates back to Engle (1982) and Bollerslev (1986).


The comparison between GARCH and SV is made in Kim et al. (1998), and also in Bos


et al. (2000). An overview over the history of the SV model, and present research, is given in


Shephard (2005).


Most stochastic volatility models are set up with the daily (or lower) frequency in mind.


For higher frequencies, very quickly the switch to continuous time diffusion models is made.


And if a price process can be considered as a continuous time process, observed in discrete


(preferably evenly spaced) time points, then measures like realised volatility or bipower vari-


ation can be used to estimate the daily stochastic volatility.


Both Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002) use intra-day


data to help in estimating SV. Other articles by the these and many other authors (Andersen


et al., 2002; Barndorff-Nielsen and Shephard, 2004b, 2006a,b) extend the knowledge on using


high frequency returns for calculating integrated variance on a daily basis, in a ‘model-free’
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manner.


One important aspect of using continuous time models, and their approximation through


realised variance-type measures is the effect of microstructure noise or the occurrence of jumps


on the estimates. Apart from the previously mentioned articles, Aı̈t-Sahalia et al. (2005a)


and Aı̈t-Sahalia et al. (2005b) discuss the possible effects of microstructure noise on estimates


of (integrated) volatility. Extracting the jumps in a non-parametric fashion is the topic of


articles by Andersen et al. (2007), Barndorff-Nielsen and Shephard (2004b, 2006a), Haung


and Tauchen (2005), or Lee and Mykland (2008), among many others. Eraker et al. (2003) use


a discretisation of the diffusion model to a daily frequency, allowing for jumps and stochastic


volatility, in a parametric fashion.


Parametric estimation of intra-day time series is seldomly done. Elerian et al. (2001)


and Andersen et al. (2002) use simulated intra-day data to estimate daily returns of either


exchange rates or the S&P500 index. The model is a discretisation of a diffusion process with


SV, while the latter paper extends the model to include jumps. The first authors apply a


Bayesian simulation method, in the second paper a simulated method of moments approach


is used. The Bayesian approach is described in more detail in Jacquier et al. (1994) and


Chib et al. (2002, 2006), and is also the methodology used in this article. Alternatively, one


can use simulated maximum likelihood using importance sampling, as e.g. in Sandmann and


Koopman (1998). All these articles effectively estimate daily SV models, not using intra-day


information.


An exception to the rule that SV models do not use intra-day information is the article by


Koopman et al. (2005), where the intra-day realised variance is used as an explanatory variable


for estimating a daily SV model, so the intra-day information is used in an indirect manner.


In Jungbacker and Koopman (2006) one day of second-by-second data is estimated at a time


using a model-based approach including microstructure noise and stochastic volatility. No


link is made between subsequent days. More purely intra-day and parametric is Rydberg and


Shephard (2003), who model a larger sample of tick-by-tick data. Here the price process is


modelled through the (discrete) steps up or down taken at each trade. A different approach


is taken by Aı̈t-Sahalia and Kimmel (2007), who use either an implied volatility proxy or


option prices implying a volatility estimate through a pricing formula, to get to a closed form


maximum likelihood estimator.
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Table 1 about here


The interest in these diffusion or stochastic volatility models is driven by the interest in


measuring, with as much precision as possible, the volatility in the market, for risk man-


agement, pricing options, monetary policy evaluation and making, and many other causes.


These models also improve our understanding of the price process, and the microstructure


foundations of it. Lyons (2001) discusses this approach to foreign exchange rate modelling.


With the advent of high frequency data sets and the growth in computational possibilities,


we can model and test ever finer structures. A good application of this microstructure ap-


proach is found in Andersen et al. (2003). On a daily basis, within a multivariate setting, the


effect of Central Bank interventions is measured parametrically in Beine et al. (2007); this is


exactly the type of analysis which could be done with more detail if an intra-day evaluation


would be possible. As an example, the application in this article revisits a finding in Ranaldo


(2007), who finds indications of a time-of-day pattern in intra-day exchange rate returns using


non-parametric methods.


Table 1 recaps the discussion of this section in a structured manner: It indicates for a


subset of the articles mentioned here whether the approach can be called parametric, if intra-


day data is used for estimation, whether the underlying model is a diffusion model, if there is


attention for microstructure effects, if jumps are allowed in the model, and if there is explicit


modelling of a stochastic volatility structure. A ‘+’ indicates a ‘yes’, a ‘-’ indicates ‘no’, and


a ‘±’ stands for a ‘sometimes/partly’.


What is missing from the table is a row for an article taking the parametric approach


for a high frequency dataset. In such a case, the model is best derived from a continuous


time diffusion model. Any application should then allow for both the possibility of jumps,


and for some microstructure noise, together with a flexible specification for the volatility of


the process. And that is exactly what the contribution of this article will be: It will look


look into the possibility of putting an entry in the table with only ‘+’ everywhere. For this


purpose, the next section will introduce the diffusion model, and its operationalisation in


discrete time (Sections 2.1–2.3), comparing it to daily variance measures in Section 2.4. After


an intermediate section on the evidence of jumps in exchange rate data, and the thickness


of the tails of the return distribution in Section 3, implementation of the model is discussed


in Section 4. Both a simulation exercise and an application follow in Sections 5.1–6, with
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conclusions in Section 7.


2 Theory of diffusion processes and related literature


2.1 Jump-SV-Diffusion


A log-price process of a financial asset can be modelled through a diffusion, as is done in e.g.


Barndorff-Nielsen and Shephard (2004a) and Andersen et al. (2007) through


p(t) = p∗(t) + ǫ(t), ǫ(t) ∼ i.i.d.(0, σ2
ǫ ), (1)


dp∗(t) = µ(t)dt + σ(t)dW1(t) + κ(t)dq(t), 0 ≤ t ≤ T. (2)


Such a diffusion process states that


• the underlying price p∗(t) is observed with error ǫ(t) as p(t);


• the underlying price evolves according to a trend component µ(t), often fixed at zero


for simplicity. In Section 2.3, µ(t) introduces deterministic trend effects into the model;


• plus a volatility element σ(t)dW1(t), with Brownian motion W1(t); instantaneous volatil-


ity is σ(t), which may contain intra-day or intraweek seasonality;


• plus a jump component; q(t) is a counting process with intensity λ(t), and κ(t) ≡
p∗(t) − p∗(t−) the corresponding instantaneous jump size.


In the aforementioned articles, the volatility process σ(t) is only restricted to be a strictly


positive càdlàg sequence; that is all that is necessary in order to derive the integrated daily


variance.


As here the object of interest is the full volatility sequence, also intra-day, more assump-


tions on the process are necessary. Here we assume an independent diffusion for the log-


volatility h(t), combined with a separate deterministic mean process g(t) describing intra-day


or intraweek seasonality of the variance:


log σ2(t) = h(t) + g(t), (3)


dh(t) = µh(h(t); θ)dt + σξdW2(t) (4)
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with W2(t) a second Brownian motion. The variance of the volatility diffusion, σ2
ξ , is assumed


constant, and for the moment the price, volatility and jump processes are taken to be inde-


pendent apart from the direct link between them in the price diffusion. At a later stage, this


assumption can be relaxed further.


2.2 Discretisation through Euler expansion


To operationalise the model, the diffusion has to be linked to the (discrete) observations.


Given observations pi at times Tn = {0 = t1, .., tn = T} with time distances δi = ti+1 − ti


between observations, an Euler approximation of the process gives


pi = p∗i + ǫi, (5)


p∗i+1 − p∗i = µ(pi; θ) + si


√


δiηi +


qi
∑


j=1


κi,j , (6)


log s2
i = hi + gi, (7)


hi+1 − hi = µh(hi; θ)δi + σξ


√


δiξi (8)


with


ǫi, ηi, ξi ∼ i.i.d.(0, 1),


κi,j ∼ N (0, σ2
κ), (9)


qi ∼ Po(δiλ). (10)


The choice of density for κi,j for jump j in time interval [ti, ti + δi] is an approximation to


the density proposed in e.g. Andersen et al. (2002), who use


log(1 + κi,j) ∼ N (−0.5σ2
κ, σ2


κ). (11)


For small variances, densities (9) and (11) correspond as Chib et al. (2002) show, while the


normal specification for κ in (9) is more convenient computationally.


The number of jumps per time period is specified as a Poisson process. In practice


not more than one jump is expected within a short time interval. Hence in most cases


specifying a Bernoulli density with probability δiλ is sufficient, and considerably simpler in


implementation.
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Aı̈t-Sahalia (2002) discusses other discretisations for diffusion processes, which are more


precise and quicker than the Euler expansion. However, these methods are limited to a


diffusion process without micro-structure noise or stochastic volatility. Secondly, as in the


application the frequency of the data will be high, the approximation error on the volatility


process can be expected to be relatively small.


2.3 Refinements and final specification


The above model is still missing the definitions of the drift components, and the specific


distributional choices of ǫi, ηi, ξi. To start with the last, take


ǫi, ξi ∼ i.i.d. N (0, 1),


ηi ∼ i.i.d.


√


ν − 2


ν
tν .


A fully Gaussian choice would allow for the model to be cast into a (non-linear) state space


framework (Harvey, 1989; Durbin and Koopman, 2001), which lends itself to straightforward


implementation of differing time distances δi. However, as a generalisation a Student-t density


(standardised to unit variance) is implemented for the transition equation. This delivers extra


flexibility as returns might display a heavier tail than the normal, without these returns being


so extreme that they should count as true jumps.


From the original (Gaussian) diffusion model, a Student-t density in cannot be derived


through discretisation. The introduction of the heavy tails here is done on pragmatic grounds.


In the application it will be found that Gaussian densities throughout the model are not


sufficient to distinguish ‘large’ jumps from more standard behaviour of the price process.


One could consider the Student-t process however as a high frequency jump component with


relatively low variance, and consider the jump component κi as a low-frequency high variance


jump effect.


As the fully (conditionally) Gaussian state space model is more convenient for imple-


menting the model, the unobserved states can be augmented by an inverse Gamma random


variable zi. This zi is used as the standard deviation of the disturbance ηi in the transition
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equation, as in


zi ∼ IG-1


(


αz =
ν


2
, βz =


2


ν − 2


)


,


ηi|zi ∼ N (0, z2
i ).


Bauwens et al. (1999, Theorem A.7) show how this corresponds (unconditionally) to the


rescaled Student-t density for ηi as defined before.


Chib et al. (2002) extend a stochastic volatility model to allow for Student-t errors and


jumps, though only at a daily frequency. Their findings indicate that, on this daily frequency,


the inclusion of Student-t errors obviates the need for the inclusion of jumps, either with or


without the Student-t disturbances. On the intra-daily frequency used here, it may become


even harder to clearly distinguish between the occurrence of a jump or an observation from


the heavy tail of a Student density.


The first drift component, of the evolution of prices, is simple: In the applied section atten-


tion is paid to exchange rates, and the log-exchange rate is not supposed to drift (disregarding


any interest rate disparities), so a logical choice would be to take


µ(pi; θ) ≡ 0.


To test for an intra-day deterministic drift in exchange rates, one could specify alternatively


µ(pi; θ) ≡ Xiβ (12)


with Xi a vector of explanatory variables measuring the trending effect.


For the volatility specification, a reasonable drift could be


µh(hi; θ) ≡ (φ − 1)hi (13)


which for time difference δi ≡ 1 leads to


hi+1 = φhi + σξξi, (8’)


the standard AR(1) specification for the stochastic volatility equation.


For general time difference δi, the Euler expansion gives


hi+1 =


(


φ − 1 +
1


δi


)


hi + σξ


√


δiξi, (8”)
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see Andersen et al. (2004, Section 3.1.2). This compares with the multi-step AR(1) equation


of


hi+1 = φδhi + σξ


√


√


√


√


δi−1
∑


j=0


φ2j ξi, (8”’)


which is a refinement of the Euler approximation along the lines of the augmentation of the


grid in Elerian et al. (2001).


For the deterministic part of volatility, gi ≡ Miγ, a periodic spline (Poirier, 1973; Stoer


and Bulirsch, 1991) is taken, allowing smooth variation of the volatility throughout the week.


The full model, combining all previous equations and the final notation, is repeated below.


For clarity, each equation is labelled with a term indicating the concept to which the equation


relates; these terms will be used extensively in later sections.


pi = log(Pi) = p∗i + ǫi, ǫi ∼ N (0, σ2
ǫ ), [Observations] (14)


p∗i+1 = p∗i + bi + κi + σiηi, ηi ∼ N (0, z2
i ), [Transition] (15)


σ2
i ≡ δi exp(hi + gi), zi ∼ IG-1


(


αz =
ν


2
, βz =


2


ν − 2


)


, [Variance] (16)


κi ∼ N (0, qiσ
2
κ), qi ∼ Po(δiλ), [Jumps] (17)


bi = Xiβ, gi = Miγ, [Trend & Season] (18)


hi+1 = φδihi + ξi, ξi ∼ N





0, σ2
ξ


δi−1
∑


j=0


φ2j





 , [Volatility] (19)


for N observations, time difference δi = ti+1 − ti between observations, and i = 1, . . . ,N .


Mi is one row of matrix M containing the periodic spline. M is of size N × k, with k the


number of knots in the spline. Similarly, Xi is a row of matrix X with explanatory variables


governing the trending behaviour of the exchange rate. Estimation is done using a Markov


chain Monte Carlo (MCMC) method. Details are to be found in Section 4.


2.4 Daily variation


In financial markets, the current daily variation is an important input for gauging the risk


of portfolios. Though an estimate from a GARCH or SV model on daily data can be used


as a first impression of the variation at the daily level, the introduction of intra-day data


in the measures of non-parametric realised variation, led to a large increase in precision of
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the estimates. This theory was developed concurrently and independently in Andersen and


Bollerslev (1998), Comte and Renault (1998) and Barndorff-Nielsen and Shephard (2001).


If there are a maximum of D observations within a day, such that [ti, ti+D] is an interval


of 24 hours, assuming that there is no microstructure noise, then


[r, r]ti =


∫ ti+D


ti


σ2(s)ds +
∑


ti<s≤ti+D


κ2(s)


is the quadratic variation of the price process, consisting of the sum of the integrated variance


and the squared jumps occurring during the day.1 This


Using realised variation (RV), the quadratic variation at the day starting at ti, over D


observations, can be estimated as


RVti(D) =


D−1
∑


j=0


r2
i+j →


∫ ti+D


ti


σ2(s)ds +
∑


ti<s≤ti+D


κ2(s),


whereas the bipower variation (BPV) can be used to estimate only the integrated variance,


excluding the jump process:


BPVti(D) =
D−1
∑


j=1


|ri+j||ri+j−1|/µ2 →
∫ ti+D


ti


σ2(s)ds, µ ≡
√


2/π.


Hence, the integrated/summed quadratic jump process can be estimated as the difference


between the RV and the BPV, following Barndorff-Nielsen and Shephard (2004b) to get rid


of negative squared jumps as


Jti(D) ≡ max (RVti(D) − BPVti(D), 0) . (20)


To test whether a jump is significant, Barndorff-Nielsen and Shephard (2006a, BN-S for short)


use (among others) a test statistic which they call the feasible linear jump statistic Ĝti(D),


Ĝti(D) =
BPVti(D) − RVti(D)√


δθQPV
→ N (0, 1), (21)


QPVti(D) =
1


δ


D−4
∑


j=4


|ri+j ||ri+j−1||ri+j−2||ri+j−3|/µ4 →
∫ ti+D


ti


σ4(s)ds,


with QPV the realised quadpower variation and θ ≡ π2/4 + π − 5.


1For simplicity of presentation, this section assumes that there are exactly D observations each day; if not,


the returns have to be scaled accordingly, with negative effects on the precision of the estimates of quadratic


variation.
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A second option to test for jumps is the statistic introduced by Lee and Mykland (2008,


L-M, with a small change in notation for consistency with previous results). This test adjusts


a return by an estimate of the instantaneous standard deviation, the latter calculated through


the square root of the average BPV over the previous D observations, as


Lti(D) =
ri


ŝi−1
, ŝ2


i−1 ≡ 1


D
BPVti−1


(D).


By using the BPV over D previous observations, the variance estimate is robust for jumps,


especially for a jump at time ti as this return itself is not included in the calculation of the


variance.


The statistic itself Lti(D), in the absence of jumps, follows a N (0, 1) distribution. It


enables one to test for jumps at each moment in the sample. To check whether a specific time


interval, say a day, contains a jump, a max statistic Lm
ti (D) is derived, with


Lm
ti (D) =


maxj∈[i,..,i+D−1] |Ltj (D)| − Cn


Sn


a∼ Gumbel(0, 1), (22)


Cn =
√


2 log D − log π + log log D


2
√


2 log D
, Sn =


1√
2 log D


.


The asymptotic density of the test statistic is the standard Extreme Value-I or Gumbel


density.


The theory of realised variation and bipower variation, and also the test of Lee and


Mykland (2008), assumes that the price process is observed without error from possible mi-


crostructure effects. Alternatively, the multiscale realised volatility measures developed by


Zhang et al. (2005) and Zhang (2006) allow for estimation of the integrated variance robust to


microstructure effects. These measures, however, do not explicitly take jumps into account.


Based on the model of Section 2.3, alternative estimators can be constructed integrating


directly over the estimated intra-day variances and jumps. The expected integrated model


variation is


IMVti(D) = E
D−1
∑


j=0


exp(hi+j + gi+j) ≈
1


S


S
∑


s=1


D−1
∑


j=0


exp(h
(s)
i+j + g


(s)
i+j)


where a posterior sample of size S is assumed. Likewise, the posterior variance of the IMV


can be evaluated, or other functions of the posterior density.


Such an IMV measure is directly comparable to the bipower variation, at least in theory.


Differences between the two are errors in the approximation of the BPV to the true inte-
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grated variance on the one hand (among them, the effect of microstructure noise), and model


misspecification and estimation errors on the part of the IMV measure.


3 Data description and evidence of jumps


In the next section the performance of the model is analysed using data on the 2005 Euro/US


Dollar exchange rate. Before moving to this analysis, this section takes a first look at the


characteristics of the data and the type of jumps the model might find.


The data was provided by DiskTrading, who constructed the 5-minute data from tick-by-


tick data. As observation at time t the price of the first trade in the 5-minute interval preceding


t is reported. The prices Pi are transformed into pi = 100 × log(Pi), with (percentage)


returns ri = pi+1 − pi. No further cleaning or transforming of the data has taken place. All


observations between 2005/1/1, 0:00h and 2005/12/31, 23:55h are taken, using GMT+1 as


the timing. This time period contains effectively 76,339 prices. No trading took place between


Saturday 0:00h and Sunday 21:45h.


Table 2 about here


The moments of the percentage returns are presented in Table 2. As usual with financial


data, there is virtually no mean return. There is some negative skewness, and a huge kur-


tosis, indicating the thick tails of the return distribution. Figure 1 presents the percentage


returns in the first panel. Several large returns are apparent. The usual shape of high versus


low volatility periods is less obvious from the return plot. The second panel displays the


autocorrelation of the squared returns. This panel clearly indicates the intra-day volatility


movement, with high correlation in volatility at the daily frequency. The last panel compares


the return distribution to the Student-t density. The QQ-plot indicates that for values in the


.1%-99.9% quantile of the returns (between -8.3 and 8.3 on the y-axis in the last panel) the


Student-t with ν = 3.5 degrees of freedom fits the data.


Figure 1 about here


Figure 2 about here


Figure 2 displays the exchange rate over the full year 2005, the month of January, the
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third week, and day 12/12, with increasing frequency (indicated between parentheses within


the graphs). What is clear from such a figure is that on a yearly basis using only daily data,


one hardly notices the missing data in the weekends and there are no apparent sudden shifts.


With data concerning one month, the missing weekends are starting to become a problem, as


the gaps are relatively large compared to the available information. One might wonder about


sudden shifts in the data, but they are not fully clear yet.


When a week of hourly data is used, one does notice a sharp increase on January 12, but


it cannot be judged clearly whether it was an increase over a number of hours or a sudden


jump. Only in the bottom right panel with intra-day data at the 5-minute frequency, it is


seen that in the interval from 14:30h-14:35h the exchange rate jumped suddenly by 0.7%.


Though a 0.7% increase sounds small, on a daily basis (multiplying by
√


288, to adapt for


the number of observations within a day) it would correspond to a sudden 12% increase in


exchange rate, which is considerable.


From the plot of the returns, and the QQ-plot of returns versus the Student-t density, it


was found that there could be many jumps in this data set. Applying the feasible jump test


statistic (20) or the version of Lee and Mykland (2008), (22), on the 5-minute data for the


above series, indeed leads to numerous jumps being detected. On a standard significance level


of α = 5%, the tests indicate between 43 and 86% of the days as containing (one or more)


jumps. Decreasing the significance level, even up to α = .005% still leads to 10–35% of days


rejecting the hypothesis of the absence of jumps. Table 3 presents an overview of significance


levels and rejections.


Table 3 about here


When studying these results on the jump test statistics, one should keep in mind that


these tests do not (explicitly) allow for microstructure effects. In the application below, the


goal is to study what a parametric approach can tell us about the possible jump process.


When the model is parametrised fully, the timing of the jumps comes out as a side-product


of the estimation procedure, and it would be possible to relate jumps to external effects like


announcements at a later stage.


2This date is chosen as having the largest 5-minute absolute return of all days in 2005
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4 Implementation of the Markov chain


In Section 2.3 the full parametric model of the log-price process is given in Equations (14)–


(19). Implementing a MCMC algorithm for this model is not straightforward. Several issues


arise when moving from daily data to high frequency data. This section describes first the


general approach, in Section 4.1, with further details on the initialisation in Section 4.2.


4.1 General procedure


The model referred to above is an unobserved components model (Harvey, 1989; Durbin and


Koopman, 2001), linking log-prices p to unobserved components p∗, q, κ, z and h (for the


underlying price, number of jumps, jump size, Student-t effect and stochastic volatility, re-


spectively), and parameters θ = (σǫ, σκ, λ, β, γ, φ, σh, ν), with the long-run standard deviation


σh ≡ σξ/
√


1 − φ2.


The unobserved components model is convenient in this situation as it is relatively straight-


forward to use in a situation with missing observations, or, according to the notation in (14)–


(19), when the time difference δi = ti+1 − ti between successive observations is not constant.


In the notation below, and in subsequent sections, dependence of the parameters or states on


this fixed vector δ of time differences, and likewise on the matrices X and M describing the


trend in mean and the periodic spline for the volatility, is suppressed for clarity.


The parameters are estimated using a Bayesian approach applying data augmentation


(Tanner and Wong, 1987; Gelfand and Smith, 1990) for the unobserved components p∗, q, κ, h


and z. Conditional on parameters β and γ, the trend b = Xβ and seasonality g = Mγ are


fixed, so these are not counted among the unobserved components.


In order to use a Bayesian method, prior densities for the parameters have to be specified.


For the parameters conjugate priors are taken as far as possible, choosing IG-1 densities for


the parameters σǫ, σκ and σh, normal for β, γ, and Gamma for the jump frequency parameter


λ. For φ, a Beta density is most logical, also to limit prior mass to the range [0, 1]. The


degrees-of-freedom parameter ν has to be larger than 2 for the variance to exist. The prior


density for ν − 2 is conveniently taken to be exponentially distributed.


Furthermore, the states h0 and p∗0 need initial distributions. The initial value of h0 is


taken to be distributed according to h0 ∼ N (0, σ2
h), its long-run distribution, whereas p∗0 is


initialised uninformatively as p∗0 ∼ N (0,K),K → ∞. The IG-1 density specified for z in
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Equation (16) can be considered its prior distribution. This distribution is combined with


the likelihood to derive the posterior density of z.


The full MCMC algorithm consists of the following steps:


i. Initialise states p∗, q, κ, h, z and parameters θ, see Section 4.2, and set the simulation


counter s = 0.


ii. Sample new states p∗, q, κ, z, h successively, using


(a) the simulation smoother (De Jong and Shephard, 1995; Durbin and Koopman,


2002) for p∗|p, q, κ, h, z, θ;


(b) a mixed continuous-discrete sampling step for drawing qi, κi, zi|hi,∇p∗i , θ for i =


1, . . . , N − 1, with ∇p∗i ≡ p∗i+1 − p∗i . Only few jumps can occur per time interval,


usually qi ∈ {0, 1}, though the implementation does allow for more jumps. See


below for further details;


(c) a Metropolis-Hastings (MH) step (Metropolis et al., 1953; Chib and Greenberg,


1995) for sampling hi|hi−1, hi+1,∇p∗i , qi, κi, zi, θ, again for i = 1, . . . ,N − 1, as in


Jacquier et al. (1994) and Kim et al. (1998).


iii. Sample new parameters θ, using the following substeps:


(a) Draw σǫ|p, p∗ from a IG-1 density;


(b) Sample γ|∇p∗, κ, h, z, β from its full conditional posterior. Take e as the vector of


residuals of the state transition equation (15). Then this posterior can be approx-


imated in a point γ̃ (e.g. the last sampled value of γ) by a normal density


pa(γ) ∼ N (µa,Σa)
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with


µa = −H−1(g−Hh∗), Σa = −H−1,


g ≡ ∂ logL(e; . . . )


∂γ


⌋


γ=γ̃


, H ≡ ∂2 logL(e; . . . )


∂γ2


⌋


γ=γ̃


,


logL(e; . . . ) = C − 1


2


∑


(


h + Mγ +
e2


z2
i δi exp(h + Mγ)


)


,


∂ logL(e; . . . )


∂γ
= −1


2
M ′


(


1 − e2


z2
i δi exp(h + Mγ)


)


,


∂2 logL(e; . . . )


∂γ∂γ′
= −1


2
M ′ diag


(


e2
i


z2
i δi exp(hi + Miγ)


)


M,


for e ≡ ∇p∗i − Xiβ − κi and some constant C. A short Metropolis-Hastings chain


is used to adapt for the difference between the approximate normal density pa(γ)


and the target density of γ;


(c) Sample β|p, κ, g, h, z from a Normal density;


(d) Sample λ|q, from a Gamma density;


(e) Draw σκ|q, κ, h, θ. This density is effectively IG-1, depending on the number and


size of the sampled jumps;


(f) Draw φ, σh conditionally on the standardised disturbances u of the SV process by


1. filtering


ui ≡
hi+1 − φδ


i hi


σi
,


σ2
i ≡ (1 − φ2)σ2


h


δi−1
∑


j=0


φ2j ,


to get the standardised disturbances u;


2. sampling φ, σh|p, p∗, u, q, σǫ, σκ, β, γ using a random walk MH step with a nor-


mal candidate density, conditional on those u;


3. inverting filter iii(f)1. to reconstruct the corresponding series of h|φ, σh, u,


adapting for the change in SV parameters.


See Bos and Shephard (2006) for details on the conditioning on the disturbances.


It is found that conditioning on h, as is normally done, does not lead to conver-


gence in high frequency/large sample applications, as the volatility process h is too


informative on the values of φ, σh, and the sampler mixes too slow if at all.
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(g) For ν, the posterior density is not of a known form. However, if the number of


observations in the sample is large, the posterior will be approximately normal, and


a simple random walk Metropolis-Hastings step with a normal candidate density


suffices;


iv. Save sampled parameters θ(s) = θ and possibly the states, increase s, and repeat from


ii. until sufficient parameter vectors are collected.


The general outline of the sampling scheme is not much different from earlier samplers in


e.g. Kim et al. (1998) or Chib et al. (2002), apart from the introduction of the jumps and


the unobserved underlying price process. What makes the true difference, however, is the


level of detail with which the data is modelled. In standard SV models the return sequence


immediately provides information on the volatility. Here the volatility sequence has to be


estimated as the volatility of the increments of an unobserved process, after extracting jumps


occurring very infrequently but at unobserved time periods. At the same time, one has to


take care to adequately handle variation of volatility within the week and within the day.


The increase in frequency from daily data to intra-day data at the 5 minute frequency


leads to a sample of around 75,000 observations for a full year of data. This implies that


standard samplers for the SV parameters φ, σh no longer converge. Here the transformation


from Bos and Shephard (2006) to condition on the SV disturbances is found to be essential.


In the above algorithm, it is not specified in detail how to sample jointly from qi, κi, zi.


How can the algorithm decide for one observation whether the return came far from the tail


of the Student-t density, or whether there has been a jump? And if there was a jump, what


size could it have been? If the model would be simplified to have normal disturbances, then


the size of the jump can be integrated out of the model, and the marginal density of ∇p∗|q is


p(∇p∗i |q, β) =


∫


κ
p(∇p∗i |qi, β, κ)π(κ)dκ = N (Xiβ, δi exp(hi + gi) + qiσ


2
κ).


The discrete distribution of qi|∇p∗i , hi, θ would be easily constructed from the above marginal


density and the prior π(qi).


A draw from this approximate distribution of qi|∇p∗i , hi, θ can be supplemented by a


draw from ki|qi,∇p∗i , hi, θ, again using the normal assumption. To correct for the error in


the sampling distribution, a Metropolis-Hastings step is used to weigh in the effect of the
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Student-t density.3 The resulting sample from qi, ki|∇p∗i , hi, θ is then augmented by a draw


from zi|∇p∗i , qi, ki, hi, θ, which is IG-1, such that in the end a sample from the correct density


is obtained.


Improved mixing of the chain can be achieved by repeating each step which uses an ap-


proximating density with MH a number of times before continuing. This lowers the correlation


induced by possibly low acceptance rates of the MH sequence. The repetition of sampling σǫ


is done in a loop together with the sampling of the underlying price process p∗, as these two


are heavily correlated. By blocking them together, and repeating the sampling of [p∗|p, σǫ, ...]


and [σǫ|p, p∗, ...] together, correlation in the chain is found to drop considerably.


Kim et al. (1998) discuss the importance of the method used in sampling a new vector of


h. Their suggestion of using a mixture density in an approximate parametric model is not


easily applicable to the present situation, due to the effects of the jumps on the squared return


sequence. This mixture density also applies an extra unobserved indicator for the mixture,


implying further cause for correlations in the chain. An alternative to step iic. is to implement


a multi-move sampler (Shephard and Pitt, 1997), where a block of (hi, .., hi+K) are drawn


jointly, conditional on the values hi−1 and hi+K+1 at the end points. This method does not


have the disadvantage of applying an extra unobserved component, but has not proven itself


on high frequency data sets.


4.2 Initialisation of the chain


The initialisation of the parameters and states is important, as the MCMC algorithm itself


may mix slowly. This may be particularly acute when initialised from bad starting values.


The initialisation for the parameters is based on a rough quasi maximum likelihood ap-


proach. First, parameters β for the trend can be estimated by OLS, disregarding microstruc-


ture effects and stochastic volatility all together. Though not efficient, such estimates should


be consistent.


3When no jump occurs, there is no need to sample ki and the Metropolis-Hastings step can be circumvented.


When a jump is found, the Metropolis-Hastings step adapting the candidate Gaussian density towards the


Student-t density theoretically has bad properties, as the candidate has thinner tails than the target. In


practice, this implies that the effective density implemented here of the returns conditional on a jump of size


k has thinner tails than the theoretical tν .
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Secondly, to estimate the volatility spline, one can use


∇p∗i ∼ N (Xiβ, δi exp(Wiγ)), ⇔ log(∇p∗i − Xiβ)2 = Wiγ + ξi,


ξi ∼ i.i.d.(−1.27, π2/2),


see Harvey et al. (1994). Using the the observed log squared returns (adapting for the trend


and the time distance between successive observations, disregarding jumps and microstructure


noise), a first estimate of γ can be computed using OLS. As this is far from efficient, it can be


followed by an optimisation of γ over the approximate likelihood of the returns themselves.


Given the trend and volatility spline, still disregarding the microstructure effects, daily


realised volatility measures can be extracted for each day in the sample. Using the feasible


jump test (20) of Section 2.4, days are selected at which a jump is found using a significance


level of α = .1%. At these days, the largest return is initially flagged as a jump, with size


equal to the return. The fraction of jumps λ is initialised according to the number of jumps


found, and the jump standard deviation σκ is extracted likewise.


For the stochastic volatility parameters, the original quasi maximum likelihood method


of Harvey et al. (1994) is used, adapting for the trend, jumps and time distance δ between


observations. This method also provides a first estimate of the intra-day volatility sequence


h.


Conditionally on the volatility, a fully Gaussian state space model can be estimated to


extract the variance σ2
ǫ of the microstructure effects in observation equation (14). From the


Kalman filter equations, a filtered estimate of the efficient price p∗ is extracted. The degrees


of freedom parameter ν is estimated from the increments ∇p∗i , adapted for SV, time distances


δ, jumps κ and volatility seasonality Wγ. This estimate for the degrees of freedom parameter


will be positively biased in general, as the returns in the price process are extracted under


the assumption of normal disturbances. It remains a good proxy for a first estimate. The


Student-t tail component z is initialised at 1, as it is not too influential for the start-up of


the Gibbs algorithm of Section 4.1.
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5 Performance in a simulated setting


5.1 Simulating intra-day returns with jumps and diffusion


As the model is fully specified, a choice of parameters and initial conditions is sufficient to fix


a DGP. For simplicity, the parameters and their prior choices are collected in Table 4. These


parameters correspond to values that could be found in practice. Some further discussion


of the parameter values and sample sizes, relating to the simulation results, is postponed to


Section 5.3.


Table 4 indicates, for each parameter, what setting is chosen for the DGP, followed by


the prior density, the parameters of the prior density, and the mean and standard deviation


of the prior. Note that for the degrees-of-freedom parameter, the prior for ν − 2 is specified


as exp(.25), with expectation E(ν − 2) = 4. The value used in the DGP is ν = 6 degrees-of-


freedom. Furthermore, in this simulation, the specification for the trend is not used at all, so


β is fixed at 0 both in generating the data and simulating the parameters.


Parameters are presented at the daily frequency, e.g. a value of λ = .1 indicates on


average one jump every 10 days, even though multiple observations per day are generated.


Likewise, the autocorrelation of the SV component is φ = 0.97 per day, implying a correlation


of φ1/D = 0.99989 between two successive 5-minute observations. All innovations in the price


increments ∇p∗i have been transformed by multiplying them by
√


D, to effectively measure


volatility at the daily frequency. This implies that the jump standard deviation of σκ = 5


also refers to this daily frequency.


Table 4 about here


The spline used for creating a seasonality effect within the volatility is given knots through-


out the working days at every six hours, repeating the daily shape from Monday until Friday.


In the weekend, only a knot in the middle of the weekend is specified. The level of the spline


is modelled after the volatilities found in the next section, with exchange rate data.


From this DGP a data set of 365 days, with a maximum of 288 observations per day,


is generated. As in a real data set, some of the observations will be missing. Throughout


the weekend, no observations are preserved, while randomly around 95% of the observations


throughout the working days are retained. This resulted in a dataset of 71,225 generated


prices. Of these prices, 45 (slightly more than the expected 36) contain a jump. Through the
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specification of the process, 13 of those jumps fell within the (missing) weekend, such that


their effect might be harder to recognise.


5.2 Discussion of simulation results


A sample from the posterior distribution is collected as described in Section 4. After ini-


tialising, a burn-in sample of size 5,000 of states is drawn repeatedly, until all means of the


parameters in the first and last third of the sample lie within 1.96 standard deviations of


eachother. Subsequently a final sample of 50,000 parameter vectors is collected. Within each


iteration, each MH sampling step is repeated 5 times to further lower correlation in the chain.


Such a setup takes around 12 hours of time to complete using a combination of Ox (Doornik,


2006), SsfPack (Koopman et al., 1999) and C, on a 2.4Ghz AMD64 machine.


Table 5 about here


Table 5 reports statistics on the posterior distribution for the model parameters. Missing


in the table are the remaining intra-week spline parameters, as their posterior is very similar


to the density of γMon 0:00h. From the table it can be seen that estimation of these parameters


is not easy. Most clearly this is seen from the inefficiency measures4 in the last column.


Especially for the SV parameters φ and σh, correlation within the chain is still rather high.


On the other hand, these inefficiencies are a large improvement over a sampler without the


transformation to SV disturbances mentioned in Step iiif. of the algorithm in Section 4.1


(results not reported here). Without the transformation, inefficiencies surge to levels around


2,000, for the parameters φ and σh.


Apart from the inefficiencies, the table also reports the parameters according to the DGP,


and the posterior mode, mean, standard deviation, and the lower and upper 2.5% quantile,


which give a good approximation to the 95% highest posterior density (HPD) region. Apart


from the parameter σh, the values of the DGP lie within the interquantile ranges. The latter


parameter is however still estimated reasonably close to the value according to the DGP.


4The inefficiency measure compares the posterior sample variance to the variance adapted for autocorre-


lation in the chain, using a window width of (in this case) 2,000 observations. A value around 1 indicates a


fully efficient estimator, with effectively independent draws from the posterior. High values indicate that the


posterior sample is less informative due to high correlation; see also Shephard and Pitt (1997), Kim et al.


(1998) and Bos and Shephard (2006).
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Figure 3 about here


Figure 3 displays the posterior density of the main parameters together with their priors,


and the value of the DGP. It is seen that most parameters are retrieved from the data


remarkably well, though the uncertainty on the jump parameters λ and σκ remains large.


The jump process is hard to recognise when jumps are this infrequent, in a model with heavy


tails. More on the uncertainty related to these parameters follows below in Section 5.3. Note


however that the data is informative on these parameters, in the sense that the posterior


clearly moves away from the prior.


Figure 4 about here


When plotting the sampled parameters against the index (not reproduced in the article),


the parameters do not trend. Different starting values, longer or shorter samples, all lead to


the same posterior densities. The sampler clearly converged without much of a problem for


the data of this DGP.


Figure 4 studies the relation between estimated jumps and the true jumps from the DGP.


In the first panel, for each 5-minute return, the posterior probability of a jump occurring


in that time interval is given, for all 75,000 intervals. Most of the returns of those intervals


are deemed to come from the standard Student-t distribution, with a few intervals which are


deemed highly suspect. There is also a range of observations with a posterior probability of a


jump of around 0.2. These are the observations just before the weekend, where the combined


uncertainty of the whole weekend without observations makes it plausible that a jump could


have occurred.


The second panel plots the absolute value of corresponding expected jump sizes, with


one standard deviation error bands, for those intervals with a jump probability of at least


0.75. Without error bands, the true jumps of the DGP are plotted. For some jumps, the


estimated jump sizes are correct, but smaller jumps and those occurring in the weekend are


not detected.


The third panel displays the relation between the true jump size, horizontally, and the


estimated jump probability, split out between weekdays (for which most neighbouring obser-


vations are available) and just before the weekends (with many missing observations, making


it harder to recognise jumps). Of the 45 jumps generated throughout the year, 13 intra-week
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jumps are recognised correctly; jumps below a size of 3 tend not to be recognised at all,


neither are jumps in the weekends.


Figure 5 about here


Given that the important jumps can be found, one can wonder whether the model-based


estimation can reconstruct the integrated variation over the day. Figure 5 displays the esti-


mates of integrated variation using realised variance (RV), bipower variation (BPV) and the


integrated model variation (IMV), together with the underlying integrated variation from the


DGP. The left panel displays all measures against time, whereas the right panel compares


either BPV or IMV to the underlying integrated variation.


From the figure, little is learned, apart from the fact that all measures appear to differ


little from the underlying integrated variation. To formalise this, Table 6 reports results


on the Mincer-Zarnowitz (Mincer and Zarnowitz, 1969; Andersen et al., 2005) regressions


explaining IV from one of the other measures.


Table 6 about here


The MZ-regression indicates the validity of the IMV approach. The IMV approach results


in the highest R2. When explaining the integrated variation using the IMV, the estimated


parameters β0, β1 are not significantly different from 0 and 1, respectively. For the BPV,


a t-test does indicate a difference of the parameters from their theoretical values. The RV


measure does not account for jumps, and hence is not supposed to deliver an estimate of the


IV better than the BPV in the present setting. It is only included for comparison.


5.3 Considerations on choices for the DGP


Several remarks could have been made before when the settings of the DGP were chosen,


in Section 5.1, but these are better related to the estimation results of the previous section.


First, there is the length of the data sample. Most articles estimating SV models use between


500-3,000 daily or weekly observations. Moving to 5-minute data, the year of data used both


in the DGP above, and in the application below, should provide sufficient information for


estimating the (weekly) spline. Shortening the sample to e.g. a quarter could be problematic


for these parameters.


The jump process can be harder to estimate than the spline parameters, for two reasons.
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First, the number of jumps in an applied data set is expected to be low. Andersen et al. (2007)


report between 0.083-0.137 jumps per day (at a significance level of α= 0.1% resp. 0.01%;


this corresponds roughly to the fraction of jumps found using the test of BN-S in Table 3).


Over the year of data sampled here, 45 jumps were generated, and from those the parameters


λ and σκ of the jump process should be estimated. Clearly, the amount of information on


these parameters is going to be limited. Increasing the frequency of the data set could help in


distinguishing the jumps from the non-jumps, as the jump variance is not dependent on the


frequency of the data set, but the non-jump return variance is. Aı̈t-Sahalia (2004) discusses


this effect. Even though this article settled on the 5-minute frequency, initial estimations


indicate that there are few problems to move towards 1-minute or even tick-by-tick data.


Secondly, it can be hard to distinguish the jumps from the standard returns, especially in


combination with a Student-t density for the disturbance term. Financial returns are often


found to be heavy tailed, even in the absence of jumps. For daily observations on S&P500


data, Chib et al. (2002) report degrees-of-freedom parameters ν between 12-15, though they


also refer to other articles (Sandmann and Koopman, 1998; Jacquier et al., 1995) with lower


values of 7.9 or 11, using different time periods of the same series. Given that the daily returns


are composed of a large number of intra-day returns, by a central limit theorem, these daily


returns can be expected to be ‘more normal’ than the intra-day returns themselves. The


resulting parameter ν for the intra-day data would end up even (considerably) below 7.9,


assuming the exchange rate data used below is comparable to the tail behaviour of the S&P


500. In the DGP, the value of ν = 6 was chosen, even though the description of the data in


Section 3 indicates a possibly lower degrees-of-freedom parameter.


To see how hard it can be to distinguish a jump from a standard return, simplify the


model to


p∗i+1 = p∗i + qiκi + ηi, ηi ∼ t


(


0, ν,
exp(γ)


D


)


,


qi ∼ Bern(λ), κi ∼ N
(


0,
σ2


κ


D


)


,


with λ = 0.1 jumps per day, with D = 288 5-minute returns ∇p∗, ν = 6 and γ = −1.4 fixing


the variance of the Student-t density. For the jump process, use σκ = 5 as in the DGP. In
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such a case, the following probabilities for observing a large return are easily calculated:


P
(


|∇p∗i | > σκ/
√


D|qi = 0
)


= 2


(


1 − Ft


(


σκ


exp(γ)


√


ν


ν − 2


))


= 0.017h ≡ A,


P
(


|ki| > σκ/
√


D|qi = 1
)


= 2 (1 − FN (1)) = 317h ≡ B,


P
(


|∇p∗i | > σκ/
√


D
)


≈
(


1 − λ


D


)


A +
λ


D
B = 0.128h.


Unless normality can be assumed or the degrees-of-freedom parameter of the Student-t density


is large, the jump-process standard deviation σκ needs to be factors of magnitude larger than


the non-jump standard deviation, to clearly distinguish between true jumps and non-jumps.


Even so, it was found that a data series including microstructure noise, infrequent jumps


and heavy tails can be estimated using the present setup. The model-based approach even


delivers a closer approximation to the true integrated variation than either bipower variation


or realised variation. This provides a good starting point for the next section, looking into


the possibility of using this same model on a time series concerning the Euro/U.S. Dollar


exchange rate.


6 An empirical illustration: Exchange rate and jumps


6.1 Data and setup


In Section 3, the exchange rate of the EUR/USD over the year 2005 was presented. In


this section the discretised jump-diffusion-SV model with microstructure noise, (14)–(19), is


estimated on this exchange rate using 5 minute frequency for the observations.


The model at hand gives a full parametric specification for the evolution of prices and


volatility within the day. To put these to use, consider the findings in Ranaldo (2007). This


author found that exchange rates tend to trend within the day according to the market which


is more active. Roughly, the Dollar appreciates against the Euro between 9-13h GMT+1,


during European active trading hours. Vice versa, the Dollar is found to depreciate again


from 17-21h GMT+1, when only the U.S. market is open. Testing for such an effect can be


done simply by introducing two dummies in X (see Equation (12)), multiplying the trend


parameters in β for these different periods of the day.


In order to start the analysis, first the priors on the parameters have to be specified. The


DGP in the previous Section 5.1 was set up in such a manner that the same priors from
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Table 4 can be used for the present situation. The data used are the log-prices pi presented


in Section 3. A sample of size 50,000 is drawn from the Markov chain after initialising the


parameters and the states as before.


6.2 On convergence with FX data


When using the simulated data in Section 5.1, the Markov chain converged without problems,


and a decent sample was collected after the burn-in period. When the same algorithm is run


on the FX data, initially a sample is found where the parameters φ, σh and ν seem to trend


throughout the 50,000 iterations of the chain. A decrease in φ seems to be offset by increases


in σh and ν. The movement of the parameters is however relatively slow, with φ decreasing


from an initial value of 0.96 to 0.83 at the end the sample. Continuing the chain for another


50,000 or even 150,000 iterations does not lead to convergence either, with φ decreasing ever


further towards zero.


The behaviour of a low φ, high σh, and increasing ν indicates some short-run bursts of


volatility, modelled through a temporary increase or decrease of the SV component instead of


through the Student-t tail of the density. In the extreme case, with φ ↓ 0, the instantaneous


extra volatility originating from the SV is indistinguishable from the tail effects of the Student-


t density (cf. in Section 2.3 where the Student-t density is implemented using a mixture of a


Gaussian density and an instantaneous random variance component z2
i ).


When estimating the model on simulated data the algorithm was stable, converging rapidly


towards the parameter values used in the DGP. In the present application the model is the


same, the sample size is the same, and most of the parameter estimates will result to be


similar as well. This leaves two options for the lack of convergence in the present situation.


Either the model is misspecified for the data at hand, or there is a difference in parameter


settings which makes the model unidentified in the present case. The main difference between


the parameters used before for the DGP in Section 5.1 and present preliminary estimates is


found in the degrees-of-freedom parameter. Instead of ν = 6, in the DGP, here a value of ν


between 3.2 and 3.4 is found.


A similar convergence problem estimating this FX data is found when ν is fixed at 3.4,


when a Gaussian transition density (corresponding to ν → ∞) is used, or for a model where


the SV process is forced to be integrated with φ ≡ 1. In these three cases the standard
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deviation of the SV process very slowly increases during the iterations of the sample.


These results point in a similar direction. The long run variance of the volatility is not


well identified from the data. Given a degrees-of-freedom parameter estimated around 3.4,


this does not have to be a surprise. For the Student-t density, such a value of ν implies that


the fourth moment of the (unobserved) returns does not exist. Correspondingly, the second


moment of the volatility, related to its long-run variance σ2
h, is not defined as well.


As the long-run variance cannot be estimated from the intra-day data, the SV parameters


φ, σh are fixed at a combination of plausible values, related to estimates at a daily frequency.


The estimated volatility sequence hi effectively will be a weighted average of neighbouring


observations, where the weights are fixed through the parameters of φ and σh. This however


still allows for more freedom than the non-parametric approach, where volatility is estimated


using equal weights throughout a day, weight zero outside the specific day.


For the SV parameters values of φ = 0.98 and σh = 0.5 are chosen. Such values correspond


with common findings for estimates of SV models on daily data, relate back to the values


found during the initialisation stage, and also correspond to values found for these parameters


when estimating daily EUR/USD exchange rates over a longer time period.


6.3 Resulting posterior


A collection of 50,000 vectors of parameters was sampled, while retaining information on the


sampled price, volatility and jump processes. Before moving on to the results in terms of


the jumps and integrated model variation, some statistics on the posterior densities of the


parameters are presented in Table 7. The densities of the main parameters are plotted in


Figure 6, together with their priors.


Table 7 about here


Figure 6 about here


From the densities in Figure 6, it is seen that the posteriors are smooth. This is a


first indication of a well-behaved sample from the posterior. The data is informative on the


parameters, as the posteriors are concentrated relative to the priors. A plot of the parameters


against the index (not reproduced here) confirms that the sampler has converged.5 Also the


5To check the robustness of the results against the choice of the SV parameters, φ was fixed alternatively
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inefficiency measures, in the last column of Table 7 indicate little remaining autocorrelation


in the chain.


Concerning the size of the parameters, σǫ is estimated around 0.01. This implies that the


difference between pi = 100 × log Pi and the underlying p∗i has a standard deviation of 0.01,


which can be read as a 0.01% difference in the prices corresponding to one standard deviation.


For the number of jumps, a value of λ̂ = 0.42 results. Some jump occurs a posteriori about


every 2.4 days, or 690 observations. The standard deviation of the jump size is estimated at


σ̂κ = 3.4, again measured on a daily scale, implying that the intra-day standard deviation


is σκ/
√


288. That is to say, a one-standard deviation jump would correspond on a daily


scale to a jump in the daily underlying price of around 3.4%, slightly smaller than the value


assumed in the simulation exercise. Linked to the frequency of the jumps and the jump size


is the degrees-of-freedom parameter. The estimate of ν̂ = 3.4 implies far heavier tails than


found by Sandmann and Koopman (1998) or Chib et al. (2002) for daily S&P 500 data. It


corresponds closely to the findings in Section 3, where a first look at the data was taken.


Such an estimate implies that the third moment of the returns still exists, but the kurtosis of


the Student-t density is infinite. The trend parameters β, governing the trending behaviour


within the trading day, are estimated very precisely and with high efficiency. A discussion on


these parameters is postponed to Section 6.6.


Figure 7 about here


The volatility spline is modelled through the parameters γ, fixing the height of the periodic


spline at the knots. Estimating γ(Sun, 0:00h) is difficult, judging from the wide bounds on


the 95% interquantile range in Table 7. Intra-week γ’s are estimated more precisely, with


similarly low inefficiencies. Instead of tabulating the values for all the knots, Figure 7 plots


the estimates at each of the knots (indicated by the vertical lines) and the resulting spline,


together with a one standard deviation error band. Over the weekend, volatility appears


to be low but imprecisely measured. Throughout the weekdays, volatility is highest during


at 0.97 or 0.99. In the latter case, all remaining parameters were estimated at very similar values as the ones


presented here, and the same jumps (see below) were found. For φ ≡ 0.97, the SV process becomes more


flexible, picking up a larger part of the jumps. Estimates for the parameters are λ̂ ≈ 0.07, σ̂κ ≈ 5.5, ν̂ ≈ 3.18


when φ ≡ 0.97. Only the most severe jumps are found in this case, other larger returns are accounted for by


the tails of the Student-t density.
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the (European) afternoons, and can be estimated far more accurately. There are some small


differences between the weekdays. The expected variance of the percentage price increase


moves between exp(−2.2) ≈ 0.11% at night and exp(−0.7) ≈ 0.5% during daytime, again


measured on a daily scale.


6.4 Jumps and sizes


The object of this article is to see whether it is feasible to construct a model-based estimator


for the occurrence of jumps in a high-frequency diffusion-type model. The jumps in this


model are governed by the unobserved vector of q, the number of jumps occurring at each


time point.


Figure 8 about here


Figure 8 displays the jumps, with in the first panel the posterior mean of qi, the probability


of a jump occurring within a specific five minute interval. Clearly a large number of intervals


could have had a minor jump, resulting in a low value of qi. On the other hand, there are


a reasonable number of observations where E(qi) ≈ 1, such that a jump is indicated by the


algorithm to have occurred with high probability.


A distinction is made in the panel for days with possible jumps during the week (indicated


with a plus sign), and jumps over the weekend (the crosses). The observations around E(qi) =


0.38, in the left-most panel, almost entirely stem from observations around Friday 23:55h,


when the last observation before the weekend comes in. The model has a hard time deciding


over the weekend whether there might have been a jump (among the almost 2 × 288 missing


observations) or whether the change was caused by the normal diffusion process. Hence, an


estimate of E(qi) ≈ 0.38 results in many of these cases.


The second panel plots the absolute expected jump size, for those jumps with E(qi) > .75.


The jump at January 12 2005 stands out, with a size corresponding to the value found in


Section 3. Many other jumps are detected by the algorithm as well.


The final panel of the figure relates posterior jump probability to estimated (absolute)


jump size (as the underlying true jump sizes are not available, in contrast to the case of the


simulation exercise). Obviously, larger jumps are more easily detectable. The distinction


between intra-week and weekend data is significant. If a possible jump is detected at the


start of the weekend, its size is relatively small, below 3% in all cases. Intra-week jumps are
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clearer both in estimated posterior probability and jump size.


6.5 Comparison with non-parametric measures


From the model, measures for the intra-day integrated variation including jumps, for the vari-


ation excluding jumps, and for the integrated squared jump process itself, can be constructed.


These are comparable to the realised variation, bipower variation, and the difference between


the two.


Figure 9 about here


Figure 9 plots these measures, both against time (top panels) and against each other


(bottom panels, with the non-parametric measures on the vertical axes). In the left column,


realised variation is compared with the model-based daily integrated variation+jumps mea-


sure, followed by the bipower variation versus integrated model variance in the middle column,


and the jump measure in the third column of plots. Though the correspondence is not 1-on-1,


clearly the measures are strongly related. If pressed one could find that the model-based vari-


ation measures tend to underestimate the non-parametric measures. This is partly due to the


definition of variance in the model. The variance is comprised of the elements δi exp(hi + gi),


and does not account for variability due to the Student-t component. Likewise, these smaller


jumps which the model attributes to the non-Gaussian transition density are depicted by the


non-parametric measures as possible jumps. The righthand panels consequently display more


NP- than model-based jumps.


6.6 Intra-day behaviour


Modelling intra-day returns in a fully parametric manner allows for a straightforward test of


the hypothesis that the exchange rate trends within the day. Instead of measuring only the


returns over fixed periods in the day and taking averages of those, in the present model the


trend in the exchange rate can be allowed to change between the morning hours (fixed here


at 9-13h GMT+1, when the European markets are most active) or the late afternoon period


of 17-21h GMT+1, when most trading occurs on U.S. markets. Outside these periods, the


standard assumption of a random walk without trend for the exchange rate is kept.


Introducing the trend through the parametrisation of Equations (15)–(18), a posterior


density for the parameters β as in Figure 10 is found (see also the posterior statistics at the
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bottom of Table 7). Both for the morning and afternoon period, a clear non-zero trend is


found. For the morning-parameter, 99.2% of the posterior mass lies below zero, giving a very


clear signal of the direction of the trend. For the afternoon, the signal of a positive trend is


also clear, with 96.6% of the posterior mass at positive values of β.


Figure 10 about here


Over the 48 intervals of 5-minutes during morning and afternoon hours, in total the price


drifted approximately 0.0102 × 48/
√


D ≈ 0.029% downwards in the morning, and 0.0077 ×
48/


√
D ≈ 0.022% upwards in the afternoons. Such shifts are hardly discernible on a specific


day. Figure 11 displays the exchange rate, trend and volatility components at a tranquil date


halfway the sample, at June 30, 2005. The exchange rate drifted as in the left panel of Figure


11, where both the (log-) exchange rate p and the unobserved price process p∗ are drawn.


The difference between the two, due to the microstructure noise, is minimal. The cumulative


trend line resulting from the intra-day trending is also drawn at the same scale. Though


significant in the long run, on a specific day the effect is very small indeed.


Figure 11 about here


The right hand panel of the figure displays the components hi (for the stochastic volatility,


on the left axis) and hi + gi (for the SV and spline jointly right axis) of the variance σ2
i ≡


δi exp(hi + gi). The stochastic part moves slowly (for this day, over a range of 0.1). Including


the seasonality the volatility moves over a range of 1.8 points in total. This occurs on most


other days as well, that deterministic movements in volatility are far larger than the stochastic


part of the variability.


6.7 Overview of FX results


The model-based approach to estimating the evolution over time of exchange rate prices and


volatilities applied to high frequency data is new. It allows for a wealth of different and


detailed viewpoints on the estimation results. This sections intends to summarise the main


findings concerning the estimation of the model on exchange rate data.


The section started off finding problematic convergence for the parameters when the model


was estimated without any constraints. This was caused by the thickness of the tails of


the return distribution, with a degrees-of-freedom parameter ν dropping below 4. As the
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kurtosis did not exist for these returns, the long-run variance of the SV component driven


by parameters σh and φ had to be fixed at values linked to estimates at the daily frequency.


Remaining parameters could be estimated well, with reasonable efficiency of the sample, given


the refined MCMC algorithm applied here.


The parametric approach was able up to detect the jumps in the financial series. This of


course does depend on the model assumptions. Allowing more flexibility in the SV process (by


lowering φ or increasing σh) lowers the number of jumps detected, whereas assuming Gaus-


sianity of the returns process would increase the number of detected jumps strongly (detailed


results not reported here, but available upon request). With the variance parameters fixed


at present values, integrated volatility measures comparable to the non-parametric realised


variance and bipower variation resulted.


An advantage of a model-based approach is the ability to estimate jointly intra-day effects,


like the trend-effect in exchange rates here. Day-to-day the effect is minimal, but like in


Ranaldo (2007) a clear trending effect is found differing between morning and late afternoon


trading hours. With the present approach, it is straightforward to include further dummies,


checking for a trend component in each separate hour of the day.


Lastly, and possibly most importantly, this application shows that it is doable to extract


intra-day volatility estimates in a sensible manner. These could eventually be used as input


into financial models on portfolio optimisation, related to option prices etc. The extra level


of detail in modelling can open up many other areas of research.


7 Conclusions and future work


This article studied the feasibility of a model incorporating micro-structure effects and jumps


to approximate a jump-diffusion process. By modelling these aspects of the data at high


frequency, statistics similar to the realised variation, bipower variation and related jump mea-


sures can be derived without having to take the non-parametric route. In both a simulation


exercise and in an application this feasibility was found.


In the case of a simulated example, the underlying integrated variation process could be


estimated from the data, even though a large number of observations were missing from the


data set throughout the weekends. The model-based estimates delivered a better R2 than


non-parametric estimates in rebuilding the simulated integrated variation. Only with the
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parametric approach did the parameter estimates not differ significantly from 0 and 1 for the


intercept and the variance measure, respectively.


Apart from the Gaussian disturbance process with jumps for returns, it was found neces-


sary to introduce also the possibility of a heavy-tailed returns process. The Student-t density


that is implemented accounts for shocks of intermediate size and higher frequency than the


jumps related to the separate jump process. In the simulation, with ν = 6 according to the


DGP, all parameters could be recovered from the data set quite precisely. The exchange rate


data at the 5-minutes frequency however indicated a value for the degrees-of-freedom param-


eter of ν̂ < 4. Such a value implies that the kurtosis of the return process does not exist,


and indeed it was found that the model was not able to estimate the volatility of volatility as


measured by SV parameters φ and σh. Instead, these had to be fixed at values derived from


estimates of SV at a daily frequency, using a longer series of EUR/USD exchange rates. The


implication of the non-existence of the kurtosis for the non-parametric measures of variance


remains to be investigated.


In the application, only a rather simple use of the parametric setup for detecting the


intraday trends was made. Combining this approach with e.g. data on macro-economic


announcements would allow to measure the effect of surprises in the market on financial time


series to a far higher precision. One of the driving factors for pursuing the present line of


research were findings in Beine et al. (2007), were the impact of central bank interventions


could only be modelled at a daily frequency. An intra-day analysis of a similar data set could


shed further light on such issues.


The latter article uses a multivariate approach to modelling the time series. Such an


extension of the present model is conceptually straightforward, delivering joined estimation


of the volatilities of exchange rates or assets in a portfolio. The volatilities extracted here


were constructed conditional on the full data set. Instead they could be filtered using an


approach as the particle filter (Pitt and Shephard, 1999; Godsill et al., 2004). This in turn


would allow to track intra-day, online, the risk of a portfolio of assets, and could lead to an


alternative approach for pricing options.
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Table 2: Moments of exchange rate returns
Moment


N 76, 339
Mean −0.000


Standard deviation 0.035
Skewness −0.150
Kurtosis 17.410


Table 3: Non-parametric jump test statistics
α BN-S L-M % BN-S % L-M


5.000 111 224 42.7 86.2
1.000 86 184 33.1 70.8
0.500 77 172 29.6 66.2
0.100 57 145 21.9 55.8
0.050 52 130 20.0 50.0
0.010 31 101 11.9 38.9
0.005 26 92 10.0 35.4


The table reports, for different significance levels, the number of days (out of
a total of 260 days with sufficient observations) where a jump was detected
either by the feasible jump test (20) or the L-M max test (22), indicating in
the latter columns the percentages of days.
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Table 4: DGP parameters and prior settings
Parameter DGP Prior a b µπ σπ


σǫ .01 IG-1 2 7500 .01 .005
λ .1 Gamma 1 10 .1 .1


σκ 5 IG-1 2 .03 5 2.7
φ .97 Beta 32 3.5 .9 .05


σh .5 IG-1 2 3 .5 .27
ν − 2 4 Exp .25 4 4


β 0 N 0 1 0 1
γSun 0:00h −4 N 0 4 0 2
γWk 0:00h −2 N 0 4 0 2
γWk 6:00h −1.5 N 0 4 0 2


γWk 12:00h −1 N 0 4 0 2
γWk 18:00h −1.2 N 0 4 0 2


Table 5: Posterior statistics using simulated data
Parameter DGP Mode Mean σ [Q2.5%, Q97.5%] Inefficiency


σǫ .01 0.0101 0.0101 (0.000) [0.010, 0.010] 29.702
λ .1 0.1192 0.1254 (0.029) [0.075, 0.188] 109.843


σκ 5 4.3766 4.5779 (0.662) [3.517, 6.085] 39.357
φ .97 0.9712 0.9711 (0.002) [0.968, 0.974] 414.572


σh .5 0.4721 0.4725 (0.012) [0.449, 0.497] 450.896
ν 6 5.9879 5.9880 (0.164) [5.678, 6.318] 33.803


γ(Sun,00:00h) −4 −1.2913 −1.1539 (2.136) [-5.281, 3.063] 5.253
γ(Mon,00:00h) −2 −2.0007 −2.0001 (0.077) [-2.153,-1.850] 37.339


The table reports the values of the parameters in the DGP, the posterior mode, mean, standard
deviation, 95% interquantile range and a measure of inefficiency.


Table 6: Mincer-Zarnowitz regression results
β0 β1 [R2]


RV 0.0175 0.7768 [0.742]
(0.009) (0.029)


BPV −0.0376 1.0678 [0.871]
(0.007) (0.026)


IMV 0.0073 0.9786 [0.906]
(0.005) (0.020)


The table reports the regression results, both the estimated parameters β and
their standard deviations (between parentheses) together with the R2, regress-
ing the integrated variation on a constant and either realised variance, bipower
variation or the integrated model variation.
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Table 7: Posterior statistics using exchange rate data
Parameter Mode Mean σ [Q2.5%, Q97.5%] Inefficiency


σǫ 0.0103 0.0103 (0.000) [0.010, 0.011] 34.676
λK 0.4178 0.4251 (0.057) [0.322, 0.544] 272.174
σK 3.4213 3.4962 (0.256) [3.041, 4.047] 75.778


φ 0.98 (fixed)
σh 0.5 (fixed)
ν 3.3920 3.3900 (0.061) [ 3.272, 3.512] 89.788


β(9-13h) −0.0102 −0.0105 (0.004) [-0.019,-0.002] 5.026
β(17-21h) 0.0077 0.0077 (0.004) [-0.001, 0.016] 1.185


γ(Sun,00:00h) −3.1609 −3.1700 (1.980) [-7.104, 0.669] 37.911
γ(Mon,00:00h) −2.2163 −2.2130 (0.054) [-2.319,-2.108] 36.477


See Table 5 for a description of the entries in the table.
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Figure 1: Returns through time, autocorrelation of squared returns, and QQ-plot of returns
vs. Student-tν=3.5 density.
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Figure 2: Euro/US Dollar exchange rate throughout 2005, for different periods (frequencies
indicated between parentheses).
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Figure 3: Prior and posterior density of parameters σǫ (standard deviation of microstructure
noise), λ (jump intensity), σκ (jump standard deviation), φ (SV autocorrelation), σh (SV long
run standard deviation) and ν (Student-t degrees-of-freedom parameter) for simulated data,
indicating the DGP value.
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Figure 4: Posterior mean of jump probability E(q) (first panel, against time), absolute ex-
pected jump size |E(κ)| with one standard deviation error bounds and true jump sizes |κ0|
without error bounds (second panel, against time), and a scatterplot of the posterior mean
of jump probability vs. absolute true jump size (third panel), for the simulated data set. A
‘+’ indicates an intra-week observation, a ‘x’ an observation falling just before the weekend.
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Figure 5: Integrated variation measures throughout the sample, against time (left panel) or
BPV and IMV against IV (right panel), for simulated data.
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Figure 6: Prior and posterior density of parameters σǫ (standard deviation of microstructure
noise), λ (jump intensity), σκ (jump standard deviation) and ν (Student-t degrees-of-freedom
parameter), using exchange rate data.
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Figure 7: Volatility spline throughout the week for the exchange rate data, with one standard
deviation error bands.
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Figure 8: Posterior mean of jump probability E(q) (first panel, against time), absolute ex-
pected jump size |E(κ)| with one standard deviation error bounds (second panel, against
time), and a scatterplot of the posterior mean of jump probability vs. absolute expected
jump size (third panel), for the exchange rate data. A ‘+’ indicates an intra-week observa-
tion, a ‘x’ an observation falling just before the weekend.


46







 0


 0.1


 0.2


 0.3


 0.4


 0.5


 0.6


 0.7


 0.8


 0.9


 1


 1.1


01 02 03 04 05 06 07 08 09 10 11 12 01


Variation plus jumps
NP
Model


 0


 0.1


 0.2


 0.3


 0.4


 0.5


 0.6


 0.7


 0.8


 0.9


 1


01 02 03 04 05 06 07 08 09 10 11 12 01


Variation


 0


 0.05


 0.1


 0.15


 0.2


 0.25


 0.3


 0.35


 0.4


 0.45


 0.5


01 02 03 04 05 06 07 08 09 10 11 12 01


Jumps


 0


 0.2


 0.4


 0.6


 0.8


 1


 1.2


0 0.2 0.4 0.6 0.8 1 1.2


NP x Model


 0


 0.1


 0.2


 0.3


 0.4


 0.5


 0.6


 0.7


 0.8


 0.9


 1


0 0.2 0.4 0.6 0.8 1
 0


 0.05


 0.1


 0.15


 0.2


 0.25


 0.3


 0.35


 0.4


 0.45


 0.5


0 0.1 0.2 0.3 0.4 0.5


Figure 9: Non-parametric vs. model based measures of volatility and jumps, against time
(top row) and against eachother (bottom row, with model-based measures on the horizontal
axis), for the exchange rate data. The first column displays realised variation against inte-
grated model variation plus integrated jumps, the second contrasts bipower variation against
integrated model variation, and the last column shows the jump measures.
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Figure 10: Intra-day trend in EUR/USD exchange rate during morning (9-13h, left panel)
and late afternoon (17-21h, right panel).
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Figure 11: EUR/USD exchange rate on June 30, 2005 indicating the unobserved price and
cumulative trend (left panel), and the variance components hi (SV, right panel, against left
axis) and hi + gi (SV + spline, right axis).
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