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Summary
We present new results for the likelihood-based analysis of the dynamic factor model.

The latent factors are modeled by linear dynamic stochastic processes. The idiosyn-
cratic disturbance series are specified as autoregressive processes with mutually cor-
related innovations. The new results lead to computationally efficient procedures for
the estimation of the factors and for the parameter estimation by maximum likelihood
methods. We also present the implications of our results for models with regression
effects, for Bayesian analysis, for signal extraction, and for forecasting. An empirical
illustration is provided for the analysis of a large panel of macroeconomic time series.

Keywords: EM algorithm; Kalman Filter; Latent Factors; State Space Form; Maxi-
mum Likelihood.

1. INTRODUCTION

The basic dynamic factor model is given by

yt = Λft + ut, t = 1, . . . , n, (1.1)

where yt denotes the observed N×1 vector of time series at time t, Λ is an N×r loading
matrix, ft is an r × 1 vector of common latent factors an ut is the N × 1 idiosyncratic
vector. The factors in ft are modeled by linear dynamic processes while the idiosyncratic
components in ut are modeled by linear autoregressive processes. We particularly focus
on the case where a high-dimensional panel of N time series depends on a relatively small
number of r common dynamic factors.
When the idiosyncratic components in ut and the common factors in ft are Gaussian we

can evaluate the likelihood function efficiently by the Kalman filter. When disturbances
in the model are non-Gaussian, we treat the Gaussian likelihood as a quasi-likelihood.
The Gaussian likelihood function can be numerically maximized to obtain maximum
likelihood or quasi-maximum likelihood parameter estimates. This is the approach taken
by Engle and Watson (1981) for a Gaussian model with one common factor. Watson
and Engle (1983) use the expectation-maximization (EM) algorithm of Dempster et al.
(1977) to find the optimum of the likelihood, see also Quah and Sargent (1993). However,
in many of the recent applications of the dynamic factor model, the high-dimensional
panel of time series and the resulting large number of parameters make such an approach
infeasible.
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2 Jungbacker and Koopman

In this paper we present new results that lead to computationally efficient methods for
a likelihood-based analysis of high-dimensional dynamic factor models. We develop the
results for the state space formulation of the dynamic factor model (1.1) and its various
extensions leading to the generalized dynamic factor model. We consider both signal
extraction and likelihood evaluation. Finding the maximum of a likelihood function is
not straightforward if many parameters are present. We show that the new results also
lead to an effective implementation of numerical optimization methods.
The key insight of this paper is that the observed time series can be split into a low-

dimensional vector series and a high-dimensional vector series. For the measurement of
the factors and the evaluation of the likelihood function, we need to apply the compu-
tationally intensive Kalman filter methods to the low-dimensional series while simple
regression-style calculations suffice for the high-dimensional part. As a result, we are
able to achieve large computational gains in a likelihood-based analysis. A particular
feature of a likelihood-based analysis is that the dynamic factors are explicitly modeled.
It facilitates the estimation of the parameters of interest by accounting for the model
specification. The dynamic factors can typically represent aspects of economic theory. As
a result, hypothesis tests can be formulated and tested by statistical means. The result-
ing methods from the developments presented below allow the real-time estimation of
the factors, the estimation of the past factors as well as the prediction of the factors and
observations. The Kalman filter further produces mean squared errors of the factor esti-
mates without an extra computational effort. When the data generating process can be
represented by a Gaussian dynamic factor model, the standard results imply that param-
eter estimates are asymptotically efficient. Moreover, Doz et al. (2012) show, under mild
conditions, that the factor estimates from the (quasi-)maximum likelihood procedure are
consistent for the true factors when n → ∞ and N → ∞. Their estimation procedure
is shown to be robust to misspecification of cross-sectional and time series correlation of
the idiosyncratic components. They also present Monte Carlo evidence that such factor
estimates can be more precise than principal component estimates.
The increasing availability of high-dimensional data sets in economics and finance has

motivated much work on alternative methods to estimate the common factors. Cham-
berlain and Rothschild (1983) and Connor and Korajczyk (1986, 1988, 1993) show that
if N goes to infinity the factors are estimated consistently using the method of principal
components. More recent contributions have focused on extending the inferential theory
of this method, see Stock and Watson (2002a) and Bai (2003). Stock and Watson (2002b,
2006) demonstrate the value of this approach for the purpose of constructing diffusion
indexes that can be used in forecasting macroeconomic time series. Forni et al. (2000)
propose a frequency-domain estimation procedure that provides consistent estimates of
the factors for a general class of dynamic factor models. A two-step method that partly
relies on the Kalman filter applied to the dynamic factor model (1.1) is proposed by Doz
et al. (2011).
We adopt an econometric analysis for the dynamic factor model as given in (1.1) from

a classical perspective. However, our results are applicable and relevant more generally.
Firstly, we will indicate that Bayesian approaches to dynamic factor models as they
are pursued by Aguilar and West (2000) and Fiorentini et al. (2004) can benefit from
the presented new results. Secondly, our focus is on dynamic factor analysis but related
approaches such as the Bayesian vector autoregressions (BVAR) have similar aims in-
cluding macroeconomic forecasting; see the review by Koop and Korobilis (2010). The
application of the method of shrinkage in a large-dimensional BVAR analysis has shown
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Likelihood-based Dynamic Factor Analysis 3

to produce comparable results in forecast precision as for a dynamic factor analysis; see
Banbura et al. (2010). The presented results below can be used jointly with a shrinkage
method in a BVAR analysis. An alternative use of the low-dimensional vector series is
explored by Bräuning and Koopman (2014) and leads to the incorporation of principal
components in a low-dimensional dynamic factor model. Our results are explored further
for non-Gaussian and nonlinear extensions by Mesters and Koopman (2014).
The remainder of the paper is organized as follows. Section 2 presents the key results

for a general state space analysis including parameter estimation, signal extraction and
forecasting. Section 3 discusses the implications of the new results for a general class
of dynamic factor models, possibly with autoregressive disturbances and with regression
effects. Furthermore we briefly discuss the implications of our results for simulation meth-
ods in classical and Bayesian treatments. Section 4 presents an empirical illustration for a
large panel of US macroeconomic time series. Section 5 concludes. Proofs and derivations
are given in the Appendix.

2. MAIN RESULTS FOR STATE SPACE MODEL

The state space representation of a linear time series model is given by

yt = Zαt + εt, αt+1 = Tαt +Rηt, (2.2)

for t = 1, . . . , n, where yt is the N × 1 vector of dependent variables at time t, αt is the
p×1 state vector, εt and ηt are disturbance vectors and Z, T and R are fixed matrices of
appropriate dimensions. The two equations in (2.2) are referred to as the observation and
state equation, respectively. The disturbance vectors εt and ηt are mutually and serially
uncorrelated with zero means and variance matrices Σε and Ση, respectively. The system
matrices Z, T , and R, together with Σε and Ση, are fixed and may (partly) depend on
the parameter vector ψ. All results in this paper apply when the system matrices are
known functions of the time index t and other covariates. Many linear time series models
can be represented by (2.2); see, for example, Durbin and Koopman (2012, Ch. 3).
The key tool for a time series state space analysis is the Kalman filter. It produces

the minimum mean square linear estimator (MMSLE) of the state vector αt in (2.2)
conditional on the set of past observations y1, . . . , yt−1, together with its mean square
error (MSE) matrix. We denote the MMSLE and MSE of the state αt, conditional on
observations and as a function of parameter vector ψ, by

at|s = E(αt|y1, . . . , ys;ψ), Pt|s = Var(at|s − αt|y1, . . . , ys;ψ), (2.3)

for t, s = 1, . . . , n. The Kalman filter is a recursive procedure through the time-index t
and is given by

vt = yt − Zat|t−1,

Ft = ZPt|t−1Z
′ +Σε,

Kt = TPt|t−1Z
′,

at+1|t = Tat|t−1 +KtF
−1
t vt,

Pt+1|t = TPt|t−1T
′ −KtF

−1
t K ′

t +Ση,

(2.4)

for t = 1, . . . , n. The derivation of recursion (2.4) is given by Anderson and Moore
(1979, Chapter 2). The initial conditions a1|0 and P1|0 can be obtained analytically when
the state vector is a stationary process. The MMSLE at|n, that is conditional on all
available observations y1, . . . , yn, together with its MSE matrix Pt|n, can be evaluated
by a backwards recursion which we will refer to as a state smoothing algorithm. In our
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4 Jungbacker and Koopman

study we have adopted the sequential Kalman filter implementation of Koopman and
Durbin (2000) in which each element of yt is updated separately. The Kalman filter
plays a central role in smoothing as well as in the prediction error decomposition of a
time series, in the treatment of missing observations and in forecasting; see, for example,
Durbin and Koopman (2012, Ch. 4).

2.1. Model with high-dimensional observation vector

We treat the dynamic factor model as the state space model (2.2) with N >> p. A large
panel of individual time series is represented by yt and can be described by a small set of
dynamic factors which are placed in the state vector αt. The case of N >> p with large
N does not prohibit the use of the Kalman filter in a dynamic factor analysis as is illus-
trated by Engle and Watson (1981) and Quah and Sargent (1993). However, more recent
applications of dynamic factor models have N as large as 250 and even larger. Such di-
mensions will lead to computational problems for the Kalman filter (2.4). In particular,
the matrix Ft must be inverted and even with increasing computer power, the inver-
sion of a high-dimensional matrix requires substantial computing time and compromises
numerical precision. We notice that the inverse of Ft is required for t = 1, . . . , n.
The direct computation of the inverse of Ft in (2.4) may be avoided via the exploitation

of specific inversion lemmas. These inversion lemmas do not necessary lead to compu-
tational gains because the lemma expression and remaining Kalman filter expressions
remain high-dimensional. In addition, the inversion lemmas cannot be applied generally
as they require the inverse of Pt|t−1 in the Kalman filter (2.4) to exist. Ansley and Kohn
(1985) have argued that various linear time series processes for the state vector lead to a
singular matrix Pt|t−1. This problem occurs when the state equation in (2.2) represents
any autoregressive moving average process. We therefore cannot rely on inversion lemmas
to reduce the computational burden for the Kalman filter when N is very large. Instead
we propose a new and general method based on transforming the observation vector.

2.2. Transformation of observation equation

Define y∗t = Ayt for any non-singularN×N matrix A and with t = 1, . . . , n. The MMSLE
at|s as defined in (2.3) is not affected when the set y1, . . . , ys is replaced by y∗1 , . . . y

∗
s .

We will show that for certain choices of A the MMSLE can be computed more efficiently
based on y∗1 , . . . , y

∗
n rather than y1, . . . , yn. The results also apply to other computations

that are related to the Kalman filter.
Suppose we partition matrix A and vector y∗t as

A =

[
AL

AH

]
, y∗t =

(
yLt
yHt

)
, (2.5)

where

yLt = ALyt, yHt = AHyt,

with m× N matrix AL and (N −m) × N matrix AH . The observation vectors yLt and
yHt have dimensions m× 1 and (N −m)× 1, respectively, where 0 < m ≤ p is the rank
of matrix Z. We aim to choose matrix A such that yLt and yHt are not correlated with
each other and that only yLt depends on αt. More specifically, the model for y∗t will be

c© Royal Economic Society 2014



Likelihood-based Dynamic Factor Analysis 5

of the form

yLt = ALZαt + eLt , yHt = eHt , (2.6)

where eLt = ALεt and e
H
t = AHεt. We have

E(eLt ) = 0, E(eHt ) = 0, Var(eLt ) = ΣL, Var(eHt ) = ΣH , E(eHt e
L ′
t ) = 0,

for t = 1, . . . , n, where ΣL = ALΣεA
L ′ and ΣH = AHΣεA

H ′.
Conditions A suitable matrix A needs to fulfill the following conditions:

1 A is full rank,

2 AHΣεA
L ′ = 0,

3 Row{AH} = Col{Z}⊥,

where Col{X} and Row{X} denote the row and column spaces of any matrix X , respec-
tively, and the superscript ⊥ denotes the orthogonal complement. Condition (i) prevents
any loss of information due to the transformation Ayt. Condition (ii) ensures that eLt and
eHt in (2.6) are uncorrelated and condition (iii) implies that the second equation in (2.6)
does not depend on αt. Condition (iii) is stronger than strictly necessary. The trans-
formed model will still be of the form (2.6) if condition (iii) is replaced with AHZ = 0.
In its current form, however, condition (iii) ensures that the reduction in dimension is
as large as possible, in the sense that the dimension of yHt cannot be enlarged without
compromising the special form of (2.6). Finally, we add the condition

(iv) |ΣH | = 1.

Condition (iv) is not restrictive but it simplifies various calculations. For example, we
can express the determinant of A in terms of AL and Σε since

|A|2 = |Σε|
−1|AΣεA

′| = |Σε|
−1|ALΣεA

L ′||AHΣεA
H ′| = |Σε|

−1|ΣL|. (2.7)

The conditions (i)–(iii) imply a closed form for AL that is given in the following lemma.

Lemma 2.1. Consider the state space representation (2.2) and partition matrix A as in
(2.5). Suppose matrix AH satisfies (iii), then matrix A satisfies (i)–(iii) if and only if

AL = Z† ′Σ−1
ε , (2.8)

where the columns of the N ×m matrix Z† form a basis for the column space of Z.

Remarks

(a) It is easily verified that any matrix A with AL given by (2.8) and AH satisfying (iii),
fulfills conditions (i)–(iii). We prove the necessity part of the lemma in Appendix
A.1.

(b) In case the state space form (2.2) has a Z matrix that is not of full column rank, a
suitable matrix Z† can be obtained from the decomposition

Z = Z†C, (2.9)

for any full rank m × p matrix C with m ≤ p. In many cases of interest, however,
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6 Jungbacker and Koopman

matrix Z is of full column rank and p = m. We then have

Z† = ZC−1, (2.10)

for any non-singular p × p matrix C. Typical choices in the latter case are C = I

and C = Z ′Σ−1
ε Z.

(c) A closed form expression for AH is generally not available. For AH to satisfy (iii), we
need to chooseAH such that its rows form a basis for the null space of Z† ′. Condition
(iv) can then be satisfied by rescaling the rows. Finding a basis for the null space
of a matrix requires computationally intensive numerical methods. Fortunately, we
will show that matrix AH is not required for any of our computations.

(d) The results below are based on transformation (2.5) and model (2.6). Although our
results are more general and are developed for different purposes, a similar trans-
formation as (2.5) for a different class of factor models is considered by Fiorentini
et al. (2004, section 2.4.1).

2.3. Signal extraction

By considering a matrix A that satisfies the conditions (i)–(iv) in Section 2.2, we are
able to efficiently compute the estimates of the state vector in (2.3), that is the MMSLE
at|s and its MSE Pt|s for t, s = 1, . . . , n with typically s ≥ t. Since matrix A has full
rank, we can replace y1, . . . , yn by y∗1 , . . . , y

∗
n in (2.3). Furthermore, from (2.6) it follows

that yLt and yHt are uncorrelated and that yHt does not depend on αt. Hence, we can
replace y1, . . . , yn by yL1 , . . . , y

L
n in (2.3). We therefore can evaluate at|s and Pt|s in (2.3)

by applying the Kalman filter and related methods to the low-dimensional model

yLt = ALZαt + eLt , E(eLt ) = 0, Var(eLt ) = ΣL, (2.11)

for t = 1, . . . , n. The high-dimensional matrix AH and vector yHt are not required for the
estimation of αt.
The procedures of this section can still be used if observed vectors yt do not all have

the same dimension due to, for example, missing values. In this case, a different matrix
A must be constructed for different t with t = 1, . . . , n. This solution is also adopted in
cases where the system matrices of the state space form (2.2) vary over time.

2.4. Forecasting observations

Forecasting in the state space framework is straightforward.We continue with the Kalman
filter updating equations (2.4) after time t = n, and treat the observations yn+j as missing
so that vn+j is missing with Fn+j → ∞ in (2.4) for j = 1, 2, . . .; see, for example, Durbin
and Koopman (2012, Ch. 4). The Kalman filter equations reduce to

an+j|n = Tan+j−1|n, Pn+j|n = TPn+j−1|nT
′ +Ση, j = 2, 3, . . . , (2.12)

where an+1|n and Pn+1|n are obtained from (2.4). The MMSLE of the observation yn+j
and its MSE, conditional on all available observations y1, . . . , yn, are denoted by ŷn+j
and MSE(ŷn+j), respectively, and given by

ŷn+j = Zan+j|n, MSE(ŷn+j) = ZPn+j|nZ
′ +Σε, j = 1, 2, . . . . (2.13)

By applying the Kalman filter to the low-dimensional model (2.11), we can still adopt
(2.12) to obtain the state forecasts; the same arguments as those used for signal extraction

c© Royal Economic Society 2014



Likelihood-based Dynamic Factor Analysis 7

in Section 2.3 applies. Although we have computed the state MMSLE an+1|n using the
low-dimensional observations yL1 , . . . , y

L
n , we can still compute the observation forecasts

as in (2.13).

2.5. Loglikelihood evaluation

Define the data vector y = (y′1, . . . , y
′
n)

′. The loglikelihood function `(y;ψ) for the Gaus-
sian density can be evaluated via the prediction error decomposition and is given by

`(y;ψ) = −
Nn

2
log 2π −

1

2

n∑

t=1

log |Ft| −
1

2

n∑

t=1

v′tF
−1
t vt, (2.14)

where prediction error vt and its MSE matrix Ft are evaluated by the Kalman filter (2.4);
see Schweppe (1965) and Harvey (1989, section 3.4). In case N >> p, it is computation-
ally more efficient to evaluate (2.14) by choosing a matrix A that satisfies the conditions
(i)–(iv) in Section 2.2, by transforming yt as in (2.5) and by considering model (2.6). We
then have

`(y;ψ) = `(yL;ψ) + `(yH ;ψ) + n log |A|, (2.15)

where yL = (yL ′
1 , . . . , yL ′

n )′ and yH = (yH ′
1 , . . . , yH ′

n )′. The first term `(yL;ψ) in (2.15)
is evaluated by the Kalman filter applied to low-dimensional model (2.11). The second
term is

`(yH ;ψ) = −
(N −m)n

2
log 2π −

1

2

n∑

t=1

yH ′
t (ΣH)−1yHt , (2.16)

since |ΣH | = 1 from condition (iv) in Section 2.2. Lemma 2.2 shows that the last term
in equation (2.16) can be calculated without the construction of matrix AH . The proof
is given in Appendix A.2.

Lemma 2.2. For the state space representation (2.2), transformation (2.5) and resulting
model (2.6), with AL given by (2.8), we have the identity

yH ′
t (ΣH)−1yHt = e′tΣ

−1
ε et, (2.17)

where et =
[
IN − Z†

(
Z† ′Σ−1

ε Z†
)−1

Z† ′Σ−1
ε

]
yt is the generalized least squares (GLS)

residual vector for data vector yt, covariate Z and variance matrix Σε. The definition of
et is valid for any decomposition of Z† in (2.9).

Given the expression for |A|2 in (2.7), the loglikelihood function (2.15) becomes

`(y;ψ) = c+ `(yL;ψ)−
n

2
log

|Σε|

|ΣL|
−

1

2

n∑

t=1

e′tΣ
−1
ε et, (2.18)

where c is a constant independent of both y and ψ. It follows that for the evaluation
of the loglikelihood, computation of matrix AH and vectors yHt , for t = 1, . . . , n, is not
required. Expression (2.18) is instrumental for a computationally feasible approach to
the likelihood based analysis of the dynamic factor model.

c© Royal Economic Society 2014



8 Jungbacker and Koopman

2.6. Maximizing the loglikelihood function

The estimation of parameter vector ψ is based on maximizing the loglikelihood function
`(y;ψ) in (2.14) with respect to ψ. The number of parameters is typically very high,
say 500 or 1, 000. Section 2.5 has shown that the loglikelihood function can be evaluated
efficiently for state space models with high-dimensional observation vectors. Numerical
optimization procedures are used for the maximization of the loglikelihood function; for
example, the quasi-Newton BFGS algorithm as described in Nocedal and Wright (1999).
Many of such methods require the evaluation of the score vector. Since the number of
parameters is high, evaluating the score vector numerically is infeasible in many cases,
even if the results of Section 2 are used. In Appendix A.3 we show that the exact score
function for the system and variance matrices in (2.2) can be obtained by a single Kalman
filter and smoothing algorithm applied to the low-dimensional model (2.11). The exact
score function is here key to the feasibility of maximum likelihood estimation of ψ. As
an alternative, the expectation-maximization (EM) algorithm can be adopted to obtain
the maximum likelihood estimates. We show in Appendix A.4 that for each EM step a
single Kalman filter and smoothing algorithm based on the low-dimensional model (2.11)
is required only.

2.7. Computational gains

We present possible gains in computing times that are achieved by our new methods
based on the transformed observations y∗1 , . . . , y

∗
n with y∗t = Ayt for t = 1, . . . , n. The

gains are relative to the standard application of the Kalman filter based on y1, . . . , yn.
Also, computational gains depend primarily on the panel dimension N and state vector
dimension p. We assume that matrix Z in (2.2) is full rank and p = m in Lemma 2.1
To obtain some insights in the size of the gains, we calculate the loglikelihood function
(2.14) for different values of N and p. The calculations are performed using the Kalman
filter applied to the untransformed data and using the methods described in section 2.5.
In all cases we have used the sequential version of the Kalman filter that updates each
element of yt (or y

L
t ) separately as described in Koopman and Durbin (2000).

In Table 1 we present the ratios of CPU times needed for the evaluation of the two
loglikelihood functions. The results are encouraging. If N = 250 and p = 5, the Kalman
filter computations for the loglikelihood are carried out 15 times faster as a result of our
new devices. Furthermore, the computational savings are substantial for moderate values
of N and relatively small values of p, say, 5 or 10. If p is relatively large, say, 25, the
gains are less dramatic but still substantial by any means.

3. FURTHER APPLICATIONS

The results in Section 2 are particularly useful for a likelihood-based dynamic factor
analysis as is illustrated in Section 4. In this section we discuss a selection of further
applications. The presence of a mean vector in model (2.2) is discussed and a method for
its estimation together with the factors is presented. Further we show that our results
are also applicable to state space models with regression effects. Finally, we indicate how
the method can be used in a Bayesian treatment of the dynamic factor model.

c© Royal Economic Society 2014



Likelihood-based Dynamic Factor Analysis 9

Table 1. Computational Gains

We present the gains in computing time when evaluating the loglikelihood function for a state space
model (2.2). The ratio d1/d2 is reported: d1 is the CPU time for the Kalman filter, applied to y1, . . . , yn,
and d2 is CPU time for the new devices of Section 2.5. The ratios are reported for different observation
and state dimensions N and p, respectively.

N\p 1 5 10 25 50

10 2.0 1.3 – – –
50 5.7 4.7 3.1 1.5 –
100 6.7 7.5 5.6 2.5 1.5
250 8.7 14.8 12.4 5.5 3.0
500 12.5 15.9 21.2 10.2 5.4

3.1. Generalized dynamic factor model in state space form

Consider the dynamic factor model (1.1) where disturbance ut is a serially uncorrelated
noise process with mean zero and variance matrix Σu and where the r×1 vector of factors
ft is modeled by a vector autoregressive moving average (VARMA) process. This model
can be represented in state space form using the companion form of a VARMA process.
For example, Shumway and Stoffer (2000) show that the VARMA process for ft in state
space has ft = Gαt with G = (Ip, 0, . . . , 0) and where the block vector elements of the
state vector αt represents different components of the VARMA process. The dynamic
factor model under consideration in state space form (2.2) has

Z = ΛG = (Λ, 0, . . . , 0)′ , Σε = Σu, (3.19)

and with matrices T , R and Ση given by Shumway and Stoffer (2000, Section 6.11). In
relation to Lemma 2.1 in Section 2.2, Z† = Λ when Λ has full column rank.
In more general versions of the dynamic factor model, the disturbance vector ut can be

subject to serial correlation. The assumption of a vector autoregressive (VAR) process
for ut is usually appropriate. We have

ut = Ψ1ut−1 + . . .+ΨqΨut−qΨ + εt, (3.20)

with autoregressive coefficient matrices Ψj for j = 1, . . . , qΨ and where disturbance
vector εt is defined below (2.2). In most practical applications, the coefficient matrix
Ψj is diagonal. We can extend the state vector αt to accommodate ut but with p > N

our devices cannot be exploited and computations will be slow due to high-dimensional
vectors yt and αt. Alternatively, we can transform yt into

xt = yt −Ψ1yt−1 − . . .−ΨqΨyt−qΨ , (3.21)

and then we consider the state space form (2.2) for the resulting model for xt, that is

xt = Zαt + εt, Z = (Λ , −Ψ1Λ , . . . , −ΨqΨΛ), αt = (f ′
t , . . . , f

′
t−qΨ)

′. (3.22)

The state equation for αt+1 can be adjusted accordingly for this composition of the state
vector and where ft follows a VARMA process. When qΨ is moderate and N is large,
we have N > p and the devices of Section 2 can be adopted. In Lemma 2.1, we have
Z† = Z when all matrices concerned are full rank. When the VARMA process contains
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10 Jungbacker and Koopman

many lags, the state vector is extended by more appropriate components of the VARMA
process of ft and matrix Z is augmented accordingly with zero columns; see (3.19).
Finally, a generalized version of the dynamic factor model also allows for a lagged

response of the factors on the observation vector yt. In this case we have the observation
equation

yt = Λ0ft + Λ1ft−1 + . . .+ ΛqΛft−qΛ + ut,

where Λj are loading coefficient matrices for j = 0, 1, . . . , qΛ. For example, with qΨ = 2
and qΛ = 1, the state space form (2.2) for xt in (3.21) has matrix Z and state vector
given by

Z = (Λ0 , Λ1 −Ψ1Λ0 , −Ψ1Λ1 −Ψ2Λ0 , −Ψ2Λ1),
αt = (f ′

t , f
′
t−1 , f

′
t−2 , f

′
t−3)

′.
(3.23)

For moderate values of qΨ and qΛ but with N large, we can still expect that N > p.

3.2. Treatment of constant vector

It is common practice in many empirical studies to standardize the data before a dynamic
factor analysis is carried out. However, in other studies the constant vector is of sufficient
interest to include it in the model, see Diebold et al. (2006) for a recent illustration. The
observation equation in (2.2) with a constant vector becomes yt = µ+Zαt+ut where µ is
a N × 1 vector of constants. In our transformation method of Section 2.2, a transformed
constant will appear in both yLt and yHt while still we require an estimate of the original
constant vector.
The models in (2.6) for the transformed data vectors from the observation equation in

(2.2) with constant vector µ are given by

yLt = µL + ZLαt + εLt , yHt = µH + εHt , (3.24)

where µL = ALµ and µH = AHµ. The low-dimensional constant vector µL only appears
in the loglikelihood function `(yL;ψ) which can be evaluated by the Kalman filter to the
state space model (2.2) with the observation equation replaced by the first equation in
(3.24); see Section 3.3. As a consequence of the transformation, the loglikelihood function
`(yL;ψ) does not depend on the high-dimensional vector µH but µH does appear in
`(yH ;ψ) which, apart from a constant, is given by

−
1

2

n∑

t=1

(yHt − µH)′Σ−1
H (yHt − µH) = −

1

2

n∑

t=1

(et −MZµ)
′Σ−1
ε (et −MZµ), (3.25)

where MZ = IN − Z(Z ′Σ−1
ε Z)−1Z ′Σ−1

ε and et = MZyt. The equality in (3.25) is the
result of Lemma 2.2. Given equation (1.32) in Appendix A.2, it follows that concentrating
out µH is equivalent to concentrating out MZµ from the loglikelihood function `(yH ;ψ).
The GLS estimator of MZµ is denoted by µ̂⊥Z and is given by

µ̂⊥Z =
1

n

n∑

t=1

et. (3.26)

The concentrated or profile loglikelihood function with respect to µ is given by (2.18)
where et is replaced by the term et− µ̂⊥Z for t = 1, . . . , n. The computation of the profile
loglikelihood function for yL is discussed in the next Section 3.3.
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Likelihood-based Dynamic Factor Analysis 11

Finally, the GLS estimator of µ can be obtained via the identity

µ = PZµ
L +MZµ, where PZ = Z(Z ′Σ−1

ε Z)−1. (3.27)

The GLS estimator of µ is denoted by µ̂ and is given by

µ̂ = µ̂⊥Z + PZ µ̂
L, (3.28)

where µ̂L is obtained from an augmented Kalman filter as described in the next section.

3.3. Regression effects in state vector

When regression effects become part of the state vector, we need to explicitly treat them
within the Kalman filter and related methods. Rosenberg (1973) and de Jong (1991)
propose to augment the Kalman filter by additional N -dimensional recursions, one for
each regression coefficient. The number of time series in a dynamic factor model can be
high and direct application of such methods can become infeasible. However, we can use
the earlier results to overcome this computational burden.
We consider the state space model (2.2) with the following extension

yt = µ+ Zαt + εt, αt+1 = Xtβ + Tαt +Rηt,

where matrix Xt consists of covariates and vector β contains regression coefficients. The
transformation of Section 2.2 affects the observation vector but not the state vector.
After the transformation, we therefore obtain the model equations

yLt = µL + ZLαt + εLt , yHt = µH + εHt , αt+1 = Xtβ + Tαt +Rηt.

The generalized least squares (GLS) estimates of the coefficient vectors µL and β only
rely on yLt and can be computed by the augmented Kalman filter for the low-dimensional
model of yLt . The profile or concentrated loglikelihood function for yL with respect to µL

and β can also be computed from the augmented Kalman filter; see Rosenberg (1973)
and de Jong (1991). The GLS estimate of the constant vector µH and the corresponding
profile or concentrated loglikelihood function for yH is obtained as described in Section
3.2. The profile loglikelihood function of y is simply the sum of those for yL and yH .

3.4. Bayesian inference and simulation smoothing

As an alternative to the maximum likelihood method of Section 2.6, we can treat parame-
ter vector ψ as a variable, have a prior distribution p(ψ) and perform a Bayesian analysis
to obtain the posterior distribution p(ψ|y) for a given dynamic factor model such as (1.1).
Examples of Bayesian approaches to dynamic factor models are Aguilar and West (2000)
and Fiorentini et al. (2004) in the context of modelling volatility in time series. We fol-
low their approach by adopting Markov chain Monte Carlo (MCMC) methods because a
closed form expression for p(ψ|y) is usually not available. The MCMC method generate
samples from a Markov chain that has the posterior density of the parameters as its
stationary distribution. After a burn-in period, the samples can be used as correlated
draws from the posterior distributions. Reviews of MCMC and related algorithms for
Bayesian inference are given by, amongst others, Gilks et al. (1996) and Chib (2001).
Consider a dynamic factor model as represented by the state space model (2.2). The set

of state vectors α1, . . . , αn is denoted by α. A typical MCMC algorithm for the state space
model is given by: (i) initialize α and ψ; (ii) sample α from p(α|ψ, y); (iii) sample ψ from
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12 Jungbacker and Koopman

p(ψ|α, y); (iv) goto (ii). The samples in step (iii) are ideally generated from well-defined
densities. When they are not available, MCMC variants such as the Metropolis-Hastings
methods can be considered. The main computational challenge is however step (ii) given
the high-dimensional observation vector y. We propose to adopt the methods of Section
2 to perform this step in a computationally efficient way. We can sample the states
αt conditional on the observations, y, using such algorithms as developed by Fruhwirth-
Schnatter (1994), Carter and Kohn (1994), de Jong and Shephard (1995) and Durbin and
Koopman (2002). In particular, the following algorithm of Durbin and Koopman (2002)
is fast and easy to implement while being able to fully exploit the results of Section 2.

Suppose the vectors α+ = (α+ ′
1 , . . . , α+ ′

n )′ and y+ = (y+ ′
1 , . . . , y+ ′

n )′ are samples from
the unconditional density p(α, y|ψ). Denote α̃ as the set α̃1, . . . , α̃n where α̃t is a sample
from the density p(αt|ψ, y) for t = 1, . . . , n. A simulated state vector α̃t is then computed
by

α̃t = α+
t − E(αt|ψ, y

+
1 , . . . , y

+
n ) + E(αt|ψ, y1, . . . , yn), t = 1, . . . , n, (3.29)

where E(αt|ψ, y1, . . . , yn) is effectively the MMSLE at|n as defined in (2.3) and is com-

puted by the Kalman filter and smoother. In the same way E(αt|ψ, y
+
1 , . . . , y

+
n ) is com-

puted but with data y replaced by the sampling realisation y+.

By choosing a matrix A such that it fulfills the conditions of Section 2.2, we transform
the data vector y into yL and yH . As a result, we have p(α|ψ, y) = p(α|ψ, yL) and we can
obtain α̃t from p(α+, yL+|ψ) from the state space model where the observation equation
is the first equation of (2.6). It follows that we can compute α̃t by

α̃t = α+
t − E(αt|ψ, y

L+
1 , . . . , yL+n ) + E(αt|ψ, y

L
1 , . . . , y

L
n ), t = 1, . . . , n. (3.30)

This is computationally more efficient than the original algorithm since all computations
are based on the low-dimensional vectors yLt and yL+t . Similar advances based on the
results in Section 2.2 can be exploited for other simulation smoothing methods.

4. ILLUSTRATION

We present an illustration of the likelihood-based treatment of the dynamic factor model
for a large panel of US macroeconomic time series using state space methods. We analyse
the data set of Stock and Watson (2005) with monthly US macroeconomic time series
from 1960:1 through 2003:12. The data is transformed and differenced to obtain a sta-
tionary panel of N = 132 time series with n = 528; the details of each series and its
transformation are given in their Appendix A. The 132 series are categorized into 15
sectors, with number or series in each sector between parantheses: A – real output and
income (17); B – employment and hours (30); C – real retail (1); D – manufacturing
and trade sales (1); E – consumption (1); F – housing starts and sales (10); G – real
inventories (3); H – orders (7); I – stock prices (4); J – exchange rates (5); K – interest
rates and spreads (17); L – money and credit quantity aggregates (11); M – price indexes
(21); N – average hourly earnings (3); O – miscellanea (1). For all series, observations
larger than 6 times the standard deviation of the series, σ, (in absolute value) are set to
±6σ. In total, 46 (out of 69, 696) observations are winsorized in this way (0.066%). Then
each time series is standardized such that its sample mean equals zero and its sample
variance equals one.

Our empirical illustration is close in spirit to the likelihood-based analyses of Bernanke
et al. (2005) and Boivin and Giannoni (2006). The estimation of parameters is based
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Likelihood-based Dynamic Factor Analysis 13

on maximizing the likelihood function. The dynamic properties of the factors can be
analyzed by investigating the estimated coefficients. We further show that diagnostic
tests for model misspecification can be computed as part of a model-based analysis.
We consider the dynamic factor model

yt = Λft + ut, ft = Φ1ft−1 + ζt, ut = Ψ1ut−1 + εt, (4.31)

where Λ is the N × r loading matrix, ft is the r × 1 vector of factors, ut is the autore-
gressive disturbance vector, and Φ1 and Ψ1 are autoregressive coefficient matrices. The
disturbance vectors εt and ζt have mean zero and variance matrices Σε and Σζ , respec-
tively, and are serially and mutually uncorrelated at all times. The model is represented
in its state space form as discussed in Section 3.1. For identification purposes, we let
the r top rows of the loading matrix Λ form a lower-triangular matrix with its diagonal
elements restricted to one and we let the variance matrix Σζ be diagonal. We further
assume that both the variance matrix Σε and the autoregressive coefficient matrix Ψ1

are diagonal matrices.
The illustration considers two model specifications: Model I has r = 7 and Ψ1 = 0

such that ut = εt; Model II has r = 4 and a non-zero diagonal matrix Ψ1. Model I
is motivated by Stock and Watson (2005) where they adopt the procedure of Bai and
Ng (2002) to conclude that seven static factors are present in this data-set. Model II is
motivated by an analysis of Bai and Ng (2007) based on the same data-set and where
they advocate 4 dynamic factors. In Model II we therefore set r = 4 and obtain a state
vector of dimension m = 8 when introducing autoregressive disturbances of order 1, that
is qΨ = 1 in (3.20). The dimensions of the two model specifications are reported in Table
2.

Table 2. Dynamic factor model specifications

The table reports dimensions for two specifications of the dynamic factor model (4.31), for its state space
form (2.2) and for its parameter vector ψ. In model I, the vector autoregressive process for disturbance
vector ut has Φ1 = 0 such that ut = εt with a diagonal variance matrix Σε. In model II, we have
a non-zero diagonal autoregressive coefficient matrix Ψ1. Further details of the model are given below
model equation (4.31).

model (4.31) state space parameter vector ψ

r qΛ qΨ N p m Λ Φ1 Ψ1 Σε total

I 7 0 0 132 7 7 903 49 0 132 1084
II 4 0 1 132 8 8 522 16 132 132 802

4.1. Parameter estimates

Table 3 presents the maximum likelihood estimates of all the elements in the vector
autoregressive (VAR) coefficient matrix Φ1 together with the corresponding eigenvalues
for Models I and II. The factors in the models are organized in descending order of the
eigenvalues of Φ1. We learn from Table 3 that the factors are estimated as stationary
and highly persistent processes given the largest eigenvalue of 0.95. For both models,
we find the presence of persistent cyclical behaviour in the factors since one conjugate
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14 Jungbacker and Koopman

pair of complex eigenvalues is obtained where the real part is equal to 0.94. The other
eigenvalues range from large to small. As in any VAR analysis, it is hard to comment on
individual coefficients in Φ1.

Table 3. Maximum likelihood estimates of VAR coefficients

We report the QML estimates of the coefficients in the r × r matrix Φ1 for Models I (r = 7) and II
(r = 4). The eigenvalues of the estimates of Φ1 are reported in descending order. For complex eigenvalues
we present both the real and imaginary (img) components.

Model I

VAR coefficients Eigenvalues

Factor 1 2 3 4 5 6 7 real img

1 0.17 -0.15 0.18 -0.031 -0.14 0.062 -0.031 0.95 0
2 -0.36 0.84 -0.017 0.03 0.099 0.028 0.031 0.94 0.08
3 0.065 0.074 0.9 0.048 0.19 0.0069 0.034 0.94 -0.08
4 0.068 0.051 0.034 0.92 0.045 -0.031 -0.017 0.91 0
5 -0.075 0.025 0.014 -0.073 0.25 -0.1 0.043 0.28 0
6 0.003 -0.022 -0.029 0.036 0.003 -0.33 -0.012 0.042 0
7 -0.024 -0.027 -0.038 -0.0002 -0.049 -0.028 0.97 -0.33 0

Model II

VAR coefficients Eigenvalues

Factor 1 2 3 4 real img

1 0.29 -0.23 -0.12 -0.1 0.94 0.094
2 -0.38 0.44 0.031 0.13 0.94 -0.094
3 0.086 -0.43 0.96 0.17 0.33 0
4 -0.64 0.33 -0.019 0.56 0.046 0

The factor loading estimates for Λ are not easy to interpret and therefore Stock and
Watson (2002b) propose to focus on the R2 goodness-of-fit statistics which are obtained
by regressing the univariate time series yit (for each i = 1, . . . , N) on a constant and a
particular factor estimate. The series of N regressions can be repeated for each factor
and the resulting N dimensional series of R2 statistics can be displayed as an index
plot for each factor. We present the R2 statistics for the seven factors of Model I in the
left panel of Figure 1. The clustering of high R2 statistics within one or more sectors
is clearly visible. The first factor is highly correlated with the real variables in sector
(A) real output & income and weakly correlated with the variables in the sectors (B)
employment & hours and (H) orders. The second factor is mostly associated with the
sector (G) real inventories and sector (H) but also correlated with variables in the sector
(F) housing starts & sales and sector (B). The two individual variables production and
unemployment in sectors (A) and (B) are particularly highly correlated with the second
factor. The third and fifth factors are associated with the variables interest rates and
spreads, respectively, from sector (K). The R2 statistics for the four factors in Model II
are presented in the right panel of Figure 1. The third and fourth factors in Model II are
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Likelihood-based Dynamic Factor Analysis 15

Figure 1. R2 statistics for the estimated factors against each variable

We present two panels of R2 statistics for each estimated factor against all N = 132 variables. The R2

presented in the left-panel are those for the seven factors in Model I (with QML estimates for Λ̄, Φ1 and
Σε) and in the right-panel for the four factors in Model II (with QML estimates for Λ̄, Φ1, Ψ1 and Σε).
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comparable to the third and fifth factors of Model I, respectively. The first two factors
of Model II are a mix of the first two factors of Model I which are associated with the
“real” sectors (A), (B), (F) and (H).

4.2. Diagnostic checking

An attractive feature of a model-based analysis is that model misspecification tests and
diagnostic statistics concerning normality, heteroskedasticity and serial correlation can
be considered. In time series analysis, diagnostic tests are usually applied to standardized

one-step ahead prediction errors F
−1/2
t vt and can be obtained from the Kalman filter

(2.4). When the model is correctly specified, the prediction errors are serially uncorre-
lated. We will not argue that a dynamic factor model is the appropriate specification
for a joint analysis of 132 time series. However, the model misspecification diagnostics
may indicate how far we are from a reasonable specification in comparison with other
specifications.
The devices in Section 2 allow us to compute the prediction errors for all 132 series in a

few seconds. To illustrate residual diagnostics in the context of dynamic factor analysis,
we compute for each residual series the serial correlation portmanteau χ2 test of Ljung
and Box (1978); it is based on the sum of the first q sample residual autocorrelations. The
Box-Ljung statistics for the 132 time series are graphically presented as index plots in
Figure 2 for q = 5. The upper panel presents the residual statistics for Model I while the
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Figure 2. Box-Ljung statistics

We present the Box-Ljung statistics based on the first 5 residual autocorrelations for the dynamic factor
models I and II.
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lower panel presents those for Model II. The displayed Box-Ljung values are truncated
at 100. It is evident that for many series the null hypothesis of no serial correlation in
the residuals is rejected. The current dynamic factor models are therefore not highly
satisfactory for this panel of macroeconomic time series. Model II is most successful in
capturing the collective dynamics in the data set for this comparison.
Although we acknowledge that both dynamic factor model specifications are incorrect,

an important purpose of the presented illustration is to show that our likelihood-based
methodology makes it computationally feasible to distinguish models that are closer
to the correct specification than other models. The presented methods have facilitated
parameter estimation and computation of diagnostic tests in such a way that they become
a matter of routine for even high-dimensional dynamic factor models.

5. CONCLUSIONS

We have presented a number of new results which are instrumental for an effective
likelihood-based analysis of dynamic factor models. It is shown that a high-dimensional
dynamic factor model can be reduced to a low-dimensional state space model. This in-
sight leads to substantial computational savings when estimating factors and evaluating
the loglikelihood function. These developments extend to nonlinear and non-Gaussian
state space models for simulation-based methods but also for generalisations such as
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Likelihood-based Dynamic Factor Analysis 17

the extended Kalman filter and the unscented Kalman filter as described in Julier and
Uhlmann (1997). Our empirical illustration is concerned with macroeconomic forecast-
ing as discussed in Stock and Watson (2002b) where they advocate a two-step approach:
(i) extract a sufficient number of factors from the panel; (ii) include these factors as
(lagged) explanatory variables in a forecast model for a sub-set of the panel. The two
steps can be integrated in a model-based dynamic factor analysis as in Bräuning and
Koopman (2014). The likelihood-based methods may become a viable alternative to the
two-step approaches when employing the results of this paper. Future work may establish
whether this approach produces more accurate forecasts. This paper is based on a fairly
general modeling framework and we expect that the new results can be exploited in other
applications and for different purposes.
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A. APPENDICES

A.1. Proof of Lemma 2.1

From conditions (i), (ii) and (iii) in Section 2.2 and using that ΣεA
L ′ has full column

rank, we obtain

Col{ΣεA
L ′} = Row{AH}⊥ = Col{Z}.

Define Z† = ΣεA
L ′ then AL = Z† ′Σ−1

ε and Col{Z†} = Col{Z}. This proves the necessity
part of Lemma 2.1.

A.2. Proof of Lemma 2.2

We have

yH′
t Σ−1

H yHt = y′tA
H′(AHΣεA

H′)−1AHyt

= y′tJ
HΣ−1

ε yt,

where JH
def.
= AH′(AHΣεA

H′)−1AHΣε is the projection matrix for a generalized least
squares (GLS) computation with covariate matrix AH′ and variance matrix Σ−1

ε . Simi-
larly, define

JL
def.
= AL ′(ALΣεA

L ′)−1ALΣε,

as the GLS projection matrix for covariate matrix AL′ and variance matrix Σ−1
ε . Since

the transformation matrix A = (AL ′, AH′)′ is full rank and ALΣεA
H′ = 0, we must have

JH = I − JL.

The definition of AL implies that JH = I − Σ−1
ε Z†(Z† ′Σ−1

ε Z†)−1Z† ′ and

JH′ = ΣεA
H′(AHΣεA

H′)−1AH = I − Z†(Z† ′Σ−1
ε Z†)−1Z† ′Σ−1

ε
def.
= MZ . (1.32)
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The proof of (2.17) is completed by the identity JHΣ−1
ε = JHΣ−1

ε JH′ and the definition

et
def.
= MZyt where et is the GLS residual from data vector yt with covariate Z† and

variance matrix Σε.

A.3. Calculating the analytical score

Koopman and Shephard (1992) develop analytical expressions for the score function of
the parameters in a state space model. They adopt the results in Louis (1982) and Ruud
(1991) and in particular the identity

∂`(y;ψ)

∂ψ

⌋

ψ=ψ∗

=
∂Q(ψ∗|ψ)

∂ψ

⌋

ψ=ψ∗

, (1.33)

where Q(ψ∗|ψ) is the expected complete Gaussian loglikelihood function, given by

Q(ψ∗|ψ) = E [log p(y, α;ψ) |y;ψ∗ ] ,

with p(y, α;ψ) as the joint density of y and α = (α′
1, . . . , α

′
n)

′
. For time series models in

the state space form (2.2), Q(ψ∗|ψ) can be expressed by

Q(ψ∗|ψ) = c−
n

2
log |Σε| −

1

2
tr Qε −

n− 1

2
log |Ση| −

1

2
tr Qη

−
1

2
log |P | −

1

2
tr[P−1{(a1|n − a)(a1|n − a)′ + P1|n}], (1.34)

where c is a constant independent of ψ and

Qε = Σ−1
ε

n∑

t=1

{ε̂tε̂
′
t +Var(εt|y;ψ)}, Qη = Σ−1

η

n∑

t=2

{η̂tη̂
′
t +Var(ηt|y;ψ)}, (1.35)

where ε̂t = E(εt|y;ψ), Var(εt|y;ψ), η̂t = E(ηt|y;ψ) and Var(ηt|y;ψ) can be expressed in
terms of aj|n and Pj|n for j = 1, . . . , n, and which are evaluated using the Kalman filter
and smoother of Section 2.
The derivatives of (1.34) with respect to the system matrices Z, T , Σε and Ση in (2.2),

for the case of R = I, are given by

∂`(y)

∂Z
= Σ−1

ε (

n∑

t=1

yt a
′
t|n − ZS

(0)
1:n),

∂`(y)

∂Σε
= Q∗

εΣ
−1
ε −

1

2
diag(Q∗

εΣ
−1
ε ),

∂`(y)

∂T
= Σ−1

η (S
(1)
2:n − TS

(0)
1:n−1),

∂`(y)

∂Ση
= Q∗

ηΣ
−1
η −

1

2
diag(Q∗

ηΣ
−1
η ).

where Q∗
ε = Qε − n, Q∗

η = Qη − n− 1, with Qε and Qη defined in (1.35),

S
(0)
j:k =

k∑

t=j

at|na
′
t|n + Pt|n, S

(1)
j:k =

k∑

t=j

at|na
′
t−1|n + Pt,t−1|n, (1.36)

for j, k = 1, . . . , n, with j ≤ k, where at|n, Pt|n and Pt−1,t|n = P ′
t,t−1|n can be evaluated

by Kalman filter and smoother algorithms. Since the system matrices are functions of ψ,
the score vector with respect to ψ is obtained via the chain rule for any ψ = ψ∗.
It is shown that the Kalman filter and smoother are key in the computation of the

score vector. In Section 2.3 we have shown that these methods can be based on the low-
dimensional observation equation (2.11) while the computation of matrix AH and the
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time series yHt are not required. Hence the computational gains reported in Section 2.7
apply here.

A.4. The EM algorithm

The EM algorithm is developed in the seminal article of Dempster et al. (1977). It is an
iterative algorithm that repeatedly performs two types of calculations: (E)xpectation and
(M)aximization. For a given parameter vector ψ = ψ∗, the E and M steps are given by:
(E) evaluate the expected complete loglikelihood function Q(ψ∗|ψ) as given by (1.34);
(M) maximize Q(ψ∗|ψ) with respect to ψ. The M step produces a vector ψ+ with the
property `(y;ψ+) ≥ `(y;ψ∗). If the EM steps are continuously repeated, convergence to
a (local) optimum of `(y;ψ) is guaranteed, see Wu (1983) for a more detailed discussion.
Shumway and Stoffer (1982) and Watson and Engle (1983) have proposed the use of
the EM algorithm in the context of time series models in state space form. A feasible
EM algorithm for high-dimensional dynamic factor models is obtained by applying the
devices of Section 2 in the E step. The evaluation of Q(ψ∗|ψ) relies on the Kalman filter
and smoother which can be based on the low-dimensional observations yLt ; see Appendix
A.3.

REFERENCES

Aguilar, O. and M.West (2000). Bayesian dynamic factor models and portfolio allocation.
J. Business and Economic Statist. 18, 338–357.

Anderson, B. D. O. and J. B. Moore (1979). Optimal Filtering. Englewood Cliffs:
Prentice-Hall.

Ansley, C. F. and R. Kohn (1985). Estimation, filtering and smoothing in state space
models with incompletely specified initial conditions. Annals of Statistics 13, 1286–
1316.

Bai, J. (2003). Inference for factor models of large dimensions. Econometrica 71, 135–72.
Bai, J. and S. Ng (2002). Determining the number of factors in approximating factor
models. Econometrica 70, 191–221.

Bai, J. and S. Ng (2007). Determining the number of primitive shocks in factor models.
J. Business and Economic Statist. 25, 52–60.

Banbura, M., D. Giannone, and L. Reichlin (2010). Large bayesian vector auto regres-
sions. J. Applied Econometrics 25, 71–92.

Bernanke, B., J. Boivin, and P. Eliasz (2005). Measuring the effects of monetary policy:
a factor-augmented vector autoregressive (FAVAR) approach. Quarterly J. of Eco-
nomics 120, 387–422.

Boivin, J. and M. Giannoni (2006). Has monetary policy become more effective ? Rev.
Economics and Statistics 88, 445–62.
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