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Abstract

This paper examines how a radical technological innovation affects alliance formation of
firms and subsequent network structures. We use longitudinal data of interfirm R&D
collaborations in the biopharmaceutical industry in which a new technological regime is
established. Our findings suggest that it requires radical technological change for firms to
leave their embedded path of existing alliances and form new alliances with new partners.
While new partners are mostly found through the firms’ existing network, we provide some
insight into distant link formation with unknown partners, which contributes to our

understanding of how ‘small-worlds’ might emerge.
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Introduction

Networks of collaborative relationships among firms are an important form of organization of
innovative activities (Powell et al., 1996; Kogut, 2000). Especially in innovative-, and
technology intensive industries, firms increasingly realize that, in order to tap into new
technologies and know- how, internal development needs to be complemented with strategic
collaborations (Gulati, 1998; Verspagen & Duysters, 2004). In the biopharmaceutical
industry, the emergence of an expanding network of R&D collaborations has been studied
intensively (Pisano, 1991; Arora and Gambardella, 1994; Powell et al., 1996; Stuart et al.
1999; Orsenigo et al., 2001; Pammolli et al. 2001; Riccaboni and Pammolli 2002).

In this paper we study the network of innovators in the biopharmaceutical industry to provide
a deeper understanding of the underlying mechanisms that drive network structures. We argue
that real world networks do not evolve in isolation, but co-evolve along technological
paradigms. Our data cover a time frame of 20 years in the biopharmaceutical industry in
which a new technological paradigm is established over an old one. The technological
transition has been induced by a radical scientific innovation. This has given us the
opportunity to explore the effect of radical technological change on structural network
evolution.

While radical technological change occurs regularly and has an important influence on the
structure of high technology industries and networks (Anderson & Tushman, 1986), we have
found that most inter-firm network studies assume the underlying technology base to be
stable. Through this assumption, the majority of these studies assume network evolution to be
an endogenous process where network structures guide organizational action and vice versa.
Our paper provides additional insights into network evolution, because exogenous influences
can lead to relational behavior that cannot be explained from an endogenous perspective on
network evolution. Another, more theoretical contribution of our paper relates to the notion of
small worlds in complex networks. While most recent studies on small-world networks reveal
the existence and topology of such a network structure, this paper is, as far as we know, the
first study to look at influences that might induce the relational behavior that leads to a small-
world structure.

We find that the genomic revolution, representing an exogenous shock, leads to an expansion
of the network through a wave of firm entry and a wave of alliance formation. When looking
more specifically at the partners of new alliances, we find that it requires an exogenous shock
like the genomic revolution, for firms to leave their embedded path of existing collaborations

and ally with new partners. For managers of new firms or peripheral firms, knowledge about
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such network changes creates an opportunity to potentially improve one’s position in the
network. Especially in industries characterized by hierarchical structures and low turnover,
where large incumbent firms are dominant and newcomers are usually specialized niche
players, knowledge about such structural breakthroughs can be crucial. While it is interesting
for firms to be able to anticipate the effect of radical innovation on their and their
competitors’ position in a network, policy makers can also benefit from this knowledge. Since
radical scientific innovation is often induced by government-led R&D programs, policy
makers should know about the potential effect of publicly financed R&D projects on firm
behavior and network development.

In what follows we first elaborate rather extensively on the existing literature, because our
aim is to connect insights from organization-, and strategic management literature to issues in
complex network theory. At the intersection of these two strands of literature we find
relational behavior that can only be explained when taking exogenous influences into account.
In section 2, we introduce our measurement techniques for measuring structural network
change, such as the clustering coefficient and the average path-length. Section 3 focuses on
exogenous influences on the network. In this section we introduce the reader to our empirical
setting, the genomic revolution. We apply and extend a theoretical framework developed by
Koka et al. (2006), which enables us to hypothesize on the effect that the genomic revolution
has had on the pharmaceutical R&D network in section 4. We divide this section into
hypothesized structural change at the level of the network, and into structural change at the
level of the firm, whereby this latter part touches upon specific relational behavior that is
associated with small worlds. After describing the data and methodology in section 5, we
present the results in section 6 and a discussion and conclusion in section 7 and 8

respectively.

I Network evolution

The understanding of how networks evolve has been a topic of interest to both social
scientists and natural scientists. Both scholars realize that relational behavior and network
structure are intertwined. An actors’ relational strategy depends for some part on the structure
of relationships it had before. At the same time, the actors’ new relationships contribute to a
changed network structure that again influences its actions (Gulati, 1998). Social scientists
and natural scientists differ in regard to the way they study network evolution. Social
scientists assume that actors conduct strategic relational behavior, while natural scientists,

studying complex network theory, often assume actors to be non-human (e.g. proteins).
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Amongst the latter, the process of link formation is based on certain ‘rules of attachment’.
Recently, a number of authors such as Goyal et al.(2006), Uzi & Spiro (2005), Wilwhite
(2001), Verspagen & Duysters (2004), and Jackson (2006) have combined insights from both
strands of literature and increased our understanding of network evolution. Our paper aims to

contribute to this understanding.

Network change consists of changes in the number of actors (exit and entry), and changes in
numbers-, and patterns of link formation (Koka, 2006). Structural network change is a form of
network change whereby new linkages are formed with new partners. Studies on new partner
search in networks have broadly focused on two issues. One issue is about distribution of
linkages among actors in a network, which represents the inequality of access that firms have
to various resources. In many real world networks the distribution of linkages among actors is
highly unequal (Dorogovtsev and Mendez, 2003; Goyal, et al.2005; Barabasi et al., 2002).
Barabasi (1998) shows how actors accumulate new linkages in proportion to the number of
linkages they have already (preferential attachment). Following from this ‘rich get richer’
principle of growth, the resulting network structure consists of a few highly connected actors
called ‘stars’ in combination and many weakly connected ‘peripheral’ players. The second
issue in new partner search concerns the process of local link formation and the process of

distant link formation, which will be the focus of this study.

Local link formation

Local link formation implies that new partners are found through an actors’ existing network
(which is called an ego network), and that the new partner is already known to other partners
‘in the neighborhood’. The overall network structure resulting from local link formation is a
network composed of dense ‘cliques’ of actors, which indicates that they are highly connected
to each other. Local link formation of an actor and the degree of clique formation in a
network can be measured by calculating the clustering coefficient, which will be explained in
section 2.

Within the organization-, and strategic management literature, network studies mainly focus
on the effect that a given network structure has on the relational behavior and performance of
firms (Burt, 1992; Granovetter, 1985; Gulati et al., 2000). Having a more central and
autonomous structural position in a network provides firms with access to resources, learning
opportunities, and reduces uncertainty (A notion first coined by sociologists like Bourdieu
(1980) and Coleman (1990) as ‘social capital’). Regarding the formation of new linkages,

Gulati (1995) finds that the process of new tie creation is heavily embedded in an actors
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existing network (consisting of previous alliances). This means that new ties are often formed
with prior partners or with partners of prior partners (Gulati, 1995), indicating network
growth to be a ‘local’ process, where strategic collaborations are path-dependant (Noria,
1992). Particularly when considering inter-firm alliances, new link formation is considered
‘risky business’ and actors prefer alliances that are embedded in a dense clique were norms
are more likely to be enforceable and opportunistic behavior to be punished (Gulati 1995;
Powell et al., 1996; Koka et al., 2006; Granovetter, 1985).

Distant link formation

Distant link formation implies that new linkages are created with partners whom are not
known to the existing partners of an actor. In the social sciences, Granovetter (1985) was the
first to differentiate between local ties in dense cliques (strong ties) and distant ties that bridge
these cliques (weak ties). More precisely, the author argues that distant linkages “serve as
crucial functions in linking otherwise unconnected segments of the network™ (Granovetter,
1983: 217). At the level of the firm, Burt (1992) shows that distant linkages that serve as
bridges between dense local cliques of firms, can provide access to new sources of
information and favorable strategic negotiating positions (termed ‘structural holes’), which

improves the firms’ position in the network and industry.

Small worlds

The first network studies that combine local- and distant link formation originate from
complex network studies. Watts and Strogatz (1998) model the process of local link
formation and find that, with the addition of just a handful of distant linkages, a specific
network structure is generated, which they call a small world. This means that although large
networks have relatively few linkages compared to the number of actors, the reach is higher
than expected (Newman, 2001). While solely local link formation results in dense cliques of
connected actors, the average distance to reach all actors in a network is very large. The
distance between two actors is indicated by the number of other actors one has to surpass in
order to reach the other. Watts & Strogatz (1998) found that the average distance between all
actors in a network is sharply reduced when a relatively small number of distant linkages
(referred to as random linkages) are added to the network that serve as shortcuts between
these local cliques. Examples of small world networks are the electronic power grid network,
high-school friendship networks, or the neural network of a worm (see for an overview Watts

(1999) or Newman (2001)). Recently, insights from the social sciences regarding network
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evolution and new link formation have been combined with the more theoretical findings as
described above (see Goyal, et al., 2006; Uzi & Spiro, 2005; Wilwhite, 2001; Verspagen &
Duysters, 2004). Verspagen & Duysters (2004) explain how firms that try to build ‘social
capital’ can be seen as drivers of local link formation, and firms that strategically aim to
bridge structural holes in a network can be seen as drivers of distant link formation. Together,
these two drivers of new partner search add up to small world structures in networks of
technology alliances. A recent study by Jackson & Rogers (2006) focuses on link formation
with new partners in social networks. They find that large social networks evolve into small
worlds, because people meet friends of friends and strangers. The process of link formation is
generated by an algorithm that makes actors form both local linkages and random linkages
(distant linkages), while implying that random link formation resembles the ‘meeting of
strangers’. While the latter implication seems feasible in friendship networks, random partner
search by firms seems rather unlikely. A plausible assumption made by Verspagen &
Duysters (2004), is that firms are aware of the structural features of the network surrounding
them and that this induces these firms to deliberately form distant linkages that bridge local
cliques. However, a number of studies such as the work of Cowan et al. (2004) and Powell
(1990) emphasize the risks involved in new partner formation, and the strong tendency of
these firms to use their existing network as a source of information for new partner search,
implying local link formation.

In this paper we aim to contribute to the understanding of local-, and distant link formation in
inter-firm alliance networks. Moreover, we investigate the effect of a radical exogenous
innovation on structural network change. This paper differs from the studies mentioned
above, in that these studies analyze the effect of link formation on the emergence of a small-
world. Our study investigates whether radical exogenous change induces link formation,
which potentially leads to a small world. We use the theoretical framework of Koka et al.
(2006) to measure structural change, and we will expand their framework by introducing

local-, and distant link formation.

II Structural change

Koka et al.(2006) have combined multiple indicators of relational behavior into four different
types of network change (see figure 1). The network can expand, churn, strengthen or shrink.
Each network change is brought about by a specific combination of changes in tie creation, tie
deletion, and by changes in an actor’s portfolio size (number of links) and portfolio range

(number of partners).



Fig.1- Environmental effects on patterns of network change

Changes in uncertainty

Increase Decrease
Network expansion Network strengthening
Increase | Tie creation: Increase Tie creation: Increase
Tie deletion: Decrease Tie deletion: Decrease
Portfolio size: Increase Portfolio size: Increase
Portfolio range: Increase Portfolio range: Decrease
Changes in Munificence
Network churning Network shrinking
Decrease | Tie creation: Increase Tie creation: Decrease
Tie deletion: Increase Tie deletion: Increase
Portfolio size: Little change Portfolio size: Decrease
Portfolio range: Increase Portfolio range: Decrease

Source: Koka et al., 2006

While Koka et al.(2006) present four types of network change they find that only an
expanding network and a churning network are a reflection of structural change, because new
alliances are formed with new partners. An expanding network is brought about by an
increase in new alliances without deletion of old alliances (meaning a larger average
portfolio), together with an increasing portfolio range (more different partners). A churning
network reflects the formation of new alliances and the deletion of existing alliances. While
the average portfolio remains stable in terms of the number of partners, there is an increasing
variety in identity of partners. We will use this framework to hypothesize on the ‘type’ of
network change to expect after a given exogenous or environmental change. While changes in
the number of linkages (tie creation/deletion) and changes in the number and identity of
partners already provides important insights into structural changes in the network, we will
further distinguish between local link formation and distant link formation when studying

new link formation with new partners. Local link formation and distant link formation are



measured through the calculation of the clustering coefficient and the average distance

between actors respectively.

Clustering coefficient

The clustering coefficient of an actor is the density of its open neighborhood, that is to say
how close each actor’s neighborhood is to a fully connected clique. Following Watts and

Strogatz (1998), we define a clustering coefficient as follows: assume that the ith vertex

v, has k, —1 neighboring vertices. At most, k,(k, —1)/2 edges can exist between them.

Calculate ¢; = (number of edges of v, and its neighbors) /k,(k, —1)/2. Then, the overall

1 N
clustering coefficient is defined by CC z—zQ , which is the average of the individual
i=1

clustering coefficients ¢, . The weighted overall clustering coefficient (WCC) is the weighted

mean of the clustering coefficient of all the actors each one weighted by its degree. This last
figure is exactly the same as the transitivity index of each transitive triple expressed as a
percentage of the triples in which there is a path from i to j’. The cluster coefficient tends to 1
if most of the partners of each biopharmaceutical institution are directly related by formal
R&D collaborations. On the contrary, the clustering coefficient tends to O if the network is
hierarchical and the partners of each biopharmaceutical actor are not related.

Clustering coefficients are often applied to detect small-world networks and the degree of
hierarchy of local relational structures. At the level of the network, the degree of hierarchy of
local relational structures is called transitivity. If an actor’s ego-network is a clique, meaning
the absence of hierarchy, the actor and its partners all have equal structural power and the
network as a whole becomes more transitive.

Because the clustering coefficient (CC) essentially measures the situation whether an actor’s
partners are connected to each other, an increasing CC measures new alliances being created
with partners that are already known to the partners in the clique. We can visualize this

alliance behavior as follows:

' To calculate C it is important to notice that there are no loops attached to a vertex (no self-ties) and that multiple

relationships between two vertices are identified as one edge.



Fig. 2 — Visualization of local link formation
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In figure 2 we can easily see that whereas at t = 1 vertex i’s partners are unconnected, the
alliance between vertex i and vertex & at time 2 indicates that i has a new partner who already
was a partner of j. The clustering coefficient has risen from 0 (0/3) to 0.167 (1/6). To account
for the size of a firms’ ego network, we will use changes in the weighted clustering
coefficient as an indicator of structural network change, because it reflects the formation of

new alliances with new ‘local’ partners whom are already known to the actors in a clique.

Average path-length

To measure structural network change that is caused by new link generation between local
clusters, we use the average path-length in the network. Following Goyal et al.(2006), we
define the average path-length between reachable pairs in our network as d(N), being the
average distance between any actor i and j that belong to the same component. Actors that are
isolated from other actors are excluded. Thus, for a connected graph N(E,V) consisting of
edges and vertices, the average path-length is the sum of the distances between two actors (i

and j) belonging to the network (N), divided by all possible edges excluding self-ties:

ZjeV ZiEV d(l’ ‘]’ N)

v(v—1)

d(N) =

The above definition of average path-length is only useful when most actors in a network
under study do indeed belong to the same component. To verify this, we plotted the number

of actors within the main component of our network in relation to the all actors in the network



in figure 3. Clearly, this figure shows that at any moment in time, most actors belong to the

main component in which every actor is connected.

Fig.3 - Size of the main component (dotted line) in relation to the whole
network (full line)
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While average path-length is an indicator of the overall network structure, the change in
average path-length over time provides information of structural network change at the
intermediate level. Moreover, in social networks where the majority of link formation occurs
within the neighborhood, only the occurrence of a relatively few number of distant linkages
between neighborhoods can cause the average path-length in a network to fall. This is because
a connection (bridge) between to isolated clusters of actors suddenly increases the reach
between those clusters and thus decreases the path-length. The above described argument
originates from Watts and Strogatz (1998) in their seminal paper on small-worlds. For our
paper we turn this argument around by assuming that a decreasing average path-length is a
structural indicator that some actors in our network have been able to form distant linkages
with new partners who are not familiar to the actors existing partners. The average path-
length is thus an indirect measure of distant linkages, and one could argue that it would be
better to measure distant linkages directly. We argue however, that the usage of average path-
length has the great advantage of only measuring ‘distant linkages’ that are effective in
providing positional benefits to the firms involved. In order to explain why, we have

visualized the ego networks of two vertices (hypothetical firms) Vi and Vj as follows:
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Fig. 4 — Visualization of (non effective) distant link formation

If we were to measure distant link formation ‘directly’, we would say that a link between two
firms is a distant link, if the ego networks of both partners are non-overlapping. When using
this definition the link between i and j in figure 4 can be defined as a distant link. However,
we can also see that both firms are part of the same clique because their partners’ partners are
highly connected. This would make the ‘distant link’ between i and j much less valuable in
terms of improvement of their structural network position or in terms of spreading
information through the net. In figure 4, the dotted line between i and j represents such a ‘less
informative’ distant link. While 7 and j do not share partners, their link is not likely to bring

new information to the group.

At the level of the network, the average path-length only decreases when distant linkages are
formed that provide real shortcuts in the network, meaning that they connect cliques that
where unconnected before. Linkages (dotted) that connect parts of a network in a way which

reduces the average distance have been visualized in figure 5°.

% This visualization is merely intended to clarify the difference between two ways of measuring distant link
formation. The Authors are aware that this visualization cannot occur empirically because only connected actors

are included in graph N(E, V).
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Fig. 5 — Visualization of effective distant link formation (dotted lines)

In order to understand why actors are sometimes able to create these distant linkages, and thus
shorten the average distance in the network, we explore the influence of exogenous forces on

the evolution of the network.

IIT Exogenous influences on structural network change

Various studies focusing on structural network change have argued that real structural change
only occurs after an exogenous shock (Barley, 1986; Piore & Sabel, 1984; Glasmeier, 1991).
There are few networks studies in the organization- and management literature which take
exogenous influences on network evolution into account. One important contribution comes
from Madhavan, Koka, and Prescott (1998) with their study on the effect of a technological
and regulatory ‘event’ on structural network change. Madhaven et al. (1998) find that it
requires a radical technological change to enable relatively peripheral players in the network
to significantly improve their network position and consequently cause a ‘loosened’ network
structure. Koka et al. (2006) have expanded and generalized their work by providing a

framework to assess the effects of exogenous events on structural network change (figure 1).

Exogenous or environmental changes are expressed in terms of changes in uncertainty and
munificence instead of specific industry events, which makes the framework a useful meta-
tool for broader applications. Following Dickson & Weaver (1997) the authors define
uncertainty as “the inability of a firm’s managers to accurately assess the external
environment of the organization or the future changes that might occur in that environment”.
Uncertainty induces alliance activity (Nohria & Garcia-Pont, 1991; Powell, et al., 1996). But,
whereas some authors argue that new alliances are used to reinforce a firm’s relationships
with existing partners during uncertainty (see Granovetter (1982) and Krackhardt (1992)),

others, such as Kogut (1991), find that firms might create new alliances with new partners in
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order to expand its number of strategic options as a means to cope with uncertainty. To
resolve the issue of either reinforcement of existing relations or the formation of new relations
with new partners, the authors introduce to concept of munificence. Munificence refers to the
“extend to which resources available to a firm are plentiful or scarce, after taking into account
the number of firms competing for those resources” (Koka et al.2006:725). While uncertainty
increases the array of actions firms can potentially make in the changing environment, the
opportunities to do so are limited by the resources available to the firm. In short, we can say
that while uncertainty represents the opportunity for alliance formation with new firms,
munificence represents the ability for alliance formation with new firms, given the
opportunity to do so.

We use the concepts of uncertainty and munificence to hypothesize on how the genomic
revolution in the beginning of the nineties has induced structural change in the pharmaceutical
R&D network. In the next section, we will analyze the genomic revolution in terms of its
influence on uncertainty and munificence. From there we derive our hypothesis on how we
expect genomic revolution to induce relational behavior that causes structural network

change.

The genomic revolution

The genomic revolution represents the radical scientific innovations related to the
identification and understanding of the human genome and the technologies to store and
analyze genetic information’.

Our aim is to provide insight in how radical technological change such as the genomic
revolution has caused structural network change. Before getting to the question of ‘how’, we
need to defend the causal order of the question. The relational behavior of network actors
could after all have created the genomic revolution and not vice versa. In order to disentangle
the genomic revolution from the changes in the pharmaceutical R&D network, we show that
the genomic revolution was sparked by a government led R&D program that had started long
before structural changes in the network became apparent. Second, in order to be sure that

government-led or government-financed R&D is not driving the structural network change,

? See the website of the U.S. Department of Energy Office of Science for information on the genomic revolution

and the Human Genome Project. (http://www.ornl.gov/sci/techresources/Human Genome/home.shtml)
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we excluded government and academic actors from the R&D network we study, thereby

focusing on the industrial R&D network.

Human Genome project

The Human Genome Project is a government led research project to unravel the human
genetic code. The very first initiatives for the project were undertaken in 1983 by the US
energy department laboratory, with the creation of DNA clone libraries representing single
chromosomes. At least until 1988, the only active institutions that were involved in the setup
of the human genome project were the US department of energy and the National Institute of
Health. The main aims of the project were the identification of all genes and determination of
sequences of chemical base pairs in human DNA, the development of storage capacity and
analysis tools of genetic information, and the transference of related technologies to the

private sector. The project has been completed in 2003*.

General purpose technologies

While the Human Genome project had brought forward huge amounts of new information on
genetic targets, new tools for drug discovery were needed to deal with the available genetic
information. These new drug discovery tools such as combinatorial chemistry, high
throughput screening and bioinformatics are not only different from conventional medicinal
chemistry because they enable the testing of larger amounts of chemical entities against more
drug targets, they are also much more broadly applicable in terms of disease areas and
biological targets (Orsenigo, et al., 2001). Based on these new tools known as general purpose
technologies (GPT), a wave of new firms specializing in GPT had been founded. In figure 6
we show how the proportion of alliances based on general purpose technologies has overtaken
the proportion of alliances based on conventional medicinal chemistry (co-specialized

technologies) in the beginning of the nineties.

4 See for the timeline of developments of the Human Genome project: www.http:/doegenomes.org/
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Fig. 6 — Proportion of alliances based on General Purpose Technologies (genomics,

proteomics, bioinformatics, combinatorial chemistry, high-throughput screening)
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The activities of general purpose technology based firms (GPT based firms) differ from other
firms’ activities in drug development because they provide tools for drug development instead
of developing a specific drug (Kaplan et al., 2003). According to business analysts, such as
Longman (2000) and Lytton (1999), the different relational behavior of GPT firms compared
to ‘traditional’ (co-specialized) firms, can be partly attributed to the specific characteristics of

general purpose based technologies.

IV Effects of the radical technological change

In this section of the paper we first investigate the effect that the genomic revolution has had
on changes in munificence and uncertainty. Through these changes we hypothesize on the
effects of the genomic revolution on structural network change. In the second part of the
section we expand the concept of structural change by distinguishing new alliances with new
‘local’ partners from new alliances with new ‘distant’ partners. Through this approach our
findings contribute to the literature on small-world networks and to the notion of the factors

driving a small-world.

Structural change: uncertainty and munificence after the genomic revolution

The genomic revolution encompasses a number of radical scientific and technological

innovations that have and are altering existing practices of drug development (Uppenbrink &

15



Mervis, 2000; Gassmann et al.2004). While traditional approaches of medicinal chemistry
and sequential experimentation have by no means become redundant, they have been
complemented and intensified by general purpose technologies of which high-throughput
screening, combinatorial chemistry, bio-informatics, proteomics, genomics,
pharmacogenomics, and molecular design are the most important. Although these
technologies are very heterogeneous in their function, together they are responsible for the
alteration of drug development into a more automated, mass production process based on trial
and error (Gassmann et al.2004; Nightingale, 2000; Drews, 2000). GPT are poised to improve
the process of drug discovery in revolutionary ways, but there are also concerns about the
increased complexity and diversity that these technologies bring to the drug development
process (Longman, 2000; Orsenigo et al., 2001; Drews, 2000). Burckhardt & Brass (1990)
and Hannan & Freeman (1989) find that technological change creates uncertainty, because of
increased heterogeneity and complexity. Following this line of reasoning, we assume that the
genomic revolution has increased environmental uncertainty.

Munificence has also increased after the genomics revolution’. Munificence reflects a firms’
capacity (Dess & Beard, 1984). By using various new tools, general purpose technologies
have greatly increased the number of possible strategies for drug discovery. This can be
considered as an increase in technological resources. Adding to the notion of increasing
munificence is the favorable investment climate after the Human Genome Project proved
successful. Mainly general purpose based firms benefited from the willingness of investors to
put their money in start-up companies that take no risks in drug development itself, but only
provide the tools (Longman, 2001). The availability of technological resources together with
the financial capacity to develop or invest in these resources, accounts for an increase in
munificence. The increase in munificence is somewhat moderated by the wave of entrance of
general purpose based firms which increases competition and lowers the average increase in
munificence per firm. However, we consider firm entry to be a consequence of increasing

munificence rather that a potential cause of reduced munificence. Concluding, we assume that

5 The authors realize that while munificence clearly increased in the beginning of the nineties with the general
believe that genomic based technologies would revolutionize drug development, later there has been some doubt
about the revolutionizing effect of genomics. So far, drug development has mainly become more complex through
all these new alternatives for development (Drews, 2000). Some analysts even say that the genomics revolution
has decreased efficiency of drug development because of the decreasing number of scientists working together on
one disease target. The increase in genetic targets has caused spreading of researchers over the different targets

which slows down the discovery process (Longman, 2000).
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both uncertainty and munificence have increased after the genomic revolution in the
beginning of the nineties. Following the framework of Koka et al. (2006; see figure 1), we
arrive at the following hypothesis on the effect that the genomic revolution has had on the

structural changes in the pharmaceutical R&D network.

Hypothesis 1

Because the genomic revolution has increased both environmental uncertainty and
munificence, we expect to see an expansion of the pharmaceutical R&D network, which we
measure through a higher average portfolio size of alliances per firm in combination with an

increased average range of partners per firm.

Structural change: local clustering and distant linkages

In order to be able to hypothesize on which type of relational behavior (local link formation
and/or distant link formation) to expect of firms after the genomic revolution, we first need to
explain the relational behavior of firms before the genomics revolution.

Before the genomic revolution, drug development has been based on molecular biology,
biochemistry, pharmacology and other disciplines for many years. Orsenigo et al.(2001) have
established a connection between the nature of knowledge advancement in these years and the
inter-organizational network structure in the pharmaceutical industry. They found that parallel
to research in drug discovery, which develops as a branching process of older more general
research hypothesis toward more specialized sub-hypothesis, a similar hierarchal branching
structure unfolded in the collaborative R&D network between organizations. More
specifically, the authors find that large, incumbent pharmaceutical firms manage more general
knowledge in the network while new entrants (mainly dedicated biotechnology firms)
specialize in specific sub-hypothesis of drug research in specialized disease areas and
collaborate with the incumbent players. Over time this network evolves into a hierarchal
R&D network consisting of fairly ‘isolated’ branches which represent specialized fields or
disease areas.

After the genomic revolution, firms entered the network through unusual relational behavior.
The GPT that these entering firms relied on, do not obey to the ‘traditional’ logic of
knowledge advancement, because they contribute tools to the drug development process
instead of developing drugs. With the purpose of being an aid to drug development, GPT are

more broadly applied in terms of number of disease areas and biological targets. As a result,
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these firms mostly form non-exclusive alliances with a large variety of firms and are by
definition not bound to any specific research field or disease area (Longman, 2000; Lytton,
1999). According to Orsenigo et al. (2001) GPT based firms “pertubate the structure of the
network™ (Orsenigo et al., 2001:490). Given the relational behavior of existing firms in the
pharmaceutical R&D network in combination with the relational behavior of general purpose
based firms entering the network after the genomic revolution, we expect the network

structure to be affected in the following way:

Fig. 7 — Simplified network topologies

Before the genomic revolution After the genomic revolution
Disease Disease Disease Disease
area A area B area A area B
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The first picture in figure 7 represents a simplified topology of the pharmaceutical R&D
network before the genomic revolution. Within each branch (disease area A and B),
specialized biotech firms collaborate with large pharmaceutical firms. It is clear that the
network is organized in a hierarchal manner within isolated branches of disease areas. While
this is obviously an under-representation of the complexity of the real pharmaceutical
network structure, it gives us the opportunity to envision what happens when general purpose
based firms enter the network with different relational behavior. The second picture in figure
7 shows the entrance of general purpose based firms (red nodes). The linkages they form are
based on the notion that they form non-exclusive alliances with a large variety of firms and
that they are by definition not bound to any specific research field or disease area. Every

linkage formed by newly entering general purpose based firms, is a new linkage with a new
18



partner, and these linkages thus cause structural change according to our definition of
structural network change. The results from the new link formation of general purpose based
firms become apparent when we look at the black triangles and red (dotted) lines. The black
triangles indicate that new alliances are formed locally and result in dense cliques. The red
lines indicate distant linkages because they connect to distant partners from different disease

areas. We can now formulate our hypothesis as follows:

Hypothesis 2 a

The genomic revolution has induced new partner search through local link formation. This
relational behavior results in an increased clustering coefficient in the pharmaceutical R&D

network from the beginning of the nineties.

Hypothesis 2 b

The genomic revolution has led to firms forming distant linkages between disease areas which
are otherwise relatively unconnected. This relational behavior results in a decreasing average

path-length of the pharmaceutical R&D network from the beginning of the nineties.

Summarizing our analytical approach in figure 8, we can say that exogenous change induces
relational behavior that is reflected in a changed network structure. More specifically, we
argue that the genomic revolution is a radical scientific innovation that is exogenous to our
network. This innovation has increased environmental uncertainty and munificence for firms,
who respond by increasing their portfolio size and range, leading to network expansion. In
more detail, we expect that GPT based firms connect both local players within a disease area
into more dense cliques (clustering coefficient), and that they connect these cliques through

‘distant linkages’ between disease areas (average path-length).
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Fie. 8 — Analvtical approach

(radical) Exogenous change Relational behavior Structural change
Genomic revolution: Portfolio size + Network expansion
general purpose Portfolio range +
technologies
Uncertainty + Local link formation + Clustering coéfficient +
Munificence + Weak link formation + Average pathlength -
VI Data and methods

For our empirical analysis we have used a comprehensive and original data set that
encompasses information about collaborative agreements in the biopharmaceutical industry
worldwide. As a whole, the Biotech Industry Database (referred as BID) covers 20,182
collaborations subscribed by 7,407 institutions including dedicated biotech companies,
established companies, specialized biotech suppliers and non-industrial research organizations
since 1976. The BID has been created at the University of Siena, and was previously used by
Orsenigo, Pammolli, and Riccaboni (2001) to analyze the biopharmaceutical network. As our
paper focuses on the pharmaceutical R&D network our sample consists of 10.580
collaborations among 3800 agents. For each transaction, BID includes information about:
Date of signing (1976-2002);

Partners (classified according to their role in the collaboration);

Stage of development at signing (i.e. discovery, preclinical, clinical...);

Technological content (i.e. gene therapy, genomics, combinatorial chemistry...);

Therapeutic category (i.e. Oncology, Metabolic disorders, Central Nervous System...);
Typology (viz. license, joint venture, co-development...);

Deal value and terms of payment (equity, upfront, milestones, royalties...).

The structure of the network of R&D collaborations can be represented by a graph N(E, V),
where V is the set of vertices (firms), and £ are edges (R&D collaborations). Every edge e
within the graph (industry network) is defined as a link between two partners. The graph N
can also be represented by an adjacency matrix N < A(N) = [ae]. Matrix entry ae equals 1 if
and only if an edge e does exist, and 0 otherwise. In order to analyze the evolution of our
network over time, we took ‘snapshots’ of the network by labeling each connection with the
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date of signing. The overall graph N(E,V) is decomposed in time specific sub-graphs N(E,}),

which include all collaborations up to period ¢.

The first part of the analysis is based on simple count statistics, which reveal the changes in
firm entry and alliance formation over time, to see whether the R&D network has expanded
as our first hypothesis predicts. To test hypotheses 2a and 2b we calculate the clustering
coefficients and average path-length respectively over time using Ucinet (Borgatti et al.,
1999). Based on the adjacency matrix for each time periodz, we calculate the clustering
coefficient and the average path-length. In order to facilitate interpretation of the results we
calculate the clustering coefficients and average path-lengths of a random network with the

same number of nodes (V) and the same number of linkages (E) at each time periodz.

VI Results

Structural change

Figure 9 shows the number of deal-active firms entering the network (7) and the number of
new alliances (E) in the R&D network from 1967 until 2002. Deal-active firms are firms,
which close at least one new alliance in periodz. Until 1992, the number of new alliances
formed has been twice as high as the amount of deal-active firms entering the network in each
period. After 1992 the grey line in our plot indicates that the amount of new alliances has
more or less tripled the number of new deal-active firms. In other words, the average number
of new alliances per firm has increased from two to three, which means that the average size

of a firms’ portfolio of alliances has increased starting in the beginning of the nineties.

21



Fig. 9 — Number of new R&D collaborative agreements (E — Edges) and institutions
(V — Vertices) in the network of R&D collaborations in biopharmaceuticals (1976-
2002)
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In figure 10 we have plotted the new alliances and new firms in the network in relation to the
existing actors and their alliances. We can clearly see that there are various waves of firm
entry and alliance growth over time, and the beginning of the nineties marks the start of a new

wave of entry and collaboration activity.

Fig. 10 — Percentual change in R&D collaborative agreements (E — Edges)

and institutions (V — Vertices) in the bionharmaceutical R&D network.
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Unless newly entering firms form alliances exclusively amongst each other, a situation which

is highly unlikely considering the complementary nature of their technologies, we argue that
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with an increased average alliance portfolio (figure 10), in combination with a wave of firm
entrance, the average number of different partners in a firms portfolio has grown. After all,
these newly entering firms are deal-active and, given the complementarities of their new
technologies, they have found new partners in the existing network. In sum, we can conclude
that from the beginning of the nineties, firms have on average expanded their portfolio size
and range. This leads us to confirm hypothesis 1, stating that the pharmaceutical R&D
network has expanded from the beginning of the nineties. From figure 9 and 10 it becomes
clear however, that the average portfolio size of firms does not increase further after the
beginning of the nineties and that the entrance of new firms into the network is also
temporary. We can therefore conclude that although the R&D network appears to keep
growing over time, the overall structural network expansion is temporary. This finding is in
line with similar findings from the steel industry where technological change leads to a
temporary ‘reshuffling’ of relational behavior, causing temporary structural change in the

network (Madhaven et al., 1998).

Local link formation

The second part of the analysis concerned a more detailed investigation of these new alliances
that have been formed with new partners. We have argued that, depending on the new partner
being active in ‘the neighborhood’ or being a ‘distant’ partner (or both) we expect to see
different structures emerge. We start with the hypothesis of local link formation. If firms are
oriented toward local link formation, we should witness an increasing clustering coefficient

from the beginning of the nineties.
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Fig. 11 — Weighted overall clustering coefficient in the pharmaceutical R&D

network (full line) and of a random network (dashed line)

0.08 T T T T T T T T T T T

o L L
1982 1983 1984 1985 1986 1987 1988 1989 1550 1991 1992 1993 1984 1895 1996 1997 1998 1959 2000 2001 2002

Figure 11 shows the weighted clustering coefficient from 1982 till 2002. Between 1991 till
1995 there is a sharp increase in the weighted clustering coefficient, while it starts to decrease
slightly afterwards. This feature supports our hypothesis of an increased clustering from the
beginning of the nineties, but in order to value the increase we have added the clustering
coefficient of a simulated random network (Erdds-Renyi random network). A simulated
random network is a much used tool in network analysis to indicate the meaning of a certain
network value. The clustering coefficient of a random network with the same amount of
actors and the same average degree (portfolio size) serves as a bench-mark to compare
observed relational behavior with random relational behavior. When comparing the clustering
coefficient of a random network in figure 11 with the observed clustering coefficient in our
network, the impact of the genomics revolution on local clique formation becomes even more
apparent. Before the beginning of the nineties, relational behavior of firms led to less
clustering compared to random relational behavior, while after the beginning of the nineties
there was more clique formation then was to be expected from random relational behavior.
When considering the fact that a clustering coefficient is also used in the literature as a
measure of local hierarchy, our relatively low clustering coefficient before the beginning of
the nineties seems to support the results of Orsenigo et al. (2001). They argue that the
pharmaceutical R&D network developed as a hierarchal branching process before the
nineties. Finally we can confirm hypothesis 2a through an increasing clustering coefficient
after the genomics revolution, which indicates that firms have found new partners through

local link formation.
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Distant link formation

Did the genomic revolution bring forth (new) firms that were able to bridge some of the
‘hierarchal branches’ of the pharmaceutical R&D network? Given the hierarchal branching
structure of the R&D network together with the inherent characteristics of GPT we expect
general purpose technology based firms, who have entered the network in the beginning of
the nineties, to be able to bridge these hierarchies. If so, these bridges or distant linkages
would function as shortcuts in the network and shorten the average path-length. Figure 12
reports the average path-length of our network and the average path-length of a simulated

random network over time.

Fig. 12 — Average path-length of the pharmaceutical R&D network

(full line) and of a random network (dashed line)
46 -

44 -
42+
44
38 ¢

36+

344 o

321

3 [

The average path-length declines from 1986, reaching its lowest point in 1995. This indicates
that the reach between actors in the network has improved. After 1998 the average path-
length slightly starts to increase again. At first, it seems counterintuitive that the path-length
shortens while the network grows. In our hypothesis we have argued that this shortening of
the path-length has been triggered by the genomic revolution at the beginning of the nineties.
Although the path-length indeed decreases, there is no indication that this decreasing trend
was triggered by the genomic revolution, since the declining path-length clearly starts much
earlier (from 1986). In order to value the decrease in path-length we have simulated a random
network based on the exact same network size and connectivity at each time period 7. The
dashed line in figure 12 reports the average path-length of our simulated random network. In
our random network an actor has to surpass 3.5 other actors on average to reach every other

reachable actor in the network. As the network grows and becomes more connected this path-
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length remains stable but eventually will grow according to In(n)/In(k) (k = average degree)
for very large networks (see Watts, 1999). Starting from 1986, our empirical network and the
random network slowly converge, which means that the reach between actors in the network
improves despite a growing number of actors.

In sum, we can conclude that hypothesis 2b predicting a falling average path-length from the
beginning of the nineties cannot be confirmed. However, the fact that the path-length of our
random network remains relatively stable indicates that there is non-random relational

behavior causing an improvement in the reach between actors.

VII Discussion & Interpretation

How can we interpret these results and what are its implications? To begin with we have
clearly seen that the genomic revolution in the beginning of the nineties has caused structural
network change. More specifically the network has expanded through an increasing average
portfolio size and portfolio range, there has been a wave of firms entering and the
technological focus of alliances has shifted from conventional medicinal chemistry to GPT. A
second question was about the relational behavior that has caused this structural change, more
specifically we studied whether firms find new partners through local linkages or whether
these new partners are ‘distant’ partners. With this question we have extended the framework
of Koka et al. (2006) on structural network change into more detail, but also we have
combined the issue of partner choice in alliance networks with the study of small-world
network structures. Our argument was that the relational behavior that causes a small-world
structure in social networks is a combination of local link formation with relatively few
distant linkages between different cliques. Together these two types of relational behavior
image the combination of a regular network with a handful of random linkages, which defines
a small-world according to Watts & Strogatz (1998). Thirdly, we tried to find answers to what
causes this specific relational behavior which in turn causes this specific structural change.
There is basic agreement among network researchers that exogenous events, which increase
uncertainty, cause an increase in alliance formation, but theories differ about the partner
choice following from the decision to enter an alliance. Some network researchers (e.g.
Powell, 1996; Burt 1991) argue that if firms enter into new alliances with new partners, they
will use their network to find these new partners, which implies structural network change to
be a local growth process. This argument leaves the empirical finding of small-world network
structures unanswered however, because it fails to provide an explanation for the formation of

distant linkages. We have argued that only a radical exogenous shock such as the genomic
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revolution can convince firms to leave their embedded path and form distant linkages with
unknown partners. Following from this we hypothesized that after the genomic revolution, we
would witness both local link formation and distant link formation, resembling a small-world.
Although the evolution of the pharmaceutical R&D network does show a decreasing average
distance and increased clustering, which are indicators of a small-world, we find no evidence
for our hypothesis that the genomic revolution has induced this structural change. One
explanation for this result could be that general purpose based firms, whom we expected to
form distant linkages between disease branches, do not perform these alliances. The fact that
we witness the increase in clustering after the genomic revolution indicates that general
purpose based firms find new partners through local linkages. This latter finding confirms the
structure action dynamics in network evolution, where firms choose their alliance partner
using their existing network. Our paper contributes an important detail to the structure action
dynamics, namely that while the underlying technological base is stable (before the genomic
revolution) new alliances are formed mainly with existing partners (given the low clustering
coefficient) and that it requires an exogenous radical change for firms to engage into new
alliances with new partners. But even when they do, they use their network to find these
partners.

Although we find no evidence for our hypothesis that the genomic revolution has caused a
decreasing average distance in the network, we do witness a temporary decreasing distance
between 1986 and 1998, indicating that there are firms in the network who form distant
linkages that shorten the distance between other organizations. The fact that these firms
already performed this relational behavior before the genomic revolution might indicate that
the network structure was not composed of relatively isolated branches as we assumed, but
already consisted of some organizations that improved the overall reach in the network.
Jackson (2006) proposes that not only distant linkages, but also highly connected actors called
‘stars’ or ‘hubs’ can cause a path-length to decrease. While it is beyond the scope of this
paper to re-investigate the structure of the R&D network before the beginning of the nineties,
we did look for a simple indication to check Jackson’s (2006) idea. Figure 13 plots the

number of alliances for each ‘type’ of firm.
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Fig. 13 — Number of alliances per firm type
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What becomes clear in this plot is that while there are quite some highly connected ‘stars’
amongst general purpose based firms (referred to as T-DBF), there are some pharmaceutical
firms (EC) who are even more connected than general purpose based firms are. If these
pharmaceutical ‘stars’ already connected different disease areas before the genomic
revolution, then the addition of a few distant linkages by general purpose based firms would
not cause a significant decrease in the average distance of the network. In other words, large
pharmaceutical firms that are highly connected ‘stars’ already reduce the average distance in
the network and general purpose based firms that bridge different disease areas contribute to
the decreasing distance. Together these firms’ alliances are responsible for the occurrence of a

small-world. We feel these insights provide an interesting start for further research.

VIII Conclusion

The genomic revolution in the beginning of the nineties has increased environmental
uncertainty and munificence, and this has led to structural changes in the pharmaceutical
R&D network. The network has expanded in terms of both number of firms and number of
alliances. Since alliance activity outperformed the growth in the number of firms entering the
network, we can conclude that the average number of deals and the average number of
different partners has increased. On a firm level this means that new alliances have been
formed with new partners, causing structural network change. The formation of new alliances
with new partners can take to forms, implying different structural outcomes at the level of the
network. First, firms can choose their new alliance partner through their existing network,
which leads to local link formation and network clustering. Second, firms can form distant
linkages with unknown partners. These linkages can potentially improve a firms’ position in a

network if it manages to connect previously unconnected parts of the network. Taken
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together, local linkages and distant linkages form a small-world network which has been a
popular subject of recent network studies. While we argued that a radical exogenous shock
would be required for firms to be forming distant linkages, we found no evidence of this
alliance behavior. We found that firms, when confronted with radical technological change
keep their existing alliances and form new alliances with partners of their partners. This result
is consistent with previous studies on alliance strategies and network formation. Finally we
provide an alternative explanation for the observed small-world characteristics through the

identification of highly connected ‘stars’.
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