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TAIL PROBABILITIES FOR REGRESSION ESTIMATORS

THOMAS MIKOSCH1 AND CASPER G. DE VRIES2

Abstract. Estimators of regression coefficients are known to be asymptotically normally dis-
tributed, provided certain regularity conditions are satisfied. In small samples and if the noise is
not normally distributed, this can be a poor guide to the quality of the estimators. The paper
addresses this problem for small and medium sized samples and heavy tailed noise. In particular,
we assume that the noise is regularly varying, i.e., the tails of the noise distribution exhibit power
law behavior. Then the distributions of the regression estimators are heavy tailed themselves. This
is relevant for regressions involving financial data which are typically heavy tailed. In medium sized
samples and with some dependency in the noise structure, the regression coefficient estimators can
deviate considerably from their true values. The relevance of the theory is demonstrated for the
highly variable cross country estimates of the expectations coefficient in yield curve regressions.

1. Some motivation

Estimators of the coefficients in equations of regression type which involve financial data are often
found to vary considerably across different samples. This observation pertains to finance models
like the CAPM beta regression, the forward premium equation and the yield curve regression. In
economics, macro models like the monetary model of the foreign exchange rate often yield regression
coefficients which significantly deviate from the unitary coefficient on money which is based on the
theoretical assumption that money is neutral. The uncertainty in CAPM regressions was reviewed
in Campbell et al. (1997, Chapter 5) and Cochrane (2001, Chapter 15). Lettau and Ludvigson
(2001) explicitly model the time variation in beta. Starting with Bilson (1981), Hodrick (1987)
and Lewis (1995) report wildly different estimates for the Fisher coefficient in forward premium
regressions; see Fisher (1930, p. 39). Moreover, typical estimates of the expectation coefficient in
yield curve regressions reported by Fama (1976), Mankiw and Miron (1986), Campbell and Shiller
(1991) show substantial variation over time and appear to be downward biased; Campbell et al.
(1997, Chapter 10.2) provide a lucid review. The coefficient of the relative money supply in the
regression of the exchange rate on the variables of the monetary model of the foreign exchange rate
varies considerably around its theoretical unitary value; see for example Frenkel (1993, Chapter
4). In monetary economics parameter uncertainty is sometimes explicitly taken into account when
it comes to policy decisions, see Brainard (1967) and, more recently, Sack (2000). In a random
coefficient model, see for example Feige and Swamy (1974), the (regression) coefficients themselves
are subject to randomness and therefore fluctuate about some fixed values. Estimation of the
random coefficient models is reviewed in Maddala (1977) and Chow (1984).

In this paper the considerable variation in regression coefficients across different samples is ex-
plained from the heavy tailed nature of the distribution of the innovations, which can be either
additive or multiplicative. The standard
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needed for the construction of asymptotic confidence bands, are based on the validity of the central
limit theorem. The latter result is a large sample implication which breaks down in samples of small
and medium size when the distribution of the noise in the regression equations has considerably
thicker tails than the normal one. In such cases the error term has much more influence on the
parameter estimates, i.e., large values of the noise cause significant deviations from the classical
central limit theory for the regression coefficient estimator. This occurs in particular when the
noise structure exhibits some time dependency (like ARMA or ARCH).

A major motivation for our approach is that financial data do not satisfy the normality condition
which is often assumed in classical regression estimation. There is in fact considerable statistical
evidence that the distribution of returns on asset prices and exchange rates as well as interest rates
is suitably modeled by leptokurtic and heavy tailed distributions; see the discussion in Embrechts
et al. (1997, Chapter 6), Campbell et al. (1997), or the recent paper by Mikosch (2003). For
example, this property appears naturally when the innovations exhibit an ARCH structure.

The finite sample properties of regression coefficient estimators with a deterministic regressor
are well understood if the underlying noise variables are normally distributed. The central limit
theorem yields a large sample theory for the estimators in regressions with random regressor with
possibly non-normal additive noise. However, financial data are unlikely to come from a normal
distribution. This concerns, for example, the regressions in the CAPM model for estimating beta.
Strategic decisions and rapidly changing business environments imply that one usually works with a
relatively short data window. Similarly, as soon as some macro variables are part of the regression,
one is compelled to use low frequency data and hence a small sample. Thus a possible cause for
the variation in the coefficient estimates are the moderate sample sizes in combination with heavy
tailed noise. Therefore the finite sample properties of the estimators under these conditions deserve
considerable interest.

Thus our purpose is to study the contribution of heavy tailed noise distributions to the small
sample variation of regression estimators. It is shown that, even when standard moment conditions
such as the existence of the variance, a finite fourth moment, etc., are satisfied, the usual benchmarks
based on central limit theory can be misleading. We give expressions for the tail of the distribution
of the regression estimators for a fixed sample size. Small sample results for the distribution of
regression estimators are rare and exact results are difficult to obtain, but if the tails of the noise
are regularly varying, the tail asymptotic behavior of the regression estimator can be determined.
The results hinge on relatively weak assumptions regarding the stochastic nature of the explanatory
variable. Under additive uncertainty, we require that the joint density of the explanatory variables
is bounded in some neighborhood of the origin. A restriction is the condition that the regressor
be exogenous, but the regressor is not assumed to be fixed. We allow for the possibility that
the multiplicative noise component is correlated with the additive noise term, and in this sense
there can be correlation between the economic explanatory part and the additive noise structure.
Moreover, both the noise and the regressor are allowed to be time dependent. The time dependency
has a major effect and sets the heavy tailed innovations based regression coefficients apart from
their normal based counterparts.

The theoretical results are first illustrated by means of a simulation experiment. The Monte
Carlo study demonstrates the importance of dependency in the noise structure. Subsequently,
we investigate the relevance of the theory for the expectations hypothesis coefficients in yield
curve regressions. These coefficients are well known to exhibit downward ‘bias’ and exhibit high
variability. The downward bias is generally viewed as being due to a risk premium and liquidity
premium, to which this paper has little to add. But the theory is relevant for explaining the
considerable variability of the coefficient estimates.
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2. The model

We study the regression model:

Yt = (β + εt)Xt + ϕt ,(2.1)

where ((εt, ϕt)) is a strictly stationary noise sequence of 2-dimensional random vectors, and (Xt) is
a sequence of explanatory variables, independent of the noise. In what follows, we write ϕ, ε, etc.,
for generic elements of the strictly stationary sequences (ϕt), (εt), etc. The coefficient β is a fixed
parameter to be estimated by regression, but it can also be of interest to determine distributional
characteristics of εt such as its variance. The model (2.1) comprises a large variety of different
economic models since it allows for both additive and multiplicative uncertainty. If the noises
εt and ϕt have zero mean, then, conditionally on the information at time t − 1, the model (2.1)
captures the structure of many of the rational expectations finance models such as the CAPM.

In what follows, we assume that the right tail of the marginal distributions Fε(x) and Fϕ(x) of
ε and ϕ, respectively, is regularly varying with index α > 0. This means that the limits

lim
x→∞

1 − F (xs)

1 − F (x)
= s−α for all s > 0,(2.2)

exist for F ∈ {Fε, Fϕ}. Regular variation entails that (α+ δ)th moments of F are infinite for δ > 0,
supporting the intuition on the notion of heavy tailed distribution. Some prominent members
of the class of distributions with regularly varying tails are the Student-t, F -, Fréchet, infinite
variance stable and Pareto distributions. First order approximations to the tails of these distribution
functions F are comparable to the tail c x−α of a Pareto distribution for some c, α > 0, i.e.,

lim
x→∞

1 − F (x)

c x−α
= 1 .

The power like decay in the right tail area implies the lack of moments higher than α. There are
other distributions which have fatter tails than the normal distribution, such as the exponential or
lognormal distributions. But these distributions possess all power moments. They are less suitable
for capturing the very large positive and very small negative values observed in financial data sets.

Independent positive random variables A1, . . . , An with regularly varying right tails (possibly
with different indices) satisfy a well known additivity property of their convolutions; see for example
Feller (1971). This means that

lim
x→∞

∑n
i=1 P (Ai > x)

P (
∑n

i=1Ai > x)
= 1 .(2.3)

This is a useful fact when it comes to evaluating the distributional tail of (weighted) sums of random
variables with regularly varying tails. The ordinary least squares (OLS) estimator of β is comprised
of such sums, but also involves products and ratios of random variables. In particular, the OLS

estimator β̂ of β in model (2.1), given by

β̂ =

∑n
i=1XtYt∑n
i=1X

2
t

= β + ρn,ε + ρn,ϕ ,(2.4)

involves the quantities

ρn,ε :=
Σn

i=1εtX
2
t

Σn
t=1X

2
t

and ρn,ϕ :=
Σn

i=1ϕtXt

Σn
t=1X

2
t

.(2.5)

Thus, in the case of fixed regressors Xt and with noise (εt, ϕt) whose components have distributions
with regularly varying tails, one can rely on the additivity property (2.3). But if the regressors are
stochastic, we face a more complicated problem for which we derive new results.

This paper aims at investigating the finite sample variability of the regression coefficient estimator
in models with additive noise and random coefficients when the noise comes from a heavy tailed
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distribution. In Section 3 we derive the finite sample tail properties of the distribution of the OLS
estimator of β in model (2.1) when the noise has a distribution with regularly varying tails; see
(2.2). A small simulation study in Section 4 conveys the relevance of the theory. Section 5 applies
the theory to the distribution of the expectations coefficient in yield curve estimation. Some proofs
are relegated to the Appendix.

3. Theory

In this section we derive the finite sample tail properties of the distribution of the OLS regression
coefficient estimator in the model (2.1) when the noise distribution has regularly varying tails. To
this end we first recall in Section 3.1.1 the definitions of regular and slow variation as well as the
basic scaling property for convolutions of random variables with regularly varying distributions.
Subsequently, we obtain the regular variation properties for inner products of those vectors of
random variables that appear in the OLS estimator of β. The joint distribution of these inner
products is multivariate regularly varying. In Section 3.1.2 we give conditions for the finiteness of
moments of quotients of random variables. Finally, we derive the asymptotic tail behavior of the
distribution of the OLS estimator of β by combining the previous results. We present the main

results on the finite sample tail behavior of β̂ for iid regularly varying noise (Section 3.2.1), for
regularly varying linearly dependent noise (Section 3.2.2) and give some comments on the case
of general regularly varying noise (Section 3.2.3). In Section 3.2.4 the finite sample results are
contrasted with the large sample results typically used in standard econometric test procedures.

3.1. Preliminaries.

3.1.1. Regular variation. A positive measurable function L on [0,∞) is said to be slowly varying if

lim
x→∞

L(cx)

L(x)
= 1 for all c > 0.

The function g(x) = xαL(x) for some α ∈ R is then said to be regularly varying with index α. We
say that the random variable X and its distribution F (we use the same symbol F for its distribution
function) are regularly varying with (tail) index α ≥ 0 if there exist p, q ≥ 0 with p+ q = 1 and a
slowly varying function L such that

(3.1) F (−x) = q x−α L(x) (1 + o(1)) and F (x) := 1 − F (x) = p x−α L(x) (1 + o(1)) , x→ ∞ .

Condition (3.1) is usually referred to as a tail balance condition. For an encyclopedic treatment of
regular variation, see Bingham et al. (1987).

In what follows, a(x) ∼ b(x) for positive functions a and b means that a(x)/b(x) → 1, usually as
x → ∞. We start with an auxiliary result which is a slight extension of Lemma 2.1 in Davis and
Resnick (1996) where this result was proved for non-negative random variables. The proof in the
general case is analogous and therefore omitted.

Lemma 3.1. Let F be a distribution function concentrated on (0,∞) satisfying (3.1) with p, q > 0.
Assume Z1, . . . , Zn are random variables such that F (x) = P (|Z1| ≤ x) and

lim
x→∞

P (Zi > x)

F (x)
= c+i and lim

x→∞

P (Zi ≤ −x)
F (x)

= c−i , i = 1, . . . , n ,(3.2)

for some non-negative numbers c±i and

lim
x→∞

P (Zi > x ,Zj > x)

F (x)
= lim

x→∞

P (Zi ≤ −x ,Zj > x)

F (x)
= lim

x→∞

P (Zi ≤ −x ,Zj ≤ −x)
F (x)

= 0 , i 6= j .

Then

lim
x→∞

P (Z1 + · · · + Zn > x)

F (x)
= c+1 + · · · + c+n
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and

lim
x→∞

P (Z1 + · · · + Zn ≤ −x)
F (x)

= c−1 + · · · + c−n .

The following result is a consequence of this lemma.

Lemma 3.2. Suppose Zi are regularly varying random variables with tail index αi > 0, i = 1, . . . , n.
Assume that one of the following conditions holds.

(1) The Zi’s are independent and satisfy (3.2) with F (x) = P (|Z1| > x), x > 0.
(2) The Zi’s are non-negative and independent.
(3) Z1 and Z2 are regularly varying with indices 0 < α1 < α2 and the parameters p1, q1 in the

tail balance condition (3.2) for Z1 are positive.

Then under (1) or (2) the relations

P (Z1 + · · · + Zn > x) ∼ P (Z1 > x) + · · · + P (Zn > x) ,

P (Z1 + · · · + Zn ≤ −x) ∼ P (Z1 ≤ −x) + · · · + P (Zn ≤ −x)

hold as x→ ∞. If condition (3) applies, as x→ ∞,

P (Z1 + Z2 > x) ∼ P (Z1 > x) and P (Z1 + Z2 ≤ −x) ∼ P (Z1 ≤ −x)

The proof is given in the Appendix.
Recall the definition of a regularly varying random vector X with values in R

d; see for example
de Haan and Resnick (1977), Resnick (1986,1987). In what follows, S

d−1 denotes the unit sphere

in R
d with respect to a (given) norm | · | and

v→ refers to vague convergence on the Borel σ-field of
S

d−1; see Resnick (1986,1987) for details.

Definition 3.3. The random vector X with values in R
d and its distribution are said to be regularly

varying with index α and spectral measure PΘ if there exists a random vector Θ with values in

S
d−1 and distribution PΘ such that the following limit exists for all t > 0:

(3.3)
P (|X| > tx ,X/|X| ∈ ·)

P (|X| > x)

v→ t−α PΘ(·) , x→ ∞ .

The vague convergence in (3.3) means that

P (|X| > tx ,X/ |X| ∈ S)

P (|X| > x)
→ t−α PΘ(S) ,

for all Borel sets S ⊂ S
d−1 such that PΘ(∂(S)) = 0, where ∂(S) denotes the boundary of S.

Alternatively, (3.3) is equivalent to the totality of the relations

P (X ∈ xA)

P (|X| > x)
→ µ(A) .

Here µ is a measure on the Borel σ-field of R
d\{0} with property µ(tA) = t−αµ(A), t > 0, for any

Borel set A ⊂ R
d\{0}, bounded away from zero and such that µ(∂(A)) = 0.

We have the following result.

Lemma 3.4. Assume that X = (X1, ..., Xd)
′ is regularly varying in R

d with index α > 0 and is
independent of the random vector Y = (Y1, ..., Yd)

′ which satisfies E|Y|α+ε < ∞ for some ε > 0.
Then the scalar product Z = X′Y is regularly varying with index α. Moreover, if X has independent
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components, then as x→ ∞,

P (Z > x) ∼ P (|X| > x)

[
d∑

i=1

c+i E[Y α
i I{Yi>0}] +

d∑

i=1

c−i E[|Yi|αI{Yi<0}]

]
,

(3.4)

P (Z ≤ −x) ∼ P (|X| > x)

[
d∑

i=1

c−i E[Y α
i I{Yi>0}] +

d∑

i=1

c+i E[|Yi|αI{Yi<0}]

]
,

where

c+i = lim
x→∞

P (Xi > x)

P (|X| > x)
and c−i = lim

x→∞

P (Xi ≤ −x)
P (|X| > x)

.

The proof is given in the Appendix.

Remark 3.5. To give some intuition on Lemma 3.4, consider the case d = 1, i.e., Z = X1Y1, and
assume for simplicity that X1 and Y1 are positive random variables. Then the lemma says that

P (X1Y1 > x) ∼ EY α
1 P (X1 > x) , x→ ∞ .(3.5)

The latter relation is easily seen if one further specifies that P (X1 > x) = cx−α, x ≥ c1/α. Then a
conditioning argument immediately yields for large x,

P (Z > x) = E[P (X1Y1 > x | Y1)]

=

∫ c−1/αx

0
P (X1 > x/y) dP (Y1 ≤ y) + P (Y1 > c−1/αx)

=

∫ c−1/αx

0
cx−α yα dP (Y1 ≤ y) + P (Y1 > c−1/αx)

= P (X1 > x)

∫ c−1/αx

0
yα dP (Y1 ≤ y) + o(P (X1 > x))

= P (X1 > x)EY α
1 (1 + o(1)) .

Relation (3.5) is usually referred to as Breiman’s result; see Breiman (1965). A generalization to
matrix-valued Y and vectors X can be found in Basrak et al. (2002).

Remark 3.6. The lemma can be extended to infinite series
∑

iXiYi if (Xi) and (Yi) are indepen-

dent, the finite-dimensional distributions of (Xi) are regularly varying with index α, E |Yi|α+ε <∞
for some ε > 0 and some further technical conditions are satisfied.

3.1.2. Finiteness of moments. In this section we give conditions under which the moments of the
random variables

X̃t =
Xt∑n

s=1X
2
s

I{Xt 6=0}, t = 1, ..., n,

are finite, where (Xt) is a sequence of random variables. First note that

(3.6) |X̃t|−2 ≥ I{Xt 6=0}

n∑

s=1

X2
s =: Yt , t = 1, ..., n,

It will be convenient to work with the sequence (Yt).

Lemma 3.7. Let α be a positive number. Assume that one of the following conditions is satisfied:

(1) X1, ..., Xn are iid, P (|X| ≤ x) ≤ cxγ for some γ, c > 0 and all x ≤ x0, and nγ > α.
(2) (X1, ..., Xn) has a bounded density fn in some neighborhood of the origin and n > α.
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Then EY
−α/2
t <∞ and, hence, E|X̃t|α <∞ for t = 1, ..., n.

The proof is given in the Appendix. Condition (2) is for example satisfied if (X1, ..., Xn) is
Gaussian and n > α.

3.2. Tail asymptotics for regression coefficient estimators.

3.2.1. IID noise. In this section we consider three sequences of random variables satisfying the
following basic Assumptions:

(1) (Xt) is a sequence of random variables with Xt 6= 0 a.s. for every t.
(2) (εt) is iid, and ε is regularly varying with index αε > 0.
(3) (ϕt) is iid, and ϕ is regularly varying with index αϕ > 0.
(4) (Xt) is independent of ((εt, ϕt)).

We investigate the distributional tails of the quantities ρn,ε and ρn,ϕ defined in (2.5). Recall from

(2.4) that the latter quantities are closely related to the OLS estimator β̂ of β in the regression
model (2.1) with multiplicative and additive noise.

Proposition 3.8. Assume conditions (1), (4) and fix n ≥ 2.

(1) If (2) holds, then as x→ ∞,




P (ρn,ε > x) ∼ P (ε > x)
n∑

i=1

E

[
X2

i∑n
s=1X

2
s

]αε

,

P (ρn,ε ≤ −x) ∼ P (ε ≤ −x)
n∑

i=1

E

[
X2

i∑n
s=1X

2
s

]αε

.

(3.7)

(2) If (3) and, in addition,

(3.8) E

(
n∑

i=1

X2
i

)−
αϕ
2

+δ

<∞ for some δ > 0,

hold, then, as x → ∞,

P (ρn,ϕ > x) ∼ P (ϕ > x)
n∑

i=1

E

[
XiI{Xi>0}∑n

s=1X
2
s

]αϕ

+ P (ϕ ≤ −x)
n∑

i=1

E

[ |Xi|I{Xi<0}∑n
s=1X

2
s

]αϕ

,

P (ρn,ϕ ≤ −x) ∼ P (ϕ ≤ −x)
n∑

i=1

E

[
XiI{Xi>0}∑n

s=1X
2
s

]αϕ

+ P (ϕ > x)
n∑

i=1

E

[ |Xi|I{Xi<0}∑n
s=1X

2
s

]αϕ

.

Proof. Since (Xt) and (εt) are independent and X2
t /
∑n

s=1X
2
s ≤ 1, statement (1) follows from

Lemma 3.4.

If (Xt) and (ϕt) are independent and E|Xt/
∑n

s=1X
2
s |αϕ+ε < ∞ for some ε > 0, one can apply

Lemma 3.4 to the tails of ρn,ϕ. An appeal to (3.6) and (3.8) ensures that this condition is satisfied,
and therefore (2) follows. �

Remark 3.9. Sufficient conditions for condition (3.8) are given in Lemma 3.7.

Remark 3.10. Various expressions in Proposition 3.8 can be simplified if one assumes that
X1, ..., Xn are weakly exchangeable, i.e., the distribution of Xπ(1), . . . , Xπ(n) remains unchanged
for any permutation π(1), . . . , π(n) of the integers 1, . . . , n. This condition is satisfied if (Xt) is
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an exchangeable sequence. This means that (Xn) is conditionally iid. If X1, ..., Xn are weakly
exchangeable, then, for example, (3.7) turns into

P (ρn,ε > x) ∼ nP (ε > x)E

[
X2

1∑n
s=1X

2
s

]αε

,

P (ρn,ε ≤ −x) ∼ nP (ε ≤ −x)E
[

X2
1∑n

s=1X
2
s

]αε

.

Remark 3.11. If we assume in addition that (Xt) is stationary and ergodic, the strong law of
large numbers applies to (|Xt|p) for any p > 0 with E|X|p < ∞. This, together with a dominated
convergence argument, allows one to determine the asymptotic order of the tail balance parameters
in Proposition 3.8. We restrict ourselves to ρn,ε; the quantities ρn,ϕ can be treated analogously.
Consider

mn(αε) :=
n∑

i=1

E

[
X2

t∑n
s=1X

2
s

]αε

= E

[
n−αε

∑n
t=1 |Xt|2αε

(n−1
∑n

s=1X
2
s )αε

]

Assume that E |X|2 max(1,αε) <∞. Then the law of large numbers and uniform integrability imply
that as n→ ∞,

mn(αε)





→ 0 if αε > 1,

= 1 if αε = 1,

→ ∞ if αε < 1.

Proposition 3.8 provides sufficient conditions for regular variation of ρn,ε and ρn,ϕ. From this

property we can derive our main result on the tails of the OLS estimator β̂ = β+ ρn,ε + ρn,ϕ of the
regression coefficient β.

Corollary 3.12. If the conditions of Proposition 3.8 hold, then ρn,ε and ρn,ϕ are regularly vary-
ing with corresponding indices αε and αϕ. Moreover, if we assume that αε 6= αϕ or that (εt) is
independent of (ϕt) and αε = αϕ, then, as x→ ∞,

P (ρn,ε + ρn,ϕ > x) ∼ P (ρn,ε > x) + P (ρn,ϕ > x) ,

P (ρn,ε + ρn,ϕ ≤ −x) ∼ P (ρn,ε ≤ −x) + P (ρn,ϕ ≤ −x) ,
where the corresponding asymptotic expressions for the tails of ρn,ε and ρn,ϕ are given in Proposi-
tion 3.8.

Proof. The regular variation of ρn,ε and ρn,ϕ is immediate from Proposition 3.8. If αε 6= αϕ, then
the statement follows from the third part of Lemma 3.2. If α = αε = αϕ and (εt) and (ϕt) are
independent, then the vector (ε1, ..., εn, ϕ1, ..., ϕn) is regularly varying in R

2n with index α. Now
a direct application of Lemma 3.4 yields the statement. �

3.2.2. The noise is a linear process. In the applications we also consider sequences (εt) and (ϕt) of
dependent random variables. We assume that (εt) is a linear process, i.e., there exist real coefficients
ψj and an iid sequence (Zt) such that εt has representation

εt =

∞∑

j=0

ψjZt−j =

t∑

j=−∞

ψt−jZj , t ∈ Z .(3.9)

The best known examples of (causal) linear processes are the ARMA and FARIMA processes; see
for example Brockwell and Davis (1991). Throughout we assume that Z = Z1 is regularly varying
with index αZ > 0 satisfying the tail balance condition

P (Z > x) = p
L(x)

xαZ
(1 + o(1)) and P (Z ≤ −x) = q

L(x)

xαZ
(1 + o(1)) , x→ ∞ ,(3.10)
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for some p, q ≥ 0 and p+ q = 1. If the additional conditions





∑∞
i=0 ψ

2
i <∞ for some αZ > 2 ,

∑∞
i=0 |ψi|αZ−ε <∞ for some αZ ≤ 2, some ε > 0 ,

EZ = 0 for αZ > 1 ,

(3.11)

on the coefficients ψj and the distribution of Z hold, then (see Mikosch and Samorodnitsky (2000))
εt is regularly varying with index αε = αZ satisfying the relations

P (ε > x) = (1 + o(1))P (|Z| > x)

∞∑

j=0

[
p (ψ+

j )αZ + q (ψ−
j )αZ

]
, x→ ∞ ,(3.12)

and

P (ε ≤ −x) = (1 + o(1))P (|Z| > x)

∞∑

j=0

[
q (ψ+

j )αZ + p (ψ−
j )αZ

]
, x→ ∞ ,(3.13)

where x+ and x− denote the positive and negative parts of the real number x. This means that εt

is regularly varying with index αε = αZ , and it is not difficult to show that the finite-dimensional
distributions of (εt) are also regularly varying with the same index αε.

For further discussion we also assume that ϕt is a linear process with representation

ϕt =

t∑

j=−∞

ct−j γj , t ∈ Z ,(3.14)

where (γt) is an iid regularly varying sequence with index αγ > 0. Assuming (3.11) for (cj) instead
of (ψj) and the tail balance condition (3.10) for γ instead of Z, it follows that the finite-dimensional
distributions of (ϕt) are regularly varying with index αϕ = αγ and the relations analogous to (3.12)
and (3.13) hold for the left and right tails of ϕt.

Next, we investigate the tail behavior of the quantities ρn,ε and ρn,ϕ under the assumption that
(εt) and (ϕt) are regularly varying linear processes. We give our basic Assumptions:

(1) (Xt) is a sequence of random variables with Xt 6= 0 a.s. for every t.
(2) (εt) is a linear process with representation (3.9), iid regularly varying noise (Zt) with index

αε > 0 and coefficients ψj satisfying (3.10) and (3.11).
(3) (ϕt) is a linear process with representation (3.14), iid regularly varying noise (γt) with index

αϕ > 0 and coefficients cj satisfying (3.10) (with ψj replaced by cj) and (3.11) (with Zj

replaced by γj).
(4) (Xt) is independent of ((εt, ϕt)).

The following result shows that ρn,ε and ρn,ϕ are regularly varying. Compare this result with
Proposition 3.8 in the case of iid noise.

Proposition 3.13. Assume that conditions (1), (4) hold. Fix n ≥ 2.
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(1) If (2) holds, as x→ ∞, then

P (ρn,ε > x) ∼ P (Z > x)

n∑

j=−∞

E

[[∑n
t=max(1,j) ψt−jX

2
t∑n

t=1X
2
t

]+]αε

+P (Z ≤ −x)
n∑

j=−∞

E

[[∑n
t=max(1,j) ψt−jX

2
t∑n

t=1X
2
t

]−]αε

,

P (ρn,ε ≤ −x) ∼ P (Z > x)

n∑

j=−∞

E

[[∑n
t=max(1,j) ψt−j X

2
t∑n

t=1X
2
t

]−]αε

+P (Z ≤ −x)
n∑

j=−∞

E

[[∑n
t=max(1,j) ψt−j X

2
t∑n

t=1X
2
t

]+]αε

.

(2) If (3) and, in addition, (3.8) hold, then

P (ρn,ϕ > x) ∼ P (γ > x)

n∑

j=−∞

E

[[∑n
t=max(1,j) ct−jXt∑n

t=1X
2
t

]+]αϕ

+P (γ ≤ −x)
n∑

j=−∞

E

[[∑n
t=max(1,j) ct−jXt∑n

t=1X
2
t

]−]αϕ

,

P (ρn,ϕ ≤ −x) ∼ P (γ > x)

n∑

j=−∞

E

[[∑n
t=max(1,j) ct−j Xt∑n

t=1X
2
t

]−]αϕ

+P (γ ≤ −x)
n∑

j=−∞

E

[[∑n
t=max(1,j) ct−j Xt∑n

t=1X
2
t

]+]αϕ

.

The following corollary gives our main result about the tail behavior of the OLS estimator β̂ of
β in the case when both (εt) and (γt) constitute linear processes.

Corollary 3.14. If the conditions of Proposition 3.13 hold, then ρn,ε and ρn,ϕ are regularly vary-
ing with corresponding indices αε and αϕ. Moreover, if we assume that αε 6= αϕ or that (εt) is
independent of (ϕt) and αε = αϕ, then, as x→ ∞,

P (ρn,ε + ρn,ϕ > x) ∼ P (ρn,ε > x) + P (ρn,ϕ > x) ,

P (ρn,ε + ρn,ϕ ≤ −x) ∼ P (ρn,ε ≤ −x) + P (ρn,ϕ ≤ −x) ,
where the corresponding asymptotic expressions for the tails of ρn,ε and ρn,ϕ are given in Proposi-
tion 3.13.

3.2.3. More general dependent noise. In Section 3.2.2 we demonstrated how the results of Sec-
tion 3.2.1 change under linear dependence. We focused on the linear process case because we were

able to obtain explicit expressions for the asymptotic tail behaviors of ρn,ε, ρn,ϕ and β̂. For more
complicated dependence structures, the regular variation of these quantities follows by an applica-
tion of Lemma 3.4, if the finite-dimensional distributions of the noise sequences (εt) and (ϕt) are
regularly varying.
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For example, if we assume that both (εt) and (ϕt) constitute GARCH processes, then the finite-
dimensional distributions of these processes are regularly varying with positive indices, provided
some mild conditions on the noise sequences of the GARCH processes hold. We refer to Basrak et
al. (2002) for the corresponding theory on regular variation of GARCH processes. Alternatively,
one can choose (εt) as a GARCH process with regularly varying finite-dimensional distributions
and (ϕt) as a linear process (e.g. ARMA) with regularly varying finite-dimensional distributions, or
vice versa. The index of regular variation of a GARCH process is a known function of the GARCH
parameters and the distribution of the noise. For GARCH processes the asymptotic behavior of the

tails of β̂ cannot be given in explicit form as for linear processes; see Proposition 3.13. However,

we know from Lemma 3.4 that β̂ inherits the tail index of the minimum of αϕ and αε.

3.2.4. Asymptotic normality. Remark 3.11 suggests to consider the large sample properties of ρn,ε

and ρn,ϕ. This will be done in this section. It turns out that, by virtue of the central limit theorem,
the heavy tails of the εt’s and ϕt’s have no influence on the limit distribution. This is the content of

the following result. In what follows, B is standard Brownian motion on [0,∞) and
d→ refers to weak

convergence in D[0,∞) equipped with the J1-metric. For more information on weak convergence
in metric spaces, we refer to Billingsley (1968) or Jacod and Shiryaev (1987). For any random
variable A we write σ2

A = var(A).

Proposition 3.15. In addition to Assumptions (1) − (4) in Section 3.2.1 assume the following
conditions:

(1) (Xt) is stationary and ergodic.
(2) EX = Eε = Eϕ = 0.
(3) EX4 <∞.
(a) If αε > 2, then

(3.15) ρ̃n,ε := n1/2 (ρ[nt],ε)t≥0
d→ (σ2

εEX
4)1/2

σ2
X

B , n→ ∞ .

(b) If αϕ > 2 then

(3.16) ρ̃n,ϕ := n1/2 (ρ[nt],ϕ)t≥0
d→ σϕ

σX
B , n→ ∞ .

(c) If min(αε, αϕ) > 2 and the sequences (εt), (ϕt) are independent, then

(3.17) (ρ̃[nt],ε + ρ̃[nt],ϕ)t≥0
d→

(σ2
εEX

4 + σ2
ϕσ

2
X)1/2

σ2
X

B , n→ ∞.

Proof. Since σ2
X <∞, the ergodic theorem gives n−1

∑n
t=1X

2
t → σ2

X a.s. Hence

ρ̃[n·],ε = (σ−2
X + oP (1))

1√
n

[n·]∑

i=1

εiX
2
i .

Since (Xt) and (εt) are independent, the sequence (εtX
2
t ) is a stationary ergodic martingale differ-

ence sequence with mean zero and finite variance σ2
εEX

4. The functional central limit theorem for
such sequences (see Billingsley (1968)) and a Slutsky argument yield (3.15). A similar argument
gives (3.16). The same argument also applies to the sequence (εtX

2
t +ϕtXt) which is a mean zero,

variance σ2
εEX

4 + σ2
ϕσ

2
X stationary ergodic martingale difference sequence. �

Remark 3.16. Similar results can be obtained if αε < 2 or αϕ < 2. The limits are infinite variance
stable processes with dependent increments. The limit theory then becomes much more delicate
because point process convergence results enter. We refer to Davis and Hsing (1995) for more
details.
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A particular consequence of Proposition 3.15 and the continuous mapping theorem is the follow-
ing:

Corollary 3.17. Assume the conditions of part (c) of Proposition 3.15 hold. Then

(3.18) n1/2 sup
0≤t≤1

|ρ[nt],ε + ρ[nt],ϕ|
d→

(σ2
εEX

4 + σ2
ϕσ

2
X)1/2

σ2
X

sup
t≤1

|Bt| .

Remark 3.18. The quantiles of the limit distribution are well-known from Kolmogorov-Smirnov
type tests; see for example Shorack and Wellner (1986). One-sided versions of (3.18) can be derived
in the same way.

4. A simulation study

We conduct a small simulation study to gain further insight into the theoretical results. We

assume the model (2.1) with β = 1 and estimate β by the OLS estimator β̂ defined in (2.4).

4.1. Pure multiplicative noise. Consider the model

Yt = (1 + εt)Xt(4.1)

satisfying the conditions:

(1) (Xt) is iid N(1, 0.04).
(2) (εt) is iid N(0, 0.01) or (εt) is iid Student-t distributed with ν degrees of freedom, ν =

2, 3, 4, 5, 10, and rescaled such that the sample variance of the εt’s is 0.01.
(3) (Xt) and (εt) are independent.

Under these conditions Corollary 3.12 applies if ε is Studentt-distributed. Indeed, then ε is regularly

varying with index ν, and we may conclude that β̂ = β + ρn,ε is regularly varying with index ν.
Moreover, the tail asymptotics of ρn,ε are described in part (1) of Proposition 3.8. Since the Xt’s
are iid and ε is symmetric, this means that

P (ρn,ε > x) = P (ρn,ε ≤ −x) ∼ nE

[
X2

1∑n
s=1X

2
s

]ν

P (ε > x) .

We repeated 20,000 simulations of a time series Y1, . . . , Yn for n = 25, 50, 100. The results are
reported as boxplots in Figures 4.1 and in the corresponding Table 4.2 with the sample mean,

median, standard deviation, quartiles, minimum and maximum of the values β̂ coming from the
20,000 independent experiments for each parameter set.

The boxplots in Figure 4.1 and the sample characteristics reported in Table 4.2 show only slight
differences between the cases of normal and heavy tailed multiplicative noise. There is a tendency

for the distribution of the OLS estimator β̂ to be more spread for Student-t noise, in particular
for noise with low degrees of freedom. This is indicated by the range of the data. The remaining
characteristics such as median, mean, standard deviation and quartiles are very much the same in
the heavy and light tailed cases.

For comparison, we included asymptotic 95% confidence bands which are based on the central

limit theorem for β̂. For the most left boxplot, the central limit theorem with
√
n-rates does not

apply to the distribution of β̂ since it has infinite variance. Therefore we indicate the asymptotic

confidence bands only in the cases when β̂ has finite variance. They are obviously much smaller

than the range prescribed by the whiskers and do not properly cover the set where β̂ assumes its
values. For larger n, the whiskers and the inter-quartile range become smaller, but even for n = 100

the deviation of β̂ from its true value can be significant due to the wild sample behavior of β̂.
The simulation study shows that there is good and bad news. The good news is that the

distributions of β̂ for heavy tailed and light tailed noise (εt) are not as different as one might
expect from the theory in Section 3.2.1. The bad news is that the central limit theorem is not a
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Figure 4.1. Boxplots for 20, 000 repetitions of the OLS estimator β̂ − 1 estimated from the model Yt =

(1+ εt)Xt with pure multiplicative noise. In each graph, boxplots 1− 5 correspond to εt Student-t distributed

with ν = 2, 3, 4, 5, 10 degrees of freedom; plot No 6 corresponds to εt iid N(0, 0.01). The random variables

Xt are iid N(1, 0.04). Top left: n = 25. Top right: n = 50. Bottom: n = 100. The black dots in the 5 right

boxplots indicate 95% asymptotic confidence bands based on the central limit theorem.

IID normal Xt’s
Student-2 Student-3 Student-4

sample size 25 50 100 25 50 100 25 50 100

mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
s.d. 0.11 0.08 0.05 0.11 0.08 0.05 0.11 0.08 0.05
1st quartile 0.93 0.95 0.96 0.93 0.95 0.96 0.93 0.95 0.96
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd quartile 1.07 1.05 1.03 1.07 1.05 1.03 1.07 1.05 1.03
minimum 0.44 0.62 0.66 0.50 0.64 0.75 0.53 0.66 0.77
maximum 1.54 1.36 1.28 1.50 1.31 1.20 1.54 1.45 1.21

Student-5 Student-10 Normal
sample size 25 50 100 25 50 100 25 50 100

mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
s.d. 0.11 0.08 0.05 0.11 0.08 0.05 0.11 0.08 0.05
1st quartile 0.93 0.95 0.96 0.93 0.95 0.96 0.92 0.95 0.96
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd quartile 1.08 1.05 1.04 1.08 1.05 1.04 1.07 1.05 1.04
minimum 0.51 0.71 0.80 0.54 0.68 0.78 0.53 0.68 0.78
maximum 1.53 1.32 1.23 1.54 1.29 1.21 1.48 1.36 1.21

Table 4.2. Sample characteristics of bβ for iid normal N(1, 0.04) (Xt), based on 20, 000 repetitions.

good guideline as regards the distributional tails of β̂ even for sample sizes n = 50 or 100, including
the case where the noise is normally distributed.

We experimented with other models and distributions, including (Xt) iid uniform, (Xt) Gaussian
AR(1) and (εt) with distributions with different variances. These simulation studies showed the
same qualitative behavior: there is hardly any difference between the distributions of ρn,ε for t-
distributed and for normal noise (εt).
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In order to mimic the behavior of regression coefficient estimators β̂ based on real-life data, the
discussions in Sections 1 and 5 show that these estimators vary wildly across samples, we drop the
assumption (2) regarding the independence of the εt’s in model (4.1). We retain the assumptions
(1) and (3).

IID Normal Xt’s
Student-2 Student-3 Student-4

sample size 25 50 100 25 50 100 25 50 100

mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
s.d. 0.36 0.24 0.19 0.25 0.19 0.17 0.24 0.19 0.17
1st quartile 0.85 0.87 0.88 0.85 0.87 0.88 0.85 0.87 0.88
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd quartile 1.15 1.13 1.12 1.15 1.13 1.12 1.15 1.13 1.12
minimum -5.33 -9.88 -3.97 -1.40 -1.62 -1.67 -3.28 -0.42 -4.91
maximum 20.02 10.68 4.65 4.63 3.52 2.21 4.10 2.15 2.13

Student-5 Student-10 Normal
sample size 25 50 100 25 50 100 25 50 100

mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
s.d. 0.23 0.19 0.17 0.23 0.19 0.17 0.23 0.19 0.17
1st quartile 0.85 0.87 0.88 0.85 0.87 0.88 0.84 0.87 0.88
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd quartile 1.15 1.13 1.12 1.15 1.13 1.12 1.15 1.13 1.12
minimum -0.71 -0.04 0.19 -0.44 0.07 0.32 -0.27 0.14 0.34
maximum 2.31 2.35 2.59 2.29 2.16 2.11 2.29 1.85 1.64

Table 4.3. Sample characteristics of bβ for iid normal N(0, 0.04) (Xt), autoregressive εt = 0.7Xt−1 + Zt with iid
student noise (Zt) with ν = 2, 3, 4, 5, 10 degrees of freedom, scaled to variance 0.01. In Column 6 one finds the results
for Gaussian autoregressive (εt) with the same autoregressive coefficients and variance as in the Student case. The
simulations are based on 20, 000 repetitions.

We model the dependence of the εt’s by an autoregressive process of order 1. This means that

εt = γ εt−1 + Zt , t ∈ Z ,

where (Zt) is an iid regularly varying sequence, as described in Section 3.2.2. We choose Zt to be
Student-t distributed with ν degrees of freedom, resulting in regular variation of Zt, εt and ρn,ε

with index ν, and γ = 0.7. From the first part of Proposition 3.13 we have that

P (ρn,ε > x) = P (ρn,ε ≤ −x) ∼ P (Z > x)
n∑

j=−∞

E

[∑n
t=max(1,j) γ

t−jX2
t∑n

t=1X
2
t

]ν

.

Notice that the factor after P (Z > x) is larger than in the case of iid εt. Therefore the heavy tails
of ε have a stronger influence on the tails of ρn,ε. This is illustrated in Table 4.3 and Figure 4.4. For
comparison we also include Figure 4.5 where both (Xt) and (εt) constitute dependent stationary
sequences. The combination of heavy tails and dependence in the innovations ε make the distri-
bution of ρn,ε more spread out than their Gaussian counterparts; and the distribution is the more
spread out the smaller the index of regular variation. This observation applies for samples of small
and moderate size. From both figures, but also from Table 4.3 we see that the characteristics of
the centers of the distributions of ρn,ε exhibit very similar behavior for t-distributed and Gaussian
dependent noise (εt).

Finally, we mention that other models for (εt) which imply both dependence and regularly
varying finite-dimensional distributions (such as GARCH processes, see Section 3.2.3) yield the
same qualitative behavior for the tails of ρn,ε. However, if the dependence in (εt) does not range
over a sufficiently large period of time (such as in an MA(q) process with small q and small
coefficients) one observes that the tails of ρn,ε do not differ very much in the cases of heavy and
light tails. To conclude, it is not the heavy tails ‘an sich’, but the combination with persistence in
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the noise by which outliers affect the OLS estimator in samples of moderate size. Larger sample
estimators in sizes countervail the persistence effect.

4.2. Pure additive noise. Next, consider the model

Yt = Xt + ϕt ,

satisfying the conditions

(1) (Xt) is iid N(1, 0.04).
(2) (ϕt) is iid N(0, 0.09) or (ϕt) is iid Student-t distributed with ν degrees of freedom, ν =

2, 3, 4, 5, 10, and rescaled such that the sample variance of the ϕt’s is 0.09.
(3) (Xt) and (ϕt) are independent.

If ϕ is Student-t distributed, Corollary 3.14 applies. In particular, we conclude from part (2) of
Proposition 3.8 that

P (ρn,ϕ > x) = P (ρn,ϕ ≤ −x) ∼ P (ϕ > x)nE

[ |X1|∑n
s=1X

2
s

]ν

.

We repeated 20,000 simulations of a time series Y1, . . . , Yn for n = 25, 50, 100. The results are
reported as boxplots in Figure 4.6 and in the corresponding Table 4.7 with the sample mean,

median, standard deviation, quartiles, minimum and maximum of the values β̂ coming from the
20,000 independent experiments for each parameter set.

IID normal Xt’s and iid ϕt’s
Student-2 Student-3 Student-4

sample size 25 50 100 25 50 100 25 50 100

mean 0.96 0.98 0.99 0.96 0.98 0.99 0.96 0.98 0.99
s.d. 0.30 0.21 0.15 0.30 0.21 0.15 0.30 0.21 0.15
1st quartile 0.75 0.83 0.89 0.75 0.84 0.89 0.75 0.84 0.89
median 0.96 0.98 0.99 0.96 0.98 0.99 0.96 0.98 0.99
3rd quartile 1.16 1.12 1.09 1.16 1.12 1.09 1.17 1.13 1.09
minimum -0.15 0.03 0.40 -0.17 0.14 0.39 -0.32 0.15 0.38
maximum 2.41 1.87 1.60 2.38 1.92 1.61 2.19 1.90 1.58

Student-5 Student-10 Normal
sample size 25 50 100 25 50 100 25 50 100

mean 0.96 0.98 0.99 0.96 0.98 0.99 0.96 0.98 0.99
s.d. 0.30 0.21 0.15 0.30 0.21 0.15 0.30 0.21 0.15
1st quartile 0.75 0.83 0.89 0.75 0.84 0.89 0.76 0.84 0.89
median 0.96 0.98 0.99 0.96 0.98 0.99 0.96 0.98 0.99
3rd quartile 1.17 1.12 1.09 1.17 1.12 1.09 1.16 1.12 1.09
minimum -0.75 0.13 0.38 -0.40 0.06 0.45 -0.31 0.06 0.41
maximum 2.11 2.05 1.60 2.14 1.89 1.51 2.29 2.18 1.65

Table 4.7. Sample characteristics of bβ for iid normal N(1, 0.04) (Xt), based on 20, 000 repetitions.

Figure 4.6 and Table 4.7 indicate that the OLS estimator β̂ oscillates wildly but it is difficult to
see clear qualitative differences between the cases of heavy tailed and normally distributed noise. In

all cases, β̂ is downward biased and the 95% asymptotic confidence bands prescribed by the central
limit theorem are too optimistic. The picture does not change significantly as long as the ϕt’s are
independent. We experimented with (Xt) iid uniform or Gaussian AR(1) and (ϕt) iid normal or
t-distributed; the outcome was again very much as reported above.

In order to study the influence of dependence in the sequence (ϕt) on the OLS estimator, we
consider a GARCH(1,1) process

ϕt = σt Zt , σ2
t = 10−5 + α1X

2
t−1 + β1 σ

2
t−1 ,
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Figure 4.4. Boxplots for 20, 000 repetitions of the OLS estimator β̂ − 1 estimated from the model Yt =

(1 + εt)Xt with pure multiplicative noise. In each graph, boxplots 1 − 5 correspond to the autoregressive

process εt = 0.7εt−1 + Zt, where (Zt) is iid Student-t distributed with ν = 2, 3, 4, 5, 10 degrees of freedom,

and εt is rescaled to empirical variance 0.01; plot No 6 corresponds to Gaussian autoregressive εt with the

same autoregressive coefficient 0.7 and variance 0.01. The random variables Xt are iid N(1, 0.04). Top left:

n = 25. Top right: n = 50. Bottom: n = 100.
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Figure 4.5. Boxplots for 20, 000 repetitions of the OLS estimator β̂ − 1 estimated from the model Yt =

(1 + εt)Xt with pure multiplicative noise. In each graph, boxplots 1 − 5 correspond to the autoregressive

process εt = 0.7εt−1 +Zt, where (Zt) is iid Student-t distributed with ν = 2, 3, 4, 5, 10 degrees of freedom, and

εt is rescaled to empirical variance 0.01; plot No 6 corresponds to Gaussian autoregressive εt with the same

coefficient 0.7 and variance 0.01. The random variables Xt are autoregressive Xt = 0.5Xt−1 + γt, where (γt)

is iid centered Gaussian, and Xt is rescaled to variance 0.04. Top left: n = 25. Top right: n = 50. Bottom:

n = 100.
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Figure 4.6. Boxplots for 20, 000 repetitions of the OLS estimator β̂ − 1 estimated from the model Yt =

Xt + ϕt with pure additive noise. In each graph, boxplots 1 − 5 correspond to ϕt Student-t distributed with

ν = 2, 3, 4, 5, 10 degrees of freedom rescaled to empirical variance 0.09; plot No 6 corresponds to ϕt iid

N(0, 0.09). The random variables Xt are iid N(1, 0.04). Top left: n = 25. Top right: n = 50. Bottom

n = 100. The black dots in the 5 right boxplots indicate 95% asymptotic confidence bands based on the central

limit theorem.

for iid N(0, 1) noise (Zt). It follows for example from Basrak et al. (2002) that ϕ is regularly
varying with index ν which is given as the unique solution to the equation

E|α1Z
2 + β1|ν/2 = 1 .

This equation can be solved numerically. We consider the following five sets of parameter values:

α1 = 0.1 , β1 = 0.900 , ν = 2 ,

α1 = 0.1 , β1 = 0.895 , ν = 3 ,

α1 = 0.1 , β1 = 0.890 , ν = 4 ,

α1 = 0.1 , β1 = 0.884 , ν = 5 ,

α1 = 0.1 , β1 = 0.840 , ν = 10 .

We simulated 20,000 realizations of GARCH samples with these parameters. Then we scaled the
samples to empirical variance 0.09. For comparison we also drew an iid N(0, 0.09) sample of ϕt’s.
Independently of (ϕt) we drew iid N(0, 0.04) random variables Xt. Subsequently we calculated the
20,000 values of the OLS coefficient estimates. The boxplots of this experiment are reported in
Figure 4.9 with the corresponding Table 4.8. There is a clear difference between the heavy tailed
cases with GARCH additive noise and the case of iid normal additive noise. The distributions
are much more spread in the case of GARCH noise. Surprisingly, there are hardly any differences
between the distributional characteristics of the OLS estimators for the different GARCH models.
But the difference with the iid normal innovations is considerable. To conclude, both in the model
with multiplicative and the model with additive noise, the OLS coefficient estimates vary wildly



18 T. MIKOSCH AND C. G. DE VRIES

in medium sized samples if the noise process is a cocktail of heavy tailed distributed innovations
which exhibit some persistence.

IID normal Xt’s and GARCH ϕt’s
ν = 2 ν = 3 ν = 4

sample size 25 50 100 25 50 100 25 50 100

mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
s.d. 0.32 0.22 0.15 0.32 0.22 0.15 0.32 0.22 0.15
1st quartile 0.78 0.85 0.90 0.78 0.85 0.90 0.78 0.85 0.90
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd quartile 1.21 1.15 1.10 1.21 1.15 1.10 1.21 1.15 1.10
minimum -0.91 0.22 0.42 -0.90 0.22 0.40 -0.90 0.22 0.40
maximum 2.19 2.00 1.61 2.19 2.00 1.62 2.19 2.00 1.63

ν = 5 ν = 10 Normal
sample size 25 50 100 25 50 100 25 50 100

mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
s.d. 0.32 0.22 0.15 0.32 0.22 0.15 0.16 0.21 0.08
1st quartile 0.78 0.85 0.90 0.78 0.85 0.90 0.90 0.93 0.95
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd quartile 1.21 1.15 1.10 1.21 1.15 1.10 1.11 1.07 1.05
minimum -0.90 0.22 0.39 -0.87 0.22 0.38 0.24 0.50 0.68
maximum 2.19 2.00 1.64 2.20 1.99 1.65 1.63 1.41 1.34

Table 4.8. Sample characteristics of bβ for iid normal N(1, 0.04) (Xt) and GARCH (ϕt) with tail parameter ν, based
on 20, 000 repetitions.
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Figure 4.9. Boxplots for 20, 000 repetitions of the OLS estimator β̂−1 estimated from the model Yt = Xt+εt

with pure additive noise. In each graph, boxplots 1 − 5 correspond to (εt) from a GARCH process with tail

parameter ν = 2, 3, 4, 5, 10 scaled to empirical variance 0.09; plot No 6 corresponds to εt iid N(0, 0.09). The

random variables Xt are iid N(1, 0.04). Top left: n = 25. Top right: n = 50. Bottom: n = 100.
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5. Application

The motivation for this study comes from the empirical fact that in various applications involv-
ing small and medium size samples of financial data there appears a wide variation in reported
coefficient estimates across different samples. One possible explanation for this variation is the
regular variation of the distributions of the innovations in combination with some dependence. As
a consequence, the abatement in coefficient variability may require much longer time series than if
the data came from a normal distribution. Both from an estimation point of view and for policy
making it is important to capture the uncertainty in the estimates, as standard central limit type
of error bands can be quite misleading in smaller samples with dependent heavy tailed noise. The
previous simulation study demonstrated this claim on artificial data. We now turn to an economic
application to demonstrate that this theory also has a bite in explaining the observed variability of
empirical coefficient estimates.

The application focuses on the yield curve. Mankiw and Miron (1986) report typical slope
estimates of the expectations coefficient in yield curve regressions for quite different samples. There
are two important data features. First, the point estimates come in a wide range. Only in one of
their five samples, with about 80 observations each, the point estimates come close to the benchmark
theoretical slope of two (zero term premium). Second, all reported point estimates are less than
two, and two slope estimates are even negative (one is significantly negative). Fama and Bliss
(1987) emphasize the variability of the coefficient estimates. A sizeable literature has focused on
the apparent downward bias. While the latter issue is not the focus of this paper, we need to address
it before we can zoom in on the variability question. The first subsection introduces the topic from
a simple three period investment decision problem. The model includes a risk premium and a
liquidity premium, which potentially could account for the variability and downward difference
from two. Subsequently, the second subsection discusses the data and the results from standard
time series and panel regressions, basically replicating the results from previous studies. The last
subsection provides evidence for the coefficient variability stemming from dependent heavy tailed
noise by means of cross section regressions.

5.1. Economic theory. To introduce the issue of yield curve estimation, consider a three period
investment problem under uncertainty:

maxEU(x,Xi) = πV (x) + (1 − π)ΣiπiρV (Xi), Σiπi = 1(5.1)

subject to w = d+ b,

x = (1 + r)d+ (1 + q)b,

Xi = (1 + s)b+ (1 +Ri)(1 + r)d , i = 1, ..., n.

Here V (.) and ρV (.) are the strictly concave first and second period utility functions; the expected
utility function EU(x,Xi) is time separable. The pure rate of time preference is ρ ≤ 1. There are
two types of uncertainty. The first type of uncertainty stems from the uncertain liquidity needs
of agents as in Diamond and Dybvig (1983): with probability π an agent wants to consume early,
and with probability 1 − π the agent finds out he desires to consume late during the third period.
The other uncertainty, πi, pertains to the return on the second period short term bond. At the
beginning of the first period, wealth w can be invested in a one-period bond d yielding 1 + r in the
second period and a two-period zero-coupon bond b yielding s in the third period. The one-period
bond investment can be rolled over into a new one-period bond investment if one turns out to be
a late consumer. All bonds are default-free government issues. The interest rate on the second
period short term bond is uncertain at the time when the first investment decision has to be taken;
Ri materializes with probability πi, and there are n states of the world i = 1, ..., n. If the consumer
has early liquidity needs, the long term bond investment has to be liquidated early. This comes
at a cost, and we assume that q < r, where r − q is the liquidation premium. The costs of early
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liquidation are due to irreversibilities of longer term capital investments and transactions costs, see
Diamond and Dybvig (1983). If (1 + s) > (1 + r)E[1 +Ri], a risk averse agent will want to hedge
against liquidity needs by partly investing in the long term bond and partly investing in the short
term bond (no short sale condition).

The first order conditions for a maximum to the problem (5.1) imply the following pricing kernel
relationship

(5.2) E[Mi(1 +Ri)] =
q − r

1 + r
+E

[
Mi

1 + s

1 + r

]
,

where

Mi = ρ
1 − π

π

∂V (Xi)/∂Xi

∂V (x)/∂x

is the intertemporal marginal rate of substitution or discount factor, for short. Under risk neutrality
the discount factor reduces to ρ(1 − π)/π. Assuming that the second moment of Ri is bounded,
we can use the covariance cov(Mi, Ri − r) between the discount factor and the short term interest
rate innovations to rewrite (5.2). First expand (5.2) as follows:

E [Mi ((Ri − r) + (r + 1))] =
q − r

1 + r
+

1 + s

1 + r
EMi ,

and subsequently use the covariance to obtain

(5.3) E[Ri − r] = −(1 + r) +
1 + s

1 + r
+

1

EMi

q − r

1 + r
− cov(Mi, Ri − r)

EMi
.

Let y be the 1-period yield on the two period bond, i.e., (1 + y)2 = (1 + s) . Then (5.3) can be
restated as

(5.4) E[Ri − r] = 2(y − r) + T (y, r) + P (Mi, Ri, q),

where

P (Mi, Ri, q) =
1

EMi

q − r

1 + r
+

cov(−Mi, Ri − r)

EMi
and T (y, r) =

(y − r)2

1 + r
.

Here P is the term premium and T is a convexity term. The term premium consists of two parts,
a liquidity premium (q− r)/[(1+ r)EMi] and a risk premium cov(−Mi, Ri − r)/EMi. Confusingly,
in the applied yield curve literature the risk premium is sometimes referred to as the liquidity
premium.

The liquidity premium is negative, since q < r, which reflects the costs of liquidating the long
term investment early. While this liquidity premium is often studied in the banking literature,
it is mostly ignored in the literature on the yield curve. It is sometimes discussed under the
heading of segmented market hypothesis or the less absolute preferred habitat theory; but these do
not consider the liquidity needs as uncertain, rather in this literature different agents have a priori
different investment horizons. This segmentation results in possible mismatches between supply and
demand for bonds within a certain maturity range. The yield curve literature traditionally focuses
on the risk premium cov(−Mi, Ri − r)/EMi. If agents are risk neutral so that Mi = ρ(1 − π)/π,
then the risk premium drops out and the term premium (5.4) reduces to the liquidity premium

(5.5) P = π(q − r)/ρ(1 + r)(1 − π) < 0.

If agents are risk averse, however, the risk premium part is positive, so that P can have either sign.
To show this, assume e.g. that agents have a power utility function

V (x) =
1

1 − γ
x1−γ , γ > 0.
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Some manipulation yields

π

1 − π

1

ρ

(
(1 + r)d

x

)γ

cov(−Mi, Ri − r) = E

[
Ri

−(k +Ri)γ

]
−E

[
1

−(k +Ri)γ

]
ERi

= E

[
k +Ri

−(k +Ri)γ

]
−E

[
1

−(k +Ri)γ

]
E[Ri + k] ,

where

k = 1 +
1 + s

1 + r

b

d
.

Note that k > 1 if there is no short selling (which we will assume). For any random variable
X ≥ 0 and a monotone non-decreasing function g(x) it follows from association that the relation
E[X g(X)] ≥ EX Eg(X) holds; see Resnick (1987), Lemma 5.32(iv). Taking X = k +Ri ≥ 0, and
g(x) = −x−γ so that g′(x) = γx−γ−1 ≥ 0 whenever x ≥ 0, it follows that cov(−Mi, Ri − r) ≥ 0.
Thus the term premium P can be of either sign, since the liquidity premium is negative and the
risk premium is positive.

A linear yield curve results if P = 0 and if the convexity term is absent as well. Note that
since typically both r and y are close to zero, so that 1 + r can be ignored in the convexity
term, T (y, r) = o(y − r). Hence little is lost by setting T (y, r) = 0 in empirical work (except for
hyperinflation economies). But the benchmark case of P = 0 which is referred to in most empirical
studies is more contentious, since even if agents are approximately risk neutral the liquidity premium
turns the term premium negative.

The validity of model (5.4) cum P = 0 for the term structure of interest rates is often tested by
whether H0 : β = 2 can be rejected in a linear regression of Ri − r on y − r:

(5.6) Ri − r = θ + β(y − r) + ε, Eε = 0.

The hypothesis β = 2 is known as the Expectations Hypothesis. It is typical for the research in
this area that the null hypothesis H0 : β = 2 in (5.6) is soundly rejected, yielding evidence for a
non-zero term premium P . Time series analyses such as presented in Mankiw and Miron (1986)
almost always yield coefficients below two, and sometimes even negative coefficients are reported.
Specifically, this indicates that the term premium P (Mi, Ri, q) is negatively correlated with the
spread y − r. Possibly, this stems from the negative liquidity premium, see below.

In the application, we first re-run the specification (5.6) for a number of different countries and
basically find the same results as reported in the literature. To rule out any contamination from
the convexity term, we also estimate the specification

(5.7) Ri − r = θ + β(y − r) + τ
(y − r)2

1 + r
+ ε.

Since the model (5.7) applies to each country individually, one can also investigate the model
relative to a benchmark country. Due to the negative correlation between the unobserved term
premium and the spread, the relative specification may diminish the omitted variable bias. Thus
we also estimate

(5.8) R̃i − r̃ = θ + β(ỹ − r̃) + τ T̃ (y, r) + ε̃,

where X̃ = X −X∗, and X∗ denotes the benchmark country variable.
To show that this specification may help reduce the omitted variable bias, note that

(5.9) cov(X −X∗, P − P ∗) = cov(X,P ) + cov(X∗, P ∗) − cov(X,P ∗) − cov(X∗, P ),

and where X = y− r. If cov(X,P ) + cov(X∗, P ∗) is negative, the bias is reduced if −cov(X,P ∗)−
cov(X∗, P ) is positive. This happens for example if countries experience simultaneously similar
movements in their yield curves, so that P (and P ∗) also co-vary negatively with y∗− r∗ (and y− r
respectively).
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In the second part of the empirical application we investigate the cross section properties of the
model. Assuming that the β’s are more or less identical across countries at any point in time, i.e.,
they have a common component, but vary over time, there is value in estimating the expectations
hypothesis model at any point in time. Subsequently, from the country cross section regressions
we try to infer the properties of the distribution of the innovations and the variability of the error
terms ρn,ε and ρn,ϕ in particular.

5.2. Time series regressions and downward bias. We obtained data on the one month and two
month interest rates from February 1995 to December 1999 for 14 countries, yielding 59 observations
per country. The countries with the abbreviations used in the tables are respectively Belgium (Bel),
Canada (Can), Germany (Ger), Denmark (Den), France (Fr), United Kingdom (UK), Italy (It),
Japan (Jap), Austria (Aus), Portugal (Por), Sweden (Swe), United States of America (USA),
Switzerland (Swit), and The Netherlands (Neth). The data are beginning of the month figures on
short term treasury paper available from datastream. Since for the purpose of the paper we are
interested in running both time series, panel and cross section regressions, we are squeezed by data
availability. Only since the middle of the 1990’s there are more than 10 countries which report
such rates. By the end of this decade, though, we are confronted by the data squeeze due to the
European monetary unification process, which implies that at the short end of the yield curve rates
became about equal. In Table 5.1 we report the per country regression coefficient estimates on the

count OLS relative relative & pool & pool & relative
convex relative & convex

Bel 1.01 1.86 0.58 0.99 0.54
Can 1.20 1.91 2.14 1.98 2.09
Ger 1.28 0.97 0.22 1.00 0.47
Den 2.02 2.21 2.27 1.44 1.93
Fr 1.99 2.89 2.96 2.68 3.35
UK 0.87 1.37 1.35 1.15 1.28
It 0.98 1.30 1.27 1.22 0.97
Jap 0.95 1.02 1.26 1.15 1.28
Aus 0.51 1.39 1.40 1.25 1.46
Por 0.54 0.70 0.42 0.42 0.49
Swe 0.84 1.29 1.16 1.05 1.10
USA 0.36 0.91 1.10 0.66 1.09
Swit 1.15 1.01 0.99 1.00 0.91
Neth 1.22 / / / /

mean 1.06 1.44 1.31 1.23 1.30

range 1. 66 2. 19 2. 74 2. 26 2. 88

s.d. 0.48 0.61 0.76 0.57 0.79

Table 5.1. Slope estimates for expectations hypothesis model. The table records coefficient estimates for the slope
coefficient of the expectations model. The first column contains the per country OLS results for (5.6); column 2 for
(5.8) without the convexity term and column 3 for (5.8). The base country in the regressions is The Netherlands.

slope coefficient for the yield differential y − r using different regression techniques.
The first column gives the results for specification (5.6). The next column labeled relative is based

on (5.8) but without the convexity term, and where The Netherlands is taken as the base country.
The third column labeled relative & convex is based on the full specification of (5.8) including the
convexity term T (y, r). The last two columns repeat the same exercise but use panel regressions in
which the data are pooled. The table conveys two main results. (i) The β-coefficients are almost
all significantly positive, but hover more closely around 1, rather than around the Expectations
Hypothesis value 2. (ii) There appears to be quite a considerable variation in the coefficient
estimates as can be seen from the range statistic, which is the difference between the highest and
the lowest estimated value. These results thus corroborate the results reported previously in the
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literature, although in our sample we do not find any negative coefficients. Not reported are the
intercept estimates which were invariably very small and never significantly different from zero. We
discuss the average value of the point estimates and their variability more extensively.

Since most of the β-coefficients and their averages are well below the Expectations Hypothesis
value of two, the economic interpretation is that the term premium P (Mi, Ri, q) is negatively
correlated with (y−r), causing a downward omitted variable bias in the β-estimates. To understand
what may happen, consider the relationship between the observed spread (y − r) and the term
premium P (Mi, Ri, q) in some detail in the benchmark case when agents are risk neutral. Thus
only the liquidity premium (5.5) is present. Assume that (5.4) applies and that T (y, r) is negligible
small. Then, since the intercept is zero, approximately

(5.10) β̂ = 2 + Σ(y − r)(
π/ρ

1 − π

q − r

1 + r
)/Σ(y − r)2

The second term in (5.9) is likely to be negative for the following economic reasons. Most of the
time the yield curve is upward sloping, so that y− r > 0. The liquidity premium q− r < 0, though,
is negative. This induces a negative covariance in (5.9). Hence, even if agents are risk neutral, the
coefficient estimate is downward biased vis a vis the expectations value of two.

Comparing the first column of Table 5.1 to the other columns, it appears that using the relative
country spreads is helpful in reducing the downward bias. Adding the convexity term or using
pooled estimation does not seem to change much. Apparently, the use of the relative country

spreads increases the β̂’s, which by recalling (5.9) would suggest that the covariances −cov(X,P ∗)
and −cov(X∗, P ) are positive and partially offset the negative intercorrelation of cov(X,P ) +
cov(X∗, P ∗) with the spread.

In trying to diminish the influence of the individual country disturbances on the regression
coefficients further, we also pooled the data into a panel with a fixed time effect, and equality of
slope coefficient β across countries as suggested in Mayfield and Murphy (1996). Panel estimation
is a way to artificially lengthen the sample. The panel regression analog of the relative yield curve
model (5.8) is reported in Table 5.2. The panel estimates with equal country coefficients are lower
than the panel estimates with country individual slopes and the convexity term has the wrong sign,
albeit it is not significant. Apparently not much of a large sample effect is obtained by pooling the
country information on β. This may be due to the fact that all data come from the same relatively
short time period and only involve OECD countries which pursued quite similar economic policies
during the time. To conclude, the relative country approach appears to be the best we can do to
lessen the omitted variable bias; at least if countries have similar economic positions it is likely that
the cross correlations −cov(X,P ∗) and −cov(X∗, P ) are positive.

statistics regression 1 regression 2
bθ -0.03 -0.02
s.d. 0.01 0.01
bβ 1.16 1.21
s.d. 0.10 0.10
bτ - -0.50
s.d. - 0.28
R2 0.13 0.13
F -test 124.14 63.77
Prob(F -test) 0 0

Table 5.2. Panel slope estimates. The table records coefficient estimates for the slope coefficient of the expectations
model specification as in (5.8). The first column gives the outcome omitting the convexity term and the second column
comprises this term. The base country in the regressions (5.8) is The Netherlands.
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5.3. Cross section regressions and coefficient variability. The empirical results from the
previous section contained two major results. One is the well known downward bias vis a vis the
expectations value of two. The other major result is the considerable variation in the individual
cross country estimates, recall Table 5.1. It is a well known empirical fact that almost all variation
is in the short term interest innovations Ri−r rather than in the variation of the expected changes.
In other words σRi−r � σy−r, see e.g. Fama and Bliss (1987) and Cochrane (2001, Chapter 20).
Thus the yield spread is not very informative about the future interest rates. This news dominance
feature may contain the explanation for the considerable variation in the coefficient estimates across
the countries. The interesting question is therefore as to whether the distribution of news is heavy
tailed, in such a way that this could explain the wide dispersion of the coefficient estimates. In this
subsection we try to elicit some information about this coefficient variation and relate this to the
concept of regular variation dealt with the econometric theory part.

month
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Figure 5.3. Cross section slope estimates.

From the panel estimates we concluded that restricting the slopes across countries over time did
not yield extra information over and above the average of the individual country estimates. Since
several countries pursued quite similar economic (monetary) policies during the second half of the
nineties, the variation is perhaps not so much across countries, but rather over time. Therefore, to
investigate the amount of variation in the slopes, we now assume identical slopes per country but
allow for temporary disturbances. This model can be estimated by running per period cross section

regressions. A graph of the 59 cross country β̂t OLS estimates for the specification (5.8) is provided
in Figure 5.3. There appears to be quite a bit of variation in the slope estimates. Since the yield
curve is widely known to be rotating and shifting, this was to be expected. Summary statistics
are given in Table 5.4. The standard error of the slope estimates, the range and the kurtosis
confirm the sizeable variation. But this is not due to a bad fit, since the R-squared statistic is
mostly acceptable for the small cross section regressions. The variation appears to be genuine. The
average of the slope estimates re-confirms the downward bias, and is somewhat more severe in these
small samples.

The summary statistics indicate that the slope estimates are highly variable and, moreover, the
statistics point to a non-normal distribution feature of the slopes, given the high kurtosis and
strongly negative skewness. In Section 3 we showed that the heavy tail feature of the innovations
carries over to the distribution of the coefficient estimates. Therefore we continue and investigate
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mean 1.18
standard error (of mean) 0.26
median 1.21
standard deviation 2.03
sample variance 4.13
kurtosis 4.52
skewness 0.50
range 14.65
minimum -5.43
maximum 9.22

mean R2 0.31
standard error (of mean R2) 0.03
standard deviation R2 0.22

Table 5.4. Summary statistics of cross country slope estimates.

Statistic Slopes Slopes Squared

intercept 1.16 5.198
s.d. 0.31 1.411
t-value 3.70 3.682
AR(1) 0.01 -0.073
s.d. 0.13 0.133
t-value 0.07 -0.554
R2 0.01 0.005

Table 5.5. AR(1) estimation results for the level and the squares.

the evidence for regular variation in β̂. To this end we construct a number of QQ-plots, and we
estimate the index of regular variation.

We start with a QQ-plot of the slope estimates against the Gumbel distribution. We choose the
Gumbel distribution since the limit theory for the sample maxima of iid random variables Xi (cf.
Embrechts et al. (1997), Chapter 3) says that, if the scaled and centered sample maxima have a
limit distribution, the distribution of the Xi’s is in the domain of attraction of either one of three
limit laws. If there is an upper endpoint, it must be the Weibull law or the Gumbel. Without an
endpoint, the limit law is either Fréchet, if the underlying distribution has heavy tails in the sense
of regular variation at infinity, or it is Gumbel in the case of light tails (exponential) and medium
type heavy tails (subexponential), as in the case of the log-normal distribution. Thus the limiting
distribution of the extremes is tightly connected with the shape of the tail of the distribution of the
Xi’s. The Gumbel distribution moreover, has no parameters, while the other two limit laws require
a parametrization of the tail. This can be exploited as follows. Suppose we use a QQ-plot of the
data against the Gumbel quantiles, where G(x) = exp(− exp(−x)), x ∈ R, and hence the QQ-plot
is a plot of the double log transformed empirical probabilities against the rank ordered slopes. If the
distribution is light tailed, i.e., the data are generated by a distribution in the domain of attraction
of a Gumbel, then the QQ-plot should be approximately linear in the extreme North-East and
South-West corners of the plot. On the contrary, if the generating distribution is in the domain of
attraction of a Weibull, then the plot curves upward in the North-East corner of the plane, while
in the case of a Fréchet law, when F (x) = exp(−x−α), x > 0, it curves downward.

In the left graph of Figure 5.6 we plot the double log transformed empirical Gumbel probabilities
against the rank ordered absolute values of the slope estimates. We take absolute values to increase
the number of observations in the tail area and to save space.1 One sees a clear deviation from

1Separate plots per tail are available upon request; these tell basically the same story.
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the diagonal, and the curvature in the North-East corner is indicative of the Fréchet case and,
therefore, hints at regular variation.
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Figure 5.6. Left: Gumbel QQ-plot for the absolute slope values. Right: QQ-plot of the absolute slope

estimates against the Fréchet(2) law.

The standard approach to estimating the index of regular variation is by means of computing
the Hill statistic, which coincides with the maximum likelihood estimator of the tail index in case
the data are exactly Pareto distributed. If the Pareto approximation is only good in the tail area,
one conditions the estimator on a high threshold s, say, to obtain

(5.11)
1̂

α
=

1

M

∑

i=1,Xi<−s

log
−Xi

s
,

where M is the random number of extreme observations Xi that fall below the threshold −s. To
investigate the nature of the randomness in β, we give the Hill plot of the absolute values of the β
estimates in the left graph of Figure 5.7. We considered all slope estimates below two as belonging
to the left tail, since two is the theoretical benchmark from the Expectations Hypothesis. Hence,
before taking absolute values we deducted two from the original estimates. The left plot in Figure
5.7 thus combines the slope estimates from both tails (all slopes minus two). Judging from the graph
of tail index estimates, one would say that the coefficient of regular variation α hovers between
1 and 2, suggesting very heavy tails indeed. The way to read these plots is further explained in
Embrechts et al. (1997, p. 341). Since the Hill estimator is biased, stemming from the fact that
the distribution is not exactly Pareto, there is a region where if one uses too many observations the
bias dominates, while the variance exerts a dominating influence if one uses too few observations.
There exists an intermediate region in which the two vices are optimally balanced.

The Hill estimator is constructed on the assumption that the data are generated by a distribution
which is regularly varying. It is also of interest not to make this assumption from the outset, so
that one can test whether the data support this maintained hypothesis. From the limit law for the
distribution of the maximum we know the only possible limit laws are those of Fréchet, Gumbel and
Weibull. One can parameterize the limit laws in such a way that this corresponds to a power law
with respectively a positive coefficient (the case treated by the Hill estimator), a value of zero (as
in case of the normal distribution for example) and a negative coefficient (as in case of a uniform
distribution). The Dekkers-Einmahl-de Haan (DEdH) estimator, see e.g. Embrechts et al. (1997),



TAIL PROBABILITIES FOR REGRESSION ESTIMATORS WITH HEAVY TAILED INNOVATIONS 27

number of upper order statistics

H
ill

 e
s
ti
m

a
to

r

0 10 20 30 40

0
1

2
3

4
5

number of upper order statistics

D
E

d
H

 e
st

im
a
to

r

0 10 20 30 40

0
2

4
6

8
1
0

Figure 5.7. Left: Hill plot. Combined tails (−2). Right: DEdH plots. Combined tails (−2).

estimates this power without precommitting to a particular limit law. If one knows that the data
are in the domain of attraction of the Fréchet case, then the Hill estimator is to be preferred since it
is more efficient, but the DEdH should produce similar estimates as the Hill procedure in this case.
The DEdH plot corresponding to the Hill plot of Figure 5.7 for the combined absolute values of the
slope estimates is given in the right graph of Figure 5.7. Note that while this estimator allows for
negative and zero values, the DEdH estimates are nevertheless always positive, therefore confirming
the heavy tail features. In contrast to the Hill plots, the bias goes in the opposite direction, but
this has to do with the fact that the DEdH estimator has different bias and variance properties.
But unlike the Hill plot, one finds two plateaus, i.e., around 4-5 and 2, and it is less clear which
value to choose. Nevertheless, one should bear in mind that the 59 slope estimates constitute a
very limited amount of data for judging the tail behavior, so that some uncertainty about the tail
index value is only to be expected.

Suppose we fix the tail index at two. Given this particular value for the tail index, we can
come back to the QQ-plot technique. If the true distribution is indeed regularly varying with index
two, then a QQ-plot against the Fréchet law with index two should give a straight line in the tail
area. We use again the absolute values of the slopes, plotted against the quantiles of the Fréchet
distribution F (x) = exp(−x−2). As can be seen in the right graph of Figure 5.6, the data now
nicely align along the diagonal, corroborating the regular variation hypothesis and tail index value
of two. Compare this with the left graph in Figure 5.6.

For the theory to have a bite, the simulation study showed that the heavy tailed noise must
be dependent, since otherwise the effect of a large shock is rapidly diminished as the sample size
increases. Therefore we investigate the dependency structure of the data, both over time and cross
sectionally.

We first investigated the time series properties of the cross sectionally estimated slopes, to see
whether there was evidence for (time) dependency in the multiplicative innovations. From the
correlograms for the slope estimates and the squares thereof, there was no indication for the level
or the squares to be time dependent. We further investigated the autocorrelation structure by
estimating an AR(1) model for the level and the squares. Table 5.5 gives the AR(1) estimation
results for the level and the squares. These estimates yield the same information, there is no
indication that these slope estimates are time dependent.
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Secondly, we looked at the time structure of the per country residuals from the cross sectional
slope estimates, to see whether there was evidence for (time) dependency in the additive noise.
On basis of correlograms, ARMA and ARCH estimates, again little or no evidence was found for
a time structure in the residuals. To conclude, it appears that there is little or no evidence for
dependency over time in the data.

Thirdly, we investigated the per period cross-sectional dependency. Since several countries pur-
sued similar monetary policies (relative to the base country), cross-sectional dependency would be
consistent with the economic facts. From the cross-sectional slope estimates we constructed the
matrix (across months and countries) of residuals. From this matrix the covariance and correla-
tion matrices were formed. The average of the absolute value of the 91 off-diagonal elements in
the correlation matrix is 0.21. If we use the trace of squared correlation matrix as a measure of
dependence, one finds that this number is comparable to a correlation matrix in which all off-
diagonal elements are about ρ = 0.25. Thus this points to considerable cross country dependence.
Since the data are non-normally distributed, we also computed the rank correlation matrix. Rank
correlations reflect the copula and are therefore a more robust measure of the dependency if the
innovations are non-normal. The average absolute value of the rank correlation matrix elements is
0.16. Since each element is constructed from 58 monthly observations, the asymptotically normal
based critical value for a significant rank correlation coefficient is 1.96/

√
58. A 31 elements of the

91 lower triangular elements exceed this critical value. If we take the covariance matrix and use
the asymptotic χ2 based test for equality with the identity matrix, i.e., using the 2-log criterion as
in Anderson (1984, p. 434-7), we obtain a test value of 2432, which overwhelmingly rejects the null
(critical value of 129). To conclude, while there is little or no dependency over time, there is clear
evidence for cross-sectional dependency. This cross sectional dependence makes that large shocks,
which occur due to the non-normal error structure, appear simultaneously in several countries. As
was explained in the theory section and the simulation study, this causes the high variability in the
small sample cross sectional slope estimates as depicted in Figure 5.3.

In sum, the slope estimates corroborate the presumption that the error terms ρn,ε and ρn,ϕ in

the estimator β̂ are heavy tail distributed. This is due to a combination of heavy tailed distributed
innovations and strong cross sectional dependence and a small cross section.

6. Conclusion

The paper provides a theory for tail probabilities for the linear regression estimator distribution
in medium sized samples if the multiplicative and additive error terms follow a heavy tailed dis-
tribution. We show that even if standard moment conditions such as the existence of the variance
are satisfied, the usual benchmarks based on central limit theory can be misleading. The results
hinge on relatively weak assumptions regarding the stochastic nature of the explanatory variable.
With additive uncertainty we require that the joint density of the explanatory variables is bounded
in some neighborhood of the origin. A restriction is the condition that the regressor be exogenous.
On the other hand, we allow for the possibility that the random multiplicative noise component
be correlated with the additive noise term, and in this sense there can be correlation between the
economic explanatory part and the additive noise structure. Moreover, both the noise and the
regressor are allowed to be time dependent. It is shown that for a fixed sample size and if the
perturbations are regularly varying, the OLS regression coefficient estimator has a tail probability
which is the product of the tail probability of the perturbations and the expected ’kernel weight’.
The tail influence of the perturbation term is lost in large samples by virtue of the central limit
theorem. To derive these results we started with a novel result on scaling properties of products
and ratios of regularly varying random variables.
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A small Monte Carlo study showed the importance of the alternative assumptions of normally
distributed versus heavy tail distributed innovations. Regardless of whether the noise in the re-
gression is additive or multiplicative, there exists a clearly discernible effect of wider spread of the
OLS estimator in medium sized samples, in contrast to the normal approximation and in contrast
to normally distributed noise. This effect is particularly striking when the noise is dependent.

The application to yield curve estimation demonstrates the relevance of the theoretical results.
Traditional slope estimates are clearly downward biased in contrast to the theoretical value sug-
gested by the Expectations Hypothesis, but are not necessarily in conflict with economic theory
(liquidity premium). Relative country estimation attenuates the bias. The estimates showed con-
siderable variation across countries and over time. A thorough analysis of the set of cross country
slope estimates revealed that the estimated random components come from a distribution with a
regular varying tail. The heavy tail feature is significant in the cross sectional estimates due to the
small cross section sample size and the cross sectional dependence.

We conclude that the theory is applicable to economic data and potentially explains the wide
variability of observed regression estimates.

7. Appendix

We give the proofs to Lemmas 3.2, 3.4 and 3.7, and the expectations inequality used in Section 5.

7.1. Proofs to Section 3. We start with Lemma 3.2.

Proof. Assume first that the Zi’s are independent. If the Zi’s are non-negative the result is standard;
see Feller (1971), p. 278, or Embrechts et al. (1997), Lemma 1.3.1. and Appendix A3.3. For general
Zi and Zj , i 6= j, using the tail balance conditions and independence,

lim
x→∞

P (Zi > x,Zj > x)

F (x)
= lim

x→∞

pi P (|Zi| > x) pj P (|Zj | > x)

F (x)
= 0 .

Similarly,

lim
x→∞

P (Zi > x,Zj ≤ −x)
F (x)

= lim
x→∞

P (Zi ≤ −x,Zj ≤ −x)
F (x)

= 0 .

Taking these calculations and assumption (3.2) into account, we see that the conditions of Lemma 3.1
are satisfied and so it follows that

lim
x→∞

P (Z1 + · · · + Zn > x)

F (x)
= c+1 + · · · + c+n ,

implying that

P (Z1 + · · · + Zn > x) = (1 + o(1)) (P (Z1 > x) + · · · + P (Zn > x)) .

The case of the left tail P (Z1 + · · · + Zn ≤ −x) is analogous.
For dependent Z1, Z2 with α1 < α2, P (|Z2| > x) = o(P (|Z1| > x)). Then similar calculations as
above yield that the assumptions of Lemma 3.1 are satisfied. �

We continue with Lemma 3.4.

Proof. The fact that Z is regularly varying with index α follows by a straightforward application of
Proposition A.1 in Basrak et al. (2002). The techniques used there also allow one to derive (3.4),
which relation we show in detail. Let M > 0. Then

P (Z > x) = P (Z > x,A1) + P (Z > x,A2) + P (Z > x,A3)

=: p1 + p2 + p3,

where
A1 =

{
|Y| ≤M−1

}
, A2 =

{
M−1 < |Y| ≤M

}
, A3 = {|Y| > M}.
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Then we have

p1 ≤ P (|X| |Y| > x,A1) ≤ P (|X| > xM).

Clearly, |X| is regularly varying with index α, and so

(7.1) lim
M→∞

lim sup
x→∞

p1

P (|X| > x)
= 0.

Recall from Breiman (1965) that for independent non-negative random variables ξ, η such that
Eηα+δ <∞ for some δ > 0 and P (ξ > x) regularly varying with index α > 0.

P (ξη > x) ∼ EηαP (ξ > x), x→ ∞.

For p3 we have, using Breiman’s result, regular variation of |X| and Lebesgue dominated conver-
gence,

lim
M→∞

lim sup
x→∞

p3

P (|X| > x)
≤ lim

M→∞
lim sup

x→∞

P (|X| |Y| I(M,∞)(|Y|) > x)

P (|X| > x)

= lim
M→∞

E[|Y|α I(M,∞)(|Y|)] = 0.(7.2)

By virtue of (7.1) and (7.2) the result must follow by a consideration of p2. Indeed,

lim
x→∞

p2

P (|X| > x)
= lim

x→∞

∫

M−1<|Y |≤M

P (Z > x |Y)

P (|X| > x)
P (dY)

= E

[
I(M−1,M)(|Y|)

d∑

i=1

(c+i E[Y α
i I{Yi>0}] + c−i E

[
|Yi|α I{Yi<0}

]
)

]
.(7.3)

In the last step of the proof we made use of Pratt’s lemma (see Pratt (1960)) and Lemma 3.2. Now
let M → ∞ in (7.3) to conclude that the statement of the lemma is correct for P (Z > x). The case
P (Z ≤ −x) is completely analogous. �

The proof of Lemma 3.7 goes as follows.

Proof. Calculation shows that EY
−α/2
t <∞ if and only if for some x0 > 0,

(7.4)

∫ x0

0
P (Yt ≤ x2/α)x−2dx <∞.

If the Xt’s are iid we have

P (Yt ≤ x2/α) ≤ P

(
max

i=1,...,n
X2

i ≤ x2/α

)
(7.5)

= P n(|X| ≤ x1/α) ≤ const xnγ/α.

The function xnγ/α−2 is integrable on [0, x0] if nγ/α > 1, hence (7.4) holds. Now assume that
(X1, ..., Xn) has a bounded density fn in some neighborhood of the origin. We conclude from (7.5)
that

P (Yt ≤ x2/α) ≤
∫

maxi=1,...,n |yi|≤x1/α

fn(y) dy ≤ constxn/α,

for sufficiently small x, and so we may conclude that (7.4) holds for n > α. This concludes the
proof. �

Next we give the proof of Proposition 3.13.
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Proof. (1) We observe that

n∑

t=1

εtX
2
t =

t∑

j=−∞

Zj

n∑

t=max(1,j)

ψt−jX
2
t .

Write

ψ̃j =

∑n
t=max(1,j) ψt−jX

2
t∑n

s=1X
2
s

.

For fixed k ≤ n we may then conclude from Lemma 3.4 that

P




n∑

j=k

Zjψ̃j > x


 ∼ P (Z > x)

n∑

j=k

E[ψ̃+
j ]α + P (Z ≤ −x)

n∑

j=k

E[ψ̃−
j ]α .

Without loss of generality assume that k ≤ 1. Observe that

|ψ̃j | ≤
n∑

t=1

|ψt−j | ,

Then similar calculations as in Mikosch and Samorodnitsky (2000) show that

lim
k→−∞

lim sup
x→∞

P
(∣∣∣
∑k−1

j=−∞Zjψ̃j

∣∣∣ > x
)

P (|Z| > x)
= 0 .

This proves the asymptotics for the right tail of ρn,ε. The asymptotics for the left tail of ρn,ε are
analogous.
(2) The proof of the second part is analogous, making use of the representation

n∑

t=1

ϕtXt =
n∑

j=−∞

γj

n∑

t=max(1,j)

ct−jXt ,

the moment condition (3.8) and, again, Lemma 3.4. �
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