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Abstract

Several lessons learned from a Bayesian analysis of basic economic time series mod-
els by means of the Gibbs sampling algorithm are presented. Models include the
Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the
Unit Root model, the Instrumental Variables model and as Hierarchical Linear Mixed
Models, the State-Space model and the Panel Data model. We discuss issues involved
when drawing Bayesian inference on regression parameters and variance components,
in particular when some parameter have substantial posterior probability near the
boundary of the parameter region, and show that one should carefully scan the shape
of the posterior density function. Analytical, graphical and empirical results are used
along the way.

Keywords: Gibbs sampler, MCMC, serial correlation, non-stationarity, reduced rank
models, state-space models, random effects panel data models.
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1 Introduction

As discussed by, for instance, Van Dijk (1999) and Hamilton (2006), the ‘simulation revolu-
tion in Bayesian econometric inference’ is to a large extent due to the advent of computers
with ever-increasing computational power. This allows researchers to apply elaborate

∗This paper is a substantial revision and extension of De Pooter et al. (2006). We are very grateful to
participants of the 10th International Conference on Computing in Economics and Finance, Amsterdam,
2004, the 3rd World Conference on Computational Statistics & Data Analysis, Cyprus, 2005, and two
anonymous referees for their helpful comments on earlier versions of the paper. All remaining errors are
ours.

†Corresponding author. Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-
3000 DR Rotterdam, The Netherlands. Tel.: +31-10-4089142, fax: +31-10-4089031. Email addresses:
depooter@few.eur.nl (M.D. de Pooter), rsegers@few.eur.nl (R. Segers), hkvandijk@few.eur.nl (H.K.
van Dijk)
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Bayesian simulation techniques for estimation in which extensive use is made of pseudo-
random number generators. One of the most important methods is Gibbs sampling, de-
veloped by Geman and Geman (1984), Tanner and Wong (1987) and Gelfand and Smith
(1990). This method has become a popular tool in econometrics for analyzing a wide
variety of problems; see Chib and Greenberg (1996) and Geweke (1999). Judging from
numerous articles in recent literature, Gibbs sampling is still gaining more and more mo-
mentum. Recent textbooks such as Bauwens et al. (1999), Koop (2003), Lancaster (2004),
and Geweke (2005) discuss how Gibbs sampling is used in a wide range of econometric
models, in particular in models with latent variables.

In the present paper we focus our attention on some basic models for economic time
series and our aim is to investigate which lessons can be learned from applying Bayesian
analysis to these models using Gibbs sampling, in particular, when some parameters have
a substantial amount of posterior probability near or at the boundary of the parameter
region. This feature may occur and is relevant in several economic time series. A practical
example is a dynamic economic process that is possibly non-stationary, otherwise stated,
substantial posterior probability of the dominant characteristic root of the process is near
the boundary of unity. A second example is the case in time varying parameter models such
as state space models when substantial posterior probability of the variance of the cyclical
component is near zero and it is not clear how much of the variation in the economic time
series is due to the cycle and how much due to noise. A third example is the presence of
very weak instruments in an instrumental variable regression model.

For expository purposes two classes of canonical models are used. The first one is
the linear regression model with first order serial correlation in the disturbances; the so-
called Cochrane-Orcutt model; for details we refer to standard textbooks of econometrics,
for instance, Heij et al. (2004). In this class of models the regression parameters are
parameters of interest and the variances of the disturbances are nuisance parameters. We
show that, for our purpose of a near-boundary analysis in the parameter region, other basic
models for economic time series like the Koyck model for distributed lags and the unit root
model are special cases of this first canonical model. The intrinsic econometric issues in
such models may be summarized as follows. What is a plausible dynamic specification such
that short and long term effects can be measured adequately (serial correlation model and
distributed lag model)? Are financial markets efficient and do there exist stochastic trends
in macro-economic series (unit root models)? We also treat the issue of endogeneity with
weak instruments in an instrumental variable regression model for economic time series.

The second class of models deals with variance parameters as parameters of interest.
We discuss how the class of linear hierarchical mixed models (HLMM) serves as a parent
class for such time varying parameter models as state space models and as a parent class
for panel data models. We are interested to investigate what happens when the density of
one of the variance parameters is located near the zero-bound and/or when one faces the
situation when there is not a sufficient number of components/groups in a panel.

Given the specification of the models one can derive their likelihoods and specify prior
information. Our approach with respect to specifying prior information is to start with
uniform priors on a large but bounded region. The use of such non-informative priors
means that we concentrate on the information content in the likelihood function. We
emphasize that, given our priors, the posterior densities may of may not exist and that it
is very important to investigate their shape. As mentioned before, we are, in particular,
interested in the behavior of the likelihood/posterior near and at the boundary of the
parameter region.
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We emphasize that for analysis we make use of an interplay of analytical techniques, by
giving detailed derivations of conditional and marginal distributions, and Gibbs sampling
and further note that graphics in the context of Bayesian analysis is becoming more and
more important see, for example, Murrell (2005). In our analysis we therefore also place
emphasis on presenting results in a graphical way. The technical level of the paper is like
that of an introductory graduate econometrics course. Matrix notation is used in order to
indicate the common, linear (sub)-structure of several models.

The results of our analysis may be labelled as ‘lessons learned’. A summary of models
used and lessons learned is presented in Section 5. The key lesson is to investigate the
shape of the criterion function of the parameters of interest and classify this shape in two
categories. As long as this shape is approximately elliptical and much probability mass is
in the interior of the parameter region, then applying Gibbs sampling is straightforward
and yields accurate results. When the criterion function has strong non-elliptical contours
and substantial mass is at the boundary of the parameter region then warning signals for
the researcher may need to be indicated. It depends on the specification of the model and
the information in the data in which situation a researcher will find herself. In case of a
regular shape one may use rather noninformative, for instance uniform, priors if one prefers
to emphasize the information content of the likelihood. In the other cases uniform priors
for the regression parameters are not suitable. We discuss some prior information that may
regularize or smooth the shape of the criterion function, such as the class of information
matrix or Jeffreys’ priors, and we discuss an example of a training sample prior. For
variance components models, however, uniform priors may be attractive when a researcher
is interested in the probability mass near a zero variance; see also the recommendation by
Gelman (2006).

This paper offers some directions on how to continue in nonstandard cases. In terms
of possible further ‘advice’ one could think of a reparametrization of the model, the use of
subjective informative priors, and for the use of predictive priors, see, for example, Geweke
(2005). Several other approaches are also given in the literature such as the use of more
flexible sampling methods to approximate the irregular shape of the posterior but all this
is beyond the scope of this paper.

The topic of this paper should be of interest to Bayesians to see how Gibbs sampling
functions in basic regression models for economic time series when the focus is on the
information content of the likelihood. The topic should interest non-Bayesians who are
very knowledgeable about basic econometric models and want to learn how the information
in the likelihood function of such models is summarized according to Bayes’ rule.

The contents of this paper is structured as follows. In Section 2 we briefly review
the Gibbs sampler. Through a number of (artificial) examples we discuss several shapes
of the criterion function that the researcher may encounter in econometric practice, in
particular, irregular shapes near the boundary of the parameter region. In Section 3 we
present our analysis by applying the Gibbs sampler to a number of canonical models such
as the Cochrane-Orcutt serial correlation model, the Koyck Distributed Lag model, the
Unit Root and Instrumental Variables models. Our focus in this section is primarily on
drawing inference on regression parameters. Then in Section 4 we move on to studying
variance components. One often used model there is the Hierarchical Linear Mixed Model
(HLMM). As an application of HLMM we discuss how the Gibbs sampler performs in State-
Space models and Random Effects Panel Data models. Section 5 presents a summary of
models used and lessons learned.
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2 Gibbs Sampling and Some Typical Shapes of the Criterion
Function

In this section we briefly discuss the basic idea of the Gibbs sampling algorithm and
illustrate its potential by means of several bivariate examples. We show particular shapes of
posterior densities, using the Gelman-Meng model, that one may encounter in econometric
practice.

2.1 Gibbs Sampling

One may characterize the Gibbs sampling algorithm as an application of the divide-and-

conquer principle1. First, a z-dimensional vector θ is divided into into m components
θ1, θ2, ..., θm, where m ≤ z. Second, for many posterior distributions which are intractable
in terms of simulation the lower-dimensional conditional distributions turn out to be re-
markably simple and tractable. The Gibbs sampler exploits this notion, as it precisely
samples from these conditional distributions. Its usefulness is, for example, demonstrated
by Chib and Greenberg (1996), and Smith and Roberts (1993).

Since Gibbs sampling is based on the characterization of the joint posterior distribution
by means of the complete set of conditional distributions, it follows that a requirement for
application of the Gibbs sampler is that the latter distributions, described by the densities

p(θi|θ−i), for i = 1, ..., m, (1)

where θ−i denotes the parameter vector θ without the ith component, can all be sampled
from. The Gibbs sampling algorithm generates a sequence

(θ
(0)
1 , ..., θ(0)

m ), (θ
(1)
1 , ..., θ(1)

m ), ......, (θ
(J)
1 , ..., θ(J)

m ) (2)

following a process such that θ
(j)
i is obtained from p(θi|θ(j−1)

−i ). Thus, θ
(j)
i is obtained

conditional on the most recent values of the other components. The values (θ
(0)
1 , ..., θ

(0)
m )

initialize the Gibbs sequence and should be given. We may summarize the Gibbs sampling
algorithm as follows

1 : Specify starting values θ(0) = (θ
(0)
1 , . . . , θ

(0)
m )

and set j = 0.
2 : Generate:

θ
(j+1)
1 from p(θ1|θ(j)

2 , . . . , θ
(j)
m )

θ
(j+1)
2 from p(θ2|θ(j+1)

1 , θ
(j)
3 , . . . , θ

(j)
m )

θ
(j+1)
3 from p(θ3|θ(j+1)

1 , θ
(j+1)
2 , θ

(j)
4 , . . . , θ

(j)
m )

...

θ
(j+1)
m from p(θm|θ(j+1)

1 , . . . , θ
(j+1)
m−1 )

3 : If j < J , set j = j + 1, and go back to Step 2.

The above algorithm yields J realizations θ(j) = (θ
(j)
1 , ..., θ

(j)
m ), for j = 1, 2, ..., J , from

a Markov chain, converging to the target distribution. We will refer to Step 2. of the
algorithm as ‘the Gibbs step’ and for each of the models that we discuss in the subsequent

1We are necessarily brief in our explanation of the Gibbs sampler. See Casella and George (1992), or
Hoogerheide et al. (2006b), among others, for a more elaborate discussion.
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sections we will always indicate what the Gibbs step looks like. Note that the components
of θ do not necessarily need to be one-dimensional. Generating draws for blocks of pa-
rameters instead in which case some of the θi components denote a block of parameters is
also possible.

The Gibbs algorithm is shown in the flow diagram in Figure 1 for a model with two
parameters which are treated as separate components (m = 2). It is illustrated in Figure 2
where we show an example path of Gibbs sampled points, when the conditional densities
of θ1|θ2 and θ2|θ1 are both standard Normal. The sample path is shown at different stages
of the algorithm.

Figure 1: Gibbs sampling: Flow diagram

For large enough J the sequence of Gibbs draws, generated from the conditional dis-
tributions, is distributed according to the joint and marginal posterior distributions. A
simple argument for a bivariate case is as follows. Suppose θi and θ−i have as joint poste-
rior distribution with density p(θi, θ−i). Then θ−i has the marginal posterior distribution

with density p(θ−i). In Step 2. of the Gibbs sampling algorithm, θ
(j)
i is drawn from

p(θi|θ(j−1)
−i ), which is the density of the conditional distribution of θi given θ

(j−1)
−i . The

joint density of θ
(j)
i and θ

(j−1)
−i is

p(θ
(j)
i |θ(j−1)

−i )p(θ
(j−1)
−i ) = p(θ

(j)
i , θ

(j−1)
−i ). (3)

Therefore, (θ
(j)
i , θ

(j−1)
−i ) is distributed according to the joint posterior distribution. For a

more detailed analysis on theoretical properties of the Gibbs sampler, we refer to Geweke
(1999), Tierney (1994) and Smith and Roberts (1993).
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Figure 2: Gibbs sampling: Example steps

(a) 1 substep (b) 1 step (c) 2 steps

(d) 10 steps (e) 100 steps (f) 1000 steps

Notes: Panels (a) through (f) show subsequent steps of the Gibbs sampler using two conditional posterior
densities, p(θ1|θ2) and p(θ2|θ1) that are both standard normal.

Because in practice it may takes some time for the Markov Chain to converge it is
common to discard the first B draws, where typically B << J . These draws are referred
to as the burn-in draws. Consequently, posterior results will be based only on the draws
θ(B+1), . . . ,θ(J) of the generated chain. Furthermore, the sequence of draws sometimes
does display some degree of autocorrelation. When autocorrelations are significant up
to the h − 1th lag, one should consider using only every hth draw and to discard the
intermediate draws (h is known as the thinning value). An altogether different approach
is to generate multiple Markov Chains instead of just one and then to use only the final
draw from each sequence. This means the Gibbs algorithm has to be executed a large
number of times. When opting for this approach the researcher does not have to worry
about which values to choose for B and h. Although the drawback is that this method
can be very computationally intensive, it can help prevent posterior results from being
determined by a particular set of starting values chosen for θ(0). As we will see in the next
section, randomizing over θ(0) can a worthwhile endeavor when the likelihood displays
signs of multimodality.
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2.2 The Gelman-Meng Example

To illustrate the workings of the Gibbs sampler we go through a number of examples
which are based on the model in Gelman and Meng (1991). Suppose that we have a joint
posterior density of θ1, θ2, which has the following form

p(θ1, θ2) ∝ exp

[

− 1
2 [aθ2

1θ
2
2 + θ2

1 + θ2
2 − 2bθ1θ2 − 2c1θ1 − 2c2θ2]

]

(4)

where a, b, c1 and c2 are constants under the restrictions that a ≥ 0 and if a = 0 then
|b| < 1 2. This class of bivariate distributions is discussed in Gelman and Meng (1991) and
has as feature that the random variables θ1 and θ2 are conditionally Normally distributed.
In fact, the conditional densities p(θ1|θ2) and p(θ2|θ1) can be picked off from (4) and
recognized as Normal densities with the following parameters

p(θ1|θ2, a, b, c1, c2) ∼ N
(

bθ2 + c1

aθ2
2 + 1

,
1

aθ2
2 + 1

)

(5)

p(θ2|θ1, a, b, c1, c2) ∼ N
(

bθ1 + c2

aθ2
1 + 1

,
1

aθ2
1 + 1

)

(6)

Note that, typically, the joint density of (θ1, θ2) is not Normal. By choosing different
parameter configurations for a, b, c1 and c2 we can construct joint posterior densities of
rather different shapes, while the conditional densities remain Normal densities. In the
remainder of this section we consider three types of shapes and we apply the Gibbs sampler
to each of these. Although the shapes are all in a way artificial since they are not based
directly on a model and data, doing so may give us some insights into the ease of but also
the possible difficulties with applying the Gibbs sampler before we move on to examining
econometric models in subsequent sections.

(i) Bell-shape

The first parameter configuration that we consider is the following; (a = b = c1 = c2 = 0)
in which case the joint density is given by

p(θ1, θ2) ∝ exp
[

−1
2 [θ2

1 + θ2
2]

]

(7)

Both the conditional densities and the joint density are standard Normal. The latter
is depicted in Figure 3(a). Gibbs sampling simply comes down to obtaining draws by
iteratively drawing from standard Normal densities3. A scatterplot of one million of such
draws is shown in Figure 3(b). The estimated posterior means and variances are equal to
0 and 1 for both parameters. These are exactly the parameters of the marginal densities
which, in this case, we know to be standard Normal. In fact, for the chosen parameter
configuration, the conditional and marginal densities coincide since the conditional density
for θ1 does not depend on θ2 and vice versa. In this particular example it is therefore
obviously not necessary to use Gibbs sampling. However, the aim of this example is
simply to illustrate the straightforward approach of the Gibbs sampler and its usefulness
for obtaining posterior results.

2These restrictions are to insure that the joint density in (4) is integrable and therefore a proper
probability density function.

3For all three examples in this section we used a burn-in period of B = 10, 000 draws and we set the
thinning value h equal to 10.
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Figure 3: Gelman-Meng: Bell-shape

(a) Joint posterior density (b) Gibbs draws

Notes: Panel (a) shows the Gelman-Meng joint posterior density for θ1 and θ2 given in (4) for parameter
values (a = b = c1 = c2 = 0) whereas panel (b) shows the scatterplot of one million draws from the Gibbs
sampler.

(ii) Ridges

The second parameter configuration that we examine is (a = c1 = c2 = 0, b = 1)4. The
joint density is now given by

p(θ1, θ2) ∝ exp
[

−1
2 [(θ1 − θ2)

2]
]

(8)

It is apparent from Figure 4(a) that this density is improper when −∞ < θi < ∞, for
i = 1, 2, since the ridge along the line θ1 = θ2 causes it to be non-integrable. However,

Figure 4: Gelman-Meng: Ridges

(a) Joint posterior density (b) Gibbs draws

Notes: Panel (a) shows the Gelman-Meng joint posterior density for θ1 and θ2 given in (4) for parameter
values (a = c1 = c2 = 0 and b = 1) whereas panel (b) shows the scatterplot of one million draws from the
Gibbs sampler.

4Note that this parameter vector violates the earlier stated parameter restrictions.
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on a bounded parameter region the posterior is proper. The scatterplot of Gibbs draws
for this example in Figure 4(b) reveals the ridge θ1 = θ2. Ridges may occur in nearly
nonidentified econometric models; see the next section for examples.

(iii) Bimodality

The third configuration we consider is (a = 1, b = 0) and large, but not necessarily equal,
values for c1 and c2

5. Here we select c1 = c2 = 10 which gives

p(θ1, θ2) ∝ exp

[

− 1
2 [θ2

1θ
2
2 + θ2

1 + θ2
2 − 20θ1 − 20θ2]

]

(9)

At first sight the scatterplot, shown in Figure 5(b), seems perfectly reasonable and posterior
means and variances can easily be computed. However, when inspecting the joint density

Figure 5: Gelman-Meng: Bimodality

(a) Joint posterior density (b) Gibbs draws

Notes: Panel (a) shows the Gelman-Meng joint posterior density for θ1 and θ2 given in (4) with parameter
values (a = 1, b = 0 and c1 = c2 = 10) whereas panel (b) shows the scatterplot of one million draws from
the Gibbs sampler.

as depicted in Figure 5(a) we see right away that the Gibbs sampler has only sampled from
one mode of p(θ1, θ2) but not from the other. Apparently it tends to get stuck in one of
the two modes6. This is because the modes are too far apart with an insufficient amount
of probability mass in between the two modes for the sampler to regularly jump from one
to the other. Admittedly, increasing the number of draws substantially will eventually
lead to a switch. However, one cannot be certain when this will happen. The scatterplot
shows that with a single run, one million draws is already an insufficient number to witness
such a switch. Therefore, the Gibbs output only provides the researcher with information
on a subset of the full domain of p(θ1, θ2) and posterior results are thus incorrect. One
option to try and at least signal the bimodality of the likelihood is to execute the Gibbs
Sampler several times with widely dispersed intial values. Although this example is a rather
extreme case, it should be clear that multi-modality can result in very slow converge for

5See also Hoogerheide et al. (2006a) for a further analysis of bimodality.
6Which of the two modes the Gibbs sampler gets stuck in depends on the initial values (θ

(0)
1 , θ

(0)
2 ).
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the Gibbs sampler. Multimodality may occur in reduced rank models when one is close to
the boundary of the parameter region.

Summarizing, the above examples of a bell-shaped, a ridge-shaped, and a bimodal-
shaped density, indicate that it is essential to scrutinize a proposed model and the shape
of its criterion function before moving on to drawing posterior inference on its parameters
through the Gibbs sampler. In the remainder of this paper this will be our main focal
point for econometric models.

3 Gibbs Sampling Within Canonical Econometric Models

We now begin our analysis of Bayesian inference by means of the Gibbs sampler using
typical workhorse models of econometric practice. First we apply the Gibbs sampler to
the basic linear regression model. After fixing notation and showing how straightforward it
can be to apply the Gibbs sampler in order to obtain posterior results, we extend the basic
model to the Cochrane-Orcutt model which allows for serial correlation in the residuals. We
show that the Cochrane-Orcutt can be considered to be a template model for two famous
time-series models: the Distributed Lag model and the Unit Root model. Moving from
modeling a single univariate dependent variable to modeling several dependent variables at
the same time we end this section with a (somewhat concise) examination of multivariate
models in which some of the dependent variables may be endogenous. Throughout this
section, our primary focus will be on drawing inference on the regression parameters in
the models. In Section 4 we shift our focus to considering variance components.

3.1 Basic Linear Regression Model

We start our analysis by considering the basic regression model. This linear model attempts
to explain the variance of a dependent variable yt through a set of explanatory variables,
as summarized in the (1 × K) (row-)vector xt where K is the number of variables in xt

(including a constant):

yt = xtβ + εt, t = 1, ..., T, with εt ∼ N (0, σ2
ε) (10)

To goal is to draw inference on the (K×1) vector of regression parameters β = (β1 β2 . . . βk)
′

and the scalar variance parameter σ2
ε . In matrix notation, this model is given by

y = Xβ + ε with ε ∼ N (0, σ2
ε IT

) (11)

where y denotes the vector of T time-series observations or cross-sectional observations
on the dependent variable, y = (y1 y2 . . . y

T
)′. X = (x′

1 x′
2 . . . x′

T )′ denotes the matrix of
observations on the explanatory variables and I

T
is an (T × T ) identity matrix.

For consistency we will always use matrix notation when we derive joint, conditional
or marginal densities. Throughout this study we use θ to indicate the vector of model
parameters. In this instance θ is given by θ = (β, σ2

ε). Furthermore, unless mentioned
otherwise, we will denote individuals or groups with the index i (i = 1, . . . , N), time-series
observations with index t (t = 1, . . . , T ), exogenous variables (as well as their corresponding
parameters in β) with index k (k = 1, . . . , K) and draws from the Gibbs sampler with index
j (j = 1, . . . , J).

10



Gibbs Sampling

The likelihood for the basic regression model is given by

p(y|X, β, σ2
ε) = (2πσ2

ε)
−T

2 exp

[

− 1

2σ2
ε

(y − Xβ)′(y − Xβ)

]

(12)

Combining the likelihood with a noninformative or uniform prior7

p(β, σ2
ε) ∝ (σ2

ε)
−1 (13)

yields the joint posterior density

p(β, σ2
ε |y, X) ∝ (σ2

ε)
−

(T+2)
2 exp

[

− 1

2σ2
ε

(y − Xβ)′(y − Xβ)

]

(14)

Combining the likelihood with informative (conjugate) priors is also possible of course.
If one has prior information it is strictly advisable if not necessary to include this in the
analysis (see the discussions in Geweke, 2005 and Lancaster, 2004). Specifying conjugate
priors is, however, not an easy task especially when one is faced with a higher dimensional
parameter region. Since our main question in this paper is concerned with what we can
learn about the model parameters through the data likelihood we will focus primarily on
non-informative priors. However, as we will see, doing so can result in the posterior density
being improper. In that case one needs to go back to the drawing board and carefully
specify appropriate informative prior densities to ensure that the joint density is proper.

A useful result to facilitate the derivation of the conditional and marginal posterior
densities is to rewrite (14) by completing the squares on β

p(β, σ2
ε |y, X) ∝ (σ2

ε)
−

(T+2)
2 exp

[

− 1

2σ2
ε

[

(y − Xβ̂)′(y − Xβ̂) + (β − β̂)′X ′X(β − β̂)
]

]

(15)

with β̂ = [X ′X]−1X ′y.
The only part in between brackets in (15) relevant for determining the posterior density

of β conditional on a value for σ2
ε is that which depends on β. The first part only consists of

data and does therefore not enter the parameters of the conditional density for β. From the
probability density functions given in Appendix A, we can recognize a multivariate Normal
density for β, given a value of σ2

ε , which has mean vector m = β̂ and variance matrix
S = σ2

ε [X
′X]−1, see equation (A-4). Similarly, the conditional density for σ2

ε , given a β,
follows from (A-3) and is Inverted Gamma with location parameter m = 1

2(y−Xβ)′(y−Xβ)
and ν = 1

2T degrees of freedom. Summarizing, we have

p(β|y, X, σ2
ε) ∼ N

(

β̂, σ2
ε [X

′X]−1
)

(16)

p(σ2
ε |y, X, β) ∼ IG

(

1

2
(y − Xβ)′(y − Xβ),

1

2
T

)

(17)

Ultimately, we are interested in learning about the properties of the marginal densities
for β and σ2

ε . In this model it is straightforward to derive these which in turn makes Gibbs

7A non-informative prior for the regression parameters can simply be specified as p(β) ∝ 1. For a
variance parameter a uniform prior comes down to p(σ2) ∝ (σ2)−1 which follows from specifying a uniform
prior for the logarithm of σ2. See Box and Tiao (1973), Chapter 1 for more details.
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sampling redundant here of course. However, since we can establish beforehand what the
marginal densities look like, we can easily corroborate the posterior results from the Gibbs
sampler which is exactly what we will do below. But in order to do so we first need to
derive the marginal densities.

To derive the marginal density for β we need to integrate out σ2
ε from the joint density.

For this we apply the Inverse Gamma integration step which consists of the following
proportionality

∫ ∞

0

(

σ2
)−

(T+2)
2 exp

[

− a

2σ2

]

dσ2 ∝ a−
1
2
T (18)

and which can be derived from (A-3), see also for example Bauwens et al. (1999). Applying
this result to (15) gives

p(β|y, X) =

∫ ∞

0
p(β, σ2

ε |y, X)dσ2
ε

∝
[

(y − Xβ̂)′(y − Xβ̂) + (β − β̂)′X ′X(β − β̂)
]−T

2

∝
[

y′M
X

y + (β − β̂)′X ′X(β − β̂)
]−T

2
(19)

In the last line of (19) we introduce the transformation matrix M
X

which is specified
in its more general form as M

A
= I

T
− P

A
with P

A
the projection matrix defined as

P
A

= A(A′A)−1A′ and A a general (T × K) matrix. We can now factorize (19) as follows

p(β|y, X) ∝
[

(T − K)+
(β − β̂)X ′X(β − β̂)

y′M
X

y/(T − K)

]−
(T−K)+K

2 [

X ′X

y′M
X

y/(T − K)

]
1
2

×
[

X ′X

y′M
X

y/(T − K)

]− 1
2
[

y′M
X

y
]−T

2 (20)

The last two factors depend only on data and will thus be part of a normalizing constant.
From the first two factors, however, we recognize a multivariate Student-t density function
for β with parameters m = β̂, S = X′X

y′M
X

y/(T−K) and ν = T −K, see (A-5). The marginal

density for β is therefore Student-t.
To determine the marginal density for σ2

ε we integrate (15) over the domain of β. Doing
so gives

p(σ2
ε |y, X) =

∫ ∞

−∞
p(β, σ2

ε |y, X)dβ

∝ (σ2
ε)

−
(T+2)

2 exp

[

− 1

2σ2
ε

[

(y − Xβ̂)′(y − Xβ̂) + (β − β̂)′X ′X(β − β̂)
]

]

∝ (σ2
ε)

−
(T−K+2)

2 exp

[

− 1

2σ2
ε

[

(y − Xβ̂)′(y − Xβ̂)
]

]

×
∫ ∞

−∞
(σ2

ε)
−K

2 exp

[

− 1

2σ2
ε

(β − β̂)′X ′X(β − β̂)

]

dβ (21)

The last line of (21) is proportional to a multivariate Normal density and integrates there-
fore to a constant leaving

p(σ2
ε |y, X) ∝ (σ2

ε)
−

(T−K+2)
2 exp

[

− 1

2σ2
ε

[

(y − Xβ̂)′(y − Xβ̂)
]

]

(22)
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Figure 6: US Industrial Production, Lydia Pinkham Sales and Advertising and
3-Month US Treasury Bill yield

(a) US Industrial Production; level & rate (%) (b) 3-Month US Treasury Bill yield (%)

(c) Unadjusted Lydia Pinkham series; sales and
advertising

(d) Seasonally adjusted Lydia Pinkham series;
sales and advertising

Notes: Panel (a) shows log levels (solid line) and growth rates (in % terms) for US Industrial Production
(Gross Value of Products: Final products and nonindustrial supplies). The monthly series runs from
January 1972 to September 2005 and was obtained from http://www.economagic.com. Panel (b) shows
end-of month levels for the 3-Month US Treasury Bill yield for the period January 1990-December 2005
which were obtained from the St. Louis FED website (http://research.stlouisfed.org/fred2). Panel
(c) shows the unadjusted Lydia Pinkham series for sales (solid lines) and advertising (dashed lines) whereas
panel (d) shows the seasonally series (constructed after prefiltering the data with the results of a preliminary
regression using 12 monthly dummies). The monthly series over the period January 1954-June 1960 were
taken from Palda (1964), Table 2, pp. 32-33.

From (A-3) it follows that the marginal for σ2
ε is Inverted Gamma with parameters m =

1
2(y − Xβ̂)′(y − Xβ̂) and ν = 1

2(T − K). The marginal densities are thus given as

p(β|y, X) ∼ t

(

β̂,
X ′X

y′M
X

y/(T − K)
, T − K

)

(23)

p(σ2
ε |y, X) ∼ IG

(

1

2
(y − Xβ̂)′(y − Xβ̂),

1

2
(T − K)

)

(24)
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Gibbs sampling for the basic linear regression model consists of iteratively drawing from
the conditional densities p(β|y, X, σ2

ε) and p(σ2
ε |y, X, β). The jth Gibbs step therefore

consists of

- generate β(j)|σ2
ε

(j−1)
from p(β|y,X, σ2

ε) ∼ N
(

β̂, σ2
ε

(j−1)
[X ′X]−1

)

- generate σ2
ε

(j)|β(j) from p(σ2
ε |y,X, β) ∼ IG

(

1
2 (y − Xβ(j))′(y − Xβ(j)), 1

2T
)

Empirical Illustration: US Industrial Production

To get a better understanding of what the Gibbs conditional densities look like graphically
and to see whether the generated Markov Chains can indeed be considered as samples from
the marginal densities, we apply the linear regression model to a monthly series of US
Industrial Production growth rates for the period January 1972-September 2005, shown
in Figure 6 (a). Denote Industrial Production growth by the symbol y and for simplicity
set X = ι

T
where ι

T
denotes a (T × 1) vector or ones. Therefore, the (scalar) β estimates

the average growth rate of production. For convenience we relabel it with the symbol

Figure 7: Conditional posterior densities

(a) p(µ|y, σ2
ε) (b) p(σ2

ε |y, µ)

Notes: Panel (a) shows the conditional posterior density for µ for given values of σ2
ε and the data vector

y: p(µ|y, σ2
ε) whereas panel (b) shows the conditional density of σ2

ε for given values of µ: p(σ2
ε |y, µ) when

we apply the linear regression model (11), with X = ι
T
, to the monthly US Industrial Production growth

rate for the period January 1972-September 2005.

µ. Note that the model specification we use here is not intended as a serious attempt at
modelling US IP growth, it merely serves as an example. The Gibbs conditional densities
are shown in Figure 7(a) and (b). The monthly average Industrial Production growth rate
in our sample equals 0.204% and Figure 7(a) shows that for any given value of σ2

ε the
conditional density for µ is nicely centered around this value. The conditional variance
of µ clearly varies with the value of σ2

ε . For increasingly larger values of σ2
ε the posterior

density flattens out and the variance for µ will therefore increase. Figure 7(b) on the other
hand shows that a given value for µ determines the location as well as the variance of the
conditional density for σ2

ε . The mean and variance of σ2
ε are lowest for values of µ close

to the average IP growth. For all other values, both the mean and variance are higher.
From the analytical expressions of the first two moments of an Inverted Gamma density,

14



Figure 8: Marginal posterior densities

(a) p(µ|y) (b) p(σ2
ε |y)

Notes: Panel (a) shows the analytical marginal posterior density (dashed line) for µ, p(µ|y), together with
a kernel density estimate (solid line) using the draws from the Gibbs sampler whereas panel (b) shows
the marginal density, p(σ2

ε |y), and the kernel density estimate for σ2
ε . The kernel densities are based on

100, 000 simulations after a burn-in of B = 10, 000 draws and selecting every h = 10th when we apply the
linear regression model (11), with X = ι

T
, to the monthly US Industrial Production growth rate for the

period January 1972-September 2005.

see Appendix A, it is clear why; the value of both moments increase when µ deviates more
from the sample mean.

Figure 8 shows kernel density estimates from 100,000 draws for µ (panel (a)) and
σ2

ε (panel (b)) from the Gibbs sampler (solid line). Also depicted (dotted line) are the
marginal densities given in (16) and (24). In either panel, both densities all but coincide.
The Gibbs sampler thus provides accurate posterior results for the parameters of interest.

3.2 The Cochrane-Orcutt Model

After having derived the conditional and marginal densities for the basic linear regression
model, we are now ready to consider the Cochrane-Orcutt model which extends the model
in (10) by allowing the error terms to have first order autocorrelation. That is:

yt = xtβ + νt, t = 1, ..., T (25)

νt = ρνt−1 + εt, with εt ∼ N (0, σ2
ε) (26)

where ρ is the parameter that determines the strength of the autocorrelation. The domain
of this parameter is bounded to −1 < ρ < 1. The domain for the remaining parameter
is given by −∞ < β < ∞ and 0 < σ2

ε < ∞. θ consists of (β, ρ, σ2
ε). When ρ = 0, the

Cochrane-Orcutt model coincides with the basic regression model since ν reduces to a
white noise series. As we will see later, difficulties occur when there is a constant term
and ρ has substantial posterior density mass at the edges of its domain. By substituting
(26) in (25) and rewriting the resulting expression in matrix notation, we have

y − ρy−1 = Xβ − X−1βρ + ε, with ε ∼ N (0, σ2
ε IT

) (27)

where y−1 and X−1 denote the one-period lagged values of y and X. This reformulation
shows that the Cochrane-Orcutt model is nonlinear in the parameters β and ρ. Although
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this hampers parameter estimation and inference when using the frequentist’s approach,
obtaining posterior results using Gibbs sampling is straightforward as we will show below.
We now turn to deriving the conditional and marginal densities and it will become ap-
parent that the Cochrane-Orcutt model serves as a template for several other well-known
econometric models.

Gibbs Sampling

Combining the likelihood for the Cochrane-Orcutt model with the same non-informative
prior we specified before in (13), the joint posterior density is as follows:

p(θ|y, X) ∝ (σ2
ε)

−
(T+2)

2 exp

[

− 1

2σ2
ε

(

y−ρy−1−Xβ+X−1βρ
)′(

y−ρy−1−Xβ+X−1βρ
)

]

(28)

To facilitate the derivation of the conditional densities it is useful to rewrite (27) in two
different ways. In each case we condition on one of the two types of regression coefficients.
First, we rewrite (28) conditional on values for ρ:

y∗ = X∗β + ε where

{

y∗ = y∗(ρ) ≡ y − ρy−1

X∗ = X∗(ρ) ≡ X − ρX−1
(29)

Second, conditional on values for β, (28) becomes:

ỹ = ρỹ−1 + ε where

{

ỹ = ỹ(β) ≡ y − Xβ
ỹ−1 = ỹ−1(β) ≡ y−1 − X−1β

(30)

To derive the conditional density for β we use (29) to rewrite the joint posterior density.
Doing so again gives us the joint density of the basic linear regression model so we can reuse
all our earlier derivations. It therefore follows immediately that the conditional density
for β is multivariate Normal with mean m = β∗ ≡ (X∗′X∗)−1X∗′y∗ and variance matrix
S = Sβ ≡ σ2

ε(X
∗′X∗). Similarly, using (30) we have that the conditional density8 for ρ

is Normal with mean m = ρ̂ ≡ (ỹ−1
′ỹ−1)

−1ỹ−1
′ỹ and variance s2 = σ2

ρ ≡ σ2
ε(ỹ−1

′ỹ−1)
−1.

The conditional density for σ2
ε is again Inverted Gamma with parameter m = 1

2ε′ε ≡
1
2

(

y − ρy−1 −Xβ + X−1βρ
)′(

y − ρy−1 −Xβ + X−1βρ
)

and ν = 1
2T degrees of freedom. The

jth Gibbs step thus consists of

- generate β(j)|ρ(j−1), σ2
ε

(j−1)
from p(β|y,X, ρ, σ2

ε) ∼ N
(

β∗(j−1), S
(j−1)
β

)

- generate ρ(j)|β(j), σ2
ε

(j−1)
from p(ρ|y,X, β, σ2

ε) ∼ N
(

ρ̂(j), σ2
ρ

(j−1)
)

- generate σ2
ε

(j)|β(j), ρ(j) from p(σ2
ε |y,X, β, ρ) ∼ IG

(

1
2ε(j)′ε(j), 1

2T
)

From the conditional densities it follows that the Gibbs sampler has no difficulties with the
nonlinearities in the likelihood. This is due to the fact that conditional on one regression
parameter, the model for the other regression parameter is the basic linear regression
model as shown in (25) and (26). In fact, the joint posterior density for ρ and any element
of β, or the other way around, resembles the density shown in Figure 3(a). Therefore,
the Gibbs sampler is a very convenient approach for drawing inference on the parameters
in these types of models. We note that due to the truncation of ρ, one should ignore

8More precisely, we have a truncated density defined at the interval −1 < ρ < 1.

16



drawings outside the interval (−1, 1). A more efficient algorithm has been developed by
Geweke (1991, 1996).

Furthermore, whereas in the basic regression model Gibbs sampling was unnecessary
because the marginal densities could be derived analytically, here we do need Gibbs sam-
pling. This is because the marginal densities for β, ρ and σ2

ε are not a member of any
known class of densities. To show why we derive the expression for p(β|y, X) and p(ρ|y, X).

After integrating out σ2
ε from the joint density we get

p(β, ρ|y, X) ∝
[

(

y − ρy−1 − Xβ + X−1βρ
)′(

y − ρy−1 − Xβ + X−1βρ
)

]−T
2

which can be rewritten in two different ways:

p(β, ρ|y, X) ∝
[

ỹ′Mỹ−1 ỹ + (ρ − ρ̂)′ỹ−1
′ỹ−1(ρ − ρ̂)

]−T
2 (31)

p(β, ρ|y, X) ∝
[

y∗′M
X∗y∗ + (β − β∗)′X∗′X∗(β − β∗)

]−T
2 (32)

Using the same techniques as we used before for deriving the marginal density of σ2
ε in

the previous section we can integrate out ρ from (31) and β from (32). The resulting
expressions are

p(β|y, X) ∝
[

(y − Xβ)′M
y−1−X−1β

(y − Xβ)
]−T−1

2 [

(y−1 − X−1β)′(y−1 − X−1β)
]− 1

2 c(β)

p(ρ|y, X) ∝
[

(y − ρy−1)
′M

X−ρX−1
(y − ρy−1)

]−T−K
2 [

(X − ρX−1)
′(X − ρX−1)

]− 1
2

where c(β) is given as c(β) = Φ
(

1−ρ̂
σρ

)

−Φ
(

−1−ρ̂
σρ

)

and Φ stands for the standard Normal

distribution function. Both these densities do not belong to any known class of density
functions which means that we need Gibbs sampling to provide us with posterior results.
Despite the fact that the marginal densities of β and ρ can not be determined analytically,
applying the Gibbs sampler is a straightforward exercise. Furthermore, under the condition
that all variables in X have some variability, there are no issues in terms of impropriety
of the joint posterior density revolving ρ reaching the edges of its domain. This is also
confirmed by the Fisher Information matrix which is defined as minus the expectation of
the matrix of second order derivatives of the log likelihood with respect to the parameter

vector θ, i.e. I = −E[ δ2 ln L(θ|y,x)

δθδθ
′ ]. For the Cochrane-Orcutt model the Information

matrix is given by9

I = −E









δ2 ln L
δρ2

δ2 ln L
δρδβ′

δ2 ln L
δρδσ2

ε
δ2 ln L
δβδρ

δ2 ln L
δβδβ′

δ2 ln L
δβδσ2

ε
δ2 ln L
σ2

εδρ
δ2 ln L
δσ2

εδβ′
δ2 ln L
δσ4

ε









=







T
1−ρ2 0 0

0 (X−ρX−1)′(X−ρX−1)
σ2

ε
0

0 0 T
2σ4

ε






(33)

The Hessian, which is defined as the inverse of the Information matrix, shows that even
when |ρ| is nearly identical to 1 none of the variances “explode”. In the next two sections
we will see this not always needs to be the case.

9We should note that we focus here on long term means only in which case E[y] = E[y−l] = Xβ for
l > 0. In reality, T is finite and therefore (small) sample means should be considered. For expositional
purposes, however, we focus solely on long term expectations; see Kleibergen and van Dijk (1994) for a
finite sample analysis.
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Table 1: Posterior results for the Cochrane-Orcutt, Koyck and Unit Root models

(a) Cochrane-Orcutt (b) Koyck (c) Unit Root
Posterior Posterior Posterior Posterior Posterior Posterior

mean s.d. mean s.d. mean s.d.

µ 0.202*** (0.042) β 0.771*** (0.250) µ 2.980* (4.260)
ρ 0.073* (0.047) ρ 0.478*** (0.143) ρ 0.986*** (0.009)
σ2

ε 0.718*** (0.036) σ2
ε 1.397*** (0.187) σ2

ε 0.053*** (0.006)

Notes: The table shows posterior results for the Cochrane-Orcutt model (28) with X = ι
T

and β = µ for
monthly US Industrial Production growth rates (January 1972-September 2005) in panel (a), the Koyck model
(37) for the monthly Lydia Pinkham data (January 1954-June 1960) in panel (b) and the Unit Root model (45)
for the monthly 3-month Treasury Bill rate (January 1990-December 2005) in panel (c). All results are based
on 100,000 simulations after a burn-in of B = 10, 000 draws and selecting every h = 10th draw. *** indicates
that zero is not contained in the 99% highest posterior density (HPD) region, ** indicates that zero is contained
in the 99% but not in the 90% and 95% HPD region and * that zero is contained in the 99% and 95% but not
in the 90% HPD region.

Empirical Illustration: US Industrial Production

To show the usefulness of Gibbs sampling in this context we again run the Gibbs sampler
on the monthly US Industrial Production growth rates where we now allow for first order
serial correlation in the error terms. Panel (a) of Table 1 reports posterior results. The
posterior mean of µ is nearly identical to the earlier reported monthly sample average of
0.204%. The posterior mean of ρ is 0.073. Since zero is contained in the 95% and 99%
but not in the 90% HPD region there is weak evidence for serial correlation. We note that
in this particular case we treat xt as a constant. The likelihood information is, however,
such that the probability mass of ρ is not near the boundary of unity. We will treat this
latter case in subsection 3.4.

In the next two subsections we discuss the Koyck Distributed Lag model and the Unit
Root model. As we will show, both models are nested in the Cochrane-Orcutt model.
They deviate from the latter by the way the exogenous variables are specified. Moreover,
the additional structure that is imposed on the exogenous variable results in boundary
issues culminating in a non-identification and non-stationary issue respectively when ρ is
near 1.

3.3 The Koyck Model

A further extension of the basic linear regression model that we analyze is the univariate
distributed lag model10. This model has proven to be one of the workhorses of econometric
modelling practice since it offers the econometrician a straightforward tool to investigate
the dependence of a variable on past values of the variable itself or past values of exoge-
nous explanatory variables. Here we focus in particular on the well known Koyck model
which is popular in for example marketing econometrics to investigate the dynamic link
between sales and advertising. The general distributed lag model has, in principle, an infi-
nite number of parameters. Koyck (1954) proposed a model specification in which the lag
parameters are a geometric series which is governed by a single unknown parameter. The

10For an extensive overview of distributed lag models, see Griliches (1967).
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resulting model is known as the geometric distributed lag model or simply as the Koyck
model. We will discuss the difficulties that can arise when applying the Gibbs sampler to
this model due to a boundary issue which results in a parameter (near) non-identification
issue. We will illustrate this by means of an empirical application using the well known
Lydia Pinkham dataset.

The Koyck model, in which we also allow for first order serial correlation in the error
terms, is given by

yt = βwt + νt, t = 1, ..., T (34)

wt = (1 − ρ)
∞

∑

i=0

ρixt−i (35)

νt = ρνt−1 + εt, with εt ∼ N (0, σ2
ε) (36)

where it is assumed that 0 < ρ < 1, −∞ < β < ∞ and 0 < σ2
ε < ∞.

Note that the effect of lagged values of the (single) explanatory variable xt is deter-
mined solely by ρ and that this parameter is assumed to be equal to the first order serial
correlation parameter11. The parameter vector is again given by θ = (β, ρ, σ2

ε). Substi-
tuting (36) in (34) gives the same expression as we found for the Cochrane-Orcutt model,
which slightly rewritten, equals

y − ρy−1 = β(w − ρw−1) + ε

Equation (35) puts additional structure on the term w−ρw−1, more specifically, w−ρw−1 =
(1 − ρ)x resulting in

y = ρy−1 + β(1 − ρ)x + ε, with ε ∼ N (0, σ2
ε IT

) (37)

This shows that the Koyck model is nested in the Cochrane-Orcutt model and that there-
fore all derivations we did for that model hold here as well. The specific structure that is
placed on the exogenous variable will result in a boundary issue when ρ is close to 1. We
can understand why this is so while there is no problem when this occurs in the Cochrane-
Orcutt model by realizing that β will be near non-identified for ρ close to 1. This means
that y effectively becomes a random walk and that exogenous variables no longer have
any adjusting effect on y. We will analyze the joint, conditional and marginal densities to
give insights in the consequences of the non-identification of β when applying the Gibbs
sampler.

Gibbs Sampling

The Gibbs jth step is given by

- generate β(j)|ρ(j−1), σ2
ε

(j−1)
from p(β|y, x, ρ, σ2

ε) ∼ N
(

β∗(j−1), σ2
β

(j−1)
)

- generate ρ(j)|β(j), σ2
ε

(j−1)
from p(ρ|y, x, β, σ2

ε) ∼ N
(

ρ̂(j), σ2
ρ

(j−1)
)

- generate σ2
ε

(j)|β(j), ρ(j) from p(σ2
ε |y, x, β, ρ) ∼ IG

(

1
2ε(j)′ε(j), 1

2T
)

11The parameter ρ is usually referred to as the “retention” parameter.
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where the parameters for the conditional densities of β and ρ are now specified as

β∗ = (x∗′x∗)−1x∗′y∗=
[

(1 − ρ)2x′x
]−1

x′(y − ρy−1) (38)

σ2
β = σ2

ε(x
∗′x∗)−1 =σ2

ε

[

(1 − ρ)2x′x
]−1

(39)

and

ρ̂ = (ỹ−1
′ỹ−1)

−1ỹ−1
′ỹ=

[

(y−1−βx)′(y−1−βx)
]−1

(y−1−βx)′(y−βx) (40)

σ2
ρ = σ2

ε(ỹ−1
′ỹ−1)

−1 =σ2
ε

[

(y−1−βx)′(y−1−βx
]−1

(41)

At first sight, it may seem straightforward to apply the Gibbs sampler to the Koyck model.
However, upon closer inspection of the conditional density parameters it becomes clear that
a problem can occur for values of ρ close to 1. Suppose that a value near 1 is drawn for
ρ. The conditional variance of β given this draw goes to infinity, see (39), which means
that any value along the line is likely to be drawn for β. If the next draw for β is indeed
large then the conditional variance for ρ goes to zero, see (41), as a result of which the
next draw for ρ is also going to be close to 1, see (40). This means that the Gibbs Markov
Chain will not only converge much slower but that is convergence is not even guaranteed
at all if ρ = 1 is acting as an absorbing state. The extent of this problem depends on how
much probability mass there actually is close to ρ = 1.

To understand the behaviour of the Gibbs sampler here we need to examine the joint
and marginal densities in detail to comprehend what is going on. The marginal densities
for β and ρ are as follows

p(β|y, x) ∝
[

(y − βx)′M
y−1−βx

(y − βx)
]−T−1

2 [

(y−1 − βx)′(y−1 − βx)
]− 1

2 c(β)

p(ρ|y, x) ∝
[

(y − ρy−1)
′M

(1−ρ)x
(y − ρy−1)

]−T−1
2 [

x′x
]− 1

2 (1 − ρ)−1

where c(β) is given by as c(β) = Φ
(

1−ρ̂
σp

)

− Φ
(

−ρ̂
σp

)

Focusing on the density for ρ, we can recognize it as a Student-t type density, except
for the factor (1−ρ)−1. It is exactly this factor that is causing the behaviour of the Gibbs
sampler. The reason is that the joint density p(β, ρ|y, x) is improper because it is constant
at, and therefore also very close to, ρ = 1 for −∞ < β < ∞. Graphically, this means
that the joint density has a “wall”, similar to the ridge that was depicted in Figure 4.
Integrating the joint density over ρ will cause the marginal density for β to potentially
have infinite tails because the joint density is all but flat close to ρ = 1. Similarly, the
marginal density for ρ will tend to infinity when ρ tends to 1.

To reiterate what we said before, the extent of the problem depends on the data at
hand. If the likelihood assigns virtually no probability mass to the region close to ρ = 1
then the marginal for β will be indistinguishable from a Student-t density. Furthermore,
the marginal density for ρ will still be infinite close to ρ = 1 but if ρ happens to be far
out in the tail of the distribution then this should not pose a big problem. If on the other
hand substantial mass is near ρ = 1 then action has be undertaken to prevent the Gibbs
sampler from reaching that part of the domain for ρ or, alternatively, to try and regularize
the likelihood. Choosing an appropriate prior density can do the trick.

Analyzing the Information Matrix gives similar insights in the irregularity in the joint
density close to ρ = 1 and furthermore, it provides us with a direction for a possible
solution to tackle this irregularity. The Information Matrix follows directly from (33) by
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substituting in X − ρX−1 = (1 − ρ)x. Therefore

I =







T
1−ρ2 0 0

0 (1−ρ)2x′x
σ2

ε
0

0 0 T
2σ4

ε






(42)

The Information matrix again shows that for ρ close to 1, the variance of ρ is zero (inverse
of the first diagonal element) whereas the variance of β is near infinity (inverse of the
second diagonal element).

Potential Solutions

In order to apply the Gibbs sampler without any problems something has to be about the
irregularity of the likelihood/joint density close to ρ = 1. A number of potential solutions
have been proposed in the literature to circumvent this problem, see e.g. Schotman and
van Dijk (1991) and Kleibergen and van Dijk (1994, 1998). Here we only briefly touch
upon the several options to give the researcher a flavor of how to tackle the improprietry
of the likelihood. One can distinguish three solution approaches: (i) truncation of the
parameter space, (ii) regularization by choosing a prior that sufficiently smooths out the
likelihood, (iii) use of a training sample to specify a weakly informative prior for β.

In terms of applying the first solution, one can truncate the domain of ρ near 1 and
check whether there is probability mass near 1. Imposing an upper bound can be achieved
by selecting for example a local uniform prior. The goal would be to only allow draws
for ρ that are at least η away from 1 with η > 0 to prevent a wall in the joint posterior
density. Choosing a specific value for η would necessarily be a subjective choice. But,
once agreed upon a sensible value for η one can apply the Gibbs sampler. Alternatively,
one can use a Metropolis-Hastings type step in which only draws that fall below 1 − η
are accepted. For an example of this method, see Geman and Reynolds (1992) for an
application to the (linear) image restoration problem (see also Geman and Geman, 1984)
and Hurn and Jennison (1996) for a discussion on how the Truncated Gibbs Sampler fits
in the Metropolis-Hastings class of sampling algorithms by choosing the proposal density
such that it takes care of truncating the domain of ρ.

As for the second solution, one can try and regularize the likelihood in the neighborhood
of ρ = 1 such that it becomes a proper density. This can be achieved by instead of an
uninformative prior as in (13), using a prior that is chosen in such the way that it eliminates
the factor (1 − ρ)−1. From the Information matrix in (42) we can construct the following
Jeffreys’ type prior for β given ρ and σ2

ε ,
12

p(β|ρ, σ2
ε) ∝

(1 − ρ)

σ2
ε

for 0 < ρ < 1 (43)

Going through the derivations of the joint and marginal densities again with this prior will
show that this prior eliminates the factor (1− ρ)−1 from the marginal density of ρ. What
basically happens is that the marginal density for ρ is now integrable everywhere except
for ρ = 1 which in turn has a zero probability of occurring.

12In general the Jeffreys’ prior is obtained from the relevant element of the square root of the determinant
of the Information matrix of the considered model. For our purposes, however, we use a somewhat stronger

prior because we need (1 − ρ)1 instead of (1 − ρ)
1
2 to regularize the likelihood. For more details and an

advanced analysis on similar Jeffreys’ priors we refer to Kleibergen and van Dijk (1994, 1998).
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The third solution is another way of regularizing the posterior density. One can use
a training sample13 to specify a weakly informative prior for β. Schotman and van Dijk
(1991) specify the following prior

p(β|ρ, σ2
ε) ∝ N

(

y0,
σ2

ε

(1−ρ)2

)

for 0 < ρ < 1 (44)

where y0 is the starting value for the time-series of y. The intuition behind this prior is
that as ρ approaches 1 it becomes increasingly difficult to learn about β from the data
since the mean of y, which depends on β, does not exist for ρ near 1. The prior is stronger
for smaller values of ρ but approaches an uninformative prior for ρ → 1. It is derived
from the unconditional distribution of y0 under the assumption of Normality. The effect of
this Normal prior on the joint posterior density is that it eliminates the pronounced wall
feature in the joint density. We will see an example of this approach when we discuss the
Unit Root model

Further solutions, which we do not discuss here in the detail, are to reparameterize the
model in such a way that the Gibbs sampler can be used without any problems for the
reformulated model. However, one still has to translate the posterior results back to the
original model. Without imposing some sort of prior, similar problems will still occur only
now at a different stage in the analysis. For examples of reparametrization see for instance
Gilks et al. (2000). Finally, modified versions of the Gibbs sampler such as the Collapsed
Gibbs sampler (see Liu, 1994), where some parameters can be temporarily ignored when
running the Gibbs sampler (in this case ρ) can be useful in this context as well.

Empirical Illustration: Sales and Advertising

To illustrate the behaviour of the Gibbs sampler for the Koyck model, we estimate the
model (34)-(36) using the Lydia Pinkham dataset (see Palda, 1964). This dataset has
been used extensively in marketing studies to investigate the dynamic relationship between
advertising and sales. Figures 6(c) and 6(d) show the unadjusted and seasonally adjusted
series. When we apply the Gibbs sampler on the latter series using the Gibbs conditional
densities without any modifications (that is we use a uninformative prior), we run into
the problems just discussed. We observe occasional extreme draws of β with an order
of magnitude of ±103. These occur, as expected, for draws ρ(j) that are close to unity.
However, the likelihood only assigns a small probability mass to values of ρ close to 1 so
only relatively few draws of ρ are close to 1. Nevertheless, this issue should be properly
addressed. We therefore truncated the domain of ρ as explained earlier by choosing η =
10−5. The posterior results of the Gibbs sampler with this modification are shown in Table
1, panel (b). The posterior mean of ρ is 0.48, which implies that 90% of the advertising
effect has taken place after approximately nine weeks14. This result is similar to the results
documented in earlier studies, see Clarke (1976). For empirical applications of the Koyck
model using classical (maximum likelihood) estimation techniques see for example Palda
(1964), Bass and Clarke (1972) and Clarke (1976). So here truncation seems sufficient to
address the impropriety of the joint density.

13For details on training samples we refer to O’Hagan (1994).
14The time period ∆t during which (100 × α)% of the expected cumulative advertising effect has taken

place can be shown to be equal to ∆t = ln(1 − α)/ ln(ρ̂) − 1, see Clarke (1976), pp. 348.
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3.4 The Unit Root Model

A second model that turns out to be nested in the Cochrane-Orcutt model is the Unit
Root model. As what we saw before with the Koyck Model, the Unit Root model puts a
particular structure on the exogenous variables. In particular, xt is imposed to be constant
and therefore it holds that X − ρX−1 = (1− ρ)ι

T
. The resulting model, after relabelling β

by µ, is a first order autoregressive model for y

yt − µ = ρ(yt−1 − µ) + εt (45)

where µ is the unconditional mean of the time-series {yt}T
t=1. Similar as for the Koyck

model, imposing this structure introduces a boundary issue which in this model results in
non-stationarity for y which is caused by the non-identification of µ. In an AR(1) model
for yt, the interpretation of µ depends on whether the series y is stationary (ρ < 1) or
whether it has a unit root (ρ = 1). In the latter case, the mean of y does not exist and µ is
thus non-identified. Therefore, even when y is a weakly stationary process, with ρ close to
unity, any value for µ along the real line is likely to be drawn in the Gibbs sampler when ρ
is drawn close to 1. This will not only make it very difficult to pinpoint the posterior mean
of µ but it also causes the sequence of draws for ρ to have difficulties moving away from
ρ = 1 as was discussed before. Of course, ρ close to 1 can be an indication that one should
model first differences of y instead of y itself which circumvents the entire issue altogether.
However, for series such as interest rate levels there is no economic interpretation why they
should be I(1) processes and one is left with dealing with the boundary issue nonetheless.

For series that are near unit root, substantial probability mass will lie close to ρ = 1 so
that the impropriety of the joint posterior poses a serious issue. As an example we depicted
the joint density for the unit root model for a series of monthly data on the 3-month US
Treasury Bill in Figure 9(a). A time-series plot of this series is given in Figure 6(b).
Figure 9(a) clearly shows the pronounced wall feature close to ρ = 1. In order to resolve
the impropriety of the joint density a local uniform prior or truncation of the domain for ρ
is unsatisfactory here because of the amount of probability mass at the edge of the domain
of ρ. Using the Schotman and van Dijk (1991) prior to regularize the joint density is likely
to be more promising here. In fact, the joint density which results from combining the
data likelihood with this particular prior is shown in Figure 9(b). The joint density no
longer has a wall close to ρ = 1 although it still flattens out somewhat near the edge of
the domain. We note that this posterior may also be interpreted as the exact likelihood
including the initial observation. For details see Schotman and van Dijk (1991).

Empirical Illustration: US Treasury Bill Rates

To illustrate, we obtain posterior results for the Unit Root model when applied to the 3-
month US Treasury Bill series. This series portraits unit root type behavior as is evident
from Figure 6(b). This is corroborated by posterior results from the Gibbs sampler. The
posterior mean of ρ equals 0.991. However, whereas the sample mean of the T-bill series
equals 4.16%, the posterior mean of µ is 1.36% and has a posterior standard deviation of
a staggering 23.89%. Figure 10(a) shows that a substantial fraction of the draws for ρ are
close to 1 and that the draws for µ are therefore all over the place. The scatterplot in
Figure 10(b) shows that µ can be anything when ρ is drawn close to 1. As mentioned
earlier, truncating the domain ρ at 1 − η might not be the best way to go here. In this
case, draws for ρ close to 1 are in the region of the distribution that is of particular interest,
as we expect ρ to be close to unity. Imposing the Schotman and van Dijk (1991) prior in

23



Figure 9: Joint posterior density in the Unit Root model

(a) Uniform prior (b) Schotman and van Dijk (1991) prior

Notes: Panel (a) shows the joint posterior density p(λ, µ|y) when we use a uniform prior as in (13) whereas panel
(b) shows the same posterior density however now with the prior proposed by Schotman and van Dijk (1991) as
given in (44). In both panels we use the 3-Month US Treasury Bill rates for the period January 1990-December
2005 for the data vector y.

Figure 10: Gibbs draws for the Unit Root Model with a non-informative prior

(a) Gibbs draws for ρ (b) Scatterplot of Gibbs draws for µ and ρ

Notes: Shown are the Gibbs draws for ρ, panel (a), and a scatterplot of the Gibbs draws for µ and ρ, panel (b).
The graphs are based on the first 10,000 of a total of 100,000 draws from running the Gibbs sampler for the
Unit Root model with a non-informative prior for θ. In the model we use the 3-Month US Treasury Bill rates
for the period January 1990-December 2005 for the data vector y.

(44) on the other hand seems more appropriate. Doing so removes the wall in the joint
density at ρ = 1. Table 1, panel (c) shows posterior results when the prior is imposed. The
posterior mean (standard deviation) for µ and ρ are now 2.98% (4.26%) and 0.986 (0.009)
respectively, which are more realistic.
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3.5 The Instrumental Variables Model

The final class of models that we discuss in the current section are multivariate models.
The issues involved here are similar to those surrounding univariate unit root models, i.e.
non-identifiability of parameters. This will result in the Information Matrix being singular,
or alternatively, in the Hessian having a reduced rank. This reduced rank problem can
occur in several well-known models, such as for example Cointegration models, Vector
Autoregressive (VAR) and Simultaneous Equation Models (SEM) which in turn are closely
linked to Instrumental Variables (IV) models.

To show which role non-identifiability plays in these models we give an example by
means of a just identified IV model and in particular we focus on the Incomplete Simulta-
neous Equation Model (INSEM). Our analysis, which is necessarily brief, is based on van
Dijk (2003) and Hoogerheide et al. (2006a) and we refer to that study for a more in-depth
analysis. Consider the INSEM model as it is specified in Zellner et al. (1988)15

y = xβ + ε (46)

x = zπ + ν (47)

[ε ν]′ ∼ N
(

[0 0]′ , Σ
)

with Σ =

[

σ2
ε σε,ν

σε,ν σ2
ν

]

(48)

with y, x and z all having dimensions (T × 1) and β and π being scalar parameters. θ is
given by θ = (β, π,Σ). In this model, y is be to interpreted as the structural variable of
interest, x is an endogenous variable and z is the (weakly exogenous) instrument. Similarly,
β is the structural parameter of interest and π measures the quality of the instrument.
Furthermore, the correlation parameter ρ =

σε,ν√
σ2

εσ2
ν

measures the degree of endogeneity

of x in the equation for y. (46)-(48) is known as the structural form of the INSEM. By
substituting (47) in (46) we can derive the reduced form which is given by

y = zπβ + ξ (49)

x = zπ + ν (50)

[ε ν]′ ∼ N
(

[0 0]′ , Σ
)

with Σ =

[

σ2
ε σε,ν

σε,ν σ2
ν

]

(51)

with ξ = ε + ν. We can interpret the reduced form model as a multivariate regression
model which is nonlinear in the parameters β and ρ as in (37). As was the case in the
Unit Root model, this nonlinearity can lead to a non-identifiability problem. In particular,
when π = 0, the joint posterior density if we assume a noninformative prior, is improper
because it is flat and nonzero in the direction of β. In fact, the joint density will look very
similar to that in Figure 9(a) in the sense that it has a wall at π = 0. Therefore, β is not
identified when π = 0 whereas it will be for any β 6= 0. In a multivariate setting where
y, x and z are all matrices and β and π are matrices as well, the identification problem of
(part of the elements) of β occurs when π = 0 or when π is of reduced rank. The above
problem is known as local non-identification and is discussed in detail in Kleibergen and
van Dijk (1998).

As a result of the local-identification problem, the marginal density for π is non-
integrable because of infinite probability mass near π = 0 (see Kleibergen and van Dijk,
1998). Whether or not the impropriety of the joint density will be revealed in the output

15The reason this model is called just identified is because there is only a single instrument, z.
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from the Gibbs Sampler is unclear. Slow convergence of the Gibbs Sampler due to the fact
that π = 0 is acting as an absorbing state could be an indication. Examples of bimodal
posterior densities on bounded intervals are given in Hoogerheide et al. (2006a). A pos-
sible solution to circumvent the local non-identification problem in INSEM model would
again be the specification of sensible prior densities. However, it can be an arduous task
to find conjugate priors, mainly since these will have to curtail multiple parameters all at
the same time.

In this section our focus has been on drawing inference on the regression parame-
ters in univariate as well as multivariate models. In addition to the models we considered,
several other model specifications, like ARMA models or error-correction models, may also
be used. This is a topic for further research. As long as the researcher finds herself in a
region of the parameter space where the likelihood is well behaved, for example in the case
of the basic linear regression model, then the Gibbs sampler can be used in a straightfor-
ward fashion to obtain posterior results. However, when the likelihood assigns sufficient
probability mass to the edges of the domain of the parameter region this may result in
local identification issues, for example in the Unit Root model for ρ close to 1. Impropriety
problems of the joint density can then occur and one needs to resort to measures such as
imposing (weak) informative priors.

4 Gibbs Sampling Within Variance Component and Unob-
served Component Models

We now switch our attention to drawing inference on variance parameters instead of re-
gression parameters, in particular, when a variance tends towards the zero-bound and/or
when a degrees of freedom restriction may be violated or an identification problem arises.
We do so by analyzing again a canonical type of model, the so-called Hierarchical Linear
Mixed Model (HLMM). This model is a variance components model, that is, the relative
importance of several variances is the object of study. A second feature of this canoni-
cal model is the presence of unobserved components. The starting point of our analysis
will be a basic specification of the HLMM. This model serves as a parent model for such
extensions as a state space model and a panel data model, which we discuss subsequently.

4.1 Preliminaries

Before we specify the basic set-up of the HLMM we first discuss two preliminary models,
focusing on variances of disturbances. The models serve to identify the issues involved.

Linear regression model with a small number of observations

In Section 3.1 we analyzed the basic linear regression model. Now we revisit this model
which we simplify using xt = 1 and β = µ

yt = µ + εt, t = 1, ..., T, with εt ∼ N (0, σ2
ε) (52)

We emphasize that in this section the number of observations T may refer to the number
of observation over time of a time series, to individuals or groups of individuals in a cross-
section. For notational convenience, we use here the same symbol T for time series and
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cross-section observations. If we use a uniform prior on both µ and σ2
ε ,

p(µ, σ2
ε) ∝ 1 (53)

then we can derive the marginal densities of µ and σ2
ε as

p(µ|y) ∼ t

(

µ̂,
(T − 3)T

s2
, T − 3

)

p(σ2
ε |y) ∼ IG

(

1

2
(y − ι

T
µ̂)′(y − ι

T
µ̂),

1

2
(T − 3)

)

with µ̂ = 1
T ι′

T
y and s2 = y′Mι

T
y. Note that the degrees of freedom are now for the general

case T − K − 2 since we use a uniform prior on both µ and σ2
ε . In our case we have

K = 1 16. These analytic results are necessary to analyze the convergence of the Gibbs
step. From the parameters of the marginal densities and the conditions given in Appendix
A it is clear that in order for these Student-t and Inverted Gamma densities to exist one
needs more than 3 observations, i.e. T > 3. Further, in order for the first moment of each
density to exist it is required that T > 4 for the marginal density of µ and T > 5 for the
marginal density of σ2

ε . Similarly, for the second moment to exist we need T > 5 and T > 7
respectively. See also the discussions in Koop (2003) and Geweke (2005). For illustration,
Figure 11 shows that the right tail of an Inverted Gamma density tends to zero at a rate

Figure 11: Inverted Gamma density

Notes: The graph shows the Inverted Gamma density function, given by (A-3), for y = 10 and for a varying
number of degrees of freedom, ν.

that is too small when the number of degrees of freedom is too small. For instance, for
ν = 2 the first moment exists but the second moment does not whereas both moments
exist for any ν > 2. Note that the density in (A-3) is stated in terms of ν. Therefore, from
a data likelihood perspective, the relation between r and T will be ν = 1

2T . A non-flat
prior will change T to for example T + 1 or T + 2.

16A Jeffreys’ prior, p(σ2
ε) ∝ 1/σ2

ε , increases the number of degrees of freedom with 1. As a result,
densities now exist for T > 1.
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The Gibbs conditional densities, using a uniform prior, are given by

p(µ|y, σ2
ε) ∼ N

(

µ̂,
1

T
σ2

ε

)

p(σ2
ε |y, µ) ∼ IG

(

1

2
(y − ι

T
µ)′(y − ι

T
µ),

1

2
(T − 2)

)

Only focusing on these conditional densities shows that T = 3 is a already sufficient for
the Gibbs sampler to run. With a Jeffreys’ prior T = 1 is sufficient. However, it follows
from our analysis that in both situations, the marginal densities for µ and σ2

ε do not exist.
Thus, we have a simple case where the Gibbs sampler can be applied as a simulation
method, but the joint and marginal densities do not exist, see also the discussion in for
example Koop (2003). Therefore, the generated Gibbs sample does not make sense. We
emphasize that for the usual number of time series observations this degrees of freedom
restriction is obviously of no significance. However, for the case of the number of groups
in a panel it may become restrictive. In Section 4.4 we give an example using a panel data
model.

Naive Heteroscedasticity

Consider a model in which each observation is allowed to have its own variance parameter

yt = µ + εt, t = 1, ..., T, with εt ∼ N (0, σ2
t ), (54)

From the analysis of the previous model we know that, depending on which (non-informative)
prior specification is used, we need multiple observations to obtain sensible posterior re-
sults for θ = (µ, σ2

1, . . . , σ
2
T ). One approach would be to partition the observations into

groups, where it is assumed that per group the variance is constant whereas it is allowed
to be different across groups. Each partition needs to be chosen in such a way that it
contains a sufficient number of observations. For example, allowing for just two groups,
inference in (54) is possible if we impose that

σ2
t =

{

σ2
1 for t = 1, ..., τ

σ2
2 for t = τ + 1, ..., T

(55)

for any value of τ in the open interval (1, T ), where we assume that τ is known and T > 2.
Our main point, although as trivial as it may seem, is that the degrees of freedom

restriction implies that one needs multiple observations to draw inference on variance
components. This may become relevant in particular in dynamic panels with groups of
observations. We note that Geweke (1993) uses a weakly informative inverted Gamma
density which makes the posterior more regular.

4.2 Hierarchical Linear Mixed Model (HLMM)

An example of a canonical model with at least two variances is the class of HLMM. We
introduce this class through the following hierarchical model with two variance components

yt = µt + εt, with εt ∼ N (0, σ2
ε) for t = 1, . . . , T (56)

µt = θ + ηt, with ηt ∼ N (0, σ2
η) and E [εtηs] = 0 (57)

with parameter vector θ = (θ, µ, σ2
ε , σ

2
η). µ is a vector containing the time-varying mean of

y: µ = (µ1, . . . , µT )′ and θ is the mean of the distribution of µt which, for any t, is Normal
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with variance σ2
η. This model serves as a parent model for more elaborate models such as

state space models or panel data models. Before moving on to specifying and discussing
these models, we analyze the base model by distinguishing between two cases. Each case
helps to gain a better understanding of the dynamics of the HLMM class of models. Note
that unless stated otherwise, we assume a flat prior for each of the variance components.

(i) σ2
ε = 1 and T small: a degrees of freedom bound

Because σ2
ε is given, the only unknown variance component is σ2

η. The requirement on
a minimum number of degrees of freedom as discussed in Section 4.1 is of importance
here. Sensible posterior results can only be obtained when there is a sufficient number
of observations. As before, the Gibbs sampler may work in this model even when the
marginal posterior densities for θ and σ2

η do not exist, see Hobert and Casella (1996) for
an example and discussion17. The conditional densities p(θ|σ2

η) and p(σ2
η|θ) can be derived

from first substituting (57) in (56)

yt = θ + εt + ηt with ηt ∼ N (0, σ2
η) (58)

Since the dynamics of εt are known, running the Gibbs sampler consists of the following
steps

- generate θ(j)|σ2
η

(j−1)
from p

(

θ|y, σ2
η

)

∼ N
(

θ̂, 1
T

σ2
η

(j−1)
)

- generate σ2
η

(j)|θ(j) from p
(

σ2
η|y, θ

)

∼ IG
(

1
2 (y − ι

T
θ(j))′(y − ι

T
θ(j)), 1

2 (T − 2)
)

with θ̂ = 1
T ι

T
′y. Note that this is Gibbs sampling without having to concern oneself about

µ. However, it is relatively easy to construct a Gibbs sampling step where µ is drawn
alongside θ and σ2

η; see Hobert and Casella (1996).

(ii) σ2
ε unknown and T large: an identification issue

By taking T large enough, the researcher does no longer need to worry about the marginal
posterior densities possibly being non-existent. However, by making the first variance
component, σ2

ε , unknown as well introduces a new issue. More specifically, she now has
to deal with an identification issue in the sense that it not possible to distinguish the two
variance components from each other. Why this is the case can be made clear as follows.
Note first that since T is assumed to be large enough, the marginal densities of σ2

ε and σ2
η

will exist. However, respecifying the model in (58) to

y = ι
T
θ + ε + η with ε ∼ N (0, σ2

ε IT
) and η ∼ N (0, σ2

ηIT
) (59)

yields that the unconditional mean and variance of y are given by E [y] = ι
T
θ and V[y] =

(σ2
ε+σ2

η)IT
. The same result follows from the joint posterior density which, after integrating

out θ, is given by

p(σ2
η, σ

2
ε |y) = (σ2

η + σ2
ε)

− 1
2
(T−1) exp

(

− 1

2

(y − ιT θ̂)′(y − ιT θ̂)

σ2
η + σ2

ε

)

(60)

Clearly, only the total variance is identified, not the individual components. Furthermore,
the roles of σ2

ε and σ2
η are interchangeable. This holds true for any value of the signal-

to-noise ratio which is defined as SN = σ2
η/σ2

ε . Figure 12 shows the joint density for
signal-to-noise ratios of 1 and 0.5. Panels (a) and (b) show that irrespective of the signal-

17Note that Hobert and Casella (1996) assume a Jeffreys’ prior as a result of which the Inverted Gamma
density for σ2

η has one degree of freedom since in their example T = 2.
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Figure 12: Joint posterior density of σ2
ε and σ2

η with a uniform prior

(a) SN = 1 (b) SN = 0.5

Notes: Panel (a) and (b) show the joint density in (60) with a signal-to-noise ratio of 1 and 0.5 respectively.
For both panels y was simulated from (56)-(57) with θ = 1 and for panel (a) σ2

ε = σ2
η = 1 whereas for panel (b)

σ2
ε = 2, σ2

η = 1 was used.

to-noise ratio the joint density is perfectly symmetrical. It is also clear from the figure that
the joint density will always have a ridge. Note that everywhere along this ridge the sum
of the variance components is the same. This becomes evident by first defining ξ = ε + η
and σ2

ξ = σ2
ε + σ2

η and then recognizing the resulting model as the basic linear regression

model which only has a single variance component. The model in (56)-(57) basically splits
up this single component into two components which explains the ridge. However, because
this ridge is on a bounded domain the joint density is nevertheless integrable18. The Gibbs
sampler can therefore be used to obtain posterior results. The Gibbs step is given by

- generate θ(j)|σ2
ε

(j−1)
, σ2

η

(j−1)
from p

(

θ|y, σ2
ε , σ2

η

)

∼ N
(

θ̂, 1
T

(σ2
ε

(j−1)
+ σ2

η

(j−1)
)
)

- generate σ2
ε

∗(j)|θ(j), σ2
η

(j−1)
from p

(

σ2
ε

∗|y, θ, σ2
η

)

∼ IG
(

1
2 (y − ι

T
θ(j))′(y − ι

T
θ(j)), 1

2 (T − 2)
)

- generate σ2
η

∗(j)|θ(j), σ2
ε

(j)
from p

(

σ2
η

∗|y, θ, σ2
ε

)

∼ IG
(

1
2 (y − ι

T
θ(j))′(y − ι

T
θ(j)), 1

2 (T − 2)
)

where σ2
ε
∗(j) ≡ σ2

ε
(j)

+ σ2
η
(j−1)

and σ2
η
∗(j) ≡ σ2

η
(j)

+ σ2
ε
(j)

are Inverted Gamma distributed
random variables which have been shifted to the right by an amount of σ2

η and σ2
ε re-

spectively. Note that this is again Gibbs sampling without sampling µ directly. From the
latter two conditional densities it is clear that the role of the two variance components is
interchangeable. The dynamic processes in (56) and (57) have an identical structure. The
result is an identification issue since it is impossible to distinguish σ2

ε from σ2
η.

A further problem arises when instead of a uniform prior, a Jeffreys’-type prior is used,
p(θ) ∝ 1

σ2
ε

1
σ2

η
, in which case the joint density becomes

p(σ2
η, σ

2
ε |y) =

1

σ2
ε

1

σ2
η

(

1

σ2
η + σ2

ε

)
1
2
(T−1)

exp

(

− 1

2

(y − ι
T
θ̂)′(y − ι

T
θ̂)

σ2
η + σ2

ε

)

(61)

18The density shown in Figure 4(a) on the other hand has a ridge on the domain [0,∞) × [0,∞) which
makes it non-integrable.
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Figure 13 shows that the Jeffreys’ prior causes the joint density to shoot off to infinity
for either σ2

ε → 0 or σ2
η → 0 19. Therefore, the joint posterior is now improper and the

Figure 13: Joint posterior density of σ2
ε and σ2

η with a Jeffreys’ prior

(a) SN = 1 (b) SN = 0.5

Notes: Panels (a) and (b) show the joint density in (61) with a signal-to-noise ratio of 1 and 0.5 respectively.
For both panels y was simulated from (56)-(57) with θ = 1 and for panel (a) σ2

ε = σ2
η = 1 whereas for panel (b)

σ2
ε = 2 and σ2

η = 1 was used.

Gibbs sampler will not converge. In Hobert and Casella (1996), Theorem 1, a number
of conditions are stated that ensure propriety of the posterior density in HLMM models.
Note that the Jeffreys’ prior violates condition (a) of the theorem, while a uniform prior
leads to a proper posterior, see also Gelman (2006).

Solutions

A number of solutions exist to prevent the problems presented in case (i) and (ii). For case
(i) increasing the number of observations and assuming that the variance is identical across
all observations will prevent the degrees of freedom problem. To solve the identification
issue of case (ii) one can proceed in a number of ways. One possibility of dealing with this
problem is to impose an identifiability constraint on the variance components, for example,
σ2

ε > σ2
η. Imposing this constraint in the Gibbs sampler aids in classifying the Gibbs draws

to either of the variance components. However, it should be noted that ‘identification’ is
only coming from the constraint and not in any way from the data.

Another possibility is to extend the basic HLMM in such a way that one can distinguish
σ2

ε from σ2
η. Two possible directions can be taken here. The first direction is to change the

dynamics of µ by changing the specification of the model in (56)-(57) to that of a State-
Space model. The variance components can then be identified from the additional imposed
model structure. The second direction is to use a second source of information. Including
additional information via more dependent variables in a Panel Data model enables one
to identify σ2

η from the cross-sectional observations.

19Although Figure 13 is similar in shape as Figure 5 the two figures have a very different interpretation.
Whereas Figure 5 shows a density that has two well-defined modes (albeit far apart) the density in Figure
13 is only well behaved in the domain (δ,∞) × (δ,∞) for a δ that is sufficiently far away from zero. The
latter density goes to infinity when either of the variance components tends to zero.
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4.3 State Space Model

Starting from the HLMM in the previous paragraph we can specify a State-Space model
(SSM) by introducing time-series dynamics for the latent variable. Specifying a random
walk for the state variable µt gives

yt = µt + εt, with εt ∼ N (0, σ2
ε) and t = 1, . . . , T (62)

µt = µt−1 + ηt, with ηt ∼ N (0, σ2
η) and E [εtηs] = 0 (63)

with θ = (µ, σ2
ε , σ

2
η). This model, which is generally known as the local level model,

see Harvey (1989), is a basic specification of a State-Space model and has been studied
extensively in the literature, e.g. Koop and van Dijk (2000).

More elaborate State-Space models are easily obtained by including explanatory vari-
ables in the measurement equation (62) and state equation (63), see Hamilton (1994) or
Kim and Nelson (1999) for an overview.

The main tool for drawing inference in State-Space models is the Kalman Filter. This
recursive procedure computes the optimal estimate of the unobserved state vector µ given
the data y and values for the remaining parameters, see Kim and Nelson (1999) for more
details. Popular algorithms for drawing Bayesian inference in State-Space models are given
in Carter and Kohn (1994), De Jong and Shephard (1995) and Durbin and Koopman
(2001).

The specification in (63) implies that µt is a random walk process which follows from
recursively substituting µt−1, µt−2 etc. Due to the additional structure of the State Space
model one can now distinguish σ2

ε from σ2
η and therefore identify both variance components.

Gibbs Sampling

We explain the Gibbs step in a SSM by means of a model that is slightly more complicated
than the local level model,

yt = xtβt + εt, with εt ∼ N (0, σ2
ε) and t = 1, . . . , T (64)

βt = βt−1 + ηt, with ηt ∼ N (0, Ση) and E [εsηk,t] = 0 (65)

with xt a (1×K) vector of explanatory variables, βt the (K×1) state vector with individual
elements βk,t for k = 1, . . . , K and Ση a (K×K) diagonal covariance matrix with diagonal
elements σ2

η,k for k = 1, . . . , K. We use this model in an empirical illustration below. It is
convenient to first factorize the likelihood when deriving the Gibbs conditional densities.
From the hierarchical structure of the model it follows that

p(y|β, σ2
ε , σ

2
η) = p(y|β, σ2

ε)p(β|σ2
η)

where β is the T × K matrix of latent states. Furthermore, we use βk to denote the kth

column of β and βt to denote the tth row of β. p(β|σ2
η) has to be factorized further down

to individual elements p(βk,t|βk,t−1). It is now straightforward to show that the Gibbs step
in this case is given by20

20If one allows for correlation between the errors in the transition equation one would have to generate
draws for Ση from an Inverted Wishart density which is given in for example Poirier (1995).
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- generate β(j)|σ2
ε

(j−1)
,Σ

(j−1)
η from p

(

β|y, σ2
ε ,Ση

)

∼ KFS

- generate σ2
ε

(j)|β(j),Ση
(j−1) from p

(

σ2
ε |y,β,Ση

)

∼ IG
(

1
2 (y − Xβ(j))′(y − Xβ(j)), 1

2 (T − 2)
)

- generate σ2
η,k

(j)|β(j), σ2
ε

(j)
from p

(

σ2
η,k|y,β, σ2

ε

)

∼ IG
(

1
2 (β

(j)
k − β

(j)
−1,k)′(β(j)

k − β
(j)
−1,k), 1

2 (T − 2)
)

where KFS represents the Kalman Filter Sampler using one of the above mentioned algo-
rithms.

Empirical Illustration: US Money Growth

We estimate the time-varying model parameter model used by Kim and Nelson (1989), and
discussed in Kim and Nelson (1999), Application 2, pp. 44-48. Kim and Nelson (1989) use
maximum likelihood estimation together with the Kalman filter to estimate the following
time-varying parameter model

∆Mt = β0,t + β1,t∆it−1 + β2,tINFt−1 + β3,tSURPt−1 + β4,t∆Mt−1 + εt (66)

βk,t = βk,t−1 + ηk,t for k = 0, . . . , 4 (67)

εt ∼ N (0, σ2
ε), ηk,t ∼ N (0, σ2

η,k) and E [εtηk,s] = 0. (68)

where ∆Mt is the M1 growth rate, ∆it−1 the change in the 3-Month Treasury Bill rate,
INFt the CPI inflation rate and SURPt the detrended full employment budget surplus.
The dataset used consisted of quarterly US data for the period 1964:I-1985:IV.

Here we repeat the Kim and Nelson (1989) study with two more years worth of data
(1962:I-1963:IV) but, more importantly, we use Gibbs sampling to obtain posterior results.
In particular, we use the Carter and Kohn (1994) algorithm to sample the time-series
for the latent variables. Table 2 shows posterior moments for the variance components
whereas Figure 14 shows the time-series of the posterior means for the state variables βk,
k = 0, . . . , 4.

Table 2: Posterior results for the State-Space Model

σ2
ε σ2

η,0 σ2
η,1 σ2

η,2 σ2
η,3 σ2

η,4

0.102 0.069 0.019 0.058 0.078 0.007
(0.060) (0.060) (0.026) (0.032) (0.087) (0.008)

Notes: The table shows posterior means and standard deviations (in between brackets) for the
variance components of model (66)-(68). Quarterly data for the period 1962:I-1985:IV for M1
growth, changes in the 3-Month Treasury Bill rate, CPI inflation rate and detrended full employment
budget surplus were used. The data were obtained from the website for Kim and Nelson (1999).
http://www.econ.washington.edu/user/cnelson/SSMARKOV.htm. Posterior results are based on
100,000 draws after a burn-in of B = 10, 000 draws and selecting every h = 10th draw.

Table 2 and Figure 14 show that there is a strong indication that the coefficients in (66)
are time-varying. As explained in Kim and Nelson (1999) this indicates that the way in
which the US Federal Reserve reacts to changes in various macroeconomic variables, when
conducting its monetary policy, varies over time. Especially the change in parameters
around the Volcker period (beginning of the 1980s) is striking and very similar for all
parameters.
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Figure 14: Time-varying parameters in the State-Space Model

(a) ∆M and β0 (b) ∆i and β1

(c) INF and β2 (d) SURP and β3

(e) ∆M−1 and β4

Notes: The graphs show the posterior means for the time-varying parameters in the model (66)-(68).
Panel (a) shows ∆M and β0 whereas panel (b)-(e) show βk for k = 1, . . . , 4 with the accompanying
exogenous variables. In each graphs, the scale for βk corresponds to the right axes. Posterior results
are based on 100,000 draws after a burn-in of B = 10, 000 draws and selecting every h = 10th draw.
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4.4 Panel Data Model

The attractive feature of Panel Data models is that by using time-series observations as well
as cross-sectional information, one can control for time-varying and cross-section specific
variables as well as account for unobserved heterogeneity. The cross-sectional information
results from including multiple dependent variables in the model. By grouping dependent
variables that are hypothesized to have similar characteristics one can then proceed to
identify the parameters for each group. Extensive discussions on panel data models can
be found in recent textbooks by Baltagi (2001), Arellano (2002) and Hsiao (2003), among
others. As an example of Panel Data models we discuss the following random effects model
in which we allow for only a single group

yi,t = µi + εit, with εi,t ∼ N(0, σ2
ε) and t = 1, . . . , T, i = 1, . . . , N, (69)

µi = θ + ηi, with ηt ∼ N(0, σ2
η) (70)

with θ = (µ, θ, σ2
η, σ

2
ε) where µ = (µ1 µ2 . . . µN )′. The double subscript on y reflects

that one now has observations across time as well as across groups. The model allows
for differences in mean, µi, across individuals by modelling these as random draws for a
(Normal) distribution with mean θ and variance σ2

η. As before, the vector µ, which contrary
to the State-Space model is now constant over time but varies across groups, consists of
latent variables and can be sampled alongside the other parameters in the Gibbs sampler.
Note that inference on σ2

η is based on the cross-sectional observations whereas for σ2
ε

variation across the cross-section as well as over time is utilized. Therefore, by including
data on multiple individuals, the identification issues for the variance components do not
exist. However, inference is only possible if a group consists of a sufficient number of
individuals otherwise a degrees of freedom issue emerges. Throughout this section we
assume a uniform prior on the parameters.

Gibbs Sampling

As for the State-Space model, the likelihood for the Random Effects Panel model can be
factorized as

p(Y |µ, θ, σ2
ε , σ

2
η) ∝ p(Y |µ, σ2

ε)p(µ|θ, σ2
η)

The matrix Y contains the observations on all individuals for all time periods. We denote
the time-series observations on the ith individual by yi (column i of Y ) and the observations
on all individuals at time t by the vector zt (the tth row of Y ). Furthermore, define the
overall sum of squares as

E′E = [vec(Y ) − (IN ⊗ ι
T
)µ]′ [vec(Y ) − (I

N
⊗ ι

T
)µ]

where vec() is the operator that stacks the columns of Y into a single vector of dimensions
TN × 1, ⊗ is the Kronecker product and I

N
is a (N × N) identity matrix. Given these

definitions, the Gibbs step can be shown to be,

- generate µ
(j)
i |θ(j−1), σ2

ε

(j−1)
, σ2

η

(j−1)
from p

(

µi|Y, θ, σ2
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η

)
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(
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σ2
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σ2

η
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(j−1)+Tσ2

η
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)
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, σ2

η
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η
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ε
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η

(j−1)
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1
2E(j)′E(j), 1
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η
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N
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)
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Table 3: Posterior results for the Random Effects Panel Data Model

Country N = 3 N = 4 N = 5 N = 6 N = 10 N = 17

θ̂ 1.292** 1.426*** 1.542*** 1.667*** 1.882*** 1.903***
(0.562) (0.506) (0.449) (0.407) (0.311) (0.208)

σ̂2
ε 50.716 45.286 39.833 37.138 47.215 38.042

(4.251) (3.246) (2.568) (2.182) (2.146) (1.321)
σ̂2

η 4.279 2.219 1.444 1.154 0.697 0.415
(35.062) (7.272) (2.215) (1.420) (0.532) (0.215)

Australia µ̂1 1.525** 1.563*** 1.589*** 1.629*** 1.731*** 1.752***
(0.633) (0.587) (0.543) (0.522) (0.533) (0.448)

Austria µ̂2 1.765*** 1.785*** 1.811*** 1.842*** 1.907*** 1.908***
Belgium µ̂3 1.610** 1.642*** 1.669*** 1.706*** 1.795*** 1.808***
Canada µ̂4 1.883*** 1.906*** 1.938*** 1.980*** 1.976***
Denmark µ̂5 1.922*** 1.953*** 1.989*** 1.987***
Finland µ̂6 2.224*** 2.210*** 2.185***
France µ̂7 1.932*** 1.937***
Germany µ̂8 1.831*** 1.841***
Italy µ̂9 2.151*** 2.133***
Japan µ̂10 2.464*** 2.417***
Netherlands µ̂11 1.846***
New Zealand µ̂12 1.588***
Norway µ̂13 2.271***
Sweden µ̂14 1.966***
Switzerland µ̂15 1.873***
UK µ̂16 1.677***
USA µ̂17 1.923***

Notes: The tables shows posterior means and standard deviations (in between brackets) for the
random effects panel model (69)-(70) when applied to the full panel (N = 17), and several subsets
(N = 3, 4, 5, 6, 10), of annual real per capita percentage GDP growth rates for 17 OECD countries.
The sample period is 1900-2000 with GDP levels for 1900-1949 obtained from Maddison (1995)
whereas those for 1950-1998 were obtained from Maddison (2001). For 1999 and 2000, the data
were obtained from the GGDC Total Economy Database, http://www.ggdc.net. All the levels are
measured in 1990 US dollars converted at Geary-Khamis purchasing power parities, see Maddison
(1995) for a full description. We applied a log transformation to remove the exponential trend in
GDP levels across time. Posterior results are based on 100,000 draws after a burn-in of B = 10, 000
draws and selecting every h = 10th draw. *** indicates that zero is not contained in the 99% highest
posterior density (HPD) region, ** indicates that zero is contained in the 99% but not in the 90%
and 95% HPD region and * that zero is contained in the 99% and 95% but not in the 90% HPD
region. Only posterior standard deviations for Australia are given. An Inverted Gamma density
with parameters r = 10−5 and y = 1 was used as the prior distribution for the variance components.

where Mi, for i = 1, . . . , N , is defined as

Mi =
σ2

η
(j−1)

σ2
η
(j−1) + (1/T )σ2

ε
(j−1)

ι
T
zt +

σ2
ε
(j−1)

Tσ2
η
(j−1) + σ2

ε
(j−1)

θ
(j)
i (71)

The expression in (71) shows that draws for µi are based on a weighted average of the

information in the cross section (through θ
(j)
i ) and the information in the time-series

(through zt) and that the weights are determined by the two variance components. See
also Gelfand et al. (1990) for more details.
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Empirical Illustration: Cross-Country GDP Growth

We use the Gibbs sampler to analyze the random effects model for a panel of OECD annual
real per capita Gross Domestic Product growth rates (in %). The dataset consists of 17
industrialized countries which include Australia, Canada, New Zealand, Japan, the USA
and 12 Western European countries, for the period 1900-2000. It should be noted that the
set-up of the panel model that we consider here is very limited. For example, we assume
that growth rates are independent across countries and that there is no autocorrelation in
growth rates. Nevertheless, it may serve as a good starting-point from which to consider
more elaborate models.

Table 3 shows posterior results for the full panel (final column) that includes all in-
dividual countries (as a single group). In the table we only report posterior standard
deviations for Australia since those for the other countries are qualitatively similar. To
obtain results we used a very weakly informative Inverted Gamma prior for the variance
components which parameters r = 10−5 and y = 1. With these parameter values, which
satisfy the conditions given in Hobert and Casella (1996), the Inverted Gamma density is
similar in shape as the flat prior, but, being Inverted Gamma, it remains a proper prior.

The mean growth rate θ of the 17 countries is estimated at 1.90%. Interestingly, some
part of the variation in the data is due to cross-country differences in growth, which is
reflected by the estimate of σ2

η. The Scandinavian countries seem to have experienced
the highest average growth rates over the twentieth century, as well as Italy and Japan,
due to their postwar growth spurt. The Australian, New Zealand, and the UK economies
witnessed comparatively low growth.

Apart from including all the countries we also estimated the model with fewer coun-
tries21. These results, which are shown in the first five columns of Tabel 3 corroborate
the analytical results from section 4.1 which for a panel model translate to a minimum
required number of individuals in a group. The results for N = 3 show that, compared to
the results for larger N , the posterior mean and standard deviation for σ2

η are very large.
Especially the standard deviation of 35.602 seems to indicate that the second moment
does not exist. In fact, we know that with N = 3 neither posterior mean nor posterior
standard deviation exists. Including at least one additional country helps to identify the
mean but still not the variance of σ2

η. From N = 6 onwards the variance seems to be more
reasonable, although the values are still comparatively large.

We re-emphasize that this panel model is used for illustrative purposes only. For a
more detailed of cross-country growth analysis over a long period we refer to, e.g. Barro
(1991), Sala-i-Martin (1994) and Quah (1997).

5 Summary of Models Used and Lessons Learned

Using a set of basic economic time series models, we presented the results of a Bayesian
analysis using Gibbs sampling. We considered models ranging from the Cochrane-Orcutt
model for serial correlation in a regression set up and the Hierarchical Linear Mixed Model
in a variance components set-up. In particular, we treated the Koyck model for Distributed
Lag analysis and the Unit Root, Instrumental Variables, State-Space and Panel Data
models. The prior information is rather diffuse. A summary of models used and lessons
learned is presented in Table 4.

21We selected countries according to their alphabetical ordering in the full panel. Although this is
somewhat arbitrary we expect results using a random selection of countries to be similar.
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The major lesson learned from our analysis is that we recommend that every applied
researcher investigates the shape of the posterior and/or the predictive density. More
specifically, we have learned the following lessons:

Lesson 1. Gibbs sampling for regression parameters in models with serially

correlated disturbances is simple and successful.

Gibbs sampling in the context of the famous Cochrane-Orcutt model of a regression with
possible first order serial correlation of the disturbances and using flat priors is relatively
easy and gives finite sample results. This is in contrast with the standard classical asymp-
totic results using the Durbin-Watson test.

Lesson 2. Approaching the boundary of the regression parameter region in

nearly nonstationary and nearly nonidentified economic processes implies that

irregular shapes of the posterior density may occur.

In many macro economic processes, the information in the data is weak and the mass of
the likelihood function may be close to the boundary of the parameter region using flat
priors. Examples are nearly nonstationary processes or nearly non-identified processes. We
indicate what problems a Bayesian Gibbs sampler faces are when she reaches the boundary
of the parameter region. Empirical examples illustrate the theoretical results. We do show
that Bayesian finite sample analysis is possible while classical asymptotics breaks down.
The warning signal is that the Gibbs sampler is much slower in convergence.

Lesson 3. Use smoothness or training priors to regularize the shape of the

posterior in the models of Lesson 2.

Since the use of uniform priors with the weak information in the likelihood is the reason
for these results we indicate how one can make use of smoothing or regularization priors
like the information matrix prior. Alternatively, one may use a training sample or initial
value prior. Gibbs sampling is feasible in such cases.

Lesson 4. A simple model with a time varying variance explains the structure

of linear hierarchical mixed models. These latter models serve as workhorse

models for state space models and panel data models.

The basic regression model with heteroscedasticity is a good workhorse to explain the
structure of linear Hierarchical Mixed Models which itself is a parent class for two appli-
cations: State Space models and Panel data models.

Lesson 5. Approaching the boundary of the variance parameter in case of a low

number of degrees of freedom or near identification of the variance component

may lead to irregular shapes of the posterior.

The degrees of freedom problem in variance components models is analyzed in time series
and cross sections models, where we concentrate on right tail behavior of the posterior
density of a variance parameter. Another issue is when one approaches a variance of zero.
Then the shape of the likelihood of the variances may become irregular. In such case,
the priors may be selected as uniform or inverted gamma. The uniform prior is attractive
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when one wants to concentrate on data information near a zero variance. Gibbs sampling
becomes slow when one is near the boundary.

Lesson 6. Informative dynamic structure in time series and a sufficient num-

ber of units in the cross section regularize the shape of the posterior.

This is shown theoretically and empirically. The data sets refer to growth of Gross Do-
mestic Product of several countries, to financial data such US money growth and Treasure
Bill rate and to the well-known Lydia Pinkham sales and advertising data.

We end this paper with some remarks. In terms of methods we note that several
other solutions help the Gibbs sampler in terms of convergence. Reparametrization of the
model and subjectively determined informative and or predictive priors may help in avoid-
ing some irregular shapes of the criterion functions. One may also leave the shape as it is
and make use of more flexible sampling methods. As far as the class of models considered,
we emphasize that discrete choice and switching regression models have not been inves-
tigated. These models are relatively well-known in Bayesian statistical and econometric
literature and we refer to Koop (2003), Lancaster (2004) and Geweke (2005) for a more
detailed analysis.
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Table 4: Models used and lessons learned

Model Specification Lesson learned

1. Cochrane-Orcutt yt = xtβ + εt Flat prior on (∞ < β < ∞,−1 < ρ < 1) gives finite sample posterior analysis
εt = ρεt−1 + ηt on serial correlation which is easy using Gibbs

2. Koyck Replace xt in Model 1. Flat prior gives improper posterior near ρ = 1. Gibbs sampling is slow near this
by (1 − ρ)

∑∞

i=0 ρixt−i boundary. Jeffreys’ prior and training sample prior regularize posterior.

3. Unit root Replace xt in Model 1. Same lesson as for Model 2.
by the constant 1

4. Weak instruments yt = xtβ + εt Same lesson as for Model 2. but now at π = 0.
xt = ztπ + νt

5. Naive heteroscedasticity yt = xtβ + εt Flat prior on σ2
t gives improper posterior. Degrees of freedom restriction implies

εt ∼ N(0, σ2
t ) a constant σ2 for at least three observations.

6. Hierarchical yt = µt + εt Model is parent model for State Space model and Random Effects Panel Data model.
µt = θ + ηt Parameters σ2

ε and σ2
η are not identified with uniform priors.

7. State Space model Replace µt in Model 6. Additional structure in the state equation identifies the variance parameters σ2
ε and σ2

η.
µt = µt−1 + ηt A flat prior may give information on probability mass near boundary.

8. Random Effects yit = µi + εit Using a flat prior and sufficient number of groups or individuals (N ≥ 3) yields
Panel Data model µi = θ + ηi that Gibbs sampling may work well.
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A Probability Density Functions

In this appendix several univariate and multivariate probability density functions are given which
are used throughout this paper. For univariate densities, we indicate the kth moment around the
mean by µk whereas for multivariate densities these are indicated by µk. Upper case symbols
always indicate vectors or matrices. More properties of the below densities and concise derivations
of moment(-conditions) can be found in for example Raiffa and Schlaifer (1961) or Poirier (1995).

A.1 Univariate Densities

Normal density:
If Z is univariate Normally distributed with parameters m and s2, i.e. Z ∼ N (m, s2), then the
density of Z and its first two moments about the mean are given by

fN (z|m, s2) ≡ 1√
2πs2

exp
(

− (z−m)2)
2s2

)

for −∞ < z < ∞
−∞ < m < ∞

0 < s2 < ∞
(A-1)

µ1 = m
µ2 = s2

Student-t density:
If Z is univariate Student-t distributed with parameters m, s2 and ν, i.e. Z ∼ t(m, s2, ν), then the
density of Z and its first two moments about the mean are given by

fz(z|m, s2, ν) ≡ ν
1
2

ν

B( 1
2 , 1

2 ν)

√
s2[ν + (z−m)2

s2 ]−
1
2 (ν+1) for −∞ < z < ∞

−∞ < m < ∞
0 < s2 < ∞

ν > 0

(A-2)

µ1 = m for ν > 1

µ2 = νs2

ν−2 for ν > 2

with B( 1
2 , 1

2ν) the Bessel function defined as B(p, q) ≡ (p−1)!(q−1)!
(p+q−1)!

Inverted Gamma density:
If Z is univariate inverted gamma distributed with parameters y and ν, i.e. Z ∼ IG(y, ν), then
the density of Z and its first two moments are given by

fIG(z|m, ν) ≡ mν

Γ(ν)z
−(ν+1) exp

(

−m
z

)

for t ≥ 0

m, ν > 0
(A-3)

µ1 = m
ν−1 for ν > 1

µ2 = m2

(ν−1)2(ν−2) for ν > 2

with Γν) the Gamma function defined as Γ(ν) ≡ (ν − 1)!
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A.2 Multivariate Densities

Multivariate Normal density:
If Z is multivariate Normally distributed with parameters m and S, i.e. Z ∼ N (m,S), where Z
and m are (N × 1) and S is (N × N), then the density of Z and its first two moments about the
mean are given by

f
(N)
N (z|m,S) ≡ (2π)−

1
2 N |S|− 1

2 exp
(

− 1
2 (z − m)′S−1(z − m)

)

for −∞ < z < ∞
−∞ < m < ∞
z′Sz > 0 ∀ z 6= 0

(A-4)

µ1 = m
µ2 = S

Multivariate Student-t density:
If Z is multivariate Student-t distributed with parameters m, S and ν, i.e. Z ∼ t(m,S, ν), where
Z and m are (N × 1) and S is (N ×N), then the density of Z and its first two moments about the
mean are given by

f
(N)
t (z|m,S, ν) ≡ ν

1
2

νΓ( 1
2 ν+ 1

2 N)

π
1
2

NΓ( 1
2 ν)

|S|− 1
2 [ν + (z − m)′S−1(z − m)]−

1
2 (ν+N) for −∞ < z < ∞

−∞ < m < ∞
ν > 0
z′Sz > 0 ∀ z 6= 0

(A-5)
µ1 = m for ν > 1
µ2 = S−1 ν

ν−2 for ν > 2
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