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Summary

In a large class of hazard models with proportional unobserved hetero-

geneity, the distribution of the heterogeneity among survivors converges to a

gamma distribution. This convergence is often rapid. We derive this result as

a general result for exponential mixtures and explore its implications for the

specification and empirical analysis of univariate and multivariate duration

models.

Some key words: Duration analysis; Exponential mixture; Gamma distribution;

Limit distribution; Mixed proportional hazard.
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1 Introduction

It is well known that duration analysis produces incorrect results if unob-

served heterogeneity is ignored (Lancaster, 1990). On average, subjects with

relatively high hazard rates for unobserved reasons leave the state of inter-

est first, so that samples of survivors are selected. Differences between such

samples at different times reflect behavioural differences as well as this selec-

tion effect. Lancaster (1979) specified and estimated a proportional hazard

model with multiplicative unobserved heterogeneity. This is called a mixed

proportional hazard model and has subsequently become by far the most

popular duration model in econometrics. Van den Berg (2001) presents a

survey. The model is typically estimated using methods that require para-

metric functional-form assumptions on the heterogeneity distribution. Lan-

caster (1979) assumes a gamma distribution, as do Vaupel et al. (1979),

who introduced the model in demography. Nickell (1979) assumes a discrete

distribution, and others have made other choices (Van den Berg, 2001).

Unfortunately, estimators of the mixed proportional hazard model are

usually biased if the functional form of the heterogeneity distribution is mis-

specified. Extensive simulation evidence is provided by for example Baker &

Melino (2000) and Bretagnolle & Huber-Carol (1988). Also, many empirical

studies report that the estimates are sensitive to the functional form of the

distribution (Heckman & Singer, 1984; Trussell & Richards, 1985; Hougaard

et al., 1994; Keiding et al., 1997).
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As a result, studies in which mixed proportional hazard models are es-

timated have wrestled with the choice of a functional form for the hetero-

geneity distribution; see for example Heckman & Singer (1984). In general,

there is no argument in favour of one choice over the other. Also, formal

results in the methodological studies by Heckman & Taber (1994), Kortram

et al. (1995) and Horowitz (1999) indicate that duration data are rather

uninformative about the shape of this distribution. In practice, researchers

often choose a gamma mixing distribution for computational and exposi-

tional reasons; all functions of interest have simple explicit expressions in

this case (Lancaster, 1990). The mixed proportional hazard model with

gamma heterogeneity is a preferred option in popular statistical packages

like STATA, SAS, S-PLUS and SPSS. Recently developed semiparametric

estimators for the model also assume gamma heterogeneity; for examples,

see Clayton (1978), Meyer (1990), Nielsen et al. (1992), Murphy (1994,

1995), Petersen et al. (1996), and references in Andersen et al. (1993). The

results in this paper rationalise this preference for the gamma distribution,

and connect the many results that have been derived for the gamma case to

a wider class of models.
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2 A limit result for exponential mixtures

2.1 Exponential mixtures

Let Z and V be nonnegative random variables such that

pr(Z > z|V ) = exp(−V z). (1)

The marginal distribution of Z is therefore a mixture of exponential distri-

butions with respect to the marginal distribution F of V :

pr(Z > z) =

∫ ∞

0

exp(−vz)dF (v).

We examine the limiting behaviour of the distribution of V conditional

on Z ≥ z as z → ∞. In particular, we examine the limiting behaviour of

Gz(v) = pr (zV ≤ v|Z ≥ z) .

2.2 Main result

We adopt the definitions of Feller (1971, §VIII.8) of slow variation and regular

variation at 0,

Definition 1. A positive function L defined on (0,∞) is slowly varying at 0

if limy↓0 L(αy)/L(y) = 1 for every fixed α > 0.

Definition 2. A positive function k defined on (0,∞) is regularly varying

4



with exponent −∞ < ρ < ∞ at 0 if

lim
y↓0

k(y)

yρL(y)
= 1

for a function L that is slowly varying at 0.

Also, let Γα,ρ denote the gamma distribution with density

αρ

Γ(ρ)
vρ−1 exp(−αv), α, ρ > 0

at v. We define the standard gamma distribution by Γρ := Γ1,ρ, with density

denoted by γρ. Finally, we define the limiting case Γ0 such that Γ0(v) = 1

for all v ∈ [0,∞). This is a degenerate distribution with all probability mass

at zero.

We now state the main result.

Proposition 1. If Gz → G as z → ∞, with G a proper distribution function,
then G = Γρ for some ρ ≥ 0. A necessary and sufficient condition for

Gz → Γρ (ρ ≥ 0) is that F is regularly varying with exponent ρ at 0.

Proof. The Laplace transform LGz of Gz is given by

LGz(s) =

∫ ∞

0

exp(−sv)dGz(v) =
LF{z(s + 1)}

LF (z)
.

First, suppose that Gz → G as z → ∞, with G a proper distribution

function, and denote the Laplace transform of G by LG. Then LGz → LG as

5



z → ∞ by the continuity of the Laplace transform. Thus,

lim
z→∞

LGz(s) = lim
z→∞

LF{z(s + 1)}
LF (z)

exists and is positive and non-increasing on (0,∞). By Feller (1971, §VIII.8,
Lemma 1), the latter limit then necessarily equals (s+ 1)−ρ for some ρ ≥ 0.

In turn, this implies that G = Γρ for some ρ ≥ 0.

Secondly, again by continuity of the Laplace transform,

Gz → Γρ ⇐⇒ lim
z→∞

LF{z(s + 1)}
LF (z)

= (s+ 1)−ρ,

so that Gz → Γρ if and only if LF is regularly varying with exponent −ρ at

infinity. In turn, it follows from an Abelian/Tauberian theorem, like Theorem

3 of Feller (1971, §XIII.5), that this is true if and and only if F varies regularly

with exponent ρ at 0.

Examples of continuous distributions that are regularly varying at 0 with

exponent ρ > 0 are all distributions with densities that have finite positive

limits at 0, such as the exponential, uniform and truncated normal distri-

butions, and all gamma and beta distributions. Examples with ρ > 0 also

include some discrete distributions with dense support near 0. The case

ρ = 0 includes all distributions, including finitely discrete distributions, with

a point mass at 0.

An obvious example of a distribution that is not regularly varying at 0 is
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a distribution without support near 0. Let v0 := inf{v : F (v) > 0} be the

largest lower bound on the support of F . Let F 0 be the distribution of V −v0

and G0
z the distribution of z(V −v0) conditional on Z ≥ z. Then Proposition

1 applies without change with F replaced by F 0 and Gz replaced by G0
z.

2.3 Speed of convergence

In statistical applications results about the rate of convergence of Gz to G

would be useful. The following example shows that no general result about

this rate can be derived under the conditions of Proposition 1, notably under

regular variation of F with exponent 0 ≤ ρ < ∞ at 0, alone. First, suppose

that F (v) = vk on (0, 1) for some k > 0. Then ρ = k and Gz → Γk by

Proposition 1. Note that this convergence is uniform. It is easy to show that

lim
z→∞

supv {Gz(v)−G(v)}
zk−1 exp(−z)/Γ(k) = 1.

This result does not generalise to all distributions that are regularly varying

with exponent ρ. For example, let F (v) = v{1− log(v)} on (0, 1). Then F is

regularly varying with exponent 1 at 0, but convergence is much slower than

for the linear case k = 1 above. In particular, it can be shown that

lim
z→∞

supv {Gz(v)−G(v)}
c/ log(z)

= 1,

for some constant 0 < c < ∞. The working paper version of this article,
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which is available upon request, provides details.

Rather than pursuing general results on the speed of convergence under

additional assumptions, we examine a range of specific cases. We focus on

the distribution G∗
z of (z + 1)V |Z ≥ z rather than on Gz. The distribution

G∗
z has the same limit as Gz, but has the additional expositional advantage

that G∗
z = Γρ for all z if F = Γρ (Lancaster, 1990). In all cases, F is taken to

be a beta distribution, Be(µ, ν; v). This family covers a wide range of density

shapes, in particular around 0. Its densities are defined by

βµ,ν;v(v) ∝ vµ−1(v − v)ν−1 for 0 < v < v,

and βµ,ν;v(v) = 0 otherwise, for µ, ν > 0. The density is increasing if µ > 1

and ν < 1, decreasing if µ < 1 and ν > 1, U-shaped if µ < 1 and ν < 1, and

bell-shaped if µ > 1 and ν > 1. It includes the uniform density on (0, v) for

µ = ν = 1. The corresponding cumulative distribution function is regularly

varying with exponent µ > 0, which implies that G∗
z → Γµ according to

Proposition 1. The parameter v is a scale parameter: we can write V = vV 1,

with V 1 distributed with density βµ,ν;1. We ensure that the examples are

mutually comparable by fixing the value of v for each given µ and ν such

that E(log V ) = 0.

Figure 1 displays the densities g∗z of (z+1)V |Z ≥ z corresponding to βµ,ν;v

for values of µ and ν that generate the various density shapes mentioned

above, and for z = 0, 0.5, 1, 2, 5. Obviously, in each case, g∗0 = βµ,ν;v. The
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figures also display the limiting density g∗∞ = γµ. In all cases, we observe

convergence to the gamma density. To assess whether or not convergence

is rapid we need to obtain some insight into what constitutes a large or a

small value of z. By equation (1), the normalisation E(log V ) = 0 implies

that E(logZ) = −0.577. In addition, note that x �→ exp(−x) is convex,

so that E(1/V ) = E[exp{− log(V )}] ≥ exp[−E{log(V )}] = 1 by Jensen’s

inequality, and as a result E(Z) = E(1/V ) ≥ 1. More precisely, if µ ≤ 1

then E(Z) = ∞, whereas otherwise E(Z) = (1/v)(µ+ ν− 1)/(µ− 1). Given

all this, it is fair to state that the convergence is rapid: in most cases depicted

g∗z is close to the density of its limiting distribution for z as small as 0.5 or 1.

3 Single-spell duration analysis

3.1 The mixed proportional hazard model

We first discuss the implications of Proposition 1 for the mixed proportional

hazard model as popularised by Lancaster (1979) and Vaupel et al. (1979).

The mixed proportional hazard model is a model for the distribution of a

continuous random duration T conditional on a vector X of observed covari-

ates. Under some regularity conditions, it is straightforward to extend the

analysis to the case of time-varying explanatory variables, but for ease of

exposition we do not take this up here. The model specifies the distribution

of T |X as a mixture of the distribution of T |(X, V ) over the marginal distri-
bution F of V . Here, V is a nonnegative random unobserved heterogeneity

9



factor that is independent of X. The distribution of T |(X, V ) is specified in

terms of its hazard rate, which is defined by

θ(t|X, V ) := lim
dt↓0

pr(t ≤ T < t+ dt|T ≥ t, X, V )

dt

for almost all t. In particular, the mixed proportional hazard model specifies

that

θ(t|X, V ) = λ(t)φ(X)V.

The ‘baseline hazard’ λ : [0,∞) → [0,∞) is integrable on bounded intervals,

with integral Λ(t) :=
∫ t

0
λ(y)dy, and limt→∞ Λ(t) = ∞. The function φ :

X → (0,∞) is a measurable function, with X the support of X.

Define Z := Λ(T )φ(X). Then ZV is a unit-exponentially distributed

random variable that is independent of (X, V ). Conditional on X, Z is

distributed as a mixture of exponential distributions with mixing distribution

F . Thus, Proposition 1 applies to the distribution Gz of zV |(Z ≥ z,X). In

particular, assume that F is regularly varying with exponent ρ > 0 at 0.

Then Proposition 1 implies that the distribution of

{c0 + c1Λ(t)φ(x)} V | (T ≥ t, X = x)

converges to a Γ1/c1,ρ distribution as Λ(t)φ(x) → ∞, for any c0 ∈ R and

c1 > 0. This in turn implies that the distribution of V |(T ≥ t, X = x) can be
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approximated by a gamma distribution with parameters (c0/c1) + Λ(t)φ(x)

and ρ. Here, the value of c0/c1 is arbitrary, apart from the requirement that

c0/c1 > −Λ(t)φ(x): it is not determined by the limit result nor by properties

of F . For t small we require c0 > 0, however, so that c0/c1 > 0. Exactly the

same distribution for V |(T ≥ t, X = x) is also obtained if a gamma mixing

distribution F = Γc0/c1,ρ is adopted.

Note that we can achieve Λ(t)φ(x) → ∞ by letting t → ∞ for given

x ∈ X . However, our result is not only a ‘large t’ result. If {φ(x); x ∈ X}
includes a sequence that diverges to ∞, we can also achieve Λ(t)φ(x) → ∞
along the corresponding sequence of covariate values for fixed t such that

Λ(t) > 0.

3.2 Estimation of the baseline with left-truncated data

These results can be applied to the empirical analysis of mixed proportional

hazard models with left-truncated data. Duration data are left-truncated if

a spell only enters the sample if its duration exceeds some t0 > 0. Left-

truncation frequently arises in economic applications and poses some hard

and mostly unresolved problems.

In general, mixed proportional hazard models that are identified from

complete data will not be identified from left-truncated data. However, under

the assumption that V has a gamma distribution some interesting features

of the model can still be identified. Consider the two-sample case in which

X is binary. Let Sx(t) := pr(T > t0 + t|X = x, T > t0). Note that S0 and S1
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can be estimated from data that are left-truncated at t0. If F = Γα,ρ then

Sx(t) =
{
1 + Λ̃(t)φ̃(x)

}−ρ

, (2)

with Λ̃(t) := Λ(t0 + t) − Λ(t0) and φ̃(x) := φ(x)/{α + Λ(t0)φ(x)}. Thus,

the model for (S0, S1) reduces to a mixed proportional hazard model with

integrated baseline Λ̃, regressor effects φ̃ and Γ1,ρ-distributed heterogeneity.

Elbers & Ridder’s (1982) identification result implies that ρ is identified from

(S0, S1), and that Λ̃ and φ̃ are identified up to a scale normalisation, provided

that φ̃(0) �= φ̃(1). This, in turn, identifies λ up to scale almost everywhere

on (t0,∞).

The regressor effects φ̃ confound dynamic selection effects and the struc-

tural covariate effects embodied in φ. Therefore, we cannot separately iden-

tify φ. However, we can identify the sign of φ(1) − φ(0), because it equals

the sign of φ̃(1)− φ̃(0). We return to this in §3.3.
Our limit result implies that (2) holds approximately in a much wider

class of models. This suggests that we adopt the gamma specification (2)

and use estimates of Λ̃ to estimate Λ with truncated data. We expect this

estimator often to outperform alternative estimators such as those based

on a flexible discrete approximation of the heterogeneity distribution in the

truncated sample.

We illustrate this point with some Monte Carlo analysis. We generate

data from two-sample mixed proportional hazard models with linear Λ, and
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compare baseline estimates of the models with respectively gamma and two-

point heterogeneity. For expositional convenience, we exploit our knowledge

that the baseline is in the Weibull class and specify Λ̃(t) = (t0 + t)exp(δ) −
t
exp(δ)
0 . Table 1 reports simulated root mean squared errors of the maximum

likelihood estimator of δ for three data-generating processes differing only in

the heterogeneity distribution used. Each row in the table corresponds to

a different data-generating process. They are all mixed proportional hazard

models with linear Λ, pr(X = 0) = pr(X = 1) = 1
2
, φ(1) = 2φ(0), and

vary only by the distribution of the heterogeneity. ‘Uniform and discrete’

corresponds to V ∼ Un(0, 1
5
) with probability 1

5
, and pr(V = 5) = 4

5
. The

scale of each data-generating process’s hazard is calibrated so that pr(T >

1) = 0.5. The first two columns report root mean squared errors among 100

simulated samples of 5000 observations each. The last two columns reports

root mean squared errors among 100 simulated samples of 10000 observations

left-truncated at 1, which leaves 5000 observations on average.

With exponential, i.e. Γα,1, heterogeneity in the data, the gamma model is

correctly specified and performs well. The misspecified discrete-mixing model

performs much worse. With uniform, i.e. β1,1;v, heterogeneity in the data,

both models are misspecified. However, the gamma model approximates

the data-generating process of the truncated sample and outperforms the

discrete model, even though the latter has one extra parameter to be fitted

in the heterogeneity distribution. The third data-generating process uses a

heterogeneity distribution that resembles a two-point distribution but also

13



satisfies the conditions for our limit result. Indeed, in this case the gamma

model performs slightly worse with complete data, but much better with

truncated data. We conclude that the gamma approximation can be fruitfully

applied to reduce the error in baseline estimation with truncated data.

In empirical practice, the Weibull-gamma model may be too restrictive.

First, one typically does not know that the baseline is in the Weibull class.

Then, estimators that do not require parametric specification of Λ̃ can be

applied. §1 provides some references. Secondly, recall from §2.2 that Propo-
sition 1 applies more generally to the distribution G0

z of z(V − v0)|Z ≥ z.

The corresponding approximation for the distribution of V is a transposed

gamma distribution. This family of distributions has densities v ∈ [v0,∞) �→
γα,ρ(v − v0), with three parameters, namely α > 0, ρ > 0 and v0 ≥ 0. In

practice, one could adopt this family if the gamma family is considered to be

overly restrictive.

3.3 Testing for unobserved heterogeneity

In the absence of unobserved heterogeneity, we could avoid the difficult prob-

lem of estimating a mixed proportional hazard model with left-truncated

data. Therefore, we now focus on testing for unobserved heterogeneity with

truncated data.

Consider again the two-sample case of §3.2, without parametric restric-
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tions on the baseline. Denote the observable hazards

θ(t|X = x) = λ(t)φ(x)E(V |T ≥ t, X = x) (3)

by θx(t). First note that, under Elbers & Ridder’s (1982) restriction to mixed

proportional hazard models such that E(V ) < ∞, testing for unobserved

heterogeneity is equivalent to testing for proportionality of θ0 and θ1. Thus,

we can build on tests for proportional hazards developed by, for example,

Gill & Schumacher (1987), Dabrowska et al. (1989), Dabrowska et al. (1992)

and Deshpande & Sengupta (1995). None of these concentrates on mixed

proportional hazard alternatives. Here, we outline and illustrate a way to

adjust, in particular, the Gill-Schumacher test to have power against mixed

proportional hazard alternatives.

The Gill-Schumacher test is based on comparing different estimators of

the relative risk θ1/θ0. It is a two-sided test that is consistent against alterna-

tives in which this hazard ratio is monotone. For now, suppose that we know

the sign of φ(1)−φ(0) and, without loss of generality, let φ(1) > φ(0). Then,

with gamma heterogeneity, θ1/θ0 is decreasing. This implies that a one-sided

version of the Gill-Schumacher test can be constructed that is consistent

against the gamma mixed proportional hazard alternative. This test will be

more powerful against this alternative than the two-sided test. Since the

implied model for a truncated sample is again a gamma mixed proportional

hazard model, these results carry over to truncated data.
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For general heterogeneity distributions, θ1/θ0 is decreasing in a neigh-

bourhood of 0, but may be nonmonotone at higher durations (Van den Berg,

2001). Therefore, it is less obvious that a one-sided version of the Gill-

Schumacher test will outperform the two-sided test against general mixed

proportional hazard alternatives. Moreover, with left-truncated data, we

cannot exploit the fact that θ1/θ0 is decreasing in a neighbourhood of 0.

However, our approximation result shows that θ1/θ0 will quickly be decreas-

ing in a wide class of mixed proportional hazard models. This in particular

suggests that our one-sided version of the Gill-Schumacher test will outper-

form the two-sided test with truncated data.

We illustrate this point with Monte Carlo simulations of the rejection

rates of the one-sided and two-sided Gill-Schumacher tests under various

data-generating processes. Table 2 tabulates these rates for tests with a

nominal size of 5%. The tests are based on the weight functions recom-

mended by Gill & Schumacher (1987, p. 294). The one-sided tests are chosen

to be consistent against the mixed proportional hazard model with gamma

heterogeneity. As in Table 1, each row in the table corresponds to a dif-

ferent data-generating process. The data-generating processes are all mixed

proportional hazard models with linear Λ, pr(X = 0) = pr(X = 1) = 1
2
,

φ(1) = 2φ(0), and vary only by the distribution of the heterogeneity. ‘Dis-

crete’ corresponds to pr(V = 1) = pr(V = 2) = 1
2
. The scale of each

data-generating process’s hazard is calibrated so that pr(T > 1) = 0.5. The

first two columns report rejection rates among 1000 simulated samples of
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1000 observations each. The last two columns reports rejection rates among

1000 simulated samples of 2000 observations left-truncated at 1, which leaves

1000 observations on average. The first row shows that the actual size of the

one-sided tests is slightly below that of the two-sided tests and the nominal

size. Under all three alternatives considered, the one-sided Gill-Schumacher

test outperforms the two-sided test. As expected, the tests have relatively

low power against the alternative with discrete heterogeneity, and perform

very poorly with truncated data under this alternative. The tests perform

very well against the exponential and uniform alternatives. Note that, in

particular with truncated data, substantial power against the uniform model

is gained from moving from a two-sided to a one-sided test.

These results indicate that we can safely use Gill-Schumacher tests to test

for heterogeneity with truncated data. They strongly suggest that we use

the one-sided version of this test. A practical problem is that the one-sided

test used so far assumed the sign of φ(1)−φ(0) to be known. Since φ(0) and

φ(1) are unknown parameters, this test is not feasible. A feasible test can be

constructed by empirically determining the sign of φ(1) − φ(0). In §3.2 we

have seen that, in the gamma case and with left-truncated data, the sign of

φ(1)− φ(0) equals the identified sign of φ̃(1) − φ̃(0). This suggests that we

empirically determine this sign by estimating a gamma mixed proportional

hazard model. This approach to the construction of a feasible test should still

work well under our gamma approximation with truncated data. In theory,

it can fail in more general cases, but our Monte Carlo evidence suggests that
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this is not a problem. Estimates of the sign of φ(1) − φ(0) using a gamma

mixed proportional hazard model, not reported in detail here, are correct

in all samples simulated for Table 2. This suggests that, in general, the

feasible statistic is very close to the infeasible one. In particular, it would

have produced exactly the same Monte Carlo results.

The problem of estimating the sign of φ(1) − φ(0) is of more general

interest and is closely related to the results on the monotonicity of the relative

risk θ1/θ0. With complete data, the sign of φ(1) − φ(0) can be inferred

directly from a comparison of the survival curves in the two samples. With

left-truncated data, we can exploit the fact that the sign of φ(1) − φ(0)

equals the signs of both θ1 − θ0 and −d log{θ1(t)/θ0(t)}/dt in the gamma

case. Our limit result suggests that this result can be used more generally

with truncated data. In theory, with some distributions of V this approach to

establishing the sign of φ(1)− φ(0) can be misleading (Van den Berg, 2001).

However, our simulation results suggest that this is not very likely to be a

problem with data that are left-truncated but not right-censored. Practical

problems may arise if there is both truncation and heavy right-censoring,

and we can only observe survival on a bounded positive interval. Our limit

result may then provide some guidance in the interpretation of relative risks.

3.4 More general single-spell duration models

Throughout this section, we have focused on the popular mixed proportional

hazard model. However, our results apply without change to more general
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models. In particular, suppose that, conditional on (X, V ), T is continuously

distributed with hazard rate ξ(t, X)V at time t. Thus, we maintain the

separability of V , but relax the assumption that ξ(t, X) is proportional in t

and X. The function ξ : [0,∞)× X → [0,∞) is a measurable function such

that
∫ t

0
ξ(y, x)dy exists for all t ∈ [0,∞) and that limt→∞

∫ t

0
ξ(y, x)dy = ∞,

for all x ∈ X . Then, our analysis of the mixed proportional hazard model

applies with Z :=
∫ T

0
ξ(y,X)dy.

In addition, we can allow for general dependence of X and V if we focus

on the limit as t → ∞. Then, we would not impose any structure on the

way the observed covariates X enter the model. We could think of the entire

analysis as being conditional on X. However, if we want to achieve the limit

along a sequence of covariate values for given t then we need independence

of X and V .

4 Multivariate duration analysis

4.1 The multivariate mixed proportional hazard model

Nowadays, the study of multiple dependent durations is widespread (Van

den Berg, 2001). The vast majority of applications use multivariate gener-

alisations of the mixed proportional hazard model in which the durations

associated with a certain unit or subject are dependent if the corresponding

unobserved determinants are dependent. Often it is natural and/or conve-

nient to assume that such durations have identical unobserved heterogeneity
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terms V . For example, V may be thought to capture unobserved genetic

determinants, so that in studies on lifetime durations of identical twins V

is identical within twin pairs. Hougaard et al. (1992b) present an example

of this. In mixed proportional hazard models for multiple-spell data, the

multiple durations that a single subject spends in the same state are depen-

dent because they are affected by the same realisation of V ; some examples

are Newman & McCullogh (1984) on birth intervals, Coleman (1989) on

unemployment durations and Lillard (1993) and Lillard & Panis (1996) on

marriage durations. In general, multivariate duration models may concern

successive spells in a given state, or successive spells in different states, as

well as competing risks in a single state.

For expositional reasons we restrict ourselves to two possibly dependent

duration variables T1 and T2, and we suppress the covariates X throughout.

As in §3.4, we can think of the entire analysis as being conditional on X.

Thus, we do not impose any structure on the way X enters the model. We

assume that T1⊥⊥T2|V , for some nonnegative random variable V . We will

refer to V as a ‘subject-specific effect’, although a subject may consist of

two individuals, as in the case of twins. Conditional on V , T1 and T2 are

continuously distributed with hazard rates λ1(t)V and λ2(t)V at time t,

respectively. We adopt regularity assumptions similar to those in §3, and
define Λi(t) :=

∫ t

0
λi(y)dy and Zi := Λi(Ti).

Conditional on V , Z1V and Z2V are independently and unit-exponentially

distributed. Thus, by analogy with the single-spell case in §3, Proposition

20



1 implies that zV |Zi ≥ z converges in distribution to a gamma distribution

as z → ∞, that (z1 + z2)V |(Z1 ≥ z1, Z2 ≥ z2) converges to a gamma distri-

bution as z1 and/or z2 go to ∞, and that z1V |(Z1 ≥ z1, Z2 = z2) converges

to a gamma distribution as z1 → ∞. As a result, we may approximate the

distributions of these random variables by gamma distributions.

4.2 The cross-ratio and current-versus-alive functions

The results of the previous subsection have implications for how certain ob-

servable dependency measures change with the elapsed or realised durations

t1 and t2. To demonstrate this, we consider the observable hazard rates

θi(ti), θi(ti|Tj > tj) and θi(ti|Tj = tj) of the distributions of Ti, Ti|Tj > tj

and Ti|Tj = tj , respectively. It is straightforward to show that these can be

expressed in terms of the model determinants by way of equations similar to

(3), as is done for example in Lancaster (1990). Now consider the relative

effect of the realisation of one duration variable on the hazard rate of the

other, and the way this changes over the durations. In the literature, this is

captured by the cross-ratio function

Θcr(t1, t2) :=
θ1(t1|T2 = t2)

θ1(t1|T2 > t2)

and the current-versus-alive function

Θcva(t1, t2) :=
θ1(t1|T2 = t2)

θ1(t1|T2 > t1)
.
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The cross-ratio function, which is also called the odds ratio function, captures

to what extent the hazard rate of T1 at t1 depends on knowledge that T2 is

realised at a certain point of time t2, relative to when T2 is realised after t2.

The current-versus-alive function captures to what extent the hazard rate of

T1 at t1 depends on knowledge that T2 is realised at a certain point of time

t2, relative to when T2 is not yet realised. Relevant references are Clayton

(1978), Oakes (1989), Anderson et al. (1992) and Yashin & Iachine (1999)

on Θcr, Hougaard et al. (1992a) on Θcva, and Hougaard et al. (1992b) and

Klein et al. (1992) on both. These studies provide characterisations and

properties for the general case, and they also discuss how the functions are

affected by F . Both functions can be estimated nonparametrically from data

on T1 and T2.

The functions Θcr(t1, t2) and Θcva(t1, t2) are informative about the way

in which the dependence of two duration variables changes over time. For

example, if Θcr decreases in t1 for a given t2, with t1 > t2, then the knowledge

that T2 has been realised at t2 becomes less important as time proceeds, so the

local dependence between T1 and T2 decreases as t1 − t2 increases. Anderson

et al. (1992) show that

Θcr(t1, t2) = 1 + {cv(t1, t2)}2,

where cv(t1, t2) is the coefficient of variation of V |(T1 > t1, T2 > t2). The

larger this coefficient, the larger the part of the variation in the truncated
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duration variables that is explained by V , so the stronger their dependence.

If F = Γα,ρ then Θcr(t1, t2) = (ρ + 1)/ρ and {cv(t1, t2)}2 = 1/ρ, so then

Θcr(t1, t2) and cv(t1, t2) are constants. In fact, Oakes (1989) shows that

constancy of Θcr(t1, t2) for all t1 and t2 characterises the gamma distribution

for V . This can be further strengthened by showing that Θcr(t, t) is constant

for all t if and only if V has a gamma distribution. Note that the constancy

of cv(t1, t2) in the gamma case reflects the fact that the relative amount of

heterogeneity among the survivors remains constant when V has a gamma

distribution. This is of course to be expected given the results in §2.
Similarly, if F = Γα,ρ then

Θcva(t1, t2) =

(
ρ+ 1

ρ

)
α + Λ1(t1) + Λ2(t1)

α + Λ1(t1) + Λ2(t2)
,

implying that Θcva(t1, t2) increases in t1 for t1 close to t2. With other distri-

butions of V , the derivatives of Θcva(t1, t2) do not necessarily have the signs

that they have in the gamma case, as shown in the above literature. For

example, in many cases, Θcva(t1, t2) decreases in t1.

We can now apply the convergence results from earlier in the paper. The

behaviour of the dependency functions can be expected to hold for long-term

survivors for any bivariate duration data with a common heterogeneity term

V whether or not it is gamma distributed. Consequently, such behaviour can

be examined empirically from estimates of these functions using long-term

survivors to test for heterogeneity.
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Figure 1: Densities g∗z of (z + 1)V |Z ≥ z (a) V ∼ Be(1, 1, e1), i.e. Un(0, e),
with limiting density γ1, (b) V ∼ Be(1/2, 1/2, 4), with limiting density γ1/2,
(c) V ∼ Be(2, 2, e5/6), with limiting density γ2, (d) V ∼ Be(2, 1/2, e5/3/4),
with limiting density γ2

(a)

(b)
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(c)

(d)
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Table 1: Simulated root mean squared errors of the maximum likelihood esti-
mator of the Weibull parameter δ, for different types of heterogeneity in the
data-generating process and for gamma and discrete model specifications

Complete data Left-truncated data
Gamma Discrete Gamma Discrete

Heterogeneity model model model model
Exponential (Γα,1) 0.021 0.358 0.159 1.182
Uniform (β1,1;v) 0.100 0.240 0.626 1.111
Uniform and discrete 0.269 0.251 0.404 0.922

Table 2: Simulated rejection rates of one-sided and two-sided versions of the
Gill-Schumacher test for proportional hazards, for different types of hetero-
geneity in the data-generating process

Complete data Left-truncated data
Heterogeneity One-sided test Two-sided test One-sided test Two-sided test
None 4.5% 4.8% 4.6% 6.2%
Exponential (Γα,1) 92.7% 87.5% 43.2% 32.9%
Uniform (β1,1;v) 97.5% 96.0% 78.5% 66.9%
Discrete 14.7% 9.3% 7.3% 5.8%
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