
TI 2006-057/3 
Tinbergen Institute Discussion Paper 

 

The Event-History Approach to 
Program Evaluation 

 Jaap H. Abbring 

 

Department of Economics, Vrije Universiteit Amsterdam, and Tinbergen Institute. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 
 



The Event-History Approach to Program

Evaluation∗

Jaap H. Abbring†

October 26, 2007

Abstract

This paper studies the event-history approach to microeconometric pro-

gram evaluation. We present a mixed semi-Markov event-history model, dis-

cuss its application to program evaluation, and analyze its empirical content.

The results of this paper provide fundamental insights in what can be learned

from longitudinal micro data about, for example, the effects of training pro-

grams for the unemployed on their unemployment durations and subsequent

job stability. They can guide the choice of particular models and methods for

the empirical analysis of such effects.
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1 Introduction

Event-history methods are an important tool for the microeconometric evaluation

of dynamic programs using longitudinal data. For example, the effects of training

and counseling on unemployment durations and job stability have been analyzed

by applying event-history methods to data on individual labor-market and training

histories (Ridder, 1986; Card and Sullivan, 1988; Gritz, 1993; Ham and LaLonde,

1996; Eberwein et al., 1997; Bonnal et al., 1997). Similarly, the moral hazard effects

of unemployment insurance have been studied by analyzing the effects of time-

varying benefits on labor-market transitions (e.g. Meyer, 1990; Abbring et al., 2005;

Van den Berg et al., 2004). In fields like epidemiology, the use of event-history

models to analyze treatment effects is widespread (see e.g. Andersen et al., 1993;

Keiding, 1999).

In this paper, we study the event-history approach to program evaluation.1 We

present a mixed semi-Markov event-history model. We discuss its applications to

program evaluation and develop some novel identification results.

The event-history approach to program evaluation is firmly rooted in the econo-

metric literature on state dependence and heterogeneity (Heckman and Borjas, 1980;

Heckman, 1981a). In the tradition of the selection-model literature, event-history

models along the lines of Heckman and Singer (1984a, 1986) are used to jointly

model transitions into programs and transitions into outcome states. Causal effects

of programs are modeled as the dependence of individual transition rates on the in-

dividual history of program participation. Dynamic selection effects are modeled by

allowing for dependent unobserved heterogeneity in both the program and outcome

transition rates.

Without restrictions on the class of models considered, true state dependence

1See Heckman and Vytlacil (2007) for a review of the program evaluation literature, Abbring and
Heckman (2007) for a study of the microeconometric treatment-effects and structural approaches
to dynamic policy evaluation, and Abbring and Van den Berg (2004) for a discussion of the relation
between the event-history approach to program evaluation and standard latent-variable and panel-
data methods.
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and dynamic selection effects cannot be distinguished. Any history dependence

of current transition rates can be explained both as true state dependence and

as the result of unobserved heterogeneity that simultaneously affects the history

and current transitions. This is a dynamic manifestation of the problem of causal

inference from observational data. It is the fundamental problem of distinguishing

state dependence and heterogeneity.

In applied work, researchers avoid this problem by imposing additional struc-

ture. One example is a mixed semi-Markov model in which the causal effects are

restricted to the effects of program participation in the previous spell (e.g. Bonnal

et al., 1997). There is a substantial literature that studies the structure needed

to enable the identification of state dependence and heterogeneity in duration and

event-history models from longitudinal micro data (see Heckman and Taber, 1994;

Van den Berg, 2001, for reviews). However, little is known about the identifiabil-

ity of general event-history models. The existing literature restricts attention to

either single-spell two-state models (e.g. Elbers and Ridder, 1982; Heckman and

Singer, 1984b; Ridder, 1990; Kortram et al., 1995; Abbring, 2002, 2007), multi-spell

two-state models (Honoré, 1993), or competing-risks models (Heckman and Honoré,

1989; Abbring and Van den Berg, 2003a). Neither of these models handle the ef-

fect of a dynamically assigned treatment, like a training program, on event-history

outcomes such as unemployment durations.

Abbring and Van den Berg (2003b) develop results for a structural bivariate

duration model of the effect of a single treatment time on an outcome duration. Their

model can be rewritten as a particular three-states event-history model with state

dependence (see Section 2). In this paper, we discuss more general event-history

models. We will focus on mixed semi-Markov models, which allow for dynamic

selection and various forms of state dependence, including duration dependence and

dependence on the previous state occupied (“lagged occurrence dependence”).

The paper is organized as follows. Section 2 presents the mixed semi-Markov
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event-history model and discusses its relation to models that have been used in

empirical work. Section 3 discusses the model’s identifiability from a random sample

of censored event histories. Section 4 discusses alternative sampling schemes. Section

5 concludes with some remarks on the implications for applied empirical work.

2 A Mixed Semi-Markov Event-History Model

2.1 Model

The model is set up along the lines of Heckman and Singer (1984a, 1986). Point of

departure is a continuous-time stochastic process assuming values in a finite set S

at each point in time. We will interpret realizations of this process as agents’ event

histories of transitions between states in the state space S.

Suppose that event histories start at real-valued random times T0 in a S-valued

random state S0, and that subsequent transitions occur at random times T1, T2, . . .

such that T0 < T1 < T2 < · · · . Let Sl be the random destination state of the

transition at Tl. Taking the sample paths of the event-history process to be right-

continuous, we have that Sl is the state occupied in the interval [Tl, Tl+1).

Suppose that heterogeneity between agents is captured by vectors of time-constant

observed covariates X and unobserved covariates V .2 Then, state dependence in the

event-history process for given individual characteristics X, V has a causal interpre-

tation.3 We structure such state dependence by assuming that the event-history

process conditional on X, V is a time-homogeneous semi-Markov process: Condi-

2We restrict attention to time-invariant observed covariates for expositional convenience. The
analysis can easily be adapted to more general time-varying external covariates. Restricting atten-
tion to time-constant regressors is a worst-case scenario for identification: External time variation
in observed covariates aids identification (Heckman and Taber, 1994).

3Abbring and Van den Berg (2003b) make their model’s causal structure explicit in a potential-
outcomes model of the causal effects of a treatment time on an outcome duration. Abbring (2003)
and Abbring and Heckman (2007) present the symmetric extension of this model, a non-parametric
structural bivariate duration model allowing for simultaneous causal dependence of both durations.
Extending this further to the general event-history setup adds a lot of complexity, but little extra
insight.

4



tional on X,V the length of a spell in a state and the destination state of the

transition ending that spell depend only on the past through the current state. In

our notation, (∆Tl, Sl)⊥⊥{(Ti, Si), i = 0, . . . , l−1}|Sl−1, X, V , where ∆Tl := Tl−Tl−1

is the length of spell l. Also, the distribution of (∆Tl, Sl)|Sl−1, X, V does not depend

on l. Note that, conditional on X, V , {Sl, l ≥ 0} is a time-homogeneous Markov

chain under these assumptions.

Non-trivial dynamic selection effects arise because V is not observed. The event-

history process conditional on observed covariates X only is a mixed semi-Markov

process. If V affects the initial state S0, or transitions from there, subpopulations of

agents in different states at some time t typically have different distributions of the

unobserved characteristics V . Therefore, a comparison of the subsequent transitions

in two such subpopulations does not only reflect state dependence, but also sorting of

agents with different unobserved characteristics into the different states they occupy

at time t.

We model {(∆Tl, Sl), l ≥ 1}|T0, S0, X, V as a repeated competing-risks model.

Due to the mixed semi-Markov assumption, the latent durations corresponding to

transitions into the possible destination states in the l-th spell only depend on the

past through the current state Sl−1, conditional on X,V . This implies that we

can fully specify the repeated competing-risks model by specifying a set of origin-

destination-specific latent durations, with corresponding transition rates. Let T l
jk

denote the latent duration corresponding to the transition from state j to state k

in spell l. We explicitly allow for the possibility that transitions between certain

(ordered) pairs of states may be impossible. To this end, define the correspondence

Z : S → P(S) assigning to each s ∈ S the set of all destination states to which

transitions are made from s with positive probability.4 Here, P(S) is the set of

all subsets of S (the “power set” of S). Then, the length of spell l is given by

∆Tl = mins∈Z(Sl−1) T l
Sl−1s, and the destination state by Sl = arg mins∈Z(Sl−1) T l

Sl−1s.

4Throughout the paper, we assume that Z is known. It is important to note, however, that Z
can actually be identified trivially in all cases considered.
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We take the latent durations to be mutually independent, jointly independent

from T0, S0, and identically distributed across spells l, all conditional on X, V . This

reflects both the mixed semi-Markov assumption and the additional assumption that

all dependence between the latent durations corresponding to the competing risks

in a given spell l is captured by the observed regressors X and the unobservables

V . This is a standard assumption in econometric duration analysis, which, with the

semi-Markov assumption, allows us to characterize the distribution of {(∆Tl, Sl), l ≥

1}|T0, S0, X, V by specifying origin-destination-specific hazards θjk(t|X, V ) for the

marginal distributions of T l
jk|X, V .

We assume that the hazards θjk(t|X, V ) are of the mixed proportional hazard

(MPH) type:5

θjk(t|X, V ) =

 λjk(t)φjk(X)Vjk if k ∈ Z(j)

0 otherwise,
(1)

The baseline hazards λjk : R+ → (0,∞) capture duration dependence of the in-

dividual transition rates. They have integrals Λjk(t) :=
∫ t

0
λjk(τ)dτ < ∞ for all

t ∈ R+ := [0,∞). The regressor functions φjk : X → (0,∞) are assumed to be

continuous, with X ⊂ Rq the support of X. In applications, these functions are fre-

quently specified as φjk(x) = exp(x′βjk) for some parameter vector βjk. We will not

make such parametric assumptions. Note that the fact that all regressor functions

are defined on the same domain X is not restrictive, because each function φjk can

“select” certain elements of X by being trivial functions of the other elements. In

the parametric example, the vector βjk would only have nonzero elements for those

regressors that matter to the transition from j to k. Finally, the (0,∞)-valued ran-

dom variable Vjk is the scalar component of V that affects the transition from state

j to state k. Note that we allow for general dependence between the components of

5The MPH model is an extension of the Cox (1972) proportional hazard model by Lancaster
(1979) and Vaupel et al. (1979).
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V . This way, we can capture, for example, that agents with lower re-employment

rates have higher training enrolment rates. We normalize

Λjk(t
∗) = 1 and φjk(x

∗) = 1, j ∈ S, k ∈ Z(j),

for some a priori chosen t∗ ∈ (0,∞) and x∗ ∈ X . These normalizations are innocuous

because Vjk can capture the scale of θjk.

This fully characterizes the distribution of the transitions {(∆Tl, Sl), l ≥ 1} con-

ditional on the initial conditions T0, S0 and the agents’ characteristics X, V . A

complete model of the event histories {(Tl, Sl), l ≥ 0} conditional on X,V would in

addition require a specification of the initial conditions T0, S0 for given X, V . It is

important to stress here that T0, S0 are the initial conditions of the event-history

process itself, and should not be confused with the initial conditions in a particu-

lar sample (which we will discuss in Section 4). In empirical work, interest in the

dependence between start times T0 and characteristics X, V is often limited to the

observation that the distribution of agents’ characteristics may vary over cohorts in-

dexed by T0. The choice of initial state S0 may in general be of some interest, but is

often trivial. For example, we could model labor-market histories from the calendar

time T0 at which agents turn 15 onwards. In an economy with perfect compliance

to a mandatory schooling age over 15, the initial state S0 would be “(mandatory)

schooling” for all. Therefore, we will not consider a model of the event history’s ini-

tial conditions, but instead focus on the conditional model of subsequent transition

histories.

Because of the semi-Markov assumption, the distribution of {(∆Tl, Sl), l ≥ 1}|

T0, S0, X, V only depends on S0, and not T0. Thus, T0 only affects observed event

histories through cohort effects on the distribution of unobserved characteristics V .

The initial state S0, on the other hand, may both have causal effects on subsequent

transitions and be informative on the distribution of V . For expositional clarity, we
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assume that the distribution of unobserved covariates does not vary over cohorts, or

more precisely that V⊥⊥T0|S0, X, throughout the paper.6

An econometric model for transition histories conditional on the observed covari-

ates X can be derived from the model of {(∆Tl, Sl), l ≥ 1}|S0, X, V by aggregating

over V . The exact way this should be done depends on the sampling scheme used.

First, in Section 3, we consider sampling from the population of event-histories.

We assume that we observe the covariates X, the initial state S0, and the first L

transitions from there. Then, we can model these transitions for given S0, X by

integrating the conditional model over the distribution of V |S0, X.

Next, in Section 4, we briefly discuss more complex, and arguably more realis-

tic, sampling schemes. For example, when studying labor-market histories we may

randomly sample from the stock of unemployed at a particular point in time. Be-

cause the unobserved factor V affects the probability of being unemployed at the

sampling date, the distribution of V |X in the stock sample does not equal its popula-

tion distribution. Moreover, in this case we typically do not observe an agent’s entire

labor-market history from T0 onwards. Instead, we may have data on the time spent

in unemployment at the sampling date and on labor-market transitions for some pe-

riod after the sampling date. This “initial conditions problem” complicates matters

further (Heckman, 1981b).

2.2 Applications to Program Evaluation

Several empirical papers study the effect of a single treatment on some outcome

duration or set of transitions. Two approaches can be distinguished. In the first

approach, the outcome and treatment processes are explicitly and separately spec-

ified. The second approach distinguishes treatment as a separate state in a single

event-history model with state dependence.

The first approach is used in a variety of papers in labor economics. Eberwein

6This can easily be relaxed, but at the expense of some extra notation and technical conditions.
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et al. (1997) specify a model for labor market transitions in which the transition

intensities between various labor market states (not including treatment) depend on

whether someone has been assigned to a training program in the past or not. Abbring

et al. (2005) and Van den Berg et al. (2004) specify a model for re-employment

durations in which the re-employment hazard depends on whether a punitive benefits

reduction has been imposed in the past. Similarly, Van den Berg et al. (2002)

analyze the duration up to transition into medical trainee positions and the effect of

an intermediate transition into a medical assistant position (a “stepping-stone job”)

on this duration.

These models fit Abbring and Van den Berg’s (2003b) framework, or a multi-

state extension thereof. The model considered by Abbring and Van den Berg is a

bivariate duration model in which realization of the outcome duration censors the

treatment duration, and realization of the treatment duration changes the hazard

of the outcome durations from that time onwards. We can rephrase this type of

model in terms of a simple event-history model with state dependence as follows.

Distinguish three states, untreated (O), treated (P ), and the exit state of interest

(E), so that S = {O, P, E}. All subjects start in O, so that S0 = O. Obviously, we

do not want to allow for all possible transitions between these three states. Instead,

we restrict the correspondence Z representing the possible transitions as follows:

Z(s) =


{P, E} s = O

{E} if s = P

∅ s = E

Simple state dependence of the transition rates into E will already capture a treat-

ment effect in the sense of Abbring and Van den Berg. Not all models in their paper

are however included in the simple semi-Markov setup discussed here. In particular,

in this paper we do not allow the transition rate from P to E to depend on the

duration spent in O. This extension with “lagged duration dependence” (Heckman
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and Borjas, 1980) would be required to capture one variant of their model.

The model for transitions from “untreated” (O) is a competing risks model,

with program enrolment (transition to P ) and employment (E) competing to end

the untreated spell. If the unobservable factor VOE that determines transitions

to employment and the unobservable factor VOP affecting program enrolment are

dependent, then program enrolment is selective in the sense that the distribution of

VOE— and then typically that of VPE— among those who enrol at a given point in

time does not equal its distribution among survivors in O up to that time.7

The second approach is used by e.g. Gritz (1993) and Bonnal et al. (1997).

Consider the following simplified setup. Suppose workers are either employed (E),

unemployed (O), or engaged in a training program (P ). We can now specify a

transition process among these three labor market states in which a causal effect of

training on unemployment and employment durations is modeled as dependence of

the various transition rates on the past occurrence of a training program in the labor-

market history. Partly to avoid initial conditions problems, Bonnal et al. restrict

attention to first-order lagged occurrence dependence. So, suppose that transition

rates only depend on the current and previous state occupied. Such a model is not

directly covered by the semi-Markov model, but with a simple augmentation of the

state space it will be. In particular, we have to include lagged states in the state

space on which the transition process is defined. Because there is no lagged state in

the event-history’s first spell, initial states should be defined separately. So, instead

of just distinguishing states in S∗ = {E, O, P}, we distinguish augmented states in

S = {(s, s′) ∈ (S∗ ∪ I)× S∗ : s 6= s′}. Then, (I, s), s ∈ S∗, denote the initial states,

and (s, s′) ∈ S the augmented state of an agent who is currently in s′ and came from

s 6= s′. In order to preserve the interpretation of the model as a model of lagged

7Note that, in addition, the survivors in O themselves are a selected subpopulation: Because
V affects survival in O, the distribution of V among survivors in O is not equal to its population
distribution.
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occurrence dependence, we have to exclude certain transitions by specifying

Z(s, s′) = {(s′, s′′), s′′ ∈ S∗\{s′}}.

This excludes transitions to augmented states that are labeled with a lagged state

different from the origin state. Also, it ensures that agents never return to an initial

state. For example, from the augmented state (O,P )— previously unemployed and

currently enrolled in a program— only transitions to augmented states (P, s′′)—

previously enrolled in a program and currently in s′′— are possible. Moreover, it

is not possible to be currently employed and transiting to initially unemployed,

(I, O). Rather, an employed who loses his job would transit to (E, O)— currently

unemployed and previously employed.

The effects of, for example, training are now modeled as simple state-dependence

effects. For example, the effect of training on the transition rate from unemployment

to employment is simply the contrast between the individual transition rate from

(E, O) to (O,E) and the transition rate from (P, O) to (O,E). Dynamic selection

into the augmented states (E, O) and (P, O), as specified by the transition model,

confounds the empirical analysis of these training effects. Note that there are no

longer run effects of training on transition rates from unemployment to employment

due to the fact that we have restricted attention to first-order lagged occurrence

dependence, like Bonnal et al. (1997).

3 The Model’s Empirical Content

3.1 Sampling Scheme

Suppose that we randomly sample from the population of event histories, and that

we observe the first L transitions, including destinations, for each sampled event-

history, with possibly L = ∞. Thus, we observe a random sample of {(Tl, Sl), l ∈
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{0, 1, . . . , L}}, and X. If L < ∞ then our data are right-censored; if L = ∞ they

are not.8

3.2 Identification from First Transitions and Variation in

Initial Conditions

First, consider what can be learned from data on the first transition from the initial

state S0 only. Denote the support of S0 by S0. For j ∈ S, let #Z(j) denote the

number of elements in Z(j), i.e., the number of destination states that are reached

with positive probability from j. Consider the following assumptions.

Assumption 1. (Vjk, k ∈ Z(j))⊥⊥X|S0, for all j ∈ S0.

Assumption 2. E[Vjk] < ∞ for all k ∈ Z(j) and j ∈ S0.

Assumption 3. The range {(φjk(x); k ∈ Z(j)), x ∈ X} of the regressor functions

contains a nonempty open set in (0,∞)#Z(j), for all j ∈ S0.

These are multivariate extensions of assumptions that are standard in the single-spell

MPH literature (e.g. Elbers and Ridder, 1982). Assumption 1 requires independence

of the observed covariates and the unobserved heterogeneity in the relevant subpop-

ulations. Because we only observe a single transition from each origin state and

cannot apply panel-data techniques to deal with unobserved heterogeneity, this is

necessary for the identification of the regressor functions φjk.

Assumption 2 is a technical, but far from innocuous assumption (Ridder, 1990).

Without it, the integrated baseline hazards Λjk and regressor functions φjk can only

be identified up to power transformations.9 Such transformations may substantially

change the interpretation of Λjk and φjk.

8Our results can be adapted to other common censoring schemes, such as censoring at some
non-random finite time. See Andersen et al. (1993) for an overview of censoring schemes.

9Ridder and Woutersen (2003) prove semi-parametric identification of a single-spell MPH model
under an alternative assumption on the baseline hazard that is equally substantial.
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Finally, Assumption 3 ensures that there is independent variation with the re-

gressors of the individual hazard rates θjk(t|X, V ) corresponding to the various

competing risks in state j. With φjk(x) = exp(x′βjk), it would be sufficient that

(βjk, k ∈ Z(j)) has full column rank and X contains a non-empty open set in Rq,

for all j ∈ S0. In turn, this could be achieved by imposing exclusion restrictions

of the sort encountered in instrumental-variables analysis. However, such exclusion

restrictions are not necessary for Assumption 3 to hold.

We have the following result.

Proposition 1. If Assumptions 1–3 are satisfied, then ((φjk, Λjk), j ∈ S0, k ∈ Z(j))

and the joint distributions of (Vjk, k ∈ Z(j))|S0 = j, j ∈ S0, are identified from the

distribution of ∆T1, S1|S0, X.

Proof. For each j ∈ S0, the model of ∆T1, S1|S0 = j, X is an MPH competing-risks

model. The result follows from repeated application of Abbring and Van den Berg

(2003a, Proposition 2).10

Because the model for the first transition from the initial state is an MPH competing-

risks model, Proposition 1’s proof is a direct application of Abbring and Van den

Berg’s (2003a) identification results for such models. The intuition for these results

comes in two stages.

First, consider the transition rate from state j to state k among those who have

survived for some time t in their initial state j,

λjk(t)φjk(X)E [Vjk|∆T1 ≥ t, S0 = j, X] .

This “crude” hazard rate can be computed from the distribution of ∆T1, S1|S0, X

that Proposition 1 takes as data. For t > 0, E [Vjk|∆T1 ≥ t, S0 = j, X] typically de-

pends on X and variation of the crude hazard rate with the covariates reflects both

10Abbring and Van den Berg study the case with two risks, but the extension to more than two
risks is trivial.
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these selection effects and the agent-level effects through φjk(X). However, because

of Assumptions 1 and 2, E [Vjk|∆T1 ≥ t, S0 = j, X] reduces to E [Vjk|S0 = j] < ∞ as

t ↓ 0. Thus, near the start of the spell, by Assumption 1 subpopulations with differ-

ent regressor values are similar in terms of their unobserved components. Therefore,

we can identify φjk by contrasting crude hazard rates between such subpopulations

near the start of the spell.

Second, note that, for t > 0 and given φjk(X), the crude hazard rate above can

only depend on X through the selection effects on

E [Vjk|∆T1 ≥ t, S0 = j, X] = E
[
Vjk|T 1

jk′ ≥ t, k′ ∈ Z(j); S0 = j, X
]
.

Now suppose that Vjk⊥⊥(Vjk′ , k
′ ∈ Z(j)/{k})|S0, X. Then, the event {T 1

jk′ ≥ t, k′ ∈

Z(j)/{k}} is not informative on Vjk for given S0, X, and

E [Vjk|∆T1 ≥ t, S0 = j, X] = E
[
Vjk|T 1

jk ≥ t, S0 = j, X
]
.

Thus, in this case, E [Vjk|∆T1 ≥ t, S0 = j, X], and therefore the crude hazard rate,

does not depend on X for given φjk(X). If Vjk⊥⊥�(Vjk′ , k
′ ∈ Z(j)/{k})|S0, X, on the

other hand, E [Vjk|∆T1 ≥ t, S0 = j, X] depends on φjk′(X) for given φjk(X) through

the dependence of Vjk and Vjk′ . In sum, independent variation in φjk′(X), k′ ∈

Z(j)/{k}, and φjk(X) can be exploited to infer whether the competing risks are

dependent or not. Assumption 3 ensures that there is such independent variation in

the regressor effects.

In applications, like those in Section 2, we are typically interested in contrasting

the distributions of T 1
jk and T 1

j′k in a subpopulation with given values of X and

S0, for some j, j′ ∈ S0 and k ∈ Z(j) ∩ Z(j′). Such a contrast can be interpreted

as an average treatment effect on the given subpopulation.11 However, Proposition

11Abbring and Van den Berg (2005) discuss the definition of treatment effects in duration models.
They argue that the usual treatment effects defined in terms of the distributions of potential
outcome durations confound effects on individual hazard rates and effects that operate through
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1 only provides identification conditional on S0. In particular, it gives conditions

under which we can construct the distributions of T 1
jk|S0 = j, X and T 1

j′k|S0 = j′, X.

The contrast between these distributions reflects both causal treatment effects and

selection into the initial state. This is the standard problem of causal inference.

Some standard solutions to this problem, adapted to this event-history setting, are

the following.12

First, we could assume that assignment to initial states is “randomized”:

Assumption 4. V⊥⊥S0.

This, with Assumption 1, would allow us to identify the distributions of T 1
jk|X

and T 1
jk|X, S0— our objects of interest— with that of T 1

jk|S0 = j, X. The latter is

identified by Proposition 1.

Second, we could rely on instruments to generate random variation in S0. Ab-

bring and Van den Berg’s (2005) non-parametric and semi-parametric results for

single-spell duration outcomes apply directly to the special case that there is only

one destination from the initial states. Their extension to competing-risks outcomes

is required in the general case. The MPH structure will prove key here in separating

the effects on the competing risks.13

3.3 Dynamic Selection

The event-history approach to program evaluation does not rely on random variation

in the initial state, but instead exploits variation in the states that arises in the course

of the event history due to transitions. There is a close connection to the selection-

model literature: Dynamic selection into states is modeled jointly with outcomes by

means of the mixed semi-Markov event-history model.

dynamic selection. Recursive economic models often primarily predict effects on individual hazard
rates and semi-parametric structure, such as the MPH model, is needed to identify such effects.
Here, we do not explicitly address this issue.

12See e.g. Heckman et al. (1999) for an overview.
13In addition, semi-parametric structure will be important if one is interested in treatment effects

on individual hazard rates. See Footnote 11.
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This approach is particularly relevant in the important case in which there is

no variation at all in the initial state, and S0 is degenerate. Then, Assumption 4

is trivially satisfied, but there is no scope for contrasting transitions from different

initial states. In this case, all variation in states arises dynamically according to

the mixed semi-Markov transition process. Multiple spells (L > 1) are needed to

compare transition rates from different origin states.

A selection problem arises if the probability, conditional on X, V , that the state

of interest is never occupied during the observed event history depends on V for

given X. This is typically the case if only a finite number L of spells is observed,

so that there is censoring.14 Without censoring, if L = ∞, it is often true that the

state of interest is almost surely occupied at some point during the event history.

Then, the sample of event histories’ first spells in the state of interest does not suffer

from selection on unobservables; Standard competing-risks results then give full

identification. Similarly, if both the first and the second spell in a state of interest

occur almost surely, the much stronger results for multi-spell competing-risks models

of Abbring and Van den Berg (2003a) can be applied.

Obviously, these results are of little empirical relevance, as we typically only

observe a limited number of spells in any event-history, and panel data are subject

to other types of censoring. However, they highlight that dynamic selection prob-

lems arise either because of restrictions on the event-history process that lead to

selective occurrence of first (and higher) spells in given states, or because of limited

observability of event histories, e.g. due to censoring.

In the remainder of this section we will analyze under what conditions the struc-

ture imposed on the mixed semi-Markov model in Section 2 suffices for identification

of state dependence and treatment effects.

14Abbring and Van den Berg (2005) relate a similar argument for the case of simple random
censoring to the dynamic selection problems studied by Ham and LaLonde (1996).
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3.4 Identification from Censored Event Histories

Let j ∈ S be accessible from S0, so that Pr(Sl = j) > 0 for some l ≥ 0, and let k ∈

Z(j). Consider the identification of the determinants of θjk. Let L(j) := min{l ≥

0 : Pr(Sl = j) > 0} be the smallest number of transitions from S0 through which j is

accessible. Then, we need data on at least L(j)+1 spells to identify the determinants

of θjk. Take some u0, u1, . . . , uL(j)+1 such that Pr(S0 = u0, . . . , SL(j)+1 = uL(j)+1) >

0, uL(j) = j, and uL(j)+1 = k. We approach the identification of the determinants of

θjk by considering the identification of the determinants of

Pr(S0 = u0, . . . , SL(j)+1 = uL(j)+1; ∆T1 > t1, . . . , ∆TL(j)+1 > tL(j)+1|X, V ),

for (t1, . . . , tL(j)+1) ∈ RL(j)+1
+ . In turn, these can be expressed in terms of the tran-

sition intensities corresponding to the origin-destination pairs in Ξ := {(s, s′) ∈

S2 : s ∈ {u0, . . . , uL(j)}, s′ ∈ Z(s)}. Note that, along with the identification of

θjk’s determinants, we consider identification of the selection process into the state

j. This selection process is modeled as a repeated competing-risks model, and its

identification will again exploit results from the competing-risks literature.

We make the following assumptions.

Assumption 5. (Vp, p ∈ Ξ)⊥⊥X|S0.

Assumption 6. For all s ∈ Z(u0), E[Vu0s] < ∞. For all s ∈ Z(ul), E[Vu0u1 · · ·Vul−1ul
Vuls] <

∞, l = 1, . . . , L(j).

These assumptions generalize Assumptions 1 and 2 to the case of multiple transi-

tions, but for a single initial state u0. Assumption 5 requires that the unobserved

factors relevant to the chosen path from u0 to k, including those corresponding to

the pairs in Z(u0), are jointly independent of X, given S0. Assumption 6 again facil-

itates inference on regressor effects at short durations. The higher moments appear

in probabilistic expressions involving histories with multiple short spells. Together

with Assumption 5, it allows us to derive the following result.

17



Proposition 2. If Assumptions 5 and 6 are satisfied, then (φp, p ∈ Ξ) is identified

from the distribution of {(∆Tl, Sl), l = 1, . . . , L(j) + 1}|S0, X.

Proof. See Appendix.

With a generalization of Assumption 3 to the case of multiple transitions, we

can extend this result to identification of the full model. Let Ξ(ul) := {ul} × Z(ul)

be the set of all origin-destination pairs with origin ul.

Assumption 7. For l = 0, . . . , L(j), the set

{(Λp(ti+1)φp(x); p ∈ Ξ(ui), i = 0, . . . , l) ; x ∈ X , (t1, . . . , tl) ∈ Rl
+, tl+1 = t∗}

contains a nonempty open set in (0,∞)
Pl

i=0 #Ξ(ui).

A sufficient condition for Assumption 7 is that the range {(φp(x), p ∈ Ξ), x ∈ X}

of the regressor functions contains a nonempty open set in (0,∞)#Ξ. If φp(x) =

exp(x′βp), it would be sufficient that (βp, p ∈ Ξ) has full column rank and X contains

a non-empty open set in Rq. However, Assumption 7 is substantially weaker, as it

allows us to substitute variation in the durations of previous spells for regressor

variation.

We have the following result.

Proposition 3. If Assumptions 4–7 are satisfied, then ((φp, Λp), p ∈ Ξ) and the

joint distribution of (Vp, p ∈ Ξ) are identified from the distribution of {(∆Tl, Sl), l =

1, . . . , L(j) + 1}|S0, X.

Proof. See Appendix.

The model for the first L(j) transitions is a repeated MPH competing-risks model

and Proposition 3’s proof iteratively applies an identification strategy similar to that

of Abbring and Van den Berg (2003a) for the competing-risks model. In particular,

identification of the determinants of the first transition from u0 is proven analogously
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to Proposition 1 (or, similarly, Abbring and Van den Berg, 2003a, Proposition

2). With this in hand, we can proceed to identification of the determinants of the

transition from u1, exploiting knowledge of the determinants of the first transition,

etcetera.

Proposition 3 establishes identifiability of the determinants of θjk from event

histories that include only a single spell in state j. If we have data on sufficiently

long event histories, we may be able to observe multiple spells in state j. The

literature on the identifiability of multi-spell duration models (Honoré, 1993; Abbring

and Van den Berg, 2003a,b) suggests that many of our assumptions, including the

proportional-hazards assumption, can be relaxed in this case. We will not further

pursue this here.

4 Alternative Sampling Schemes

We have analyzed identifiability of the mixed semi-Markov event-history model from

a random sample of censored event histories. In empirical practice, we often have

to deal with alternative, more complex sampling schemes.

We distinguish two cases, inflow sampling and stock sampling (e.g. Lancaster,

1990, Chapter 8). With inflow sampling, we sample from the flow into a given subset

of states during some time interval. Due to dynamic selection, the distribution

of X, V in an inflow sample is typically not the same as its distribution in the

population. With stock sampling, we sample from the stock in a given set of states

at a certain moment in time. Again, the distribution of X, V in a stock sample is

generally not the same as its population distribution. Moreover, conditional on X, V

the distribution of the spells ongoing at the sampling date will not be the population

distribution either in this case.

Various ways to model inflow and stock samples have been proposed in the lit-

erature (see e.g. Heckman and Singer, 1984a, 1986; Lancaster, 1990). In the case of
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inflow sampling, we could replace Assumption 5 by an ad hoc assumption on the dis-

tribution of the covariates in the inflow. We could make similar ad hoc assumptions

in the stock-sampling case, together with an assumption on the historical develop-

ment of the inflow into the states from which we sample. One common assumption

is that the inflow has been constant over time.

As Lancaster (1990, Section 8.4.2) points out, the common ad hoc assumptions

on the distribution of the covariates are likely to be mutually inconsistent between

the various sampling schemes. This suggests that we only make assumptions on the

population, like Assumption 5, and derive the distributions of the various samples

from the population model. In general, this is hard because the distributions of the

inflow and stock samples depend on that of the full event history, including its initial

conditions T0, S0.

An elegant solution is to assume that the samples are drawn from the event histo-

ries’ long-run equilibrium distributions. This is only appropriate in carefully selected

applications, and requires ergodicity of the semi-Markov model for the individual

event histories. The resulting models for the inflow and stock samples are easy to

derive and handle (Lancaster, 1990). In general, they involve dependent observable

and unobservable covariates even under Assumption 5. However, this dependence is

very tightly structured. We conjecture that this structure can be exploited to prove

identifiability under conditions not unlike those for the case of sampling from the

population. This is a topic for future research.

5 Concluding Remarks

This paper reviews the use of event-history models to simultaneously model dynamic

selection into programs and the causal effects of the participation in such programs

on event-history outcomes. A leading example is the analysis of the effects of training

programs for the unemployed on their unemployment durations and subsequent job
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stability. We have provided novel identification results for a particular class of event-

history models with a mixed semi-Markov structure. In doing so, we have highlighted

and exploited the central role of dependent competing-risks models.

We have focused on identification of causal and selection effects from “ideal”,

large data sets, and have ignored sampling variation. Therefore, our results cannot

be implemented directly in empirical practice. Instead, they explore the logical

limits on what we can reasonably expect to learn about causal effects of dynamic

programs from observational data. As such, they can guide the empirical analysis

of causal program effects using appropriate event-history models.
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Appendix

An Auxiliary Result

The proofs use a result for completely monotone functions. Completely monotone

functions are frequently encountered in statistical duration analysis in the form of

(derivatives of) Laplace transforms. They are formally defined by

Definition 1. Let Ω be a nonempty open set in Rn. A function f : Ω → R

is absolutely monotone if it is nonnegative and has nonnegative continuous partial

derivatives of all orders. f is completely monotone if f ◦m is absolutely monotone,

where m : x ∈ {ω ∈ Rn : −ω ∈ Ω} 7→ −x.

Note that for n = 1 this definition reduces to the familiar definition in Widder

(1946). Abbring and Van den Berg (2003a, Proposition 1) state the following result.

Proposition 4. Let Ψ be a nonempty open connected set in Rn and let f : Ψ → R

and g : Ψ → R be completely monotone. If f and g agree on a nonempty open set

in Ψ, then f = g.

Proposition 4’s proof exploits two facts that are well-known for functions on R and

that are also true for functions on Rn: (i) completely monotone functions are real

analytic and (ii) real analytic functions are uniquely determined by their values on

a nonempty open set.

Proofs

For l ≥ 0, let S l
0 denote the support of (S0, S1, . . . , Sl). As an extension of Tsi-

atis (1975), we can represent the “data” of Subsection 3.4’s identification anal-

ysis, the distribution of {(∆Tl, Sl), l = 1, . . . , L(j) + 1}|(S0, X), by a collection

{QL(j)+1
s (·|x); s ∈ SL(j)+1

0 , x ∈ X} such that Q
L(j)+1
s (t|X) equals

Pr
(
∆T1 > t1, S1 = s1; . . . ; ∆TL(j)+1 > tL(j)+1, SL(j)+1 = sL(j)+1|X, S0 = s0

)
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almost surely, for all s := (s0, . . . , sL(j)+1) ∈ SL(j)+1
0 and t := (t1, . . . , tL(j)+1) ∈

RL(j)+1
+ .

From these data, we can derive Ql
sl
0
, defined analogously to Q

L(j)+1
s , and Rl

sl−1
0

:=∑
s∈Z(sl−1) Ql

sl−1
0 s

, for l = 1, 2, . . . , L(j)+1, sl−1
0 := (s0, . . . , sl−1) ∈ S l−1

0 , and sl
0 ∈ S l

0.

Note that Rl
sl−1
0

(tl
1|X) equals

Pr (∆T1 > t1, S1 = s1; . . . ; ∆Tl−1 > tl−1, Sl−1 = sl−1; Tl > tl|X, S0 = s0)

almost surely, for all sl−1
0 ∈ S l−1

0 , tl
1 := (t1, . . . , tl) ∈ Rl

+, and l = 1, 2, . . . , L(j) + 1.

Proof of Proposition 2. The proof proceeds iteratively. First, consider identification

of φp for p ∈ Ξ(u0). Pick an arbitrary x ∈ X . Note that Q1
p(·|x) and Q1

p(·|x∗) are

differentiable almost everywhere, and that

φp(x) = lim
t↓0

∂Q1
p(t|x)/∂t

∂Q1
p(t|x∗)/∂t

.

because of Assumptions 5 and 6 and the normalization φp(x
∗) = 1. Because x is

arbitrary, this identifies (φp, p ∈ Ξ(u0)).

Next, iterate the following argument for l = 1, . . . , L(j). Suppose that φu0u1 , . . . , φul−1ul

are identified and consider identification of φp for p ∈ Ξ(ul). Pick an arbitrary x ∈ X .

Note that Ql+1
s (·|x) and Ql+1

s (·|x∗) are differentiable almost everywhere, and that

φu0u1(x) · · ·φul−1ul
(x)φuls(x) = lim

t↓0

∂l+1Ql+1
s (t|x)/∂t1 · · · ∂tl+1

∂l+1Ql+1
s (t|x∗)/∂t1 · · · ∂tl+1

,

with s = (u0, . . . , ul, s), s ∈ Z(ul), and t = (t1, . . . , tl+1). Here, we have used As-

sumptions 5 and 6 and the normalizations φu0u1(x
∗) = · · · = φul−1ul

(x∗) = φuls(x
∗) =

1. Because x is arbitrary, this identifies (φp, p ∈ Ξ(ul)).

Proof of Proposition 3. (φp, p ∈ Ξ) is identified by Proposition 2. The remainder of

the proof again proceeds iteratively.
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First, Assumptions 4 and 5 and the normalizations (Λp(t
∗) = 1, p ∈ Ξ(u0)) imply

that

R1
u0

(t∗|x) = LΞ(u0)(φp(x), p ∈ Ξ(u0)),

where LΞ(u0) is the Laplace transform of the joint distribution of (Vp, p ∈ Ξ(u0)).

Note that R1
u0

(t∗|·) and (φp, p ∈ Ξ(u0)) are identified at this point. So, by Assump-

tion 7 we can trace out LΞ(u0) on a nonempty open set in (0,∞)#Ξ(u0). Because

LΞ(u0) is completely monotone, this identifies LΞ(u0) by Proposition 4. By impli-

cation, (DpLΞ(u0), p ∈ Ξ(u0)) is identified, with DpLΞ(u0) the partial derivative of

LΞ(u0) with respect to the argument corresponding to Vp, p ∈ Ξ(u0).

Pick an arbitrary x. For almost all t ∈ (0,∞)

Λ′
p(t) =

∂Q1
p(t|x)/∂t

φp(x)DpLΞ(u0)(Λp′(t)φp′(x), p′ ∈ Ξ(u0))
, p ∈ Ξ(u0),

by Assumptions 4 and 5. These #Ξ(u0) equations form a system of differential

equations in (Λ′
p, p ∈ Ξ(u0)), (Λp, p ∈ Ξ(u0)), and t, with initial conditions (Λp(t

∗) =

1, p ∈ Ξ(u0)), in the sense of Carathéodory (1918). Analogously to Abbring and

Van den Berg (2003a, Proposition 2), this system can be shown to have a unique

solution (Λp, p ∈ Ξ(u0)) in terms of (Q1
p, DpLΞ(u0), φp(x) ; p ∈ Ξ(u0)). Because the

latter have been identified at this point, this establishes identification of (Λp, p ∈

Ξ(u0)).

Second, iterate the following argument for l = 1, . . . , L(j). Suppose that (Λp, p ∈

Ξ(ul−1
0 )) is identified, with ul−1

0 := (u0, . . . , ul−1) and Ξ(ul−1
0 ) :=

⋃l−1
i=0 Ξ(ui). By

Assumptions 4 and 5, the l-th partial derivative Dul
0
LΞ(ul

0) of LΞ(ul
0) with respect to

the arguments corresponding to Vu0u1 , . . . , Vul−1ul
satisfies

Dul
0
LΞ(ul

0)(Λp(ti+1)φp(x); p ∈ Ξ(ui), i = 0, . . . , l) =
∂Rl+1

ul
0

(tl+1
1 |x)/∂t1 · · · ∂tl∏l

i=1 Λ′
ui−1ui

(ti)φui−1ui
(x)

.
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for almost all tl
1 ∈ Rl

+, all tl+1 ∈ R+, and all x ∈ X . Because the right-hand side is

known at this point, this identifies

Dul
0
LΞ(ul

0)(Λp(ti+1)φp(x); p ∈ Ξ(ui), i = 0, . . . , l)

for all tl+1
1 ∈ Rl+1

+ and x ∈ X . Moreover, with the normalizations (Λp(t
∗) = 1, p ∈

Ξ(ul)), (Λp(ti+1)φp(x); p ∈ Ξ(ui), i = 0, . . . , l) is identified for all tl
1 ∈ Rl

+, tl+1 = t∗,

and x ∈ X at this point. So, by Assumption 7, we can trace out Dul
0
LΞ(ul

0) on a

nonempty open set in (0,∞)#Ξ(ul
0). Because (−1)lDul

0
LΞ(ul

0) is completely monotone,

this identifies Dul
0
LΞ(ul

0) by Proposition 4. By implication, (Dul
0sLΞ(ul

0), s ∈ Z(ul))

is identified.

Pick an arbitrary x. Pick ti such that Λui−1ui
is differentiable at ti, i = 1, . . . , l.

For almost all tl+1 ∈ (0,∞)

Λ′
uls

(tl+1) =

[
φuls(x)

l∏
i=1

Λ′
ui−1ui

(ti)φui−1ui
(x)

]−1

×

∂Ql+1
ul

0s
(tl+1

1 |x)/∂t1 · · · ∂tl+1

Dul
0sLΞ(ul

0)(Λp(ti+1)φp(x); p ∈ Ξ(ui), i = 0, . . . , l)
, s ∈ Z(ul),

(2)

by Assumptions 4 and 5. These #Ξ(ul) equations again form a system of differential

equations in the sense of Carathéodory (1918), now in (Λ′
p, p ∈ Ξ(ul)), (Λp, p ∈

Ξ(ul)), and tl+1, with initial conditions (Λp(t
∗) = 1, p ∈ Ξ(ul)). Standard theory can

again be applied to show that this system has a unique solution (Λp, p ∈ Ξ(ul)) in

terms of

(
Ql+1

ul
0s

, Dul
0sLΞ(ul

0), φuls(x)
l∏

i=1

Λ′
ui−1ui

(ti)φui−1ui
(x) ; s ∈ Z(ul)

)
.

Because the latter is identified at this point, this establishes identification of (Λp, p ∈

Ξ(ul)).

Finally note that LΞ is identified by integrating D
u

L(j)
0

LΞ. In turn, LΞ identifies
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the joint distribution of (Vp, p ∈ Ξ) by the uniqueness of the multivariate Laplace

transform.
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