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Abstract

A ranking method assigns to every weighted directed graph a (weak) order-
ing of the nodes. In this paper we axiomatize the ranking method that ranks
the nodes according to their outflow using four independent axioms. This out-
flow ranking method generalizes the ranking by outdegree for directed graphs.
Furthermore, we compare our axioms with other axioms discussed in the liter-
ature.
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1 Introduction

A weighted directed graph—or weighted digraph—is a pair (N,ω) where N = {1, ..., n}

is a finite set of n nodes and ω: N × N → R+ is a weight function assigning non-

negative weights to every ordered pair of nodes in N. A dominance structure be-

tween agents or alternatives such that the pairwise dominance relations differ in

‘strength’ can be represented by such weighted digraphs. Here, the nodes in N

represent these agents or alternatives and the value ω(i, j) is a measure of how

strongly i ∈ N dominates j ∈ N. We only consider weighted digraphs (N,ω) that

satisfy ω(i, i) = 0 for every i ∈ N. Since we assume the set of nodes N to be given,

we may represent each weighted digraph (N,ω) by its weight function ω. The

family of all weighted digraphs on N is indicated by W. (Note that for any ω ∈ W
it is allowed that ω(i, j) ·ω(j, i) 6= 0 as long as i 6= j, i.e. it might be that two distinct

nodes dominate each other.) The outflow of node i in weighted digraph ω is given

by σout
i (ω) =

∑
j∈N ω(i, j).

A preorder on N is a relation < ⊆ N × N that is reflexive (i.e., (i, i) ∈ < for

all i ∈ N) and transitive (i.e., {(i, j), (j, h)} ⊆ < implies (i, h) ∈ < for every triple

i, j, h ∈ N). (See, e.g., Bourbaki [1], page 133.) A preorder < on N is complete
if {(i, j), (j, i)} ∩ < 6= ∅ for every pair i, j ∈ N, i 6= j. Throughout this paper we

limit our discussion to complete preorders. Using standard notation for a complete

preorder < we denote i < j if and only if (i, j) ∈ <. Further we denote i � j if and

only if i < j and not j < i, and we denote i ∼ j if and only if i < j as well as j < i. If

i < j then we say that node i is “ranked at least as high” as node j, while if i � j we

say that i is “ranked higher” than j. If i ∼ j then i and j are “ranked equally”. We

denote the family of all complete preorders on the set N by P.

A ranking method is a mapping R:W → P which assigns to every weighted

digraph ω ∈ W a complete preorder R(ω) ∈ P. With slight abuse of notation we

use the convention that a ranking method is also represented by {<ω| ω ∈ W} ⊆ P
where i <ω j if and only if (i, j) ∈ R(ω).

Various ranking methods for weighted digraphs can be found in the literature.

For example, the method of ranking by net flow (see Bouyssou [2]) ranks the nodes

according to the difference between their total outflow and total inflow. Bouyssou

and Perny [3] characterize a partial ranking method (i.e., a method that assigns to

every weighted digraph a preorder that is not necessarily complete) in which node

i is ranked at least as high as another node j if and only if the outflow of i is at

least as high as the outflow of j, and the inflow of i is not larger than the inflow of

j. In this paper we characterize the ranking by outflow in which node i is ranked
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at least as high as another node j if and only if the outflow of i is at least as high

as the outflow of j.1 This ranking method generalizes the ranking by outdegree for

directed graphs as characterized in van den Brink and Gilles [5]. We remind that a

directed graph—or digraph—is a pair (N,D) where D ⊆ N×N is a binary relation

on the finite node set N.

Applications of ranking methods are, for example, ranking teams in sports com-

petitions, ranking alternatives in social choice theory (see, e.g., Sen [9]) and rank-

ing firms in an industry. In Section 2 we introduce our axiomatization of the ranking

by outflow method. Section 3 compares this method with the net flow method.

2 Ranking by outflow

The method of ranking by outflow is the ranking method Rout:W → P which as-

signs to every ω ∈ W a complete preorder Rout(ω) ∈ P given by

(i, j) ∈ Rout(ω) if and only if σout
i (ω) = σout

j (ω).

2.1 An axiomatization

For a ranking method represented by {<ω| ω ∈ W} ⊆ P we introduce the following

axiomatic properties. The first axiom is well-known from Bouyssou [2] and is a

straightforward generalization of the corresponding axiom for digraphs given in

Rubinstein [8]. For ω ∈ W and a permutation π: N → N the permuted digraph

πω ∈ W is given by πω(π(i), π(j)) = ω(i, j) for all (i, j) ∈ N×N.

Axiom 1 (Anonymity) For every ω ∈ W and permutation π: N → N it holds that
i <ω j if and only if π(i) <πω π(j).

The second axiom is a straightforward generalization of Rubinstein’s [8] corre-

sponding axiom for digraphs and is implied by the stronger axiom of strong mono-

tonicity used in Bouyssou [2]. It states that in pairwise comparison a node does

better if it dominates more nodes.

Axiom 2 (Positive responsiveness) Let ω ∈ W and let ω′ ∈ W be such that for
some pair i, h ∈ N there is a positive constant c > 0 such that:

ω′(p, q) =

{
ω(p, q) + c if (p, q) = (i, h)

ω(p, q) otherwise.

1We refer to van den Brink and Gilles [4] for an axiomatization of the outflow as a relational
power measure for weighted digraphs, also known as generalized score measure.
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If i <ω j then i �ω′j.

The third axiom generalizes the independence axioms of van den Brink and Gilles

[5] for digraphs and Rubinstein [8] for tournaments. It states that in pairwise

comparison between nodes i and node j, node i is not doing worse in case its

outflow does not decrease and j’s outflow does not increase.

Axiom 3 (Outflow monotonicity) Let ω,ω′ ∈ W and i, j ∈ N, i 6= j, be such that
ω′(i, h) = ω(i, h) and ω′(j, h) 5 ω(j, h) for all h ∈ N. If i <ω j then i <ω′ j.

Note that outflow monotonicity implies that the order between two nodes does not

change as long as their outflows do not change, i.e. if ω,ω′ ∈ W and i, j ∈ N, i 6= j,

are such that ω′(i, h) = ω(i, h) and ω′(j, h) = ω(j, h) for all h ∈ N, then i <ω j if

and only if i <ω′ j.

Van den Brink and Gilles [5] show that these three axioms applied to digraphs

characterize the ranking by outdegree for digraphs. However, these axioms do not

characterize the ranking by outflow for weighted digraphs. We give an example to

illustrate this in Section 2.2. Therefore, we need one more axiom which states that

if we add two weighted digraphs and the pairwise ranking between two nodes is

the same in both weighted digraphs, then this ranking is also the same in the ‘sum’

weighted digraph. For ω,ω′ ∈ W, we define (ω + ω′) ∈ W by (ω + ω′)(i, j) :=

ω(i, j) + ω′(i, j) for all (i, j) ∈ N×N.

Axiom 4 (Order preservation) Let ω,ω′ ∈ W and let i, j ∈ N. If i <ω j and
i <ω′ j then i < (ω+ω′) j.

Next we state our main result.

Theorem A ranking method on W is equal to the method of ranking by outflow if
and only if it satisfies anonymity, positive responsiveness, outflow monotonicity and
order preservation.

Proof. We leave it to the reader to check that the method of ranking by outflow

satisfies the four stated axioms.

To show the reverse, let {<ω| ω ∈ W} ⊆ P represent a ranking method that satisfies

the four stated axioms. Let ω ∈ W and i, j ∈ N be arbitrary. For every ω ∈ W we

introduce the following

m(ω) := min{ω(h, g) | (h, g) ∈ N×N and ω(h, g) > 0}
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Figure 1: Weighted digraph ωk in case (i, j) 6∈ {(p, q), (r, s)}.

M(ω) := {(h, g) ∈ N×N | ω(h, g) = m(ω)}

We first prove that i <ω j if σout
i (ω) = σout

j (ω). We distinguish the following two

cases.

Case A. We first consider that σout
i (ω) = σout

j (ω).

To show that i ∼ω j, we consider the weighted digraph ω̂ ∈ W given by

ω̂(h, g) =

{
ω(h, g) if h ∈ {i, j}, g ∈ N

0 otherwise.

We may suppose without loss of generality that ω(i, j) = ω(j, i).

Next we construct a collection of weighted digraphs {ωk}05k5t for some finite t ∈ N
such that nodes i and j are ‘similar’ in each of these digraphs, and thus we can

apply anonymity to conclude that i ∼ωk j in all those digraphs. We construct this

collection of weighted digraphs using the following procedure.

STEP 1 Let ω0 be given by

ω0(h, g) =

{
ω(j, i) if (h, g) ∈ {(i, j), (j, i)}

0 otherwise.

Anonymity of < clearly implies that i ∼ω0 j. Now let ω1 ∈ W be given by

ω1(h, g) :=

{
ω̂(h, g) − ω(j, i) if (h, g) ∈ {(i, j), (j, i)}

ω̂(h, g) otherwise.

Note that ω1(j, i) = 0 and ω1(i, j) = 0.

Let k = 0.
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STEP 2 IF {(h, g) ∈ N×N | ωk+1(h, g) > 0} = ∅ THEN let t = k and STOP.

ELSE since σout
i (ω̂) = σout

j (ω̂) and σout
i (ωm) = σout

j (ωm) for all 0 5 m 5 k,

we know that there must exist at least one h ∈ N\ {i} such that ωk+1(i, h) > 0

and at least one g ∈ N \ {i, j} such that ωk+1(j, g) > 0.

Let k = k + 1 and GO TO STEP 3.

STEP 3 Take a (p, q) ∈ M(ωk). (Note that p ∈ {i, j}.) Since σout
i (ω̂) = σout

j (ω̂) and

σout
i (ωm) = σout

j (ωm) for all 0 5 m < k there exists an (r, s) ∈ N × N such

that {r} = {i, j} \ {p} and ω(r, s) > 0.

Let ωk+1 ∈ W be given by

ωk+1(h, g) =

{
ωk(h, g) − m(ωk) if (h, g) ∈ {(p, q), (r, s)}

ωk(h, g) otherwise.

Clearly ωk+1(p, q) = 0 and ωk+1(h, g) = 0 for all (h, g) 6= (p, q), thus ωk+1 ∈
W.

Next we distinguish between the following two cases:

IF (i, j) 6∈ {(p, q), (r, s)} THEN let ωk be given by

ωk(h, g) :=

{
m(ωk) if (h, g) ∈ {(p, q), (r, s)}

0 otherwise.

The weighted digraph ωk is illustrated in Figure 1 with p = i and r = j,

in case q 6= s respectively if q = s. Note that anonymity implies that

i ∼ωk j.

GO TO STEP 2.

ELSE (i, j) ∈ {(p, q), (r, s)}. Suppose that (i, j) = (p, q) and thus r = j. Then

let ωk be given by

ωk(h, g) :=

{
m(ωk) if (h, g) ∈ {(i, j), (j, s), (s, i)}

0 otherwise.

The weighted digraph ωk is illustrated in Figure 2. Anonymity also im-

plies that i ∼ωk j in this case.

If (i, j) = (r, s) then we do the same but with s replaced by q. GO TO

STEP 2.

Since σout
i (ω̂) = σout

j (ω̂) this procedure leads to a collection of weighted digraphs

{ωk}05k5t which have been constructed such that nodes i and j are ‘similar’ in each
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Figure 2: Weighted digraph ωk in case (i, j) ∈ {(p, q), (r, s)}.

of these weighted digraphs.

Anonymity then implies that for every ωk, 0 5 k 5 t, it holds that i ∼ωk j.

Now let ω′ ∈ W be given by ω′(i, j) :=
∑t

k=0 ωk(i, j) for all (i, j) ∈ N×N.

Order preservation then implies that i ∼ω′ j.

If ω(i, j) = ω(j, i) then ω0(i, j) = ω0(j, i) = ω(i, j) and ωk(i, j) = ωk(j, i) = 0 for

all 1 5 k 5 t and thus case 2 in Step 3 cannot occur. But then ω′ = ω̂ and thus

i ∼ bω j.

Else ω(i, j) > ω(j, i), and then there is some s ∈ N \ {i} and some positive constant

c > 0 such that2

ω′(h, g) =

{
ŵ(h, g) + c if (h, g) = (s, i)

ω̂(h, g) otherwise.

Outflow monotonicity together with i ∼ω′ j then yields that in this case also i ∼ bω j.

Thus, i ∼ bω j, and since ω(i, g) = ω̂(i, g) and ω(j, g) = ω̂(j, g) for all g ∈ N,

outflow monotonicity implies that i ∼ω j. Thus, we conclude that i ∼ω j if σout
i (ω) =

σout
j (ω).

Case B. Next we turn to the case that σout
i (ω) 6= σout

j (ω).

Without loss of generality we may assume that σout
i (ω) > σout

j (ω). Then there

exists a weighted digraph ω̃ ∈ W satisfying the following conditions:

• ω̃(h, g) 5 ω(h, g) for all (h, g) ∈ N×N;

• ω̃(h, g) = ω(h, g) for all h ∈ N \ {i} and g ∈ N;

• σout
i (ω̃) = σout

j (ω̃).

2We refer to an illustration of this case in Figure 2.
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As shown above it follows from anonymity, outflow monotonicity and order preser-

vation that i ∼ eω j. Repeated application of positive responsiveness then yields that

i �ω j.

From Cases A and B it follows that i <ω j if σout
i (ω) = σout

j (ω).

To show the reverse, note that Case B also implies that j �ω i if σout
i (ω) < σout

j (ω).

With Case A this yields σout
i (ω) = σout

j (ω) if i <ω j.

Thus, if a ranking method satisfies the four axioms then it has to be the ranking by

outflow.

2.2 Logical independence of the axioms

The logical independence of the four axioms discussed above follows from the fol-

lowing four alternative ranking methods. For each method we show which axiom

it does not satisfy using the following example. We leave it for the reader to verify

the necessity of the other axioms.

Consider the weighted digraph ω0 on N = {1, . . . , 4} given by:

ω0(i, j) =


1 if (i, j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)}

2 if (i, j) = (3, 4)

0 otherwise.

Then σout(ω0) = (2, 2, 2, 0) and the ranking by outflow yields: 1 ∼ω0
2 ∼ω0

3 �ω0
4.

1. Consider the ranking method R1 given by

i �1
ω j if and only if

{
either [σout

i (ω) > σout
j (ω)]

or [σout
i (ω) = σout

j (ω) and i < j ]

This ranking method satisfies all four axioms except anonymity. For the weighted

digraph ω0 given above it yields that 1 �1
ω0

2 although ω0(1, h) = ω0(2, h)

and ω0(h, 1) = ω0(h, 2) for all h ∈ N.

2. Consider the ranking method R2 given by: i ∼2
ω j for all i, j ∈ N. This ranking

method satisfies all four axioms except positive responsiveness. Consider the

weighted digraph ω0 given above and the weighted digraph ω′ given by

ω′(i, j) =

{
2 if (i, j) = (1, 3)

ω0(i, j) otherwise.

If positive responsiveness is satisfied then it must hold that 1 �2
ω′ 2 since

1 ∼2
ω 2. But 1 ∼2

ω′ 2.
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3. We define the inflow of node i in ω ∈ W as σin
i (ω) =

∑
j∈N ω(j, i). Next, the

net flow of node i in weighted digraph ω ∈ W is given by

σnet
i (ω) = σout

i (ω) − σin
i (ω),

Consider the ranking method R3 given by

i <3
ω j if and only if σnet

i (ω) = σnet
i (ω).

This ranking method satisfies all four axioms except outflow monotonicity.

Consider ω0 given above and ω′ given by

ω′(i, j) =

{
1 if (i, j) = {(3, 2)}

ω0(i, j) otherwise.

If R3 satisfies outflow monotonicity, then it must hold that 1 ∼3
ω′ 2 since 1 ∼3

ω0
2

and ω′ is as described in Axiom 3. But 1 �3
ω′ 2.

4. Let σ:W → RN be given by:

σi(ω) := #{j ∈ N | ω(i, j) > 0} for all i ∈ N and ω ∈ W.

Thus σ assigns to every weighted digraph ω the outdegree of the underlying

(non-weighted) digraph D where D = {(i, j) ∈ N × N | ω(i, j) > 0}. Now,

consider the ranking method R4 given by

i <4
ω j if and only if σi(ω) · σout

i (ω) = σj(ω) · σout
j (ω).

This ranking method satisfies all four axioms except order preservation. Con-

sider the weighted digraphs ω1 and ω2 given by

ω1(i, j) =

{
1 for all (i, j) ∈ {(1, 3), (2, 3), (2, 4), (3, 4)}

0 otherwise

and

ω2(i, j) =

{
1 for all (i, j) ∈ {(1, 4), (3, 4)}

0 otherwise.

Then 3 <4
ω1 1 and 3 <4

ω2 1. Since (ω1 + ω2) = ω0, if order preservation is

satisfied it must hold that 3 <4
ω0

1. But 1 �4
ω0

3.
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3 A comparison with the net flow method

The method of ranking by outflow generalizes the method of ranking by outdegree

for digraphs which is axiomatized in van den Brink and Gilles [5]. The ranking

method R3 given at the end of the previous section is also known as the method

of ranking by net flow and is characterized in Bouyssou [2]. Applied to directed

graphs, this method boils down to the ranking by Copeland score. Both ranking by

outflow and ranking by net flow methods generalize the ranking by Copeland score

for tournaments as characterized in Rubinstein [8], see van den Brink and Gilles

[5].

We first show that the ranking by outflow and net flow are different on W.

We illustrate this with an application considering social welfare ranking methods.

Preferences of an individual a over a set of n alternatives N = {1, . . . , n} can be

represented by a binary relation �a on N. We denote i �a j if individual a weakly

prefers alternative i to alternative j. For a society of individuals represented by a set

of individuals I = {1, . . . ,m}, a preference profile p is an m-tuple of such preference

relations. A social welfare ranking method assigns to every preference profile a

complete preorder on the set of alternatives.

As a specific example, consider a set of four individuals {a, b, c, d}, a set of three

alternatives {1,2,3} and the preference profile { 1 �a 2 �a 3, 1 �b 2 �b 3, 3 �c

1 �c 2, 2 ∼d 3 �d 1 }.

The corresponding weighted majority digraph is given by ωp: N×N → R with

ωp(i, j) = #{a ∈ I | i �a j} − #{a ∈ I | j �a i}.

For the specified example, ωp(1, 2) = 2, ωp(2, 3) = 1, and ωp(i, j) = 0 otherwise.

The outflows, respectively net flows, are given by σout(ωp) = (2, 1, 0), respectively

σnet(ωp) = (2,−1,−1). So, according to the ranking method by outflow node 2 is

ranked higher than node 3, while according to the ranking by net flow nodes 2 and

3 are ranked equally.

Bouyssou [2] characterized the method of ranking by net flow using anonymity,

strong monotonicity and independence of 2- and 3-cycles.3 Strong monotonicity
consists of positive responsiveness and the reverse negative responsiveness, which

requires that if i is ranked at least as high as j, then increasing the inflow of j makes

i being ranked higher than j. Independence of 2- and 3-cycles means that deleting or
3Henriet [7] characterizes the net flow ranking method restricted to the class of so-called “com-

plete 2-digraphs”. A complete 2-digraph is a weighed digraph with weights 0, 1 and 2 on the arcs
such that the sum of the weight of an arc and the weight of the reverse arc is exactly 2.
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adding a cycle of length 2 or 3 to a weighted digraph does not change the ranking

of the nodes. The ranking by net flow does not satisfy outflow monotonicity as

defined in Section 2. On the other hand, the ranking by outflow does not satisfy

independence of 2- or 3-cycles nor negative responsiveness.

We extend our argument made in van den Brink and Gilles [5] that the axioms

that are presented in this paper are more in line with Rubinstein [8]’s axioms on

tournaments. A tournament is a weighted digraph ω such that ω(i, j) ∈ {0, 1} and

ω(i, j) = 1 if and only if ω(j, i) = 0. First, we emphasize that independence of

2- and 3-cycles is not well defined on the class of complete digraphs. Namely, if

such a 2- or 3-cycle is removed from a complete digraph, the resulting digraph

might no longer be complete. This prevents a thorough comparison of Bouyssou’s

axiomatization of the ranking by net flow with Rubinstein’s axiomatization of the

ranking by Copeland score on the class of tournaments.

A second argument in favor of the ranking by outflow is the fact that outflow

monotonicity generalizes Rubinstein’s independence axiom, while independence of

2- or 3-cycles does not4. To show this we formally generalize independence of 2 or

3-cycles and Rubinstein’s independence of irrelevant arcs for weighted digraphs.

Axiom 5 (Independence of 2- or 3-cycles) Let ω,ω′ ∈ W be such that ω′(h, g) −

ω(h, g) = ω′(g, h) − ω(g, h) for some h, g ∈ N, or ω′(h, g) − ω(h, g) = ω′(g, f) −

ω(g, f) = ω′(f, h) − ω(f, h) for some h, g, f ∈ N. Then i <ω j if and only if i <ω′ j

for all i, j ∈ N.

Axiom 6 (Independence of irrelevant arcs) Let ω,ω′ ∈ W and i, j ∈ N be such
that ω(i, h) = ω′(i, h), ω(h, i) = ω′(h, i), ω(j, h) = ω′(j, h), and ω(h, j) = ω′(h, j)

for all h ∈ N. Then i <ω j if and only if i <ω′ j.

Next we compare independence of irrelevant arcs with outflow monotonicity and

independence of 2- or 3-cycles.

Proposition Let R be a ranking method on W.

(a) If R satisfies outflow monotonicity then R satisfies independence of irrelevant
arcs.

(b) The axioms of independence of 2- or 3-cycles and independence of irrelevant
arcs do not imply one another.

4In van den Brink and Gilles [5] the same is shown for the ranking by outdegree for digraphs.
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Proof. As usual we represent the ranking method R by {<ω| ω ∈ W} ⊆ P. As-

sertion (a) follows trivially from the definitions of the independence axioms under

consideration.

We proceed to show assertion (b). The ranking by outflow satisfies independence

of irrelevant arcs but does not satisfy independence of 2- or 3-cycles.

Next, consider the ranking method R5 given by

i <5
ω j if and only if

{
either [σnet

i (ω) = maxh∈N σnet
h (ω)]

or [max{σnet
i (ω), σnet

j (ω)} < maxh∈N σnet
h (ω)]

This ranking partitions the set of nodes in two subsets. The “winners” are the ones

with the highest net flow. This ranking method satisfies independence of 2- or

3-cycles, but does not satisfy independence of irrelevant arcs.
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