
TI 2006-043/1 
Tinbergen Institute Discussion Paper 

 

A Weak Bifurcation Theory for 
Discrete Time Stochastic Dynamical 
Systems 

 Cees Diks 
Florian Wagener 

 

CeNDEF, University of Amsterdam. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
Please send questions and/or remarks of non-
scientific nature to driessen@tinbergen.nl. 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 



A weak bifurcation theory for discrete time
stochastic dynamical systems
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Abstract
This article presents a bifurcation theory of smooth stochastic dynamical

systems that are governed by everywhere positive transition densities. The
local dependence structure of the unique strictly stationary evolution of such
a system can be expressed by the ratio of joint and marginal probability den-
sities; this ‘dependence ratio’ is a geometric invariant of the system. By in-
troducing a weak equivalence notion of these dependence ratios, we arrive
at a bifurcation theory for which in the compact case, the set of stable (non-
bifurcating) systems is open and dense. The theory is illustrated with some
simple examples.

1 Introduction
Bifurcation theory has been an extremely successful tool to investigate the qualita-
tive properties of deterministic dynamical systems. Motivated by its success, there
have been several attempts to develop bifurcation theory for stochastic dynamical
systems, usually based on a classification of the shape of invariant densities of such
systems. However, these attempts have run into the problem, already pointed out
by Zeeman [15], that the shape of a probability density is not invariant under coor-
dinate transformations.

For one-dimensional continuous time diffusions, a classification that is
invariant under transformations has been proposed by Hartelman et al. [11, 14].
Inspired by their approach, we propose in this paper a classification for (strictly)
stationary stochastic processes that are governed by smooth everywhere positive
transition density functions. Let {Xt}t∈Z be such a process, with probability den-
sity pt, joint probability density of Xt1 , · · · , Xtn denoted by pt1,··· ,tn , and transition
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probability density τ(xt+1|xt). Then pt1+h,··· ,tn+h = pt1,··· ,tn , because of strict sta-
tionarity, and

pt+1(xt+1) =

∫
τ(xt+1|xt)p

t(xt) dxt.

In particular, as pt+1 = pt = p, the invariant probability density p is seen to be
the solution of the integral equation p(x) =

∫
τ(x|y)p(y) dy under the condition

that
∫
p(y) dy = 1; consequently, p is as least as smooth as τ .

The joint density pt,t+1 does not depend on t and it is therefore equal to p1,2.
Moreover, the joint measure p1,2(x1, x2) dx1 dx2 is absolutely continuous with re-
spect to the product measure p(x1)p(x2) dx1 dx2; therefore, by the Radon-Nikodym
theorem, the following function is well-defined:

f(x1, x2)
def
=
p1,2(x1, x2) dx1 dx2

p(x1)p(x2) dx1 dx2

=
p1,2(x1, x2)

p(x1)p(x2)
=
τ(x2|x1)

p(x2)
.

We call the function f the dependence ratio of the system. Note that f is identi-
cally 1 if Xt and Xt+1 are independent; the difference |f(x1, x2)− 1| can therefore
be seen as a measure of the local dependence structure of the stochastic dynamical
system.

By construction, a dependence ratio is a geometric invariant of the un-
derlying system, and it is therefore a suitable quantity to be at the foundation of
a stochastic bifurcation theory. Several other local dependence measures have re-
cently been described in the statistical literature (see e.g. [7], [8], and [9]). These
measures are localised versions of the Pearson correlation coefficient, and as such
are motivated entirely differently than our dependence ratio. In particular they do
not share the geometrical invariance property.

Our concept of ‘stochastic bifurcation’ will not be an analogue of the con-
cept of ‘topological bifurcation’ of deterministic systems. Recall that two deter-
ministic systems are said to be topologically equivalent if one is induced by a
homeomorphism from the other. It is easy to see, and it will be shown below, that
we cannot build a theory of stochastic bifurcation on the parallel notion of ‘strong
equivalence’, which defines two stochastic systems to be equivalent if the depen-
dence ratio of the first is induced from the dependence ratio of the second by a
coordinate transformation. The equivalence notion that we shall adopt is more like
the weaker ‘local topological equivalence’ of deterministic systems, where two sys-
tems are equivalent if for all equilibria neighbourhoods exist such that the systems
are topologically equivalent on corresponding neighbourhoods. Our analogous no-
tion, which we call ‘ratio equivalence’, calls two dependence ratios equivalent if
there is a coordinate transformation that maps critical points of one ratio to the cor-
responding critical points of the other ratios. As in the case of local topological
equivalence, we shall show that for ratio equivalence the union of the open equiva-
lence classes is an open and dense set in the space of all dependence ratios.
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Figure 1: Level sets for the mapXt = Xt−1+a sin(Xt−1)+0.25 sin2(Xt−1)+0.25+
εt+1 for decreasing values of a (top panels). The dashed-dotted lines, corresponding
with the critical levels of the saddle points, are added for clarity. The lower panels
show the invariant probability density of Xt.

We give figure 1 as an illustration. It shows the invariant probability den-
sities and the dependence ratios of the stochastic dynamical system on the circle

Xt = Xt−1 + a sin(Xt−1) + 0.25 sin2(Xt−1) + 0.25 + εt mod 2π

for several values of the parameter a; the εt are identically and independently dis-
tributed (IID) stochastic variables. We see that the number of critical points of the
dependence ratio changes as a changes, and hence that the associated strictly sta-
tionary processes are qualitatively different. This change in the dynamics is not at
all appearant from the invariant probabilities. Moreover, by a suitable change of co-
ordinates in the system, the invariant probabilities could be made constant, whereas
the transformed dependence ratio would still show the same bifurcation behaviour.

Plan of the article In section 2, we quickly review the previously proposed no-
tions of phenomenological and dynamical bifurcation of stochastic dynamical sys-
tems. We define a new equivalence relation, based on the dependence structure of
the process in section 3. We show in particular that our equivalence relation has
‘many’ structurally stable elements and that it avoids some limitations of older no-
tions. Finally, in section 4 we illustrate its usefulness by giving several applications.
An appendix contains proofs.
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2 Related literature
In this article, the term ‘stochastic dynamical system’ will always refer to a class of
stochastic processes which are governed by a single transition probability density.
An ‘evolution’ of such a stochastic dynamical system is a stochastic process of
this class that is generated by an this transition probability density and an initial
probability distribution.

2.1 Phenomenological bifurcations
The natural first attempt to attain at a classification of stochastic dynamical systems
is to apply the Morse classification of real valued functions to invariant probability
densities p of the system, see [3, 15]. The corresponding equivalence relation is
that of smooth coordinate transformations of domain and range of p, the stable el-
ements being Morse functions with all critical values distinct from each other. For
the purposes of this article, we shall call the equivalence relation P-equivalence, in
analogy with the associated bifurcation notion, which has been called phenomeno-
logical bifurcation or P-bifurcation (see Arnold [2], p. 471-473).

A serious limitation of the P–bifurcation, acknowledged in [15], is that
the equivalence classes are not invariant under diffeomorphisms of the underlying
space. For instance, let {Xt} be a process on Rm with invariant density pX , and let ϕ
be an invertible transformation of Rm. The density pY of {Yt}, where Yt = ϕ(Xt),
then is related to pX through

pX(x) = pY (ϕ(x)) |detDϕ(x)|.

We see that, in the language of physicists, the function value of the invariant den-
sity ‘depends on the coordinates chosen’. Only if ϕ is volume-preserving, that
is, if | detDϕ(x)| = 1 for all x, the form of the invariant density is guaranteed
not to change. It is easy to construct examples on the real line where after a
well-chosen transformation ϕ the densities pX and pY are in different equivalence
classes. Note that the volume-preserving diffeomorphisms comprise the class of
Riemannian isometries that were proposed in [15] to be the admissible class of
coordinate transformations.

Underlying this lack of invariance is the fact that a probability density p(x),
unlike the measure p(x) dx, is not a geometrical invariant under general coordinate
transformations. By consequence, P-equivalence is an inconvenient notion for prac-
tical applications: for instance, it might make a difference to the results whether
data is recorded on a linear or a logarithmic scale.

As pointed out by Hartelman and co-workers [11,14], it is possible to con-
struct a ‘coordinate-free’ classification for one-dimensional continuous-time diffu-
sions . By defining stochastic analogues of concepts used in catastrophe theory, they
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arrived at a classification that is, unlike P-equivalence, invariant under monotoni-
cally increasing transformations of the real line, or more precisely, a classification
that is invariant up to transformations homotopic to the identity mapping. This clas-
sification, together with invariant estimation considerations, leads to the empirical
use of statistical quantities called level crossing statistics, which are invariant under
monotonic transformations, that is, diffeomorphisms, of the real line.

Unfortunately level crossing statistics are not very natural in the discrete
time setting, which is for instance the natural setting for many problems in eco-
nomic dynamics. Although these statistics can be used for discrete time systems in
principle, the corresponding classification would be rather restrictive, since discrete
time dynamical systems are ‘essentially richer’ than discretely sampled continuous
time diffusions, mainly because finite time transition densities induced by diffu-
sions only represent a subclass of transition densities for discrete time dynamical
systems.

2.2 Dynamical bifurcations
A second bifurcation notion for stochastic dynamical systems has been introduced
by Ludwig Arnold and his co-workers (see [2] for an extensive exposition). We
shall try to sketch this approach using a process {Xt} on R of the form

Xt+1 = g(Xt, εt), (1)

with deterministic initial condition X0 = x0 ∈ R, and where {εt} is a sequence
of independent and identically distributed random variables. The main idea is to
consider this process as a deterministic dynamical system on an infinite dimensional
phase space Ω×R. The elements of Ω are the possible realisations ω = (ε0, ε1, · · · )
of the process {εt}. Introducing the projection π(ω) = ε0 and the shift σ(ω) =
(ε1, ε2, · · · ), we have for instance that εt = π ◦ σt(ω). Define now the map Φ
on Ω× R by

Φ(ω, x) = (ϕ1(ω), ϕ2(ω, x)) =
(
σ(ω), g

(
x, π(ω)

))
.

This is a deterministic system; the stochastics are ‘hidden’ in the fact that the initial
condition ω ∈ Ω is unknown. The realisations Xt of the process (1) are the values
of the second component of Φt(ω, x). The map Φ is then called a random dynamical
system on the phase space R.

Note that Φ is a skew system: the shift dynamics ϕ1 in the space Ω are
driving the dynamics ϕ2 in R. For Φ, a random fixed point is defined as a map ξ :
Ω → R that satisfies the invariance condition

ϕ2(ω, ξ(ω)) = ξ(ϕ1(ω))

5



for all (or almost all) ω. Stability is now defined in the usual way: a random fixed
point ξ is stable if all nearby orbits converge to ξ. Note that a stochastic dynam-
ical system that is at a stable random fixed point has an invariant measure, which
describes exactly the distribution of the random fixed point. So-called ‘random’ bi-
furcations are now defined as ‘ordinary’ bifurcations of the deterministic dynamical
system Φ. For instance, a random, or, following the terminology in [2], dynamical
bifurcation or D-bifurcation of a process occurs if a random fixed point loses sta-
bility.

At this point, a drawback of the notion of dynamical bifurcation becomes
apparent: to determine stability of a random fixed point, two orbits of Φ with iden-
tical noise realisations have to be compared. This seems to make it rather difficult
to apply the notion of D-bifurcation to practical problems (but see [4] and related
literature).

The theory leading to the D-bifurcation remains close to traditional bifur-
cation theory for deterministic dynamical systems, in that it aims at characterising
the full dynamical system rather than just invariant measures. However, as men-
tioned above, without further knowledge of the dynamics it is empirically impossi-
ble to distinguish between different dynamical systems producing time series with
identical invariant measures. To avoid such differences at the level of the underly-
ing dynamics that are undetectable empirically, we choose to leave aside this theory,
and try rather to improve on the notion of P–equivalence.

3 Equivalence notions
In this section we introduce and motivate our bifurcation theory of of stochastic
dynamical systems and we give some of its fundamental properties.

3.1 Definitions and assumptions
We want our theory to be applicable to stochastic dynamical systems of the form

Xt+1 = g(Xt, εt), (2)

where g : Rm × Rk → Rm is such that g(Xt, ·) : Rk → Rm is a submersion, that
is ranDεg ≥ m, and where εt are IID random variables taking values in Rk. If g is
smooth, and if the εt are distributed according to a smooth probability density func-
tion, then to this stochastic dynamical system there is associated a smooth transition
probability density.

Taking a slightly more general setup, we consider a state space M that
is either an open simply connected subset of Rm with smooth boundary, or the
(compact) closure of a bounded open simply connected subset of Rm with smooth
boundary, or a compact closed m-dimensional manifold. Motivated by the system
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given in equation (2), we define a ‘smooth’ stochastic dynamical system as a smooth
transition probability density τ : M ×M → R: if the state Xt of the system at
time t is distributed according to pt(xt) dxt, then Xt+1 is distributed according to
pt+1(xt+1) dxt+1, where

pt+1(xt+1) =

∫
M

τ(xt+1|xt)p
t(xt) dxt. (3)

Note that {Xt} is a Markov process.

Assumption 1 We shall assume throughout the paper that τ > 0 on M ×M .

This assumption implies that the integral equation

p(x) =

∫
M

τ(x|y)p(y) dy

has a unique solution p : M → R satisfying
∫

M
p(x) dx = 1 and p(x) > 0 for

all x ∈M . The function p is then the unique invariant probability density of the sys-
tem; consequently, if X0 is distributed according to p(x) dx, then {Xt} is a strictly
stationary Markov process, and the Xt are identically distributed random variables.
We denote the joint probability density of the random variables (Xt1 , · · · , Xtn)
by pt1,··· ,tn . For instance, for a strictly stationary process we have pt,t+1(x, y) =
p1,2(x, y). To a strictly stationary first order Markov process with smooth invariant
densities, we associate the dependence ratio

f(x1, x2) =
p1,2(x1, x2)

p(x1)p(x2)
=
τ(x2|x1)

p(x2)
. (4)

We make two remarks. First, if the dependence ratio f and the invariant density p
are specified, the transition probability density τ is determined by equation (4).
Second, as τ is smooth and τ > 0 on M ×M , the associated dependence ratio f is
smooth and takes values in (0,∞).

Assumption 2 We shall assume that if M is compact, the dependence ratio f of a
stochastic dynamical systems has no critical points on the boundary of M ×M .

We note that dependence ratios are connected to copulas: in the simplest,
two-dimensional case, a copula C : [0, 1]2 → [0, 1] is a bivariate distribution
function whose margins are uniformly distributed on [0, 1]. They arise as follows:
let {Xt} be a strictly stationary real-valued process with invariant probability den-
sity p, and let

F (x) =

∫ x

−∞
p(y) dy and F 1,2(x1, x2) =

∫ x1

−∞

∫ x2

−∞
p1,2(y1, y2) dy1 dy2

7



be its marginal and joint distribution functions. Then the copula C(u1, u2) of this
process is determined by the equation

F 1,2(x1, x2) = C(F (x1), F (x2)).

Now, differentiation of this relation with respect to x1 and x2 yields that

p1,2(x1, x2) =
∂2C

∂u1∂u2

(
F (x1), F (x2)

)
p(x1)p(x2),

and we see that the dependence ratio f of the process satisfies

f(x1, x2) =
∂2C

∂u1∂u2

(
F (x1), F (x2)

)
.

This association of dependence ratios with copulas neatly illustrates that the de-
pendence ratio describes the whole stochastic dynamical system, and not merely its
strictly stationary evolution. In the case of a smooth stochastic dynamical system on
the real line with invariant probability p(x) and dependence ratio f(x1, x2), this is
seen most readily by performing the coordinate change Ξt = F (Xt), where F (x) =∫ x

−∞ p(y) dy; the strictly stationary evolution of the transformed system is then uni-
formly distributed on the interval [0, 1], and its transition probability density is then
exactly equal to the transformed dependence ratio:

τ(ξ2|ξ1) = f
(
F−1(ξ1), F

−1(ξ2)
)
.

We conclude that smooth stochastic dynamical systems on the real line that have
strictly stationary evolutions are fully characterised, up to diffeomorphism, by their
dependence ratios.

3.2 Structural stability and bifurcations
We recall briefly the fundamentals of bifurcation theory. The two main ingredients
of any such theory are a topological space X and an equivalence relation between
elements of X . An element f of X is structurally stable if there is a neighbour-
hood N(f) such that all elements g in that neighbourhood are equivalent to f ; that
is g ∼ f for all g ∈ N(f). Intuitively speaking, a structurally stable element f
can be ‘perturbed’ slightly without being pushed out of its equivalence class. Such
an element is sometimes called ‘persistent’. Clearly, the equivalence class of any
structurally stable element is an open set. A structurally stable equivalence class can
be thought of as defining a set of elements of the same ‘shape’ or ‘form’ (see [13]):
form remains ‘stable’ if perturbed slightly.

All elements of X that are not structurally stable are called bifurcating.
This notion is usually familiar from the context of parametrised families: if λ is
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some q-dimensional parameter, and λ 7→ fλ a family of elements ofX , then λ = λ0

is a bifurcating parameter value of the family if fλ0 is not structurally stable; it might
be said that at bifurcating parameter values the ‘form’ of fλ changes. Since the set
of structurally stable elements is open, the set of bifurcating elements, and therefore
also the set of bifurcating parameter values in a parametrised family, is closed.

An equivalence relation will give rise to a meaningful bifurcation theory
onX only if there exist structurally stable elements at all. The most useful situation
is attained if the set of structurally stable elements, while not consisting of a single
equivalence class, is ‘topologically big’, since then we will be able to associate
to ‘most’ elements a form. In a topological space, a set is ‘big’ if it is open and
dense, or if it is at least a countable intersection of open and dense sets (a so-called
‘generic’ or ‘second category’ set, see [10]).

3.3 Strong equivalence
In the following, smooth stochastic dynamical systems are analysed and classified
in terms of their unique strictly stationary evolutions.

A natural requirement to impose on an equivalence relation of smooth
stochastic dynamical systems on M is that systems which only differ by a dif-
feomorphism of M , that is, which are the ‘same’ up to a coordinate change, fall
in the same equivalence class. Let for instance {Xt}, {Yt} denote two stationary
evolutions for which

Yt = ϕ(Xt), for all t,

for some diffeomorphism ϕ : M → M . We call the associated systems strongly
equivalent. Denote the probability densities ofX and Y respectively by an indexX
or Y . Since

pt1,··· ,tn
X (xt1 , · · · , xtn)

= pt1,··· ,tn
Y (ϕ(xt1), · · · , ϕ(xtn))| detDϕ(xt1)| · . . . · | detDϕ(xtn)|,

it follows that

fX(x1, x2) =
p1,2

X (x1, x2)

pX(x1) · pX(x2)

=
p1,2

Y (ϕ(x1), ϕ(x2))| detDϕ(x1) detDϕ(x2)|
pY (ϕ(x1))| detDϕ(x1)| · pY (ϕ(x2)| detDϕ(x2)|)

= fY (ϕ(x1), ϕ(x2)). (5)

We conclude that strongly equivalent systems have dependence ratios that are equal
up to diffeomorphism.

If we took strong equivalence as the equivalence relation defining our bi-
furcation theory, in general we would obtain an uncountable infinity of equivalence
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classes, and no class would be a neighbourhood to any of its points, that is, no sys-
tem would be structurally stable and every system would be bifurcating. To see this
in a simple example, assume that fX and fY are two dependence ratios defined on
the square (−1, 1)× (−1, 1) ⊂ R2, and that they are given as

fX(x1, x2) =
2− µ

3
+ x2

1 + µx2
2, fY (x1, x2) =

2− ν

3
+ x2

1 + νx2
2.

Taking the invariant density in both cases to be p(x) = 1
2
I[−1,1](x), where IA(x)

denotes the indicator function, we have specified two stochastic dynamical sys-
tems. The point (0, 0) is the only non-degenerate critical point for both fX and fY ;
therefore, if fX and fY are strongly equivalent, we should have that Φ(x1, x2) =
(ϕ(x1), ϕ(x2)) satisfies Φ(0, 0) = (0, 0). But there is not even a homeomorphism,
much less a real-valued smooth diffeomorphism ϕ such that (5) holds simultane-
ously with ϕ(0) = 0, for the values of fX and fY at (0, 0) are different if µ 6= ν.
We see that every value of µ defines a different equivalence class.

3.4 Ratio equivalence
As we have seen, there are ‘too many’ equivalence classes if we take strong equiv-
alence as our equivalence relation; put differently, equality of stationary evolutions
up to diffeomorphism yields an equivalence relation that is too fine-grained to be
useful. A coarser classification is obtained by retaining only certain topological
information of the dependence ratio of the process. As this ratio is a geometric
invariant, the classification will still be invariant under diffeomorphisms.

Recall the Morse classification of functions: two functions are of different
shape if they have a different number of nondegenerate critical points. The number
of such points is a numerical characteristic of the ‘shape’ of a function, and in fact
we can build a classification where two functions are defined to be equivalent if
they have the same number of nondegenerate critical points. Now, if we choose a
suitable topology on the set of functions, we find that the equivalence classes are
open sets, and that its members are structurally stable. Of course, usually we want
also to include information about the type of critical point (Morse index).

The equivalence relation that we shall introduce on the space of smooth
stochastic dynamical systems is based on the Morse (left-right) equivalence of func-
tions, applied to the dependence ratio of the system. Notice however that, since
dependence ratios are subject to certain restrictions, not every positive function
on M ×M is a dependence ratio, we have less freedom to perturb a given ratio, and
therefore the properties of the Morse classification do not carry over automatically.

3.4.1 Topology

We need a function topology on the space of smooth stochastic dynamical systems
and the space of their dependence ratios; we choose the C2-topology, which is the
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‘coarsest’ topology for which the number of nondegenerate critical points defines
open equivalence classes. Recall that for functions f : M → R defined on a
compact manifold, an ε-neighbourhood Nε(f) of f in the C2-topology consists of
all functions g such that, with respect to a fixed Riemannian metric and the induced
norms on the appropriate vector bundles (T ∗

xM , · · · ), all of them denoted by ‖ · ‖,
we have

|f(x)− g(x)|, ‖Df(x)−Dg(x)‖, ‖D2f(x)−D2g(x)‖ < ε,

for all x ∈ M . If M is a compact manifold-with-boundary, the inequalities are
required to hold for all x ∈ int(M), in order that the derivatives remain well-
defined. If M is a non-compact manifold, the constants ε > 0 are replaced by
positive functions ε(x) > 0 on M in the above definition; the topology obtained is
called the ‘strong’ C2-topology (see e.g. [6]).

We use these topologies for the spaces of smooth stochastic dynamical
systems, or rather the space of their transition probability densities τ : M ×M →
R, and the space of their dependence ratios. As explained in subsection 3.2, by
specifying an equivalence notion on the topologised space of dependence ratios,
we shall obtain a notion of structural stability and bifurcation of the associated
stochastic dynamical systems that is invariant under coordinate changes.

3.4.2 Regular dependence ratios

A first rough formulation of our equivalence would be the following: we propose to
call two stochastic dynamical systems equivalent, if every non-degenerate critical
point of a certain type of the dependence ratio of the first system can be mapped to a
critical point of the same type of the second system by a transformation of M ×M
that is induced by a diffeomorphism of M . We shall make this more precise, after
having introduced some definitions.

Let M2 = M × M be the Cartesian product of M with itself; denote
by π` : M2 →M , for ` = 1, 2, the projection on the `’th component

π`(x1, x2) = x`.

Recall the following definitions (see e.g. [5], subsections 10.2 and 10.4, p. 79 and
p. 86 respectively). If f : U → R is a twice continuously differentiable function
defined on an open set U ⊂ Rn, a point x ∈ U is a critical point of f if the
derivative of f vanishes at x: Df(x) = 0. The value f(x) of f at a critical point x
is called the critical value of f at x. A critical point x is non-degenerate if the
Hessian matrix Hf(x) corresponding to the second derivative D2f(x) of f at x is
invertible. The number of negative eigenvalues of this matrix is called the (Morse)
index of the critical point. Clearly, the notions of critical point, critical value, index
and non-degeneracy carry over to functions defined on manifolds.
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Definition. A twice differentiable dependence ratio f : M2 → (0,∞) is called
regular if all its critical points are non-degenerate, if no two critical values are
equal and if no two critical points have the same image under any projection π`,
for ` = 1, 2.

3.4.3 Ratio equivalence on compact manifolds

In order to stay clear of topological complications, we only consider compact state
spaces that have very simple boundaries.

Definition. The set M is said to be a simple compact state space, if either M
is a closed compact manifold, or if M is the closure of an open bounded simply
connected subset of Rm such that the boundary ∂M is a smooth manifold (in fact,
a topological sphere).

In this subsection, we shall always assume that M is a simple compact state space,
unless mentioned otherwise. Note that the restrictions on M are imposed in order
not to have to deal with topological side issues.
If M is a simple compact state space, a regular dependence ratio has only finitely
many critical points ξ1, · · · , ξk; assumption 2 implies that none of these lie on the
boundary of M2. We assume that the points ξi are ordered such that the corre-
sponding critical values vi = f(ξi) are in ascending order, that is, vi < vj if i < j.
We associate to the critical point ξi its index ti (see subsection 3.3). Note that
0 ≤ ti ≤ 2m. In this way we obtain the index sequence t(f) = (t1, · · · , tk) of a
regular dependence ratio f .

Definition. Assume that M is a simple compact state space; let two smooth
stochastic dynamical systems on M be given with everywhere positive transition
probability and with dependence ratios f, g : M2 → (0,∞). These systems, and
their associated dependence ratios, are said to be compact ratio equivalent, if
either both f and g are non-regular, or if f and g are both regular and

1. their index sequences are equal;

2. there is a diffeomorphism ϕ : M → M , homotopic to the identity mapping
on M , such that the induced diffeomorphism Φ : M2 →M2 defined as

Φ(x1, x2) =
(
ϕ(x1), ϕ(x2)

)
(6)

maps the i’th critical point of f to the i’th critical point of g.

It follows from the first point that the number of critical points of f and g is equal
as well. We have the following proposition.

Proposition 1. If M is a simple compact state space, then

12



1. a smooth stochastic dynamical system on M with everywhere positive transi-
tion density is structurally stable under compact ratio equivalence if and only
if its dependence ratio is regular;

2. the set of stochastic dynamical systems on M that are structurally stable un-
der compact ratio equivalence is open and everywhere dense in the C2 topol-
ogy.

The proof of this proposition can be found in appendix A.
The proposition tell us that ratio equivalence has desirable properties, as

we can characterise all structurally stable systems, and as these form an open and
dense set in the space of all systems. In particular, it implies that we can build a
bifurcation theory of stochastic dynamical systems on simple compact state spaces,
based on the notion of compact ratio equivalence.

3.4.4 Ratio equivalence for non-compact manifolds

Though the results for the case of simple compact state spacesM are already useful
in themselves, in practice most stochastic dynamical systems are defined on the
non-compact manifold Rm. In this section, we investigate the case that M is an
open simply connected subset of Rm, possibly Rm itself. The direct generalisation
of the notion of compact ratio equivalence is given in the following definition.

Definition. Let M be an open simply connected subset of Rm such that its
boundary ∂M is a smooth manifold. Two smooth stochastic dynamical systems, as
well as their dependence ratios on M ⊂ Rm, are weakly ratio equivalent, if there
is a simple compact state space K0 ⊂ M , such that for every simple compact state
space K ⊃ K0, the dependence ratios of the systems restricted to K are compact
ratio equivalent on K2.

As the following example shows, this notion is unfortunately too weak for our pur-
poses.

Example. Consider two stationary evolutions {Xt} and {Yt} on the interval M =
(−1, 1) with invariant densities p(x) = 1

2
I(−1,1)(x) and dependence ratios

fX(x1, x2) = 1− 1

2
x1x2 +

1

4
x3

1, and fY (x1, x2) = 1 +
1

2
x1x2 −

1

4
x3

1.

Both ratios have a unique critical point of index 1 at the origin, and hence they are
ratio equivalent on compact sets. But if we consider the values of fX and fY along
the curve γ(t) = (t, t) as t ↑ 1, we note that fX ◦ γ(t) → infM2 fX , while fY ◦
γ(t) → supM2 fY . Weak ratio equivalence is not sufficiently fine to distinguish
between these systems.

13



Definition. Let M be an open simply connected subset of Rm such that its
boundary ∂M is a smooth manifold. If there exists a family {Mt} of bounded open
simply connected subsets of M , such that

1. the boundary ∂Mt is a smooth submanifold of M ;

2. Mt ⊂Mt′ if t < t′;

3.
⋃

tMt = M ;

then we call {Mt} an exhaustion of M .

Note that the closure Mt of Mt is a simple compact state space.
A convenient way to define an exhaustion of M is to take a differentiable

function J : M → R with the following properties. We fix a point x0 ∈ M and we
require that J(x0) = 0, J(x) > 0 for all x 6= x0, J(x) → ∞ as ‖x − x0‖ → ∞
or x → ∂M , and finally that J has no other critical points except x0. Then Mt =
{x ∈M : J(x) < t} is an exhaustion of M .

Consider the set
∂M2

t ⊂M2.

This set can be decomposed into three component manifolds C1
t = Mt × ∂Mt,

C2
t = ∂Mt ×Mt and C3

t = ∂Mt × ∂Mt. In the important special case that M is
one-dimensional, the component C3

t = ∂Mt× ∂Mt consists of four points. By def-
inition, we consider these as non-degenerate critical points, associating the index 0
to them by default. We also define C0

t = Mt ×Mt.
In the following three definitions, M is a manifold with exhaustion {Mt}

and with decomposition {Cj
t }3

j=0 of the closure of ∂M2
t . Moreover, the restriction

of f to Cj
t is denoted by f j

t , for j = 0, · · · , 3.

Definition. A smooth stochastic dynamical system with dependence ratio f onM2

is well-behaved at infinity if there are constants ct, T > 0 such that for every t > T
and every j:

1. if dimCj
t > 0, there is a compact set Kj

t ⊂ Cj
t such that ‖Df j

t (x)‖ > ct
if x ∈ Cj

t \K
j
t , and

2. f j
t is weakly ratio equivalent to f j

t′ on Cj for all t, t′ > T .

This definition is illustrated in figure 2.

Definition. A smooth stochastic dynamical system with dependence ratio f onM2

is well-behaved if f is well-behaved at infinity and f j
t is regular on Cj

t for every j
and every t > T .
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Figure 2: Well-behavedness at infinity. For dependence ratios f : R2 → R, the
curves indicate the sets {∂f

∂x
= 0} (dashed) and {∂f

∂y
= 0} (solid). The dependence

ratio on the left is well-behaved at infinity. For the dependence ratio on the right,
note that f 2

n (that is, f restricted to C2 = {−n}× (−n, n)∪{n}× (−n, n)) cannot
be weakly ratio equivalent to f 2

n+ 1
2

for any integer n, as the number of critical points
is different.

Definition. If M is a manifold with exhaustion {Mt}, two well-behaved smooth
stochastic dynamical systems with dependence ratios f and g are called ratio
equivalent, if there is a value of t such that f j

t and gj
t are weakly ratio equiva-

lent for every j.

Note that if f and g are weakly ratio equivalent on each component Cj
t for a single

value t > T , they are in fact equivalent for all such values, since f j
t ∼ f j

t′ for
all t, t′ > T .

Example. The two weakly equivalent ratios fX and fY introduced at the end of
the previous subsection are not ratio equivalent. Set at = t/(t + 1), and consider
the exhaustion It = (−at, at) of (−1, 1). Note that ∂(It × It) can be decomposed
into

C1
t = (−at, at)× {−at, at},

C2
t = {−at, at} × (−at, at),

C3
t = {−at, at} × {−at, at}.

Restricted to C1
t and C2

t , neither fX nor fY have any critical points. The set C3
t

consists of four isolated critical points, which are critical by definition. The max-
imum of fX restricted to C3

t is assumed in the points (at,−at), whereas fY takes
its minimum there. Since the only diffeomorphism of C3

t homotopic to the identity
is the identity itself, corresponding critical points of fX and fY cannot be mapped
onto each other.

The following propositions describe the topological properties of ratio equivalence.

15



The results are weaker than in the compact case, as was to be expected; we obtain
that well-behaved processes are stable elements of ratio equivalence. However, re-
stricted to the space of processes that are well-behaved at infinity, the well-behaved
processes form again an open and dense set.

Proposition 2. On an open simply connected subset of Rm, a well-behaved smooth
stochastic dynamical system with everywhere positive transition probability density
is stable with respect to the strong topology under ratio equivalence.

The proof of this proposition is given in appendix A.

4 Examples

4.1 Stochastic dynamics on the circle
As an illustration of a stochastic dynamical system on a compact manifold, we
consider the system on the unit circle M = S1 defined by

Xt+1 = Xt + a sin(Xt) + 0.25 sin2(Xt) + 0.25 + εt+1 mod 2π, (7)

with {εt} IID and N(0, σ2) distributed. The state variable is taken modulo 2π; we
represent states by points on the interval [−π, π). For the above system we fix σ
at the value 0.7 and consider qualitative changes in the stochastic dynamics as a
varies. The term 0.25(sin2(Xt−1) + 1) is added to break the x 7→ −x symmetry
of the dynamics. In the symmetric case some particular additional properties arise
which will be discussed in the next subsection.

Figure 3 shows a contour plot for the dependence ratio f(x1, x2) for values
of a decreasing from −0.85 to −0.95. For a = −0.85, the contour plot shows two
extrema, a maximum and a minimum, together with two saddle points. These are
the minimal number of critical points of each type that can be attained for a non-
degenerate function f on the torus M2 = S1 × S1. As the bifurcation parameter a
decreases, the system shows a stochastic bifurcation. Between a = −0.85 and a =
−0.9 the dependence ratio develops a new saddle point and a new local extremum
near (xt−1, xt) = (0,−1). Upon decreasing a further, another bifurcation takes
place, where a new saddle point and a local minimum (near (xt−1, xt) = (0,−3))
appear.

4.2 Stochastic dynamics on the real line
As an example of dynamics on R we consider

Xt+1 = tanh(aXt) + εt+1. (8)
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Figure 3: Level sets for the mapXt = Xt−1+a sin(Xt−1)+0.25 sin2(Xt−1)+0.25+
εt+1 for decreasing values of a (top panels). The dashed-dotted lines, corresponding
with the critical levels of the saddle points, are added for clarity. The lower panels
show the invariant probability density of Xt.
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Figure 4 shows the level sets of the dependence ratio and the corresponding in-
variant probability density function for this map with N(0, σ2) distributed noise,
taking σ = 0.7.

Note that this example is special in that the dynamics is symmetric with
respect to multiplication of reflecting the X-values in zero. Such symmetries are
encountered often in families of models for real-world phenomena, in particular
in cases where there are underlying physical reasons for assuming symmetry. In
contrast with the previous example (the map on the circle) it can be observed in
Fig. 3 that the invariant density become bimodal roughly when the dependence
ratio changes qualitatively. Although beyond the scope of this paper, it can be
shown analytically that the coincidence is perfect in this case. This is related to
the symmetry of the map, together with the fact that the noise is additive and has
a symmetric distribution, independent of the state Xt. In those cases the stochastic
bifurcation based on dependence ratios coincides with a phenomenological bifurca-
tion (P-bifurcation). It should be noted that this coincidence arises only in specific
coordinates. As described above, a P-bifurcation can always be ‘transformed away’
by a change of coordinates.

It can be observed that the bifurcation parameter value differs from that
of the analogous deterministic system (σ = 0): for the tanh map the stochastic
analogue of the usual pitchfork bifurcation at a = 1 is shifted to a larger value of
a. Apparently the value of the bifurcation depends on the noise level. A natural
question, therefore, is whether for increasing noise levels the bifurcation parameter
merely shifts, or whether the bifurcation can disappear altogether.

Intuitively, if the map is bounded and has a small range relative to the noise
level, the dynamics is mainly governed by the noise and the deterministic part has
little influence on the dynamics. In fact a simple argument shows that if the noise
is fixed at a sufficiently large level, and if the family of odd maps {ga} is uniformly
bounded, then there is no phenomenological bifurcation at x = 0, and therefore
also no ratio bifurcation at (x1, x2) = (0, 0), for symmetric processes of the form

Xt+1 = ga(Xt) + εt+1. (9)

The argument runs as follows. By stationarity the invariant density p satisfies

p(x) =

∫
1

σ
h

(
x− ga(y)

σ

)
p(y) dy,

where h(·) is the probability density function of the noise. A necessary condition
for p(x) to have a local minimum at x = 0 is that p′′(0) > 0, where

p′′(0) =

∫
1

σ
h′′
(
−ga(y)

σ

)
p(y) dy.

Since h is a unimodal probability density function, its second derivative h′′(x) is
negative in a neighbourhood of x = 0. It follows that, for ga uniformly bounded, for
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large σ the integral on the right hand side of the last equation may remain negative
as a varies.

4.3 Estimated dependence ratios from time series
In order to see whether dependence ratios can be used for classification of pro-
cesses of which only a time series is available, a common situation in empirical
applications, we estimate dependence ratios from simulated time series. We gen-
erate relatively short series {Xt} from the stochastic models considered earlier in
this section; we estimate from these series bivariate invariant densities and use them
to reconstruct the dependence ratios. It is well known [1, 12] that fixed bandwidth
nonparametric kernel density estimates become rather poor in regions with only few
observations. One way to avoid this would be to use a data driven adaptive band-
width which depends on the density locally, becoming larger as fewer observations
are present locally. Instead of using an adaptive bandwidth we suggest, for real val-
ued time series, to transform the data using the probability integral transform, that
is, we construct

Ut = F̂X(Xt) =
rank of Xt among {Xs}N

s=1

N
.

This amounts to transforming the invariant distribution to a uniform distribution on
the unit interval, which tends to stabilise the estimation of the dependence ratio as
the marginals no longer need to be estimated. The estimated empirical dependence
ratio is then equal to the empirical copula density

f̂(u1, u2) =
1

N − 1

N−1∑
t=1

Kb(u1 − Ui, u2 − Ui+1).

HereKb(u1, u2) is a bivariate probability kernel, which we take to be the commonly
used Gaussian kernel:

Kb(u1, u2) =
1√
2πb

e−(u2
1+u2

2)/(2b2).

To avoid ‘probability mass’ from disappearing out of the unit square by this smooth-
ing procedure, we impose periodic boundary conditions for M = S1 and reflecting
boundary conditions for M = R.

Figure 5 shows level sets of the empirical dependence ratio obtained from
time series of length 4000 from the symmetric hyperbolic tangent map given in
equation (8) for different parameter values. The dependence ratio is estimated by
smoothing the empirical copula with a bivariate normal probability density func-
tion (bandwidth b = 0.07). The empirical dependence ratio clearly reflects the fine
structure of the theoretical dependence ratio. Figure 6 shows an attempt at perform-
ing a similar reconstruction for the asymmetric sine map given by equation (7). In
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Figure 5: First 1000 values (top panels) of 4000 consecutive Xt-values generated
by the map Xt+1 = tanh(aXt) + εt+1 with εt+1 ∼ N(0, 0.52). for a = 0.9 (left)
and a = 1.7 (right). The lower panels show the corresponding empirical level sets
estimated with a Gaussian kernel (bandwidth b = 0.07).

this case the topology of the reconstructed level sets does not correspond with that
obtained earlier; this is due to estimation error. Probably longer time series (along
with smaller bandwidths for the smoothers) are required for this case. We consider
the optimal estimation and the related issue of data requirements for estimating
dependence ratios as an important area for future research.

A Proofs of the topological properties
In this appendix, the topological properties given in section 3 are proved.

A.1 Proofs of the propositions
We repeat the statement of proposition 1 for the convenience of the reader.

Proposition 1. If M is a simple compact state space, then

1. a smooth stochastic dynamical system on M with everywhere positive transi-
tion density is structurally stable under compact ratio equivalence if and only
if its dependence ratio is regular;
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Figure 6: First 1000 values (top panels) of 4000 consecutiveXt-values generated by
the mapXt+1 = Xt+a sin(Xt)+0.25 sin2(Xt)+0.25+εt+1 with εt+1 ∼ N(0, 0.72)
for a = −0.85 (left) and a = −0.95 (right). The lower panels show the level sets of
the corresponding empirical dependence ratio.

2. the set of stochastic dynamical systems on M that are structurally stable un-
der compact ratio equivalence is open and everywhere dense in the C2 topol-
ogy.

Proof.
This proposition is a direct corollary from the following two lemmas.

Lemma 1. Let M be a simple compact state space. If f : M2 → R is a regular
dependence ratio of a stochastic dynamical system, then there is a constant ε > 0
such that every dependence ratio g ∈ Nε(f) is regular and equivalent to f .

Lemma 2. Let M be a simple compact state space, and let a stochastic dynamical
system be given with invariant probability density p and dependence ratio f . Then
for every ε > 0 there is a second system with the same invariant probability density
and regular dependence ratio g such that g ∈ Nε(f).

We take for the moment these lemmas for granted. Then we infer from lemma 1
that regular ratios are structurally stable. Conversely, if f is a structurally stable
ratio, there is a neighbourhood Nε(f) such that every g ∈ Nε(f) is equivalent to f .
But as the regular ratios are dense, according to lemma 2, there is a system with
the same invariant probability and with a regular dependence ratio g ∈ Nε(f) such
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that g is equivalent to f . By definition of equivalence, the ratio f itself has to be
regular. This finishes the proof of the first statement.

For the second statement, denote the transition probability density of the
first system by τf and of the second system by τg. Note that since

τf (x2|x1) = f(x1, x2)p(x2), τg(x2|x1) = g(x1, x2)p(x2),

the fact that g ∈ Nε(f) implies that τg ∈ Nε̃(τf ) and that ε̃ → 0 as ε → 0. The
proposition now follows from lemma 2.

The following result is essentially a corollary of the results for simple compact state
spaces.

Proposition 2. Let M be an open simply connected subset of Rm such that the
boundary ∂M is a smooth manifold. A well-behaved smooth stochastic dynami-
cal system is structurally stable under ratio equivalence with respect to the strong
topology.

Proof.
Let f be the dependence ratio of the system, and let {Mt} be an exhaustion of M .
Since the system is well-behaved, there are T > 0 and ct > 0 such that for every j =
0, · · · , 3:

1. for every component {Cj
t } of the closure of M2

t the restriction f j
t of f to Cj

t

is weakly ratio equivalent to f j
t′ , and

2. there is a compact set Kj
t such that |Df j

t (x)|x > ct if x ∈ Cj
t \K

j
t .

Then there is for every t > T and every j a constant εj
t > 0 such that for every g ∈

Nεj
t
(f) in the C2-topology on M2

t , the restriction gj
t of g to Cj

t is weakly ratio

equivalent to f j
t . Let εt = minj ε

j
t , and ε(x) = max{εt |x ∈ M2

t }. It follows
that Nε(x)(f) is an open neighbourhood of f in the strong C2-topology, such that
every g ∈ Nε(x)(f) is ratio equivalent to f .

A.2 Proofs of the lemmas
It remains to demonstrate the lemmas. Note that they are similar to the analogous
statements about regular functions in the Morse theory. The main technical diffi-
culty is that the set of smooth dependence ratios on M2 is a proper subset of the
space of smooth functions on M2, and therefore we have less freedom to construct
perturbations of a function. This implies that while the proof of lemma 1 is a sim-
ple extension of the analogous arguments of Morse theory, the proof of lemma 2 is
more involved.
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We begin by recalling the following standard technical result, the proof of
which is left to the reader. Note that we denote a ball of radius r around 0 by Br,
that is, Br = {x ∈ Rk | ‖x‖ < r}; also we introduce

‖f − g‖C2(U) = max
0≤j≤2

max
x∈U

|Djf(x)−Djg(x)|.

Lemma 3. Let U ⊂ Rk be a bounded open set, and let f : U → R be aC2 function
with Df(0) = 0 and Hf(0) non-degenerate. Then there exist constants δ0, η0 > 0
such that Bδ0 ⊂ U and that for every 0 < δ ≤ δ0 and 0 < η ≤ η0 there is an ε > 0,
such that every function g satisfying ‖f−g‖C2(U) < ε has a unique non-degenerate
critical point ȳ ∈ Bδ with |g(ȳ)−f(0)| < η, with g having the same index at ȳ as f
at 0.

Proof of lemma 1. We give the proof for the case that M is the closure of a
bounded open simply connected subset of Rm. The generalisation to compact man-
ifolds is straightforward but notationally awkward, and it is therefore left to the
reader.

Let x = (x1, x2) and y = (y1, y2) denote points in M2. Note that π`(x) =
x` etc. We shall first show that if ε > 0 is sufficiently small, then every g ∈ Nε(f)
has the same index sequence as f ; this part of the proof is standard. Afterwards, we
shall construct a diffeomorphism on M , homotopic to the identity, which maps the
critical points of g to the corresponding critical points of f .

Let ξ1, · · · , ξk be the critical points of f , ordered such that vi = f(ξi) <
f(ξj) = vj if i < j. Put v0 = 0; then v0 < v1. We set

ζ = min
0≤i<j≤k

|vi − vj|, σ = min
1≤i<j≤k

{
‖π1(ξi)− π1(ξj)‖, ‖π2(ξi)− π2(ξj)‖

}
;

then ζ is the smallest absolute difference of two critical values, and σ is the smallest
distance of two projections of critical points on M .

Choose 0 < δ < σ such that the sets Ui = ξi + Bδ and Uj = ξj + Bδ

are contained in M2 and have empty intersection for any i 6= j; this is possible by
assumption 2. Moreover, we set fi(x) = f(ξi + x) for x ∈ Bδ. By assumption
Dfi(0) vanishes and Hfi(0) is nondegenerate. By lemma 3, we can find ε > 0,
such that every function gi defined on ξi + Bδ with ‖fi − gi‖C2 < ε has a unique
nondegenerate critical point yi inBδ, with |fi(0)−gi(yi)| < ζ/2 and with yi having
the same index ti for gi as 0 has for fi.

Let C = M2\
⋃

i Ui; note that C is compact, and that Df 6= 0 on C.
Therefore, if necessary by choosing ε > 0 smaller, we obtain that if g ∈ Nε(f),
then Dg 6= 0 on C as well. This shows that the index sequences of f and g are
equal.

We have to provide a diffeomorphism ϕ : M → M , homotopic to the
identity, such that

Φ(x) =
(
ϕ ◦ π1(x), ϕ ◦ π2(x)

)
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maps the critical points ξi + yi of g to the critical points ξi of f . Note that by the
choice of δ, no two projections of the sets Ui on M intersect:

π1(Ui) ∩ π2(Uj) = ∅, for all 1 ≤ i, j ≤ k.

For given i and `, consider on π`(Ui) a differentiable curve γ(t), defined for 0 ≤
t ≤ 1, such that γ(0) = π`(ξi) and γ(1) = π`(ξi + yi). Construct a vector field Xi`

on M such that γ̇(t) = Xi`(γ(t)) for 0 ≤ t ≤ 1 and Xi` = 0 on M\π`(Ui).
Let X =

∑
i,`Xi`. The time-1 map ϕ = eX has the required properties.

Proof of lemma 2. To prove this lemma, for any given stochastic dynamical sys-
tem with invariant probability p and dependence ratio f , and for any ε > 0, we
have to construct a system with the same invariant probability and with dependence
ratio g ∈ Nε(f) such that g is regular. The main technical difficulty, compared to
the proof of the analogous statements for functions, is that we have ‘fewer’ pertur-
bations to play with, since not every real-valued function on M2 is a dependence
ratio.

Changing transition probabilities. We begin by devising a way how we can
change the transition probability of a process without changing its invariant proba-
bilities. Recall equation (3):

pt+1(xt+1) =

∫
M

τ(xt+1|xt)p
t(xt) dxt.

Let q(x1, x2) be a function such that∫
M

q(x1, x2) dx1 =

∫
M

q(x1, x2) dx2 = 0,

and such that τ̃(x2|x1) > 0 for all x1, x2 ∈M , where

τ̃(x2|x1) = τ(x2|x1) +
q(x1, x2)

p(x1)
. (10)

Then τ̃ is also a transition probability density. Let p denote the unique invariant
density satisfying p(x2) =

∫
τ(x2|x1)p(x1) dx1 and

∫
p(x) dx = 1. Note that

then p satisfies also the integral equation∫
M

τ̃(x2|x1)p(x1) dx1 =

∫
M

τ(x2|x1)p(x1) dx1 +

∫
M

q(x1, x2)

p(x1)
p(x1) dx1

= p(x2).

This implies that p is also an invariant density of the stationary stochastic process
with transition probability density τ̃ .
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Construction of the perturbations. For given ε > 0, we shall construct a func-
tion q : M2 → R such that the perturbed dependence ratio

f̃(x1, x2) =
τ̃(x2|x1)

p(x2)
,

where τ̃ is given by (10) is inNε(τ) and such that it is regular. This will be achieved
by a transversality argument, for which we need a finite family of functions qk

ij/p
such that their differentials span the tangent space R2m at every point x ∈ M2.
In the ‘ordinary’ case of the Morse classification of real valued functions on M ,
this is achieved by looking, for every ξ ∈ M , at functions of the form `ξ,i(x) =
(xi − ξi)ϕ

(
‖x− ξ‖/δ

)
, where ϕ : R → R is a smooth function such that ϕ(t) = 1

if |t| < 1 and ϕ(t) = 0 if |t| > 2. It is easily seen that this infinite family has the
property that their differentials span Rm everywhere. By a compactness argument,
we can find points ξ1, · · · , ξn, such this is still true for the functions `ξk,i. Then one
can show that a suitable perturbation f +

∑
ak

i `ξk,i of a given function f is regular.
In our case, we have to modify this argument, as we need to preserve the property
that the perturbed dependence ratio is still a dependence ratio.

Therefore, let ϕ, ψ : R → R be smooth functions such that

ϕ(t) =

{
1 if |t| < 1,

0 if |t| > 2,

and

ψ(t) = 0 if |t| < 1 or |t| > 2, ψ(t) > 0 otherwise.

Define functions `ξj : Rm → R, for j = 0, 1, · · · ,m by

`ξj(x) =

{
ϕ(‖x− ξ‖/δ) + β0ψ(‖x− ξ‖/δ) if j = 0,

(xj − ξj)ϕ(‖x− ξ‖/δ) + βjψ(‖x− ξ‖/δ) if j ∈ {1, · · · ,m};

here δ = δ(ξ) > 0 is sufficiently small such that the intersection of B2δ(ξ)\Bδ(ξ)
with M has positive measure. The constants βj = βj(ξ) are determined by the
requirement that

∫
M
`ξj dx = 0 for all j.

Let a positive function P : M2 → R be given, and for ξ = (ξ1, ξ2) ∈ M2,
define the functions (note that x1, x2 ∈M ):

Lξ
ij(x1, x2) =


`ξ1j (x1)`

ξ2
0 (x2)

P (x1, x2)
, i = 1,

`ξ2j (x2)`
ξ1
0 (x1)

P (x1, x2)
, i = 2.
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Denote by xj
i the j’th coordinate of xi ∈M . We find that

∂Lξ
ij

∂xj′

i′

(ξ1, ξ2) =


1

P (ξ1, ξ2)
if i′ = i, j′ = j,

0 otherwise.

It follows that the derivatives DLξ
ij(ξ1, ξ2) are linearly independent. By continuity,

there is a (relative) neighbourhood Uξ of every point ξ = (ξ1, ξ2) in M2, such that
the 2m vectors DLξ

ij(x1, x2), i = 1, 2, j = 1, · · · ,m, are linearly independent for
all (x1, x2) ∈ Uξ.

Since M is compact, it is covered by a finite number of the set Uξ, say Uξ1 ,
· · · , UξK

. Set

qk
ij(x1, x2) = P (x1, x2)L

ξk
ij (x1, x2).

Then qk
ij/P is a finite collection of real-valued functions on M2 such that their

derivatives span R2m at every point (x1, x2) ∈M2. Moreover∫
M

qk
ij(x1, x2) dx1 =

∫
M

qk
ij(x1, x2) dx2 = 0.

Let the stationary stochastic process defined by the transition probability τ(x2|x1)
have invariant probability density p, invariant joint probability density p1,2(x1, x2)
and dependence ratio

f(x1, x2) =
p1,2(x1, x2)

p(x1)p(x2)
=
τ(x2|x1)

p(x2)
.

LetA be a sufficiently small open neighbourhood of 0 in R2mK such that for all a =
(ak

ij) ∈ A, the function

τ̃(x2|x1) = τ(x2|x1) +
∑
ijk

ak
ij

qk
ij(x1, x2)

p(x1)

is an everywhere positive transition probability density. Such a set A exists, since
the transition probability density τ is assumed to be strictly positive everywhere on
the compact manifold M2; hence, if ‖a‖ is small, then τ̃ is strictly positive on M2

as well. The dependence ratio of the new process is given by

g(a, x) = f(x) +
∑
ijk

ak
ij

qk
ij(x1, x2)

p(x1)p(x2)
.

with a = (ak
ij) ∈ A. If we set P (x1, x2) = p(x1)p(x2), we have that g(a, x) is

a dependence ratio and that the derivatives of qk
ij(x1, x2)/p(x1)p(x2) span R2m at

every point of M2.
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The transversality argument. Recall the definition of transversality (see e.g. [5],
definition 10.3.1, p. 83): if X and Y are smooth manifolds, W a smooth submani-
fold of Y , the map f : X → Y smooth, and x ∈ X , then f intersects W transver-
sally at x, if either f(x) 6∈ W or f(x) ∈ W and Tf(x)Y = Tf(x)W + df(x)

(
TxX

)
.

More generally, we say that f intersects W transversally at A ⊂ X , if f inter-
sects W transversally at x for every x ∈ A.

We have the theorem that if A, X and Y are smooth manifolds, W a
smooth submanifold of Y and f : A ×X → Y a smooth map which intersects W
transversally, then the set of points a ∈ A for which fa = f(a, .) : X → Y inter-
sects W transversally is everywhere dense in A (see [5], theorem 10.3.3, p. 85).

The derivative df of a function f : M → R on an m-dimensional man-
ifold M defines a section s of the cotangent bundle T ∗M ; in a sufficiently small
neighbourhood U of a point in M , the restriction T ∗

UM of the bundle to U is iso-
morphic to U × Rm, and the section takes the form s(x) = (x,Df(x)). The zero
section M0 of T ∗M , which is isomorphic to M , is locally of the form U × {0}.

The section s is transversal to M0 at a point x ∈ M0, if either s(x) 6∈ M0,
or if

T(x,0)T
∗M = ds(x)TxM + T(x,0)M0 = (I,Hf(x))Rm + Rm × {0}.

Note that this is equivalent to saying that s is transversal to M0 everywhere if and
only if the function f has only nondegenerate critical points. Such a function is
called a regular function or a Morse function.

Consider now the function g : A × M → R constructed above and its
associated map s : A×M → T ∗M given by s(a, x) = (x, dxg(a, x)). Note that s
is transversal to M0, since in local coordinates

ds(a, x)T(a,x)A×M + T(x,0)M0

=

(
0 I

D
qk
ij

p(x1)p(x2)
Hxg(a, x)

)
R2mK × Rm + Rm × {0},

and since by construction the derivatives d(qk
ij(x1, x2)/p(x1)p(x2)) span R2m ev-

erywhere onM2. By the theorem mentioned above, the set of a ∈ A, for which ga =
g(a, .) is a Morse function, is an everywhere dense set in A.

Therefore, for every ε > 0, we can choose a so small that the dependence
ratio g = ga is a Morse function and g ∈ Nε/2(f). It remains to show that by a
second small perturbation, we can achieve that the perturbed dependence ratio is a
regular dependence ratio.

The second perturbation. Note that since g : M2 → R is a Morse function, its
critical points are isolated. Denote them by ξ1, · · · , ξN ∈M2.

We proceed inductively; for k = 1, we set g1 = g. For k > 1, we assume
that gk : M2 → R is a dependence ratio that is a Morse function, gk ∈ N(1−2k)ε(f),

28



and that gk has critical points ξ̃1, · · · , ξ̃k−1, ξk, · · · , ξN , such that the values gk(ξ̃1)
up to gk(ξ̃k−1) are different, and such that π`(ξ̃i) 6= π`(ξ̃j) for ` = 1, 2, if 1 ≤ i <
j ≤ k − 1 (recall that π`(x1, x2) = x` is the projection on the `’th coordinate).

We choose a neighbourhood U ⊂M2 of ξk such that ξk is the only critical
point of gk in U . Let b ∈ R2m be such that 〈b,Hg(ξk)−1b〉 6= 0, where 〈x, y〉 denotes
the inner product of the vectors x and y; the inverse of Hgk(ξk) exists since gk is
nondegenerate in ξk; note that the set of vectors b that do not satisfy this condition
is the union of the origin of R2m and a smooth codimension-1 manifold.

Consider the function

ht(x1, x2) = h(t, x1, x2) = gk(x1, x2)− t
∑
ij

bijL
ξk
ij (x1, x2).

The critical points of ht are determined by the equation

0 = Dht(x1, x2) = Dgk(x1, x2)− t
∑
ij

bijDL
ξk
ij (x1, x2).

We solve x = (x1, x2) as a function of t in a neighbourhood of t = 0 and (x1, x2) =
ξk, using the fact that Hgk(ξk) is invertible. For the solution x(t) = (x1(t), x2(t)),
we find that

dx

dt
(0) =

1

p(π1ξk)p(π2ξk)
Hgk(ξk)

−1b. (11)

Note that by the assumption on b, this derivative is nonzero. We restrict the possible
choice of b further by requiring that

dx`

dt
(0) = Dπ`

dx

dt
(0) =

1

p(π1ξk)p(π2ξk)
Dπ`Hgk(ξk)

−1b 6= 0.

Moreover, setting v(t) = ht(x(t)), we have

dv

dt
(t) = −

∑
ij

bijL
ξk
ij +Dxht(x) = −

∑
ij

bijL
ξk
ij ,

and

d2v

dt2
(ξk) = − 1

p(π1ξk)p(π2ξk)

〈
b,Hgk(ξk)

−1b
〉
6= 0. (12)

There are only finitely many values of t for which v(t) is equal to the critical val-
ues gk(ξi), or for which the projection π`(x(t)) coincides with π`(ξi) for some 1 ≤
i < k and some ` = 1, 2. From equations (11) and (12) it follows that the set of
values of t avoiding these special values is everywhere dense in a neighbourhood
of t = 0.
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Choose tk in this set such that the function

gk+1 = gk − tk
∑
ij

bijL
ξk
ij

satisfies gk+1 ∈ N(1−2k+1)ε(f), and put ξ̃k = x(tk). Then the function gk+1 sat-
isfies the induction hypothesis. We conclude that the function gN+1 is a regular
dependence ratio, and gN+1 ∈ Nε(f). This finishes the proof of the lemma.
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