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1 Introduction

Assume that a sequence of random variables (X1, Y1), (X2, Y2), . . . , (Xn, Yn), which comes from

the population (X,Y ) taking value in the space IRd× IRp, is a strongly stationary and α-mixing

process with the α-mixing coefficients α(n) → 0 as n→ ∞. Let m(x) = IE (Y |X = x). Estima-

tion of the regression function m(x) plays an important role in statistics. Several methodologies

have been proposed for this purpose including kernel smoothing methods, regression splines,

local polynomial fitting, etc. During the past decades, much attention was also given to robust

estimation of m(x), especially when the sample is contaminated by heavy-tailed errors. When

p = 1 and ρ(a, y) =‖ y − a ‖2, the squared-loss nonparametric regression problem comes down

to calculating the minimum value of the function IE (ρ (a, Y ) |X = x) on a, that is

m (x) = arg min
a
IE (ρ (a, Y ) |X = x) . (1.1)

In a nonparametric setting this leads to the popular Nadaraya-Watson estimator. Besides the

quadratic loss function ρ(a, y), it is also possible to consider other functionals in (1.1), where

the real function ρ(a, y) is measurable with respect to a variable y for each fixed a. Such

robust regression estimators have been investigated extensively in the literature, see, for instance,

Fan, Hu & Truong (1994), Masry (1996a, 1996b), Masry & Fan (1997), Jiang & Mack (2001),

Kozek & Pawlak (2002), and Cai (2003). In most of these papers the asymptotic normality

for the proposed nonparametric M -estimator were considered when ρ(a, y) is convex or non-

convex on a. This applies to both i.i.d. and non-i.i.d., especially α-mixing, random variables.

Also, some other topics related to the p-th conditional quantile, where 0 < p < 1 and the

corresponding ρ(a, y) is equal to |y − a| + (2p − 1)(y − a), can be found in Berlinet, Gannoun

& Matzner-Løber (2001). Besides its asymptotic distribution, the Bahadur representation of

the nonparametric M -estimator is another interesting topic since it not only provides a kind of

asymptotic representation for the estimator but also gives the convergence rate for the remainder

term. Using the local polynomial method and under the condition that both X and Y are in

the univariate space, Hong (2003) obtained the strong and weak Bahadur representation of the

nonparametric M -estimator for i.i.d. random samples. A similar problem, but for the p-th

conditional quantile, was studied by Honda (2000).

In this paper, however, under the condition that the random sample is both α-mixing and

is in a high-dimensional space, we will address the strong Bahadur representation for the non-

parametric M -estimator of the regression function by using the local linear method. Suppose

that the first order partial derivative m′(x) of m(x) exists. Then the corresponding local linear
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estimator (m̂n (x) , m̂′
n (x)) for the unknown function (m(x),m′(x)) can be defined by

(

m̂n (x) , m̂′
n (x)

)

= arg min
(a,b)

n
∑

i=1

wn,iρ (a+ b (Xi − x) , Yi) , (1.2)

where wn,i = K
(

x−Xi
hn

)

/
∑n

j=1K
(

x−Xj

hn

)

is the weight function, K (·) is the kernel function

and hn is the bandwidth. Compared to the papers mentioned above, our result is interesting

on its own since many stochastic processes are neither i.i.d. nor univariate. Also, our proof

is different from that of Hong (2003). The basic idea of the proof comes from Jureckova &

Sen (1996, Chapter 5), in which asymptotic representations for M -estimators were investigated

in the case of univariate i.i.d. random variables. For the nonparametric problem related to

α-mixing data, we refer to Bosq (1998) and Liebscher (1996, 2001).

The plan of the paper is as follows. In Section 2, we will establish the strong Bahadur

representation of the nonparametric M -estimator and give its proof. From this, asymptotic

normality will be obtained. In Section 3 some simulation results will be presented on the

nonparametric M -estimator and the estimator obtained from (1.1) for both bivariate linear and

bivariate nonlinear time series processes contaminated with heavy-tailed error distributions.

We find that, in terms of the mean absolute deviation error (MADE), the nonparametric M -

estimator outperforms the squared-loss nonparametric regression estimator. Both estimators are

applied in Section 4 to a real example of heavy-tailed data in finance. Finally, in the appendix,

some results on the nonparametric M -estimator for α-mixing processes are given.

Throughout this paper, denote by ψ(a, y) = ∂ρ(a, y)/∂a, G (a, b) = IE [ψ (m (x) + a, Y )|X = b],

G1 (a, b) = ∂G (a, b) /∂aT and G2 (a, b) = ∂G (a, b) /
(

∂a∂aT
)

. Also, assume that the density

functions of (X,Y ) and X are f(x, y) and f(x), respectively. ‖ · ‖ is the usual Euclidean norm

for the corresponding matrix. Without otherwise specified, all limit relationships in this paper

refer to n→ ∞.

2 Main Result and Its Proof

We first list some required conditions and then give our results and their corresponding proofs.

A1. The density function f(·) is continuous at the point x and f (x) > 0.

A2. The kernel function K(·) is bounded from above.
∫

K(z)dz = 1. The support set of K(·)
is contained in [−1, 1]d.

A3. It holds that αn = O
(

n−θ
)

,
√

nhdn ∼ nγ , θ > 6 and 1
2 > γ > 6

6+θ .
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A4. G2 (a, b) is bounded in the neighborhood of (0, x).

A5.
∫

zK (z) dz = 0,
∫

zzTK (z) dz > 0 and G1 (0, x) > 0. Also, G1 (a, b) is continuous in the

neighborhood of (0, x).

A6. ψ (·) satisfies the Lipschitz condition of order one.

A7. Denote by L(s, t) = IE (‖ψ(m(x) + s, Y )‖r|X = t) . Assume that there exists some r > 4

such that the function L(s, t) is bounded in the neighborhood of (0, x).

A8. θ > 4r+2
r−4 .

A9. 1
2 > γ > 4r−2+θ

4r−6+(r−2)θ .

A10. The function Lj(s1, s2, t1, t2) is defined by

IE
(∥

∥ψ(m(x) + s1, Y1)ψ
T (m(x) + s2, Yj+1)

∥

∥

∣

∣X1 = t1, Xj+1 = t2
)

,

which is bounded from above in the neighborhood of (0, 0, x, x). The joint density of X1

and Xj+1 is bounded for all j ≥ 2.

A11. The second partial derivative of m(x) exists and is bounded in the neighborhood of x.

Our main result is as follows.

Theorem 2.1. Suppose that Conditions A1–A9 hold. Then the following strong Bahadur

representation

√

nhdnvec
(

m̂(x) −m (x) , hn
(

m̂′ (x) −m′ (x)
))

= −H−1
√

nhdn

n
∑

i=1

wn,iηn,i +O

(

εn +
log n
√

nhdn

)

(2.1)

holds almost surely for all n sufficiently large, where

ηn,i =





1

Xi−x
hn



⊗ ψ(m (x) +m′ (x) (Xi − x) , Yi),

εn =
n( 3

2
− 1

2θ )/(pd+d) (log n)
2

(p+1)d
+ 1

2

(nhdn)
θ2

−1
2θ(p+1)d

→ 0 (2.2)

and

H =

∫





1 zT

z zzT



⊗G1

(

hnm
′ (x) z, x+ hnz

)

f (x+ hnz)K (z) dz.
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Proof. For simplicity of notation, denote by t = vec (a, b),

ξn,i (t) = wn,i





1

Xi−x
hn



⊗
{

ψ
(

m(x) +m′(x)(Xi − x)

+
a+ bXi−x

hn
√

nhdn
, Yi

)

− ψ(m(x) +m′(x)(Xi − x)
}

,

I(t) =
√

nhdn

n
∑

i=1

wn,iψ

(

m (x) +m′ (x) (Xi − x) +
a+ bXi−x

hn
√

nhdn
, Yi

)

and Zn,i(t) = ξn,i (t)
∑n

j=1K
(

x−Xj

hn

)

. From Condition A5 and the bound of the support set of

K (·), we know that

H → f (x)





1 0

0
∫

zzTK (z) dz



⊗G1 (0, x) = H1 > 0.

Then, it can be inferred that inf‖t‖=M
√

logn t
THt ≥ 1

2M
2λ0 log n > 0 for all sufficiently large n

and some suitable constant M > 0 such that Mλ0 > 2, where λ0 is the smallest eigenvalue of

the matrix of H1. From this, Lemma 2.4 and Lemma 3.2 below, it holds subsequently for all

large n that

inf
‖t‖=M

√
log n

tT I(t) ≥ inf
‖t‖=M

√
logn

tT

(

√

nhdn

n
∑

i=1

ξn,i (t) −Ht

)

+ inf
‖t‖=M

√
logn

tTHt+ inf
‖t‖=M

√
log n

√

nhdnt
T

n
∑

i=1

wn,iηn,i

≥ −M
√

logn sup
‖t‖=M

√
logn

∥

∥

∥

∥

∥

√

nhdn

n
∑

i=1

ξn,i (t) −Ht

∥

∥

∥

∥

∥

+
λ0

2
M2 logn

−M
√

log n
√

nhdn sup
‖t‖=M

√
logn

∥

∥

∥

∥

∥

n
∑

i=1

wn,iηn,i

∥

∥

∥

∥

∥

≥ −M
√

lognεn +
λ0

2
M2 log n−M log n > 0.

According to Theorem 6.3.4 of Ortega and Rheinboldt (1970), it can be concluded that for

all n sufficiently large, the system of equations I(t) = 0 has a root that lies in the sphere

‖t‖ = M
√

log n with probability one. Substituting this root into (2.7) below we see that (2.1)

holds.

Corollary 2.2. Suppose that Conditions A1–A11 hold. Then the following asymptotic nor-

mality in distribution
√

nhdn
(

vec
(

m̂(x) −m (x) , hn
(

m̂′ (x) −m′ (x)
))

+ h2
nH

−1
1 µ (x) + o

(

h2
n

))

→ N
(

0, H−1
1 H2H

−1
1

)

(2.3)
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holds, where

µ (x) =

∫





1

z



⊗
[

G2 (0, x)
(

zT ⊗ Id ⊗ zT
)

vec

(

∂2m (x)

∂x∂xT

)]

K (z) dz

and

H2 = f (x)

∫

K2 (z)





1 zT

z zzT



 dz ⊗ IE
(

ψ(m (Xi) , Yi)ψ
T (m (Xi) , Yi)

∣

∣Xi = x
)

.

Proof. From the Taylor expansion and Condition A11, we know that

m (x) + hnm
′ (x) z −m (x+ hnz) = −h2

n

(

zT ⊗ Id ⊗ zT
)

vec

(

∂2m (x)

∂x∂xT

)

+ o
(

h2
n

)

.

From the definition on m (x+ hnz), it can be seen that
∫

ψ(m (x+ hnz) , y)fY |X (y|Xi = x+ hnz) dy = 0.

Henceforth, from the two relationships above and the properties on G1(a, b), it holds that
∫

ψ(m (x) + hnm
′ (x) z, y)fY |X (y|Xi = x+ hnz) dy

= −h2
nG1 (0, x)

(

zT ⊗ Id ⊗ zT
)

vec

(

∂2m (x)

∂x∂xT

)

+ o
(

h2
n

)

.

Therefore, it can be inferred that

IEK
(

x−Xi
hn

)

ηn,i

IEK
(

x−Xi
hn

) = −h2
nµ (x) + o

(

h2
n

)

.

From this, Theorem 2.1 and Lemma 3.3 below, we know that

√

nhdn
(

vec
(

m̂(x) −m (x) , hn
(

m̂′ (x) −m′ (x)
))

+ h2
nH

−1
1 µ (x) + o

(

h2
n

))

= − H−1

√

nhdn

n
∑

i=1

(

K

(

x−Xi

hn

)

ηn,i − IE

(

K

(

x−Xi

hn

)

ηn,i

))

.

Let ζi = K
(

x−Xi
hn

)

ηn,i/
√

hdn. Similar to the proof of Lemma 1 of Cai (2003), under Conditions

A7, A8 and A10 we have
n
∑

j=2

‖cov (ζ1, ζj)‖ → 0.

Thus, it can be shown that

var

(

1√
n

n
∑

i=1

(ζi − IEζi)

)

→ H2.

From Condition A3, we know that there exists a sequence of positive integers sn such that

sn → ∞ , sn = o(nγ) and n1−γs−θn → 0. Going along the same lines as the proof of Theorem 2

of Cai (2003), we can obtain (2.3).
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For any nonzero vector t ∈ IR(p+1)d, the asymptotic mean squared error of tTvec (m̂(x), hnm̂
′ (x))

is equal to

h4
nt
TH−1

1 µ(x)µT (x)H−1
1 t+

1

nhdn
tTH−1

1 H2H
−1
1 t,

so that the corresponding optimal bandwidth hopt can be chosen as

hopt =

(

tTH−1
1 H2H

−1
1 t

ntTH−1
1 µ(x)µT (x)H−1

1 t

)

1
d+4

.

The following Lemma A is a direct extension of Theorem 2.1 of Liebscher (1996) to the case

of multi-dimensional space.

Lemma A. Assume that the sequence of random variables {Zi, i ≥ 1} is α-mixing with α-

mixing coefficients αn. IEZi = 0 and ‖Zi‖ ≤ S(n) < +∞, a.s. Let Tn =
∑n

i=1 Zi. Then, for all

n, N ∈ IN , 1 ≤ N ≤ n and all ε > 4NS(n),

IP {‖Tn‖ > ε} ≤ 4d exp

{

− ε2

64d2 n
N max diag(D(n,N)) + 8

3εdNS(n)

}

+ 4d
n

N
αN

holds with D(n,m) = sup0≤j≤n−1 IE(
∑(j+m)∧n

i=j+1 Zi)
2 (m ≤ n) where a ∧ b means min {a, b} and

diag(A) denotes the diagonal matrix with the same elements in the diagonal as the matrix A.

In the (p+ 1) d-dimensional space, partition the sphere ‖t‖ ≤ M
√

log n into a sequence of

subrectangles such that the length of each side for each subrectangle is less than or equal to

Cεn, where and thereafter C > 0 denotes a constant which can take different values in different

circumstances. And the set Bn is comprised by all the corresponding grid points of this division.

It is easy to see that the number of the grid points is equal to O

(

(√
logn
εn

)(p+1)d
)

.

Lemma 2.3. Under Conditions A1, A2, A6 and εn → 0, it holds almost surely that

sup
t∈Bn

∥

∥

∥

∥

∥

n
∑

i=1

(Zn,i(t) − IEZn,i(t))

∥

∥

∥

∥

∥

= O

(

εn

√

nhdn

)

. (2.4)

Proof. To get the desired result, by the Borel-Cantelli lemma, it suffices to prove that there

exists some constant M1 > 0 such that

I = IP

{

∪t∈Bn

{∥

∥

∥

∥

∥

n
∑

i=1

(Zn,i(t) − IEZn,i(t))

∥

∥

∥

∥

∥

> M1εn

√

nhdn

}}

≤ 1

n (log n)2
. (2.5)

We now apply Lemma A to prove this point. According to the properties of Kronecker products,

it can be shown that ‖Zn,i(t) − IEZn,i(t)‖ = O
(√

logn
nhd

n

)

holds uniformly for ‖t‖ ≤ M
√

log n.
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For 1 ≤ N ≤ n, from Lemma 2.1 of Liebscher (1996), it holds that

max diag(D(n,N)) ≤ max diag

(

IE

[

N
∑

i=1

Zn,i(t)Z
T
n,i(t)

])

≤ CNR2
q(n) log n, (2.6)

where

Rqq(n) = hdn

∫ ∫

‖K(z)





1

z



⊗
[

ψ
(

m(x) + hnm
′(x)z +

a+ hnbz
√

nhdn
, y)

− ψ(m(x) + hnm
′(x)z, y)|

]

‖qf(x+ hnz, y)dydz.

In view of A2 and A6, we know that Rqq(n) ≤ C
∣

∣

∣

√

logn
nhd

n

∣

∣

∣

q
hdn. According to this and (2.6), it can

be seen that

max diag(D(n,N)) ≤ CNh2d/q
n

∣

∣

∣

∣

∣

√

log n

nhdn

∣

∣

∣

∣

∣

2

log n.

Applying Lemma A, we get

I ≤
{

exp
{

−
M2
(

εn
√

nhdn)
2

64d2 n
N max diag(D(n,N)) + 8

3Mεn
√

nhdndNS(n)

}

+
n

N
αN

}

× 4d× #{Bn}.

Thus, we know that if N and εn satisfies

n

N
CN log n× h2d/q

n

∣

∣

∣

∣

∣

bn
√

nhdn

∣

∣

∣

∣

∣

2

≤ εn

√

nhdnN
C
√

2
√

nhdn
bn,

(√
log n

εn

)(p+1)d
n

N
αN ≤ 1

n (log n)2

and
(√

log n

εn

)(p+1)d

exp

{

−Mεn
√

nhdn
dNS(n)

}

≤ 1

n (log n)2
,

then (2.5) will hold. Through solving these three inequalities, we can get the desired result.

Lemma 2.4. Under Conditions A1, A2, A3, A4 and A6, it holds that

sup
‖t‖≤M

√
logn

∥

∥

∥

∥

∥

√

nhdn

n
∑

i=1

ξn,i (t) −Ht

∥

∥

∥

∥

∥

= O

(

εn +
logn
√

nhdn

)

. (2.7)

Proof. From Condition A4 and by Taylor expansion, it can be shown that

nIEZn,i(t) = nhdn

∫





1

z



⊗
[

G

(

hnm
′ (x) z +

a+ bz
√

nhdn
, x+ hnz

)

−G
(

hnm
′ (x) z, x+ hnz

)]

fX (x+ hnz)K (z) dz

=
√

nhdnHt+O (log n)
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holds uniformly for ‖t‖ ≤M
√

log n. Combining this and Lemma 2.3, we obtain

sup
t∈Bn

∥

∥

∥

∥

∥

1
√

nhdn

n
∑

i=1

Zn,i(t) −Ht

∥

∥

∥

∥

∥

= O

(

εn +
logn
√

nhdn

)

.

From this, Lemma 3.3 and the positive definition on matrix H, it can be inferred that

sup
t∈Bn

∥

∥

∥

∥

∥

√

nhdn

n
∑

i=1

ξn,i (t) −Ht

∥

∥

∥

∥

∥

≤

∣

∣

∣

∣

∣

∣

nhdn
∑n

i=1K
(

x−Xi
hn

) − 1

∣

∣

∣

∣

∣

∣

sup
t∈Bn

(∥

∥

∥

∥

∥

1
√

nhdn

n
∑

i=1

Zn,i(t) −Ht

∥

∥

∥

∥

∥

+ ‖Ht‖
)

+ sup
t∈Bn

∥

∥

∥

∥

∥

1
√

nhdn

n
∑

i=1

Zn,i(t) −Ht

∥

∥

∥

∥

∥

= O

(

εn +
logn
√

nhdn

)

. (2.8)

It can be concluded that the function ξn,i (t) relating to the covariable t satisfies the Lipschitz

condition of order one from the condition that ψ (·) is a Lipschitz function. Because H is a

positive definite matrix, tTHt is a convex function and its partial derivative is equal to 2Ht. In

view of this, the partition on the sphere ‖t‖ ≤M
√

log n, (2.8) and Lemma 6 of Niemiro (1992),

we know that (2.7) holds.

3 Some Numerical Illustrations

In this section, we present two examples for the case p = 2. The objective is to show that

the nonparametric M -estimator is more accurate in estimating m(x) than the commonly used

squared-loss nonparametric regression (Nadaraya-Watson) estimator. Similar evidence for the

univariate case (p = 1) can be found in Jiang and Mack (2001).

Crucial to the estimation procedures is the choice of the bandwidth hn. Although it can be

inferred from Corollary 2.2 that the convergence rate of the optimal bandwidth is of order

O(n−1/(d+4)), it also depends on some other unknown quantities, the estimation of which is

beyond Theorem 2.1. As an alternative, we will adopt the cross-validation method. For a given

weight function wn,i the method is similar in spirit to the cross-validation method suggested

by Yao & Tong (1998). In the following two examples, the loss function ρ(t) for the nonpara-

metric M -estimator is taken as the well-known Huber function, which is equal to ‖ t ‖2 /2

for ‖ t ‖≤ k and equal to k(‖ t ‖ −k
2 ) for ‖ t ‖> k, where k > 0 is a constant. Let

H = [a1(
n
2 )−1/(d+4), a2(

n
2 )−1/(d+4)], where a1 < a2 are two positive constants. We will use

the first set of n/2 observations for estimation and the second set of n/2 observations for vali-

dation. To be more specific, for each h ∈ H, the estimator given by (1.2) is applied to the first

8



n/2 observations and the resulting estimates are denoted by (m̂n
2
,h, m̂

′
n
2
,h). Next, the optimal

bandwidth hn/2 for the second set is chosen as

arg min
h∈H

n
∑

i=n
2
+1

wn,iρ(Yi − m̂n
2
,h − m̂′

n
2
,h(Xi − x)).

Finally, from Yao and Tong (1998) it can be observed that the optimal bandwidth, say hopt, for

the whole sample of size n is given by hopt = hn/2/2
1/(d+4).

For the M -estimator, another crucial issue concerns the choice of the parameter k in the Hu-

ber function. According to Corollary 2.2, and following a similar approach as in Jiang and Mack

(2001), one way to choose an optimal value of k is to minimize the positive matrix H−1
1 H2H

−1
1

in the sense of the determinant, i.e.,

kopt = arg min
k

det
(

G−1
1 (0, x) IE

[

ψk (Y −m (X))ψTk (Y −m (X))
∣

∣X = x
]

G−1
1 (0, x)

)

, (3.1)

where ψk is the first derivative of the Huber function. The quantity on the right of (3.1) can be

estimated through plugging the related consistent estimators into it.

Example 3.1. We consider the following bivariate vector autoregressive (VAR) linear time

series model of order 1:




X1,t

X2,t



 =





0.8 −0.3

1.2 0.4









X1,t−1

X2,t−1



+





0.2ε1,t

0.3ε2,t



 ,

where the errors ε1,t and ε2,t are i.i.d. as 0.5N(0, 1) + 0.5C. Here, N(0, 1) is the standard

normal distribution and C the Cauchy distribution. The sample size used is n = 401. The heavy-

tailedness of the simulated data is obvious and does not need further support from basic statistics

such as kurtosis, mean, median, 1st– and 3rd quartile. Denote the corresponding bivariate vector

regression functions by m1(x1, x2) and m2(x1, x2), respectively, where x1 is related to X1,t−1 and

x2 is related to X2,t−1. Figures 3.1.a)–3.1.d) show four estimated regression functions. In each

graph, one of the covariates is fixed and the other one changes over the interval [−2, 2]. 33

equidistant grid points in [−2, 2] are used to estimate the corresponding regression functions.

For the squared-loss nonparametric regression estimator, we set a1 = 0.4 and a2 = 20. As for

the nonparametric M -estimator, we set a1 = 2 and a2 = 6. Table 1, columns 2–5, contain the

corresponding MADEs for the two estimators. We see from this Table and Figures 3.1. that the

nonparametric M -estimator gives a better fit to the series than the squared-loss nonparametric

regression (Nadaraya-Watson) estimator.
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Figure 3.1. Simulation results for Example 3.1. Solid lines: true regression function, medium-

dashed lines: estimated regression function corresponding to the squared-loss nonparametric re-

gression (Nadaraya-Watson) estimator, dotted lines: estimated regression function corresponding

to the M -estimator.

Table 1: Comparison of MADEs for the squared-loss nonparametric regression (Nadaraya-

Watson) estimator and the nonparametric (robust) M -estimator.

Figure 3.1 Figure 3.2

Estimators a b c d a b c d

Squared-loss 0.2308 0.0866 0.1616 0.1679 0.3174 0.1504 0.1452 0.3220

Robust 0.1262 0.0466 0.1527 0.0581 0.2140 0.1061 0.0670 0.2696
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Figure 3.2. Simulation results for Example 3.2. Solid lines: true regression function, medium-

dashed lines: estimated regression function corresponding to the squared-loss nonparametric re-

gression (Nadaraya-Watson) estimator, dotted lines: estimated regression function corresponding

to the M -estimator.
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Example 3.2. To study the performance of the M -estimator in estimating nonlinear models

with heavy-tailed errors, we consider the following stationary bivariate exponential AR model

of order 1:






X1,t = (8X1,t−1 − 6X2,t−1) exp
{

−3
(

0.3X2
1,t−1 + 0.7X2

2,t−1

)}

+ 0.18ε1,t,

X2,t = (7X1,t−1 − 3X2,t−1) exp
{

−3
(

0.8X2
1,t−1 + 0.2X2

2,t−1

)}

+ 0.18ε2,t,

where the errors ε1,t and ε2,t are i.i.d. as 0.75N(0, 1) + 0.25W and W is the symmetric Weibull

distribution tailed as P (|W | ≥ x) = e−x
1/3.3

for any x ≥ 0. The model was used by Harvill

and Ray (2000) except that they generated the white noise disturbances from a bivariate (0,1)

Gaussian distribution with cross-correlation 0. The sample size n was set at 401. Figures 3.2.a)-

3.2.d) show the estimated regression functions. For each graph 50 equidistant grid points were

chosen in the interval [−2, 2]. When dealing with the usual nonparametric squared-loss regression

estimator, we set a1 = 0.2 and a2 = 7. For the nonparametric M -estimator, we set a1 = 1.4

and a2 = 4. Table 1, columns 6–10, contains the MADEs of the various estimated regression

functions. It is evident that the nonparametric M -estimator provides a better approximation

to the underlying structure than the commonly used regression estimator.

Remark: Note that both in theory and in practice the M -estimator is to be preferred over

the squared-loss regression estimator when the observations are contaminated with heavy tailed

errors. But, in practice, the squared-loss regression estimator still has its merits. The reason

is that the squared-loss regression estimator can be expressed clearly. As a consequence it can

be calculated much more quickly and accurately than that the M -estimator, which requires

searching the minimum value of (1.2).

4 Real Data Example

As an illustration we analyze the transactions for the S&P500 stock index in May 1993 and

its June futures contract traded at the Chicago Mercantile Exchange. The time interval is 1-

minute (intraday). Several authors used this data to study index futures arbitrage. Tsay (1998)

fitted a bivariate (nonlinear) threshold model to the first differences of the log(futures) and

log(spot prices) using 7,060 observations. Here we shall focus on a randomly selected subset

of 501 time series observations. Let X1,t and X2,t be the return series of the log futures and

spot prices. Figure 4.1 shows the time plot of X1,t and X2,t. The series fluctuate around a

fixed mean and within a fixed range with some big outliers. Computing some basic statistics
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Figure 4.1. Time plots of minute-returns of S&P 500 index futures and prices.

revealed heavy-tailedness in X2,t, with kurtosis 25.39. On the other hand, the kurtosis (0.93) of

series X1,t indicates a distribution flatter than normal. Initial exploratory analysis of the sample

auto– and cross-correlation function indicated that the series are highly correlated. A standard

nonlinearity test suggested significant departures from linearity for both series, with a p-value

of 0.0 for each series.

For simplicity of presentation, we assume that the bivariate time series come from the fol-

lowing bivariate AR model of order 1:







X1,t = m1 (X1,t−1, X2,t−1) + ε1,t,

X2,t = m2 (X1,t−1, X2,t−1) + ε2,t.

Figure 4.2 shows plots of the four estimated regression functions. In each plot one of the

covariates is set at a prefixed value and the values of the other covariate are left free. From

graph 4.2.a) we see that there is a nonlinear relationship between X1,t and X1,t−1, for values

of X1,t−1 in the interval [−0.5, 0.5], when X2,t−1 is fixed at 0.1. In graph 4.2.c), the regression

function m2(·) is almost equal to a constant. This means that the time series X1,t−1 has a

minimal effect on X2,t, when X2,t−1 is fixed at 0.1. Also, both estimated regression functions

displayed in graphs 4.2.b) suggest a not-so-strong positive linear relationship between X1,t and
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Figure 4.2. Estimated regression functions. Solid lines: estimated regression function corre-

sponding to the squared-loss nonparametric regression (Nadaraya-Watson) estimator, dashed-

dotted lines: estimated regression function corresponding to the M -estimator.

X2,t−1, when X1,t−1 is fixed at -0.1. Similarly the estimated regression functions in graph 4.2.d)

indicate a weak positive linear relationship between X2,t and X2,t−1, when X1,t−1 = −0.1. These

results seem to be in line with Tsay’s study, who entertained a bivariate threshold (nonlinear)

model of order 8 for the full data set with separate higher-order linear AR processes in each

regime. Note that the choice of the 501 observations is rather arbitrary. Nevertheless, results

obtained for other subsets of data seem to support the above observations.

Finally, we would like to stress that the empirical application is intended as an example

of the usefulness of the M -estimator for multivariate time series process with heavy-tailed er-

rors and outliers. The application should not be considered as an in-depth data analysis. For

instance, the functional form of the nonlinearity between the sequence of random variables

(X1,t, X2,t), (X1,t−1, X2,t−1), (X1,t−2, X2,t−2), . . . is still open for further research. Also the ap-

plication should not be linked to studies/models on futures arbitrage in finance.
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Appendix

Let’s introduce some necessary lemmas, which are used to get our main result. The following

Lemma 3.1 is an extension of Theorem 4 of Rio (1995).

Lemma 3.1. Let A be a σ-field of (Ω,z, IP ) and let X be a real-valued random variable taking

a.s. its values in [a, b]. Suppose furthermore that there exists a random variable ξ with uniform

distribution over [0, 1], independent of A∪σ(X). Then, for any δ ≥ 1, there exists some random

variable X∗ independent of A and with the same distribution as X such that

IE
(

|X −X∗|δ
)

≤ 2
1
δ (b− a) [α (A, σ (X) )]

1
δ . (B.1)

Moreover, X∗ is a A ∪ σ(X ) ∪ σ (ξ)-measurable random variable.

Proof. Here, the same notations and methods as in the proof Theorem 4 of Rio (1995) are

introduced to address the proof of this lemma. Analogous to the equality (2.4) in that paper,

for any δ ≥ 1, it holds that
∫ 1

0

∣

∣F−1
A (s) − F−1 (s)

∣

∣

δ
ds =

∫ b

a
|FA (t) − F (t)|

1
δ dt.

Also, according to Hölder’s inequality and the definition of α-mixing, we can obtain that

IE
(

|FA (t) − F (t)|
1
δ

)

≤ (IE |FA (t) − F (t)|)
1
δ ≤ (2α (A, σ (X )))

1
δ .

Going along the same lines as in the proof of Theorem 4 of Rio (1995), it can be shown that

(B.1) holds.

Lemma 3.2. Under Conditions A1, A2, A3, A8, A9 and A10, it holds for large enough n with

probability one that
n
∑

i=1

wn,iηn,i = O

(
√

logn

nhdn

)

. (B.2)

Proof. In view of Lemma 3.3 below, it suffices to prove that

1
√

nhdn

n
∑

i=1

K

(

x−Xi

hn

)

ηn,i = O
(

√

log n
)

.

Without loss of generality, we only prove that this relationship holds when ηn,i is replaced

by its first component ηi. Let ψ1,i be the first component of the random vector ψ(m (x) +

m′ (x) (Xi − x) , Yi). For simplification, denote by ςn =
√

nhdn log n and

Sn =
n
∑

i=1

(

K

(

x−Xi

hn

)

ηi − IEK

(

x−Xi

hn

)

ηi

)

,
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respectively. From IEK
(

x−Xi
hn

)

ηn,i ∼ Chdn and Borel Cantelli’s lemma, to get the desired result,

it suffices to prove that there exists some constant M > 0 such that I1 =
∑∞

n=1 IP (Sn > Mςn) <

∞ . In this proof, the constant C is independent of M . For Tn > 0, we introduce the following

notations ψ̄1,i = ψ1,iII(|ψ1,i|<Tn),

V1,i = ψ̄1,iK

(

x−Xi

hn

)

− IEψ̄1,iK

(

x−Xi

hn

)

and

V2,i =
(

ψ1,i − ψ̄1,i

)

K

(

x−Xi

hn

)

− IE
(

ψ1,i − ψ̄1,i

)

K

(

x−Xi

hn

)

,

respectively. Then, the equation Sn =
∑n

i=1 (V1,i + V2,i) gives that

I1 ≤
∞
∑

n=1

IP

(

n
∑

i=1

V1,i >
Mςn

2

)

+
∞
∑

n=1

IP

(

n
∑

i=1

V2,i >
Mςn

2

)

= I11 + I12.

We first deal with I11. Without loss of generality, assume that n = 2uv, where u = un and

v = vn are positive integer numbers. Otherwise, there exists a remainder r = rn in the ex-

pression n = 2uv + r, where 0 ≤ r < 2u. In this case, it can be dealt with analogously

according to the proof below. For j = 1, 2, . . . , 2v, denote by Wn(j) =
∑ju

i=(j−1)u+1 V1,i and

Sni =
∑v

j=1Wn (i+ 2 (j − 1)) for i = 1, 2. Then,
∑n

i=1 V1,i = Sn1 + Sn2 , which results in

I11 ≤
2
∑

i=1

IP

(

|Sni | >
Mςn

4

)

= I13 + I14.

We only dispose of I13 because I14 can be dealt with similarly. For simplification, let Wj =

Wn (1 + 2 (j − 1)) , j = 1, 2, . . . , v. Analogous to Lemma 2.5 of Merlevède and Peligrad (2000),

using Lemma 3.1, we present the following four assertions.

i). There exists a sequence of i.i.d. random variables {W ∗
j , j = 1, 2, . . . , v} with the common

distribution as W1. Also, W ∗
j is independent of σ (W1, . . . ,Wj−1).

ii). For any δ > 0, IE
∣

∣

∣Wj −W ∗
j

∣

∣

∣

2+δ
≤ 2uTn [2α(u)]

1
2+δ .

Then, in view of the definition on α-mixing dependence, the following two conclusions can be

inferred from the listed property i).

iii). The sequence
{

Wj −W ∗
j , j = 1, . . . , v

}

is still α-mixing with the α-mixing coefficients

α ((j − 1)u).

iv). For any 1 ≤ i, j ≤ v, it holds that

IE (Wi −W ∗
i )
(

Wj −W ∗
j

)

= IE (W1 −W ∗
1 )
(

W|j−i+1| −W ∗
|j−i+1|

)

.
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In the sequel, for simplification, u is chosen as

ur−1 =
CM r−2

n

(

√

nhdn

)r−2

(logn)
r+2
2

(B.3)

without restricting it to be an integral. Let

Tn =
CM

u

√

nhdn
logn

. (B.4)

From the known Condition A9, we can choose some suitable small constant δ > 0 such that

2

δ
>

(r − 1) θ

r − (r − 2) γ
− 1 (B.5)

and

γ >
2+δ
2 + θ

2+δ + (2 + δ) (r − 1)

(r − 2)
(

2+δ
2 + θ

2+δ

)

+ (1 + δ) (r − 1)
(B.6)

hold simultaneously. Substituting (B.3) into the inequality below gives

v−1
∑

j=1

(α ((j − 1)u))
δ

2+δ

≤ Cu
−θδ
2+δ v

−θδ
2+δ

+1 =
Cn(1− θδ

2+δ )+
1

r−1 (log n)
r+2

2(r−1)

M
r−2
r−1

(

√

nhdn

)
r−2
r−1

<∞, (B.7)

where the last step is based on the inequality (B.5). Using α(i) = O
(

i−θ
)

and Davydov’s (1968)

inequality, we can get that

var(W ∗
1 ) ≤ IE

(

W 2
1

)

= uvar(Vn,1) +
u−1
∑

j=1

(u− j)cov(Vn,1, Vn,1+j)

≤ Cuhdn max

{

1, u1−θ(1− 2
r )h

2d
r
−d

n

}

. (B.8)

From Condition A9, we know that

γ >
r2 − 4r + 2 + θ(r − 2)

(r − 2)2(θ + 1)
,

so that the following relationship

lim supmax

{

1, u1−θ(1− 2
r )h

−(1− 2
r )d

n

}

<∞ (B.9)

holds because of (B.3). Thus, the following two facts

Cnhdn max

{

1, u1−θ(1− 2
r )h

2d
r
−d

n

}

≤ uTnMςn
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and Mςn
Tnu

≥ (1 + ε) log n hold, where ε > 0. Thus, according to Bernstein’s inequality, we know

that

IP





∣

∣

∣

∣

∣

∣

v
∑

j=1

W ∗
j

∣

∣

∣

∣

∣

∣

≥ Mςn
8



 ≤ 2 exp

{

−1
2

(

Mςn
8

)2

v · var(W ∗
j ) + 2uTn

Mςn
8 /3

}

≤ 2 exp

{

−CMςn
Tnu

}

≤ 2n−(1+2ε).

Let

I15 =
M2+δh

d 2+δ
2

n u
δ
2

C [α(u)]
1

2+δ (n log n)
2+δ
2

.

From (B.3), we know that

I15
Tn

=
CM (r−2)( 2+δ

2
+ θ

2+δ )+(1+δ)(r−1)
(

√

nhdn

)(r−2)( 2+δ
2

+ θ
2+δ )+(1+δ)(r−1)

(logn)
r+2
2 ( 2+δ

2
+ θ

2+δ )+
1+δ
2

(r−1) n
2+δ
2

+ θ
2+δ

+(2+δ)(r−1)
.

In view of (B.6), we know further that Tn ≤ I15. From the listed properties on Wj , Markov’s

inequality, Hölder’s inequality, Davydov’s (1968) inequality, it holds successively that

IP





∣

∣

∣

∣

∣

∣

v
∑

j=1

(

Wj −W ∗
j

)

∣

∣

∣

∣

∣

∣

≥ Mςn
8





≤ Cv

M2ς2n



IE |(W1 −W ∗
1 )|2 +

v−1
∑

j=1

IE
∣

∣(W1 −W ∗
1 )
(

Wj+1 −W ∗
j+1

)∣

∣





≤ Cv

M2ς2n

(

IE|Wj −W ∗
j |2+δ

) 2
2+δ



1 +
v−1
∑

j=1

(α ((j − 1)u))
δ

2+δ



 (B.10)

≤ Cv

M2ς2n

(

IE|Wj −W ∗
j |2+δ

) 2
2+δ ≤ Cv(uTn)

2
2+δ [α(u)]

2
(2+δ)2

M2ς2n
≤ 1

n(log n)2
,

where in the third and the last inequalities above, (B.7) and Tn ≤ I15 are used, respectively.

For I12, by Markov’s inequality, it holds for all sufficiently large n that

I12 ≤
2nIE

∣

∣

∣

(

ψ1,i − ψ̄1,i

)

K
(

x−Xj

hn

)∣

∣

∣

M
2 ςn

≤ 4

M

√

nhdn
log n

IE
(∣

∣

(

ψ1,i − ψ̄1,i

)∣

∣

∣

∣Xj = x
)

≤ 4

MT r−1
n

√

nhdn
logn

IE ( |ψ1|r|Xj = x) ≤ 1

n (log n)2
,

where the last inequality is justified by (B.3), (B.4) and some large number M > 0. From the

analysis above, we know that I1 <∞. This completes the proof.

Lemma 3.3. Under Conditions A1, A2 and A3, there exists some constant M > 0 such that
∣

∣

∣

∣

∣

n
∑

i=1

(

K

(

x−Xi

hn

)

− IEK

(

x−Xi

hn

))

∣

∣

∣

∣

∣

≤M
√

nhdn log n (B.11)
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holds almost surely for all sufficiently large n.

Proof. Here, a similar method to Lemma 3.2 is adopted. Assume that n = 2uv. Let Vn,i =

K
(

x−Xi
hn

)

− IEK
(

x−Xi
hn

)

, Wn (j) =
∑ju

i=(j−1)u+1 Vn,i, j = 1, 2, . . . , 2v, and Sni =
∑v

j=1Wn(i+

2(j − 1)), i = 1, 2. To prove (B.11), it suffices to get the bound from above on IP{Sn1 >
Mςn

2 }.
Let Wj = Wn(1 + 2(j − 1)), j = 1, 2, . . . , v. And there exists a sequence of independent and

identically distributed random variables W ∗
j , j = 1, 2, . . . , v, which have the same distribution

as Wj , such that

IE
∣

∣Wj −W ∗
j

∣

∣

2+δ ≤ Cu [α(u)]
1

2+δ (B.12)

holds for some δ > 0, which will be determined later. It holds trivially that IP
{

Sn1 >
Mςn

2

}

≤
I31 + I32, where I31 = IP

{

∑v
j=1W

∗
j >

Mςn
4

}

and I32 = IP
{

∑v
j=1

∣

∣

∣
Wj −W ∗

j

∣

∣

∣
> Mςn

4

}

. Under

Conditions A2, A3 and Davydov’s inequality, we can derive that

|cov (Vn,1, Vn,1+j)| ≤ C
(

IEV 2+δ1
n,1

) 2
2+δ1 [α(j)]

1− 2
2+δ1 ∼ C

(

hdn

) 2
2+δ1 [α(j)]

1− 2
2+δ1 , (B.13)

where the constant δ1 > 0. From this and analogous to (B.8), it can be shown that

IE
(

W 2
1

)

≤ C

(

uhdn +
(

hdn

) 2
2+δ1 u

2−θ
(

1− 2
2+δ1

))

. (B.14)

Let u = C
√

nhd
n

logn . From θ > 3, we can choose some suitable constant δ1 > 0 such that

1

2
> γ >

2

1 + θ − 2
δ1

,

so that

lim sup
n→∞

(

hdn

) 2
2+δ1

−1
u

1−θ
(

1− 2
2+δ1

)

<∞. (B.15)

Combination of this, (B.14) and n = 2uv gives that

2v × var(W ∗
1 ) ≤ 2u

Mςn
4

.

Therefore, from (B.14) and Bernstein’s inequality (see, e.g., Serfling (1980), p.95), we know that

I31 ≤ exp

{

−
(

Mςn
4

)2

2v · var(W ∗
1 ) + 2uMςn

4

}

≤ exp

{

−CMςn
u

}

≤ exp {−CM logn} . (B.16)

Similar to (B.10), for some δ > 0, it holds that

I32 ≤ Cv

M2ς2n

(

IE
∣

∣Wj −W ∗
j

∣

∣

2+δ
) 2

2+δ



1 +
v−1
∑

j=1

(α ((j − 1)u))
δ

2+δ





≤ Cu
2

2+δ v

M2ς2n



1+
v−1
∑

j=1

(α ((j − 1)u))
δ

2+δ



 [α (u)]
2

(2+δ)2 .
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We now begin to prove that the last expression above is less than or equal to 1
n(logn)2

. Because

n = 2uv, ςn =
√

nhdn log n, u = C
√

nhd
n

log n , α(u) = O(u−θ)
∑v−1

j=1 (j − 1)
−δ
2+δ = O(v1− δ

2+δ ), this is

required equivalently to show that

M2

C
≥ n2u

2
2+δ

− 2θ

(2+δ)2
−3

+ n3− θδ
2+δ u

2
2+δ

− 2θ

(2+δ)2
−4

(B.17)

In view of Condition A3, (B.17) holds for δ > 0 sufficiently small.
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