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2 CHIARELLA, HE AND HOMMES

ABSTRACT. The use of various moving average (MA) rules remains poputh financial mar-
ket practitioners. These rules have recently become thesfota number empirical studies, but
there have been very few studies of financial market modetsebome agents employ technical
trading rules of the type used in practice. In this paper voppse a dynamic financial market
model in which demand for traded assets has both a fundaliséatad a chartist component.
The chartist demand is governed by the difference betweeprdyprice and a (long-run) MA.
Both types of traders are boundedly rational in the sengelihaed on a fithess measure such as
realized capital gains, traders switch from a strategy i@ithfitness to the one with high fitness.
We characterize the stability and bifurcation propertigte underlying deterministic model via
the reaction coefficient of the fundamentalists, the exi@jpn rate of the chartists and the lag
length used for the MA. By increasing the intensity of chdioceswitching strategies, we then
examine various rational routes to randomness for difteliéh rules. The price dynamics of
the moving average rule are also examined and one of our mdindgjs is that an increase of the
window length of the MA rule can destabilize an otherwisdaystem, leading to more com-
plicated, even chaotic behaviour. The analysis of the spomeding stochastic model is able to
explain various market price phenomena, including tempdrabbles, sudden market crashes,

price resistance and price switching between differeraltev

JEL classificationsD83, D84, E21, E32, C60.
Keywords Moving Averages, Fundamentalists, Trend Followers, BtglBifurcation, Evolu-

tionary Switching.
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1. INTRODUCTION

Technical analysts, also known as “chartists”, attempbtedast future prices by the study
of patterns of past prices and a few other related summatgtata about security trading.
Basically, they believe that shifts in supply and demand canldtected in charts of market
movements. In an environment of efficient markets, techiading rules should not be useful
for generating excess returns. However, despite all traeece presented in academic journals
that security prices follow random walks, and consequethidy these security markets are at
least weak-form efficient, as defined by Fama (1970), the @isectnical trading rules still
seems to be widespread amongst financial market practisone

There have been various studies of the use and profitabiligcbnical analysis. Taylor and
Allen (1992) document the enduring popularity of the trgdiales in their survey of currency
traders in London. Of the respondents, 90% replied thahieahtrading rules are an important
component of short-term investment strategies. Allen andof (1990) suggest that this is an
important finding given the apparent ability of exchangesdb move far from fundamentals
over protracted periods of time, as documented by Franke&lFroot (1986, 1990). Earlier
empirical literature on stock returns finds evidence thdydaeekly and monthly returns are
predictable from past returns. Pesaran and Timmermann(1995) present evidence on the
predictability of excess returns on common stocks for thé>$&0 and Dow Jones Industrial
portfolios, and examine the robustness of the evidence @mptidictability of U.S. stock re-
turns. Brocket al(1992) investigate the sources of the predictability bylydpg the bootstrap
technique to two of the simplest and most popular tradings;uthe moving average (MA) and
the trading range break rules. They find that returns obtiairem buy (sell) signals are not
likely to be generated by four popular null models, the randwealk, the AR(1), the GARCH-
M and the EGARCH models. They document that buy signals gembigiher returns than sell
signals and the returns following buy signals are less Weldtan returns following sell signals.
This asymmetric nature of the returns and the volatilityref Dow series over the periods of
buy and sell sighals suggest the existence of nonlineauiti¢he data generating mechanism.
Recent studies, such as kv al(2000), Boswijket al(2000) and Goldbaum (2003), have also
examined explicitly the profitability of technical tradingles and the implications for mar-

ket efficiency. The profit generating potential of tradingesuhas also been scrutinised within
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the genetic programming framework by Neayal(1997) and by the use of artificial neural
networks by Gencay (1998) and Fernandez-Rodriguez et aDj2@xiffioen (2003) contains
extensive statistical testing of the profitability of teatal trading rules, after correcting for
transaction costs and data snooping, of many stock mar#eteis including the Dow Jones
index.

Most of the cited research has focused on empirical stuitese is also a rapidly expanding
related literature on heterogeneous agent models (HAMs$hahcial markets, see e.g. the
recent surveys by Hommes (2005) and LeBaron (2005) and mérnenees therein. Many of
these HAMs have two groups of traders, fundamentalistaugetiechnical analysts. However,
most of these models are either complex artificial marketktion models or stylized models
in which chartists use oversimplified technical tradingesul This paper develops a simple
behavioural HAM with a group of fundamentalists and a grotiphartists using a (long-run)
MA rule similar to the rules used in financial practice. Thehgical analysts are assumed
to react to buy-sell signals generated by the differencevdet a long-run and a short-run
MA.. Both types of traders are boundedly rational in the sehat based on a fithess measure
given by realized capital gains, traders switch from sgiagwith low fitness to ones with high
fitness. The main objectives of this paper are to analyzettimlity properties of the model,
particularly in relation to the MA trading strategies, ahéd potential for the model to generate
complex dynamics, and to examine the impact of the MA tradihgs on the market dynamics.

The plan of the paper is as follows. In the following sectie,focus on one of the simplest
cases when the fundamentalist demand is determined by megarsion to the fundamental
price, while the technical analyst demand is based on tliereifce between current price and
a MA. Based on certain fitness measures, such as observeckdés in payoffs, the traders
can make an endogeneous selection of which trading stesteguse, as in Blumet al(1994),
Brock and Hommes (1997, 1998), Brock and LeBaron (1996) and BamdnJennings (1989).
Consequently, an adaptive heterogeneous asset pricingl nvddea market maker scenario
is developed. In Section 3, the existence, local stabilitgt bifurcations of the fundamental
steady state, in terms of the reaction coefficient of the dnmehtalists, the extrapolation rate of
the technical analysts, the lag lengths used for the MAs santthing intensity, are analyzed
when the lag lengths of the long MA are small. The analysisplioed with some results

on general window length for some special cases, gives ug smportant insights into the
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effect of increasing the length of the MA. In Section 4 rasibroutes to randomness, that is,
bifurcation routes to complicated asset price dynamicsrvthe switching intensity increases,
induced by the MA rule are examined numerically. One of ouinrfiadings is tha@n increase

of the window length of the MA rule can destabilize an otherstable systemeading to more
complicated, even chaotic behaviour. Section 5 introdacg®chastic fundamental price and
noise-trader demand processes, and examines the effaesefiioise processes when the prices
of the corresponding deterministic system are switchirtgvéen bull and bear markets. This
non-linear stochastic model illustrates a range of phemanadserved in real markets such as
temporary bubbles, sudden market crashes, price switdigtween different levels and price

resistance. Section 6 concludes the paper.

2. AN ASSETPRICING MODEL WITH A MARKET MAKER

Following the framework of Brock and Hommes (1998), this mecsets up an asset pricing
model with different types of heterogeneous traders whaeti@ccording to different trading
rules, such as fundamental analysis and technical analybis market price is arrived at via
a market maker scenario in line with Beja and Goldman (198@y &d Huang (1990) and
Chiarella and He (200§ rather than the Walrasian scenario used in Brock and Homh9&8j
and Chiarella and He (2002). Whilst the market maker and Wakliasuctioneer mechanisms
are highly stylized accounts of how the market price is adiat, the former may be closer to
what is going on in real markets. To focus on the price dynarofdhe trading rules, we mo-
tivate the excess demand functions of different types afetrs by their trading rules directly,
rather than deriving the demand functions from utility nmaigation of their portfolio invest-
ment with both risky and risk-free assets (as for example mcBrand Hommes (1998) and
Chiarella and He (2002, 20038.

Consider an asset pricing model with only one risky assetH.be the price (cum dividend)
per share of the risky asset at timeLet n;,; be the market fraction of typk traders at time
twithh = 1,2,---, H and Zthl np:y = 1. Let the excess demand for the risky asset of
representative trader from tygeat timet be D'. Then the population weighted aggregate
excess demand at timés given byD, = Zle nyDI'. We assume that prices are set period by

period via a market maker mechanism and adjusted accordlithge taggregate excess demand
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Dy, i.e.
H

Pii1 = Pl + oce] + uDy = B[l 4 0.6] + MZ”h,tha (2.1)
h=1

wheree; ~ N (0, 1) captures a random excess demand process either drivenxpeaated news

about fundamentals, or representing noise createwise tradersr. > 0 is a constant and the
parametep: > 0 measures the speed of price adjustment (or the aggredatelasance) of the

market maker to the excess demand.

For simplicity, we assume throughout this paper that theeeoaly two types of traders:
fundamentalists and technical analysts, who in fact arenibst widespread types of traders in
financial markets and whose trading strategies and excessmEfunctions are specified in the
following discussion. Let the market fraction of fundanedists and technical analysts at time
t be given by, respectively,;, andn.,. The population weighted aggregate excess deniand
at timet is then given byD, = nf,tth + n..Dy, WhereD[ and Dy are the excess demands (to
be defined below) of the representative fundamentalist @cithical analyst, respectively. Set
my = Ny — Ney, SO thatng, = (1 +my)/2 andn,., = (1 —my)/2. Using (2.1), the market

price of the risky asset is then determined by
Piyy = B[l +oce] + g[(l +my) D + (1 — m;)Dy). (2.2)

Fundamentalists-The fundamentalists believe that the market price shoelditen by the
fundamental price that they have estimated based on vasipas of fundamental information,
such as earnings, exports, general economic forecastsoafwitls. They buy/sell the stock
when the current price is below/above the fundamental piii@e simplicity, we first assume
that the fundamental price is a positive constdit and the average excess demand of the
fundamentalists is given bXth = «a(P* — P,), where the parameter > 0 is a combined
measure of the aggregate risk tolerance of the fundamststand their reaction to thais-
pricing.

Technical Analysts-Unlike the fundamentalists, the technical analysts ttzateed on chart-

ing signals generated from the costless information coathin the history of the price, such

A constant fundamental price is assumed for our stability bifurcation analysis of the deterministic model,
while a random walk fundamental price will be introduced atfon 5 for the stochastic version of the model.
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as MAs and various other technical trading rules used in éighmarkets. The technical ana-
lyst average excess demand is here assumed to be basedals ggmerated by MAS More
precisely, a MA of lengttl. at timet is defined asnal = (1/L) Y. P,_; whereL > lis a
positive integer. A trading signal is defined as the diffeesbetween the current pritand a
MA mal, namely,yl = P, — maF. For the technical analysts, their average excess demands
are assumed to be governed By = h(y}), where the functiork has the general properties
h(0) = 0,k (x) > 0,zh"(x) < 0. This corresponds to one of the very popular technical trad-
ing rules whereby technical analysts wish to be long (shehign the current price is above
(below) the MA. In this paper, we selekfz) = tanh(az) and assume = A/(0) > 0. Note
that this form of technical analyst excess demand functamldeen used in the literature (e.g.
Chiarella(1992)) and it allows us to capture some elemerniiseofiltered MA rules. This is so
since, whenu is small, the technical analysts initially react cautigusl the long/short signals,
in a sense waiting to confirm the maintenance of the changginas the signal. In this way
they minimize the costs incurred if the signal changes fe@etjy in a short time period. Also,
the fact that-1 < h(z) < 1 captures the limited long/short positions, risk avertiegpdviour
and traders’ budget constraints.

Fitness Measure and Population Evolutieim order to introduce the adaptive behaviour of
agents, we follow the mechanism of Brock and Hommes (1998}afide the fithess functions

s, Ter @S their realized net profit:
Tt = D{,1<Pt - Ptfl) - Cf7 Tet = Df,1<Pt - Pt—l) - Cc; (2-3)

whereC, C. > 0 are the costs of their strategies. When the number of agewtscim group
tends to infinity, the population fractions are then updéethe well known logit model prob-

abilities (e.g. Manski and McFadden (1981))

eﬁUf,t eﬁUC,t
nf’t - eﬂUf,t _l_ eﬁUc,t’ nc’t - eﬁUf,t —|— eﬂUe,t’ (2.4)
where
Upr = mpe +nUs1-1, Uet = Tep +nUct1, (2.5)

2There is a large practitioner literature on the way MA rulessed to generate buy/sell signals. See for instance
Pring (1991) and Neely (1997).

3More generally, the current price can be replaced by a shartMA ma?. For mathematical tractability, we
consider the cas€ = 1 only in this paper and leave the study of the general asel to future work.
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andn € [0, 1] measures the memory of the cumulated fitness functiorsand is the intensity
of choice measuring how quickly agents switch between tledtrategies. In particular, if
B = 0, there is no switching between strategies, whilefer oo all agents immediately switch
to the best strategy. See Brock and Hommes (1998) for a moea®xé discussion of this
switching mechanism.
A Complete Asset Pricing ModeiBased on (2.2) and the above analysis, the market price

of the risky asset is determined according to
Py = Pl + 0.6 + g[u +m)a(P* = P)+ (1 —m)h(P, —mal)]  (2.6)
and, from (2.3)-(2.4), the difference of population fracsm, evolves according to
m; = tanh [g(Ut — C’)L C=0Cf—-C.>0, (2.7)

wherep > 0 measures the speed of price adjustment of the market maged lom the excess
demand, and

Uy = [Dfy = D [P, — Pioa] + nUs1, (2.8)
with the first term representing the difference in the realizapital gains of the two strategies.
Note that we have sét = C; — C. which will be positive if we assume that the fundamentalists
incur greater costs than the chartists. By setting= 0, the nonlinear stochastic dynamical
system (2.6)-(2.8) becomes a nonlinear deterministiesysthere the price follows

Pt = Pt 5| (1 m)a(P* = B) + (1 = m)h(P, — maf) . (2.9)

In general system (2.7)-(2.9) is dn+ 2 dimensional non-linear difference system. We seek
principally to understand how its dynamic behaviour is etftel by the reaction coefficient
of the fundamentalists, the excess demand funditiarf the technical analysts, the switching

intensity 3, and in particular, the lag length used for the MA rule.

3. STABILITY AND BIFURCATION ANALYSIS

In this section, we consider the local stability and locdutmations of the deterministic

system (2.7)-(2.9). The main results are summarized ind3itpn 3.1.
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Proposition 3.1. For the deterministic system (2.7)-(2.9), assume [0,1). Denotem* :=

tanh(—

(i)

(ii)

(i)

(iv)

(v)
(vi)

(vii)

(viii)

(ix)

BC/2),n% = (1+m*)/2,n; = (1 —m*)/2anda = aun},a = apn;.

There exists a unique steady state, m;,U;) = (P*, m*,0), whereP* is the constant
fundamental price.

If @ = 1+ a, then the steady state pride" is locally asymptotically stable (LAS) for
0<a< L.Ata = L, there occurs d : L + 1 resonance Hopf bifurcatidn

A necessary condition for the steady state price to be LA&&@dy0 < a < L and
0O<a<2+aforevenL andl < a <2+ %a for odd L (see Fig. 3.1).

Forall L, P*is LASif(a,a) € Dg(@,a) := {(a,a);2a < a < 2} (see Fig. 3.1).

For sufficiently largel, P* is unstable itz > & (see Fig. 3.1,

For L = 1, P*is LAS for(a,a) € Dyi(a,a) == {(&,a);0 < & < 2,0 < a}. In
addition, flip and saddle-node bifurcations occur whien- 2 anda = 0, respectively
(see Fig. 3.2a).

For L = 2, P*is LAS for(a,a) € Dys(a,a) == {(a,a);0 < a < a+2,0 <a < 2}.
Furthermore, a saddle-node bifurcation occurs wles- 0, a Hopf bifurcation occurs
whena = 2, and a flip bifurcation occurs whem = a + 2 (see Fig. 3.2b).

For L = 3, P*is LASfor(a,a) € Dys(a,a) = {(a,a);0 < a < 2a+2,a(2—a+a) <
3}. Furthermore, a saddle-node bifurcation occurs wher= 0, a Hopf bifurcation
occurs whemi(2 — @+ a) = 3, and a flip bifurcation occurs whem = §a + 2 (see Fig.
3.2¢).

For L = 4, P*is LAS for(a,a) € Diy(a,a) == {(&,a);0 < a < 2a+2,0<a<
4, (5a — 4a)(4 + a)* < a(8 + 3a — 4a)?} (see Fig. 3.2d).

4Resonance bifurcations occur when the complex eigenvéikien the unit circle. Whem = L, the eigenvalues
are given by\, = e?*m with k = 1,2,--- , L andv = 1/(L + 1). Geometrically, the, eigenvalues correspond
to the L + 1 unit roots distributed evenly on the unit circle, excluding= 1. WhenL = 1, a flip or period-
doubling bifurcation occurs. Wheh = 2, the bifurcation is known as a 1:3 strong resonance, whic leed
to two sets of period three cycles with one set stable and stiteunstable (e.g. Chiarella and He (2000)). For
L > 2, the bifurcation is accompanied ly: L + 1 periodic resonances (e.g. Sonis (2000)). Eor= L, =

L = 3,4, instability of the steady state leads to 1:4 and 1:5 petiodsonance bifurcations, respectively, and
similar dynamics to the 1:3 resonance bifurcation are alsad. Theoretical analysis of such types of bifurcation
of higher dimensional discrete systems can be exceedinghpticated and is not yet completely understood, (e.g.
Example 15.34 in Hale and Kocak (pp. 481-482, (1991))). Seenktsov (2004) for an extensive mathematical
treatment of bifurcation theory.

SWe would like to thank Florian Wagener for providing a probfiis result.
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A proof of Proposition 3.1 is given in the appendix. Here wscdss some underlying eco-
nomic intuition using Figures 3.1 and 3.2 illustrating ti@gtability regions and the bifurca-
tion curves. Result (i) of Proposition 3.1 assures that thddmental price is the unique steady
state price and the population fractions of the fundamestsahnd chartists at the steady-state
are given byn} andn;, respectively. Obviouslyz; = n’ = 0.5 whenC = 0. However, if
C > 0, that is costs for fundamentalists’ strategies exceeddbltsdor technical trading rules,
then there are more chartists than fundamentalists ateéhesstate, i.en; > n}.

Both parameter& = aun} anda = aun; play an important role in determining the stabil-
ity/instability of the fundamental price. The market md&earice adjustment speed shows
up as a scaling factor i, a). Given this scaling factory anda are determined by thpop-
ulation weightedat the steady state@action coefficientsf the fundamentalists and chartists,
respectively. Intuitively we would expect the fundameistalto represent a stabilizing force
and the activities of the chartists to destabilize an otisrwstable market price. The results
of Proposition 3.1 describe how the (local) stability of tharket depends on the balance of
these forces (captured layanda) and the lag length of the MA, as we explain in the following
discussion.

Result (ii) of Proposition 3.1 relates to the stability of flo@damental price along the line
a = 1+ a, for generall, as illustrated in Fig. 3.1. This line plays an importanerai the
stability analysis of the model. Along this line, the stapitegion is proportionally enlarged
as the lag length of the MA procesk)(increases. For fixed lag, the stability line segment
a=1+afor0 < a < Lis part of the stability region in thex, a) parameter plane. To see the
economic intuition behind this result, let us examine thegobehaviour near the fundamental
price. The linearization of (2.6) reducesip | = P,+a(P*—P,)+a(P,—may), or equivalently,
in deviationsX; := P, — P* from the fundamental price

_ L-1

a
Xy =[14a-aX, - E;XH. (3.1)

Along the linel +a = @, the stabilizing force from the fundamentalistg &nd the destabilizing
force from the chartistsl(+ a) just balance each other. Accordingly, along this line,agmun
(3.1) becomes(;;; = —(a/L) Zf;ol X;_; and stability of the fundamental price is determined

exclusively by the MA process. In this case, the stabilityioa of parametet is enlarged as
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the lag for the MA increases. More precisely, local stapitt achieved whea/L < 1 (see
Chiarella and He (2000) for the mathematical proof of thisiltgs

Based on the above analysis, we may conjecture that theitstaibgdion is enlarged as the
lag lengthL increases. However this conjuncture is not true in generlithis becomes clear
from the results forl = 1,2,3 and 4. Certainly, a longer MA does reduce the impact of
a single period event on chatrtists’ beliefs (and so stadslithe price process), however the
contained price information becomes less significant asatipéength increases. Hence, when
both the stable and unstable forces are balanced, as we Ustveigcussed, the stability of
the market price is maintained. However, when such forcesrne unbalanced, particularly
with large a, sudden shifts in demand can trigger an unstable fundainemta, leading to
price overshooting, as the lag length increases. This waten is basically the underlying

mechanism involved in the change of the local stability sagas the lag length of the MA

increase$.
a o _
a=1lxaa=2+ a(L—-1)/L
a=1L /// . a=2+a

/7 7/
///

=~ — A /

a=a //,//

1 ///’
/////
Ds|,»”
a
1 2

FIGURE 3.1. The common stability regiohs for general lag length. and
necessary stability boundaries= L, @ = 2 + a for even lagL anda =
2+ a(L — 1)/L for odd lagL. On the horizontal (vertical) axis we have the
population weighted reaction coefficient of the fundamiestga(chartists) at the
steady state, i.ex := aun},a ;= aun;.

Given the mathematical difficulty in determining the loctkslity conditions for general
lag lengthZ in the @ anda parameter space, it is useful to have some information aheut
potential unstable regions and common stable regions fdagd. Result (iii) in Proposition
3.1 give us necessary conditions for stability. In otherdydine fundamental price is unstable
outside the regions that are bounded on the right by the twedlbnes and above hy= L in
Fig. 3.1. Result (iv) give us sufficient conditions for thelslity in terms ofa anda for general

5The authors would like to thank an anonymous referee to mintis point to our attention.
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lag lengthL, and the common stability regiob;s is illustrated in Fig. 3.1. It indicates that,
for all lag lengthZ, the fundamental price is stable when the population wejbbefficients

of fundamentalists and chartists are balanced and bounde®¢ < a < 2). On the other
hand, when the coefficient of the chartists exceeds thatediuthdamentalists, result (v) shows
that increasing the lag lengihin the end destabilizes the system and this is a more integest
result. The intuition for this instability result is the foling. Chartist demand depends on the
difference between the long-run MA and the current price./Aacreases, the MA becomes
smoother and more sluggish. Whern> @&, the relative effect of chartists at the steady state
is bigger than that of fundamentalists, a small change imptiee leads to a relatively large
increase of chartists demand destabilizing the price.

For L = 1,2, 3,4, Proposition 3.1 describes explicitly the regions of LAShe(a, a) plane
and the bifurcation behaviour at the boundaries of thosemsgvhere local asymptotic stability
turns to instability. These regions are illustrated in B.

For L. = 1, the technical analysts have no impact on the market prigeg®\back to the set
up of the model and let;; = 1. Consequently, the price equation is simplifieddq, — P* =
[1 — apl(P, — P*). Hence the stability condition is given ly< & < 2, wherea = pua is
the product of the speed of the price adjustment of the furidalists towards the fundamental
price () and the speed of price adjustment of the market makerThus the stability of the
steady state price* is maintained only when the under(over)-reaction from thelamentalists
Is balanced by the over (under)-reaction from the marketemakhe over-reaction from both
may lead to price overshooting, through a flip bifurcatiorewh = 2.

For L = 2, the stability regionD;, and bifurcation boundaries are plotted in Fig. 3.2(b) in
the (@, a) parameter plane. The Hopf bifurcation boundary is defined by2 anda € (0,4).
For L = 3, the stability regionD,3 and the bifurcation boundaries are plotted in Fig. 3.2(c).
Different from the previous two cases, the Hopf bifurcatmmw depends on both parametears
anda. For L = 4, the stability regionD,, is plotted in Fig. 3.2(d).

For comparison all stability region3,;, for L = 1,2, 3 and 4 are plotted in Fig. 3.2(e). The
changes of the local stability regions Asncreases are in line with our previous discussion
concerning the stability near the line+ @ = a. As L increases, sudden shifts in demand can

trigger an unstable price when the reaction speeds areamdzl.
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a a Hopf boundary

~— Flip boundary 2

2
- (@)

Hopf boundary dp==mmmm e

\

Ve
2" /< Flip boundar
Dy p hll y
s’ |
L
1 2 3 4 5 ¢
(d)
. |
________ _I____________
Dll: | Dy
3r——————- bommm o I
" D13
2 |
1 | |
1 | |
1 — D
| | |
By | | |
| | | ~
1 2 3 4 5 @
(e)

FIGURE 3.2. Stability regions and bifurcation boundaries forf{a} 1, (b) L =

2, (c) L = 3, (d) L = 4 and (e) comparison of stability regions and bifurcation
boundaries),;, for L = 1,2, 3,4. On the horizontal (vertical) axis we have the
population weighted reaction coefficient of the fundamistsa(chartists) at the
steady state, i.ex := aun},a ;== aun;.

Given the large variety of MA rules used in financial marketd the difficulty of eigenvalue
analysis for high-order characteristic equations, it isak@ar how different MA rules influence
the stability of the steady state price and types of bifuocathat may occur. However the
analysis has given some important insights into the fadtitital asymptotic stability depends
on some subtle balance between the reaction coefficientsxdamentalists and technical ana-

lysts. Based on our analysis, we conjecture #sathe lag length increases, the stability region
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tends to shrink towards, but stretch along, the dine 1 + a with common stability regiom .
This conjecture is partly verified by the numerical simulas in the following section.

Our stability analysis also yields insight as to how the poffegameters, the price adjustment
factor u, the intensity of choices, the cost differenc€’ between fundamental and technical
trading strategies and the lag lenditaffect the local stability of the fundamental steady state.
Increasing the price adjustment faci@emmoves the poin{a, a) in Figs. 3.1 and 3.2 in the
North-East direction leading either to a flip bifurcationh@n the population weighted reaction
coefficients of the fundamentalists is relatively largejaa Hopf-bifurcation (when the popu-
lation weighted reaction coefficient of the chartists iatiekly large). Wher' > 0, an increase
in 3 leads to an increase i, the fraction using the cheap technical trading strateggnds,
for C > 0, an increase i movesa upwards andv downwards, so that the poifit, a) in
Figs. 3.1 and 3.2 moves in the North-West direction and thddmental steady state may lose
stability through a Hopf bifurcation. When there is no coffiedence between fundamental and
chatrtist strategies, an increasedmloes not change anda, so there is no change in the local
stability of the steady state. Furthermore increasihg similar to increasings. Finally, the
fact that the stability regions become more narrow for hidghgs L suggests that an increase in
L may destabilize the system, especially when a, i.e. the relative impact of chartists at the
steady state is larger than that of the fundamentalists gldi®l dynamics, for different values

of the intensity of choice and the lag lengthwill be investigated in section 4.

4. DYNAMICS OF THE NONLINEAR SYSTEM

In this section, we examine the global dynamics of the nesalirsystem (2.7)-(2.9) by focus-
ing on the effects of the switching intensity (Subsectiah) 4nd of the lag length of the MA
(Subsection 4.2).

4.1. The Effect of The Switching Intensity—Rational Routes to Randoness. Brock and
Hommes (1997, 1998) have proposed simptiaptive Belief Systermo model economic and
financial markets, where agents adapt their beliefs oves bynchoosing from different pre-
dictors or expectations functions, based upon their pasbimeance as measured by realized
profits. Brock and Hommes (1998) show that, as the intensityhofce to switch to better
strategies increases, the model is able to generate the &ap” of complex behaviour from

local stability to high order cycles and even chaos and thiké so-calledrational Routes to
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Randomness (RRR for shart)n this section, we consider the effect of the switchingemt
sity on the price dynamics of the deterministic system (2279) with two different MAs using

L =4 andL = 100. We choose the parameterset 1, u =2,7=02,a=1,C = 1.

Note that forg = 0, we havea = aun} = 1 anda = aun; = 1, so that for, = 4 and
G = 0, according to Proposition 3.1 (ix) the fundamental pri¢eis locally stable. On the
other hand, sincé’ > 0, for 3 = oo, we havex = aun} = 0 anda = aun; = 2, so that for
L = 4 andf = oo, according to Proposition 3.1 (ix) the fundamental steddtess unstable.
As the switching intensitys increases we therefore expect that the fundamental steatty s
becomes unstable by a Hopf bifurcation. This is indeed cmefit by numerical simulations
as illustrated by the phase pldiB;, m,), for different values ofs = 0.2,0.3,0.49,0.52,0.555
and0.57 in Fig. 4.1. It is found that, once the fundamental pri¢e becomes unstable, the
solutions converge téigure-eight shapedittractors for low switching intensity (e.g. the cases
of 5 = 0.2 and 0.3). Recall that fof. = 4 we have a 6-dimensional system, and the figure-
eight shaped attractors are in fact 2-dimensional praestof an invariant circle around the
unstable fundamental steady state in the 6-dimensionakp$@ace. As the switching intensity
increases, the figure-eight shaped attractor grows iifigr 5 = 0.3, 0.35) and then stretches
to a scissors-shapeattractor (forg = 0.49). As the intensity increases further, the simple
attractor becomes more complicated (for= 0.52) and eventually leads to strange attractors
(for 5 = 0.555 and 0.57). One can see that the market price variation isessas the switching
intensity increases. It is interesting to note that theseepes are similar to the rational routes
to randomness studied extensively in Brock and Hommes (11%998).

For L = 100, 8 = 0, we havex = aun} = 1 anda = apn; = 1 and we conjectured earlier
that this point lies outside the stability region fbrlarge and this is confirmed by numerical
simulations forL, = 100. To illustrate the effect of the switching intensjty we include phase
plots, in terms of( P,, m,), for different values of3 = 0.05,0.1,0.2,0.3,0.35,0.42,0.45 and
0.4652 in Fig. 4.2. Asp increases, the (projection of the) attractor starts witliave figure-
eight shapesgfor 3 = 0.05 and0.1) and is then stretched (or extrapolated) by the technical
analysts towards the extreme high/low price levels (fer 0.2). The attractors are then broken
down to Lorenz-like attractorssimilar to those of the celebrated 3-dimensional contirsuo
Lorenz system, see Peitgehal(1992)) for betweer).3 and0.35. As the switching intensity

increases further, thieorenz-likeattractors merge into one connected strange attractof (for
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FIGURE 4.1. Phase plots ofm,, P,) for L = 4 and variousg =
0.2,0.3,0.49,0.52, 0.555 and0.57.
0.42) and then to strange attractors (fore= 0.45 and 0.4652). Also, as the switching intensity
increases, the volatility of both price and population @ages.

The corresponding price time series are illustrateddfor 0.1,0.3,0.35,0.42 and0.46 in
Fig. 4.3. One can see that an increase of the switching iityecen generate very interesting
price patterns. With a lower switching intensity & 0.1), the fundamental price is unstable
and extrapolation of the price trend by the technical anslgsshes the price away from the
fundamental price. Because of their limited long/short pmsj their fithess or utility becomes
smaller when they reach their limit position. This leadsléns to switch back to the funda-
mental strategy, bringing price back towards the fundaaigmice. Because of the increase of

the fitness of the technical analysts, the price is pushelddubeyond the fundamental price to



A DYNAMIC ANALYSIS OF MOVING AVERAGE RULES

17

0.00 -0.08 —
beta=0.05, 0.1, 0.2 beta=0.3 ‘\‘
beta=0.05 ——r——00 ::_‘
-0.712 — it
-0.04 ."
betazo.1 (o )
o016
0.08 g
> - TN =2 0.20 |-
0.12
beta=0.2 oz
o016 ‘ ‘ ‘ ‘ o028 ‘ ‘ ‘ ‘
s 700 101 702 o5 29 700 701 102
P P
o.10
o401 beta=0.42
beta=0.35
0.00
0.170 s 0.00
0.20
0.40
-0.30
0.90 98 100 102
o8 102 P
1.2
0.8 -
0.8 -
04
0.4 -
£
0.0 —
0.0 -
04l
0.4 |
beta=0.45 beta=0.4652
05 ‘ ‘ ‘ | s ‘ ‘ ‘ ‘
96 98 100 102 104 96 98 100 102 104
P P
FIGURE 4.2. Phase plots ofm;, P,) for L = 100 and various§ =

0.05,0.1,0.2,0.3,0.35,0.42, 0.45 and0.4652.

101.0- $=0.1 p=03
101F
100.5+
100.0 100
99.5+ 99|
| | | | | I L L L L L L
0 100 200 300 400 500 O 100 200 300 400 500
102 B=0.35 3=0.42
101k 102+
100 100
991 a8l
| | | | | | L L L L L L
0 100 200 300 400 500 O 100 200 300 400 500
=0.46
102.5-
100.0~
97.5¢
Il n L n L n L n L n L n L n L n L n L n L
0 50 100 150 200 250 300 350 400 450 500

FIGURE 4.3. Price time series fat = 100 andg = 0.1 (a), 0.3 (b), 0.35 (c),
0.42 (d) and 0.46 (e).
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the opposite extreme. As the switching intensity incredfess = 0.3, 0.35), such switching
from high/low extreme to low/high extreme happens very kjyicAt the same time, the price
becomes more volatile. This result can be used to explamaepoom and bear markets. As
the intensity increases further, the regular switchingepatof the price between two extreme
levels is destroyed, leading to highly volatile price patte(for 5 = 0.46). This phenomenon
of the price switching between upper and lower levels giegseseconomic basis to the notion
of upper and lower resistance levels that are frequentlyudised in the practitioner literature

on technical analysis (see e.g. Pring (1991)).

4.2. The Effect of the Lag Length—Dynamics of The Moving Average.We now consider
the effect of the lag length of the MA rule on the price dynamics of the deterministic eyst
(2.7)-(2.9). As an illustrative example, we choose the patarsa = 1,4 = 2,8 = 04,n =
0.2,a = 1,C = 0, for whicha = 1 anda = 1. The fundamental price is locally stable for
L = 2,3,4, but it is unstable fol. > 5. Fig. 4.4 illustrates how the phase plot (in terms of
(P, m;)) changes as the lag lengihincreases.

For L. = 5, the (2-D projection of the) attractor is given byigure-eight shapedosed curve
with small price variation (about 1% of the fundamental erievel) and there is a tendency
among traders to switch from fundamental analysis to teahm@inalysis. For. = 8, the size
of the attractor is enlarged, implying that the deviatiohbath price and population from the
fundamental value, which i#* = 100 andn’ = n} = 0.5, are enlarged. Hence an increase
in the MA window L destabilizes the price dynamics. This destabilizing ¢ffecomes more
significant whenL is increased further té, = 9, 10, 50 and the price dynamics become even
more complicated fof. = 90 and 100, as indicated by the phase plots in Fig. 4.4.

In order to get more insight into these destabilizing efedtthe long-run MA, let us examine
the time series of prices and corresponding MAs in Fig. 4.& found that, following a cross
over of the long run MA and the market price, both the tecHracalysts and fundamentalists
take the same long/short position initially, but soon attely take opposite positions. This helps
to accentuate either the up or the down trend, pushing the fwieither a higher or a lower level
initially, but soon after, their different positions slowwin the trend built up initially and bring
the price back towards its fundamental level. The time tdkerthe price to return back to

its fundamental value is proportional to the lag When the lagl for the MA is small, the
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reversion back to the fundamental happens quickly; a&reases, this reversion takes a longer
time.

The destabilizing effect of the lag lengthholds in general for the parameters located within
regions in which the fundamental price is locally stableléover lags and unstable for higher
lags, as discussed in the above. However, this may not alivaybke case. As a matter of
fact, when the reaction coefficients from both types of tradee carefully balanced (such that
a = 1+a), anincrease of the lag length can stabilize an otherwistabte system, as indicated

in Proposition 3.1

5. TIME SERIESANALYSIS OF THE STOCHASTIC MODEL

The nonlinear dynamic model considered in the previous@ectan be treated as the de-
terministic skeleton of the corresponding stochastic rhod®e prices observed in real markets
are presumably the outcome of the interaction of both nogali and stochastic elements. Rig-
orous analytical tools for the analysis of non-linear ststit dynamical system are still in a
development phase (see e.g. Arnold ((1998)) for an up-te-@ecount). The analytical results
that exist deal mainly with affine systems so it seems diffiauthe moment to apply these tools
to our nonlinear model. In this section we attempt to gaineamsights into the behaviour of
the nonlinear stochastic model through numerical simurhesti

Recall from Section 2, Eq. (2.1) that we already introducedigenterme; representing
noise created by noise traders. In addition to noisy demaadlso introduce a random walk

fundamental price process. We assume that the fundameitlifpllows a random walk
Pl = P/[1+ 056, (5.1)

whereos > 0 is a constant measuring the volatility of the return dne- A/(0, 1). Notice that
this specification ensures that relative price changestatiersary.

To illustrate a typical example, we select the parameters0.5,5 =0.3,a =1,u=1,n=
0.2,C =1,L = 100, Ff = By = $100. To see the effect of the two noise processes on the
price dynamics of the deterministic model, we compare fafferent cases in terms @&, 05 ):

(@) (0,0), (b)o.,0), (c) (0,05) and (d) (o, 05) With 0. = 0.5% andos; = o/K,0 = 5%
per annum and<{ = 250 (corresponding to 250 trading days per year). The compaiso

’Numerical simulations (not reported here) indicate thatthis case, an increase incan cause an explosive
system to become a (locally) stable system.
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FIGURE 5.1. Time series of the prices (A), population fraction eliéinces
(B), and demand functions (C) for fixed = 100 with (o5, 0.) = (0,0) in (a);
(0,0.5%) in (b); (5%p.a.,0) in (c) and(5%p.a.,0.5%) in (d). Herea = 0.5, 5 =
03, u=11n=02,a=1,C = 1.

conducted over the first 500 time steps (a trading period otiaB years). In all three noise

cases, Fig. 5.1 (panel A) compares the market pficeogether with the fundamental price and
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the long-run MA, Fig. 5.1 (panel B) compares the differencéhefmarket population fractions
my = ng. — ney, and Fig. 5.1 (panel C) compares the demand functions of tiadafuentalists
and the technical analysts.

Case (a) reduces to the corresponding deterministic casthislcase, the constant funda-
mental priceP* = 100 is unstable and the market priég displays periodic switching between
bull and bear markets, as illustrated in Fig. 5.1 (A)-(a)orfRiFig.5.1(C)-(a), one can see that
the fundamentalists and the technical analysts take ogp@deng/short) positions in most of
the time period. Because of limits on the position the teciraoalysts can takRend the sta-
bilizing role of the fundamentalists, such off-setting ioss cause the price to stay bounded.
However the market switches when both of them have the sasiggmoand such a transition
happens very quickly. In addition, the market is dominatgdhe technical analysts most of
the time, as indicated by the fact that the trend of the maykee in Fig. 5.1 (A)-(a) follows
closely the demand pattern of the technical analysts in$:iy(C)-(a) and that traders tend to
switch from the steady state level to technical analysisdieated by Fig. 5.1 (B)-(a).

Case (b) examines the effect of the noisy demand on the pricancigs. Because of this
noisy demand, the market price becomes more volatile. Hernyéve market price (in Fig.5.1
(A)-(b)) and the demand functions (in Fig. 5.1 (C)-(b)) aié dbminated by the underlying
price dynamics of the deterministic case (a), although witcking between two types of trad-
ing strategies is intensified (see Fig. 5.1 (B)-(b)), spregbetweenn. = —60% andm = 60%.

Case (c) examines the effect of the noisy fundamental pride@price dynamics. One can
see from Fig. 5.1 (A)-(c) that the market pri¢g closely follows the fundamental price’,
though the variation of the market price increases (becalifiee strong extrapolation of the
technical analysts). Fig. 5.1 (B)-(c) shows that traderd terswitch to fundamentalist analysis
from time to time. However, a comparison of the market pmead in Fig. 5.1 (A)-(c) and the
demand function pattern in Fig. 5.1 (C)-(c) shows that theketgprice is above (below) the
fundamental price when the technical analysts take longr{sposition. This means the market
price is still dominated by the technical analysts althougbllows closely the fundamental

price.

8This may be due to their short selling constraint when thdg hoshort position and consumption needs when
they hold a long position.
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Case (d) examines the combined effect of the two noise presess the price dynamics.
Apart from the fact that the market price becomes more \elédtiecause of the noisy demand),
it shares similar features as in the cases (b) and (c). Thahesmarket price follows the
fundamental price and the market is dominated by technicalyats.

Based on the analysis above, we observe some interestingmbkea. (i) Adding noisy
demand can increase price volatility, but it has less impadhe price pattern and the market
conditions of the underlying price dynamics. (ii) When thedamental price follows a stochas-
tic process, the market price closely follows the fundarmlgmtice. (iii) The market is mainly
dominated by technical analysts (when they extrapolategly). They may be the winners
over short time periods (indicated by the traders switchingchnical analysis), however over
the whole time period they may be the losers in the sense tbstt ofi the time they buy when
the market prices are high and sell when the market pricel®ardiv) The switching between
bull and bear markets happens when both types of traderghaksame position, a very in-
tuitive result. Such transitions can be intensified with lileép of the noise traders, leading to

temporary market bubbles and sudden crashes.

6. CONCLUSIONS

Within the framework of the Brock and Hommes (1998) asseimgimodel with heteroge-
neous beliefs, price fluctuations are driven by evolutigrsavitching between different expec-
tation schemes. Various rational routes to randomnessbifercation routes to complicated
dynamics, are observed when the intensity of choice to bvatediction strategies is high. In
their framework however, the technical trading rules arg gemple and for analytical tractabil-
ity only a few lags are involved. Motivated by the populawfyMAs strategies in real markets
and empirical studies, this paper sets out to analyze thadhgf long run MA rules on the
market dynamics and potentially rational routes to randesan In our model of fundamental-
ists and technical analysts, who trade on the signals geaklog the crossing of the latest price
over the long run MA, we are able to obtain some importantitpatade insights into the impact
of MA rules. Intuitively one might expect that a long run MA eothes the price dynamics
and hence an increase of the lag length of the MA might be é¢ggdo stabilize the market.
Surprisingly, our results show that, within a market malamario, this intuition is only true

when both the reaction coefficientof the fundamentalists and the extrapolation ratd the
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trend followers are balanced in a certain way. In generaha$ag lengthl. increases, the MA
becomes smoother and more sluggish. When the impact betwedarhentalists and chartists
Is not balanced, especially when the relative impact oftidtarat the steady state is larger than
that of fundamentalists, a mall change in the price leadsétasively large increase of chartists
demand and consequently, the lag length of the MA rule catald#ize the market price. To the
best of our knowledge, this is a new result concerning matykeamics in the presence of MA
rules. Another contribution of this paper is that for re@di$A rules with a large lag length
L, similar rational routes to randomness occur when the sitenf choice to switch strategies
increases. Finally, time series analysis of a stochastgiom of our model shows the potential
to explain various market phenomena such as price vojatiitl and bear markets, temporary
bubbles and sudden crashes. In subsequent research iewaidful to study a more realistic
model of the market with a large number of different tradiotes, in particular with agents
using different MA strategies of various length, or othgrey of technical trading rules used in

financial practice, such as genetic algorithms and neutalanks.

APPENDIX—PROOF OFPROPOSITION3.1

Al. Existence and Uniqueness of the Steady-State—Proof oaf (i). The deterministic system (2.7)-(2.9) can be written as ¥adto

Pt+1 = F‘(,sz)7 Ut+1 = H(Xt), mt+1 = G(Xt) (Al)
whereXt = (Pt,Ptfl, e 7Pt—(L—1)v Ut,mt) and
F(X0) = Pot 2 [-(1 = mo)a(P, — P*) + (1~ moh(f)], (»2)
H(X:) = [~a(Pe — P*] = h(${)][F(Xe) — P + Uy, (A3)
G(X1) = tanh[B(H(X) — C)/2). (A4)

One can easily see that, fgre [0, 1), (P, U, m¢) = (P*,0,m*) is the unique steady state of the system (A.1), whHe&fecorresponds to

the constant fundamental price amd” = tanh(—3C/2).

A2. Characteristic Equation of the Steady-State.The characteristic equation of the system (A.1) at the gtetate is given by’ (\) :=

AX—=n)TL(A) = 0 where

. _
P = A = (L= @A = a1 - N %(AL*2 fof A+ =0. (A.5)
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In fact, evaluated at the unique steady state, one can see tha

OF w 1
R B 1—ma(l — —
o =1+ A= mta+ (- m a1 = 1))
oF oF oF I N 1
=2 = B ma- g,
OP;_1 OP;_o 8Pt_(L_1) 2 L
oF _ or —0 OH _ O0H _ _ OH —0
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OH OH oG oG oG oG oG
— =, —=0,—= = = — = 77:77ﬁ/277:[)
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Based on these calculations, the result follows.

A3. Proof of Parts (ii) and (iii). The proofs of (ii) and (iii) follow from the following Lemma.
Lemma.(i) If & = 1 + a, then the eigenvaluek; of I';, satisfy|\;| < 1ifand only if0 < @ < L. In addition, fora = L, the\; satisfy
Xi # Land(1 — AL)/(1 = \;) = 0. (ii) A necessary condition fop\;| < 1foralliis0 < a < L and0 < & < 2 + a for evenL and

0<a<2+ L LaforoddL.

Proof. Fora = 1+a,I',(A) = AP+ & (AL~14.. .4+ X+1) = 0. Itfollows from Chiarella and He (2002) thpx;| < 1iff —+ < & <1,
i.e.,a < L (sincea > 0). In general, following from Jury's test, necessary cands for|\;| < 1 forall;area/L < 1,T' (1) =a >0

and(—1)ET (1) =2 —a+a > 0forevenL and(—1)LT (1) =2 — a+ £f1a > 0 forodd L. |

A4. Proofof Part (iv). Let f(A) = AT andg(A) = —(1—a+a)Al =1+ LA~ 4. .4 X+1]. Then, onA| = 1,]g(N)| < [1—a+a|+a
and|f(\)] = 1. If 2a < & < 2, then|g(\)| < |f(A)| on|A| = 1. Following from Rouche’s theorenf,(\) andI', () = f(\) + g(\) have

the same number of zeros insidg = 1. Thereforgl\;| < 1fori=1,2,--- , L.

A4. Proof of Part (v). To show that there exists at least one eigenvalyesuch thajA,| > 1 whena > @ and L is sufficiently large, we
change variables by setting= 1+z/L inT'(\) and introducef (z) = limy, _, o, I'(1+z/L). Note that forz| bounded, the limit is uniform.
AsL — oo, we haveAl = (1 + z/L)F — e* A=t = (14 2/L)F"1 — e*and(1/L) S A = (1/L)(AF = 1)/ (A —1) =
[(14+25)L —1)/2 — [e# —1]/2. Hencef (2) = (a—a)e? +ale* —1]/z. Note thatf (0) = & > 0 and thalim,_, o [(e* —1)/2]/e* = 0,
therefore the first term irf dominates the second. Singe— a < 0, we see that for large values ofthe valuef(z) will be negative.

Consequentlyf will have a positive zero, antl will have a zero larger than one far sufficiently large.

A5. Proof of Part (vi)-(ix). ForL =1,T1(A) =X — (1 — &) = 0. HencelA\| < 1iff 0 < & < 2. AlsoX = +1fora = 0and\ = —1
fora = 2.

ForL = 2,T'2(A) = A2+ c1A + ¢z = 0, wheree; = —(1 — @ + 3a) andep = 2. Following Jury’s test|\;| < 1iff w1 :=
l4ci+ce=a>0mi=1-c+c=2-—a+a>0andn3 :=1—cy =1—2 > 0. HenceP* is LASif (a,@) € Di2(@,a).
Also, A\; =1l and|X2| < 1whenm; =0, A1 = —1, |A2| < 1whenme = 0andA; 2 € C, |A\1,2| = 1 whenms = 0.

ForL =3,Ts(\) :== A3 — [l —a+a(l — H)]A2+ (A +1) = 0. Sete; = —[L — &+ 2a],co = c3 = %. Then|);| < 1 iff
w1 =1+4+ci+cotecz=a>0,m2:=1—ci+co—c3 = 2—6{—&—%& > 0andrs := 1—02+0163—c§ = 1—%[2—&—&-&} > 0. Hence
P*is LAS if (&,a) € Di3(a,a). Furthermoresr; = 0, 72 = 0 andws = 0 give the saddle-node, flip and Hopf bifurcation boundaries,
respectively.

. Then, using Jury's test;| < 1

NIl

ForL =4,T4(A) =M —[1—a+3aA +2(A2+A+1)=0.Setp=—[1 —a+ 3a],q=

iff C4(1) =a& > 0,T'4(—1) =2 —a+a > 0,a < 4 and both the determinants of the matrices

1 0 q 1 0 —q
A=1p—-1 1+4gq 0 ) B=1p 1-q —gq

2q—p p—1 1+p—gq 0 p—q 1-p
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are positive. It can be verified that| > 0, |B| > 0iff (1 + ¢)2[1 + p — 2q] + q(p — 1)? > 0 andp < 1, respectively, which leads to the

result.
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