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Heterogeneous Agent Models: two simple examples.

Cars Hommes*
* CeNDEF, Department of Quantitative Economics, University of Amsterdam,

Amsterdam, The Netherlands

Abstract These notes review two simple heterogeneous agent models in economics
and finance. The first is a cobweb model with rational versus naive agents intro-
duced in Brock and Hommes (1997). The second is an asset pricing model with
fundamentalists versus technical traders introduced in Brock and Hommes (1998).
Agents are boundedly rational and switch endogenously between different trading
strategies, based upon an evolutionary fitness measure given by realized past prof-
its. Evolutionary switching creates a nonlinearity in the dynamic models. Rational
routes to randomness, that is, bifurcation routes to complicated dynamical behavior
occur when agents become more sensitive to differences in evolutionary fitness.

Acknowledgement. I would like to thank Peter Heemeijer for his help and patience in simulating the
models and preparing all figures in these notes.

1 Introduction

The key difference between economics and the natural sciences is perhaps the fact that
decisions of economic agents today depend upon their expectations or beliefs about the
future. For example, in financial markets an overoptimistic estimate of future growth of
ICT industries may contribute to an excessively rapid growth of stock prices and indices
and might lead to over valuation of stock markets worldwide. Any dynamic economic
system is in fact an expectations feedback system. A theory of expectation formation is
therefore a crucial part of any economic model or theory.

Since its introduction in the sixties by Muth (1961) and its popularization in macro-
economics by Lucas (1971), the rational expectations hypothesis (REH) has become the
dominating expectation formation paradigm in economic theory. According to the REH
all agents are rational and take as their subjective expectation of future variables the
objective prediction by economic theory. In a rational expectations model agents have
perfect knowledge about the (linear) market equilibrium equations and use these to de-
rive their expectations. Although many economists nowadays view rational expectations
as something unrealistic, it is still viewed as an important benchmark. Despite a rapidly
growing literature on bounded rationality, where agents use learning models for their ex-
pectations, it seems fair to say that at this point no generally accepted alternative theory
of expectations is available.

In finance, the REH is intimately related to the Efficient Market Hypothesis (EMH).
There are weak and strong forms of the EMH, but when economists speak of financial
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markets as being efficient, they usually mean that they view asset prices and returns
as the outcome of a competitive market consisting of rational traders, who are trying
to maximize their expected returns. The main reason why financial markets must be
efficient is based upon an arbitrage argument (e.g. Fama (1970)). If markets were not
efficient, then there would be unexploited profit opportunities, that could and would
be exploited by rational traders. For example, rational traders would buy (sell) an
underpriced (overpriced) asset, thus driving its price back to the correct, fundamental
value. In an efficient market, there can be no forecastable structure in asset returns,
since any such structure would be exploited by rational traders and therefore would
be doomed to disappear. Rational agents thus process information quickly and this is
reflected immediately in asset prices. The value of a risky asset is completely determined
by its fundamental price, equal to the present discounted value of the expected stream of
future dividends. In an efficient market, all traders are rational and changes in asset prices
are completely random, solely driven by unexpected ‘news’ about changes in economic
fundamentals.

In contrast, Keynes already questioned a completely rational valuation of assets, ar-
guing that investors sentiment and mass psychology (‘animal spirits’) play a significant
role in financial markets. Keynes used his famous beauty contest as a parable to financial
markets. In order to predict the winner of a beauty contest, objective beauty is not all
that important, but knowledge or prediction of others’ perceptions of beauty is much
more relevant. Keynes argued that the same may be true for the fundamental price
of an asset: ‘Investment based on genuine long-term expectation is so difficult as to be
scarcely practicable. He who attempts it must surely lead much more laborious days and
run greater risks than he who tries to guess better than the crowd how the crowd will
behave; and, given equal intelligence, he may make more disastrous mistakes’ (Keynes,
1936, p.157). In Keynes view, stock prices are thus not governed by an objective view of
‘fundamentals’, but by ‘what average opinion expects average opinion to be’.

New classical economists have viewed ‘market psychology’ and ‘investors sentiment’
as being irrational however, and therefore inconsistent with the REH. For example, Fried-
man (1953) argued that irrational speculative traders would be driven out of the market
by rational traders, who would trade against them by taking long opposite positions,
thus driving prices back to fundamentals. In an efficient market, ‘irrational’ speculators
would simply loose money and therefore fail to survive evolutionary competition.

In a perfectly rational EMH world all traders are rational and it is common knowl-
edge that all traders are rational. In real financial markets however, traders are different,
especially with respect to their expectations about future prices and dividends. A quick
glance at the financial pages of newspapers is sufficient to observe that difference of opin-
ions among financial analysts is the rule rather than the exception. In the last decade, a
rapidly increasing number of structural heterogeneous agent models have been introduced
in the economics and finance literature, see for example Arthur et al. (1997), Brock (1993,
1997), Brock and Hommes (1997, 1998), Brock and LeBaron (1996), Chiarella (1992),
Chiarella and He (2000), Dacorogna et al. (1995), Day and Huang (1990), DeGrauwe et
al. (1993), De Long et al. (1990ab), Farmer (1998), Farmer and Joshi (2002), de Font-
nouvelle (2000), Frankel and Froot (1988), Gaunersdorfer (2000), Gaunersdorfer and
Hommes (2000), Kirman (1991), Kirman and Teyssière (2000), Kurz (1997), LeBaron
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(2000), LeBaron et al. (1999), Lux (1995, 1997), Lux and Marchesi (1999, 2000), Wang
(1994) and Zeeman (1974), as well as many more references in these papers. Some au-
thors even talk about a Heterogeneous Market Hypothesis, as a new alternative to the
Efficient Market Hypothesis. In all these heterogeneous agent models different groups
of traders, having different beliefs or expectations, co-exist. Two typical trader types
can be distinguished. The first are rational, ‘smart money’ traders or fundamentalists,
believing that the price of an asset is determined completely by economic fundamentals.
The second typical trader type are ‘noise traders’, sometimes called chartists or technical
analysts, believing that asset prices are not determined by fundamentals, but that they
can be predicted by simple technical trading rules based upon patterns in past prices,
such as trends or cycles.

In a series of papers, Brock and Hommes (1997a,b, 1998, 1999), henceforth BH, pro-
pose to model economic and financial markets as Adaptive Belief Systems (ABS), where
agents are heterogeneous and switch between different trading strategies. In these notes
we review two simple heterogeneous agent models, the cobweb model with sophisticated
rational versus simple naive traders and a standard asset pricing model with fundamental-
ists versus chartists. These models are discussed in detail in Brock and Hommes (1997a)
and Brock and Hommes (1998); see also the survey in Hommes (2001). An ABS is an
evolutionary competition between trading strategies. Different groups of traders have
different expectations about future prices. For example, one group might be fundamen-
talists, believing that asset prices return to their fundamental equilibrium price, whereas
another group might be chartists, extrapolating patterns in past prices. Traders choose
their trading strategy according to an evolutionary ‘fitness measure’, such as accumu-
lated past profits. Agents are boundedly rational, in the sense that most traders choose
strategies with higher fitness. BH introduce the notion of Adaptive Rational Equilibrium
Dynamics (ARED), an endogenous coupling between market equilibrium dynamics and
evolutionary updating of beliefs. Current beliefs determine today’s equilibrium prices,
generating new, adapted beliefs which in turn lead to new equilibrium prices tomor-
row, etc.. In an ARED, equilibrium prices and beliefs co-evolve over time. Most of
the heterogeneous agent literature is computationally oriented. An ABS may be seen
as a tractable theoretical framework for the computationally oriented ‘artificial stock
market’ literature, such as the Santa Fe artificial stock market of Arthur et al. (1997)
and LeBaron et al. (1999). A convenient feature of an ABS is that the model can be
formulated in terms of deviations from a benchmark fundamental. In fact, the perfectly
rational EMH benchmark is nested within an ABS as a special case. An ABS may thus
be used for experimental and empirical testing whether deviations from a suitable RE
benchmark are significant.

The coupling between market equilibrium and updating of strategies makes the evolu-
tionary system highly nonlinear. A common finding is the occurrence of a rational route
to randomness, that is, a bifurcation route to complicated price fluctuations as traders
become more sensitive to differences in evolutionary fitness. These notes are organized as
follows. Section 2 reviews the cobweb model with sophisticated rational versus naive pro-
ducers. Section 3 reviews the asset pricing model with heterogeneous beliefs and presents
examples with two, three and four different trader types. Finally, section 4 concludes.
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2 The cobweb model

The cobweb model describes fluctuations of equilibrium prices in an independent market
for a non-storable consumption good. The good takes one time period to produce, so that
producers must form price expectations one period ahead. Applications of the cobweb
model mainly concern agricultural markets, such as the classical examples of cycles in
hog or corn prices. Supply S(pe

t ) is a function of producer’s next period expected price,
pe

t and is derived from expected profit maximization:

S(pe
t ) = argmaxqt

{pe
t qt − c(qt)} = (c′)−1(pe

t ), (2.1)

where c(·) is an increasing, convex cost function. The supply curve thus coincides with the
inverse of the marginal cost curve. The expected price may be some function of (publically
known) past prices, that is, pe

t = H(�Pt−1), where �Pt−1 = (pt−1, pt−2, · · · , pt−L) denotes
a vector of past prices of lag-length L, and H(·) is called a predictor or forecasting rule.

Consumer demand D depends upon the current market price pt. The demand curve D
may be derived from utility maximization under a budget constraint, but for our purposes
it is not necessary to specify preferences explicitly. We will assume that consumer demand
is decreasing in the market price. If beliefs are homogeneous, i.e., all producers use the
same predictor, market equilibrium price dynamics in the cobweb model is given by

D(pt) = S(H(�Pt−1)), or pt = D−1(S(H(�Pt−1))). (2.2)

The actual equilibrium price dynamics thus depends upon the demand curve D, the
supply curve S as well as the predictor H used by the producers. If all producers have
rational expectations or perfect foresight, that is, their prediction coincides exactly with
the realized price, HR(�Pt−1) = pt, price dynamics become extremely simple: pt = p∗ in
all periods, where p∗ is the (unique) price corresponding to the intersection of demand
and supply. If, on the other hand, all producers use the naive predictor HN (�Pt−1) = pt−1,
that is, the forecast coincides with the last observation, the price dynamics is given by
pt = D−1(S(pt−1)), which is the familiar textbook cobweb system. If demand D is
decreasing and supply S is increasing, price dynamics in the cobweb model with naive
expectations is simple. If −1 < S′(p∗)/D′(p∗) < 0 prices converge to the stable steady
state p∗; otherwise, prices diverge away from the steady state and either converge to a
stable 2-cycle or exhibit unbounded up and down oscillations.1

2.1 Heterogeneous beliefs

Brock and Hommes (1997a), henceforth BH97a, studied heterogeneity in expecta-
tion formation by introducing the concept of Adaptive Rational Equilibrium Dynamics
(ARED), a coupling between market equilibrium dynamics and adaptive predictor selec-
tion. The ARED is an evolutionary dynamics between competing prediction strategies.
1Note that for other predictors such as adaptive expectations or linear predictors with two
or three lags, price fluctuations in the cobweb model can become much more complicated.
In particular, chaotic price oscillations may arise even when both demand and supply are
monotonic (Hommes (1994,1998)).
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Agents can choose between different prediction strategies and update their beliefs over
time according to a publically available ‘fitness’ or ‘performance’ measure such as (a
weighted sum of) past realized profits. Prediction strategies with higher fitness in the
recent past are selected more often than those with lower fitness. Market equilibrium in
the cobweb model with heterogeneous beliefs is determined by

D(pt) =
J∑

j=1

nj,t−1S(Hj(�Pt−1)), (2.3)

where Hj , 1 ≤ j ≤ J , represents the forecasting strategy of type j and nj,t−1 is the
fraction of agents using strategy j at the beginning of period t.

BH97a present a detailed analysis of the cobweb model with two trader types and
linear demand and supply. Demand is linearly decreasing and given by2

D(pt) = a − dpt, d > 0. (2.4)

The supply curve is linear and given by

S(pe
t ) = spe

t , s > 0, (2.5)

or equivalently, producer’s cost function is quadratic and given by c(q) = q2/(2s).
Agents can either buy a sophisticated, rational expectations (perfect foresight) fore-

cast at positive per period information costs C ≥ 0, or freely obtain the simple, naive
forecast. The two forecasting rules are thus given by

H1(�Pt−1) = pt, (2.6)

H2(�Pt−1) = pt−1. (2.7)

Market equilibrium in the cobweb model with rational versus naive expectations and
linear demand and supply is given by

a − dpt = nR
t−1spt + nN

t−1spt−1, (2.8)

where nR
t−1 and nN

t−1 denote the fractions of producers using the rational respectively
naive predictor, at the beginning of period t. Notice that producers using the rational
expectations predictor have perfect foresight, and therefore must have perfect knowledge
about the market equilibrium equation (2.8), including past prices as well as the fractions
of both groups. Consequently, rational agents have perfect knowledge about the beliefs of
all other agents. The difference C between the per period information costs for rational
and naive expectations represents an extra effort cost producers incur over time when
acquiring this perfect knowledge. It is straightforward to solve (2.8) explicitely for the
market equilibrium price

pt =
a − nN

t−1spt−1

d + nR
t−1s

. (2.9)

2See Goeree and Hommes (2000) for an analysis of the cobweb model with rational versus naive
expectations in the case of nonlinear (but monotonic) demand and supply.

5



The cobweb model with rational versus naive expectations, may be seen as an analyti-
cally tractable, stylized two predictor model in which rational expectations represents a
costly sophisticated (and stabilizing) predictor, and naive expectations represent a cheap
‘habitual rule of thumb’ (but potentially destabilizing) predictor. It is interesting to note
that other two predictor cases, such as fundamentalists (expecting prices to return to the
rational expectations fundamental steady state price p∗) versus adaptive expectations
yield similar results.

To complete the model, we have to specify how the fractions of traders using rational
respectively naive expectations are determined. These fractions change over time, and are
updated according to a publically available ‘performance’ or ‘fitness’ measure associated
to each predictor. Here, we take the most recent realized net profit as the performance
measure for predictor selection.3 For the rational expectations forecasting strategy (2.6)
and linear supply (2.5), realized profit in period t is given by

πR
t = pt S(pt) − c(S(pt)) =

s

2
p2

t . (2.10)

The net realized profit for rational expectations is thus given by πR
t −C, where C is the

per period information cost that has to be paid for obtaining the perfect forecast. For
the naive predictor (2.7) and linear supply (2.5) the realized net profit in period t is given
by

πN
t = pt S(pt−1) − c(S(pt−1)) =

s

2
pt−1(2pt − pt−1). (2.11)

The fractions of the two groups are determined by the Logit discrete choice model prob-
abilities. Anderson, de Palma and Thisse (1992) contains an extensive discussion and
motivation of discrete choice modelling in various economic contexts; BH97a provide
motivation of discrete choice models for selecting prediction strategies. The fraction of
agents using the rational expectations predictor in period t equals

nR
t =

exp(β(πR
t − C))

exp(β(πR
t − C)) + exp(β πN

t )
, (2.12)

and the fraction of agents choosing the naive predictor in period t is

nN
t = 1 − nR

t . (2.13)

A crucial feature of this evolutionary predictor selection is that agents are boundedly
rational, in the sense that most agents use the predictor that has the highest fitness.
Indeed, from (2.12-2.13) we have for instance that nR

t > nN
t whenever πR

t − C > πN
t ,

although the optimal predictor is not chosen with probability one. The parameter β is
called the intensity of choice; it measures how fast producers switch between the two
prediction strategies. Let us briefly discuss the two extreme cases β = 0 and β = ∞. For
3The case where the performance measure is realized net profit in the most recent past period,
leads to a two-dimensional dynamic system. The more general case, with a weighted sum of
past net realized profits as the fitness measure, leads to higher dimensional systems, which
are not as analytically tractable as the two-dimensional case. In this more general higher
dimensional case however, numerical simulations suggest similar dynamic behaviour.
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β = 0, both fractions are fixed over time and equal to 1/2. The other extreme β = ∞,
corresponds to the neoclassical limit in which agents are unboundedly rational, and all
producers choose the optimal predictor in each period. Hence, the higher the intensity
of choice the more rational, in the sense of evolutionary fitness, agents are in choosing
their prediction strategies. The neoclassical limit β = ∞ will play an important role in
what follows.

The timing of predictor selection in (2.12) is important. In (2.9) the old fractions nR
t−1

and nN
t−1 determine the new equilibrium price pt. This new equilibrium price pt is used

in the fitness measures (2.10) and (2.11) for predictor choice and the new fractions nR
t

and nN
t are updated according to (2.12) and (2.13). These new fractions are then used in

determining the next equilibrium price pt+1, etc.. Equilibrium prices and fractions thus
co-evolve over time.

It will be convenient to define the difference mt of the two fractions:

mt ≡ nR
t − nN

t , (2.14)

so mt = −1 corresponds to all producers being naive, whereas mt = +1 means that all
producers prefer the rational expectations predictor. The evolution of the equilibrium
price, pt, and the difference of fractions, mt, is then summarized by the following two-
dimensional, non-linear dynamical system

pt =
a − nN

t−1spt−1

d + nR
t−1s

=
2a − (1 − mt−1)spt−1

2d + (1 + mt−1)s
, (2.15)

mt = tanh(
β

2
(πR

t − πN
t − C)). (2.16)

BH97a called the coupling (2.15-2.16) between the equilibrium price dynamics and
adaptive predictor selection an Adaptive Rational Equilibrium Dynamics (ARED) model.

For a linear supply curve, using (2.10) and (2.11) the difference in realized profits of
rational and naive agents can be simplified to

πR
t − πN

t =
s

2
(pt − pt−1)2, (2.17)

that is, the difference in realized profits is proportional to the squared prediction error of
the naive forecast. In the case of a linear demand and supply the ARED thus becomes

pt =
2a − (1 − mt−1)spt−1

2d + (1 + mt−1)s
(2.18)

mt = tanh(
β

2
[
s

2
(pt − pt−1)2 − C ]). (2.19)

The reader may easily verify that the model has a unique steady state (p∗,m∗) = (a/(d+
s), tanh(−βC/2)). Notice that p∗ = a/(d + s) is exactly the price where demand and
supply intersect. It will be convenient to rewrite (2.18-2.19) in deviations from the steady
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state price, xt = pt − p∗, yielding4

xt =
−(1 − mt−1)sxt−1

2d + (1 + mt−1)s
(2.20)

mt = tanh(
β

2
[
s

2
(xt − xt−1)2 − C ]). (2.21)

In the sequel we use the shorthand notation (xt,mt) = Fβ(xt−1,mt−1) for the ARED-
model (2.20-2.21). We are especially interested in the dynamics when the ‘degree of
rationality’, that is, the intensity of choice, β to switch forecasting strategies, becomes
high.

2.2 Local (in)stability of the steady state

We will now discuss the dynamical behaviour of prices and fractions in the cobweb
model with rational versus naive expectations, starting with the stability conditions for
the steady state. Recall that the model has a unique steady state (p∗,m∗) = (a/(d +
s), tanh(−βC/2)), where p∗ = a/(d + s) is the price where demand and supply intersect.
Notice that for C = 0, i.e. when there are no costs for rational expectations, m∗ = 0, so
that at the steady state the fractions of the two types are equal. In contrast, for positive
information costs for rational expectations, i.e. for C > 0 we have m∗ < 0, so that at the
steady state most agents employ the naive forecasting rule. This makes sense, because at
the steady state both forecasting rules yield exactly the same forecast, and most agents
then prefer the cheap, naive forecast.
The stability properties of the steady state are determined by the derivatives of supply
and demand at the steady state price p∗. A straightforward computation shows that
the eigenvalues of the Jacobian matrix of (2.18-2.19) evaluated at the steady state are
λ1 = 0, and

λ2 =
(1 − m∗)S′(p∗)

2D′(p∗) − (1 + m∗)S′(p∗)
=

−(1 − m∗) s

2 d + (1 + m∗) s
< 0. (2.22)

Since m∗ is less than or equal to one in absolute value, the value of the second eigenvalue
lies between S′(p∗)/D′(p∗) = −s/d and 0. Hence, if the familiar cobweb stability con-
dition |S′(p∗)/D′(p∗)| = |s/d| < 1 is satisfied, implying that the model is stable under
naive expectations, then in the cobweb model with rational versus naive expectations
and linear demand and supply, the steady state is globally stable, for all β. Prices then
always converge to p∗, and the difference of fractions converges to m∗. To allow for the
possibility of an unstable steady state and endogenous price fluctuations in the evolu-
tionary ARED-model, from now on we assume the following.

Assumption U. The market is locally unstable when all producers are naive, that is,
S′(p∗)/D′(p∗) = −s/d < −1.
4Notice that (2.20) is equivalent to fixing a = 0 in (2.18), so that p∗ = 0. In fact, we are just
choosing the steady state price as the origin.
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The stability properties of the steady state in the evolutionary ARED-model are sum-
marized as follows.

Proposition 1. Under assumption U, the evolutionary ARED-model satisfies:
(i) when information costs are zero (C = 0), the steady state is globally stable for all

β,
(ii) when information costs are strictly positive (C > 0), there exists a critical value

β1 such that the steady state is (globally) stable for 0 ≤ β < β1 and unstable for
β > β1. At β = β1 the second eigenvalue satisfies λ2 = −1, and Fβ in (2.18-2.19)
exhibits a period doubling bifurcation.

For C = 0, the steady state difference in fractions m∗ = 0 and the eigenvalue in (2.22)
satisfies −1 < λ2 < 0, implying that the steady state is locally stable. Global stability
follows by observing that, for C = 0 we must have mt ≥ 0, for all t ≥ 1, and then using
(2.20) xt must converge to 0, or equivalently, prices always converge to their steady
state value. The second part of the proposition follows by observing that the eigenvalue
λ2 = −1 when the steady state difference in fractions m∗ = m̄ = −d/s. Assumption U
implies that −1 < m̄ = −d/s < 0. As the intensity of choice β increases from 0 to +∞
the steady state difference in fractions m∗ decreases from 0 to −1 and, for some critical
value of β = β1 we have m∗ = m̄ and an eigenvalue λ2 = −1 and the second part of the
proposition follows.

2.3 A rational route to randomness

According to Proposition 1, for positive information costs C, the steady state (p∗,m∗) =
(p∗, tanh(−βC/2)) becomes unstable as the intensity of choice β increases. In this sub-
section we investigate the dynamics for large values of the intensity of choice. It will be
useful however, to consider the neoclassical limit, that is, the case β = ∞ first.

For β = ∞ and C > 0, the steady state difference in fractions m∗ = tanh(−βC/2) =
−1, that is, at the steady state all agents are naive. Furthermore, for β = ∞ in each
period all agents choose the optimal predictor, that is, in each period t ≥ 1 either all
agents are rational or all agents are naive. In fact, for β = +∞ the switching between
forecasting strategies (2.19) simplifies to

mt =




+1 if πR
t − πN

t =
s

2
(pt − pt−1)2 > C,

−1 if πR
t − πN

t =
s

2
(pt − pt−1)2,≤ C.

(2.23)

Stated differently, as long as the squared prediction error from naive expectations is suffi-
ciently small compared to the per period information costs for rational expectations, i.e.
as long as (pt − pt−1)2 ≤ 2C/s, all agents employ the simple, cheap forecasting strategy.
As long as all agents are naive, the price dynamics is governed by pt = D−1(S(pt−1)),
a linear unstable oscillation around the steady state price p∗, and prices diverge from
their steady state value oscillating with increasing amplitude. The squared forecasting
error from naive expectations will increase, and at some point must exceed the critical
level 2C/s, and all agents will then switch to rational expectations. When all producers
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become rational in period t, next periods price pt+1 = p∗ and the price immediately
jumps back to the steady state price. These simple observations prove the following
proposition:

Proposition 2. For an infinite intensity of choice β = ∞ and positive information
cost C > 0, all time paths in the ARED system (2.18-2.19) converge to the steady state
S = (p∗,−1), even under assumption U when the steady state is a locally unstable saddle
point.

Now suppose we add a small amount of noise to the neoclassical limit system, by
adding a small random shock (e.g. a demand shock) in each period to the equilibrium
pricing equation (2.18). Almost the same story as above applies, except that when all
agents switch to rational expectations the system will not be driven exactly onto the
steady state, but only close to the steady state. With prices close to the steady state
value, all agents will then switch back to the cheap, naive forecasting rule and prices will
start to oscillate and diverge, and the story repeats. The noisy neoclassical limit is thus
characterized by an irregular switching between an unstable phase in which all agents
are naive and prices diverge from the steady state, and a stable phase in which all agents
become rational and prices return close to the steady state.

BH97a have shown that the same behavior arises in the deterministic, noise free case
for a high, but finite, intensity of choice β. In fact, for high values of the intensity of
choice, the dynamical behavior becomes chaotic with prices and fractions moving on a
strange attractor. Figure 1 shows an example of a strange attractor, with corresponding
time series of prices pt and fractions nR

t of rational producers. Numerical simulations
suggest that for (almost) all initial states (p0,m0) the orbit converges to this strange
attractor. Its intricate geometric shape explains why it is called a strange attractor.

Figure 2 illustrates the rational route to randomness, that is, the bifurcation route
from a stable steady state for low values of the intensity of choice to the complicated
dynamical behavior for high values of the intensity of choice. The primary bifurcation is
a period doubling bifurcation for β ≈ 0.77, in which the steady state becomes unstable
and a stable 2-cycle is created. As the intensity of choice increase more bifurcations
occur and the dynamical behavior becomes more and more complicated. The Lyapunov
exponent plot in Figure 2 shows that for large values of the intensity of choice the largest
Lyapunov exponent becomes positive and therefore the dynamics becomes chaotic.

For a high intensity of choice price fluctuations are characterized by an irregular
switching between a stable phase, with prices close to the steady state, and an unstable
phase with fluctuating prices, as illustrated in Figure 1. There is a strikingly simple eco-
nomic intuition explaining this switching behavior when the intensity of choice is large.
Suppose we take an initial state close to the (locally unstable) steady state. Most agents
will use the cheap, naive forecasting rule, because it does not pay to buy a costly, sophis-
ticated forecasting rule that yields an almost identical forecast. With most agents using
the cheap, naive predictor prices diverge from the steady state, start fluctuating, and net
realized profits from the naive predictor decrease. At some point, it becomes profitable
to buy the rational expectations forecast, and when the intensity of choice to switch pre-
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Figure 1. Chaotic time series of deviations xt from the steady state price (top pannel) and
fractions nR

t of rational agents (middle pannel) and corresponding strange attractor in the
(x, nR)-phase space (bottom pannel). Parameters are: β = 5, a = 0, d = 0.5, s = 1.35 and
C = 1.
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Figure 2. A rational route to randomness. The bifurcation diagram (top panel) shows a
bifurcation route from a stable steady state for small values of the intensity of choice β to chaotic
price fluctuations, with positive largest Lyapunov exponent (bottom panel) for high values of
the intensity of choice. Parameters are a = 0, d = 0.5, s = 1.35 and C = 1, 0 ≤ β ≤ 10.
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dictors is high, most agents will then switch to rational expectations. As a result, prices
are driven back close to the steady state, and the story then repeats. Irregular, chaotic
price fluctuations thus result from a (boundedly) rational choice between cheap ‘free rid-
ing’ and costly sophisticated prediction. In fact, the above economic mechanism already
suggests that for a large intensity of choice, the ARED-cobweb model will be close to a
so-called homoclinic orbit associated to the unstable, saddle point steady state.

2.4 Homoclinic points and the unstable manifold of the steady state

A key feature of chaotic dynamical behavior in two- and higher dimensional systems
is the existence of so-called homoclinic points. This concept was introduced already by
Poincaré (1890), in his prize winning essay on the stability of the three-body system. Let
us briefly discuss this important notion.

Recall that after the primary bifurcation in the ARED-model, the steady state S
loses its stability and becomes a saddle point. In deviations x from the steady state price
p∗, the steady S = (0,m∗) = (0, tanh(−βC/2)). The stable manifold and the unstable
manifold of the steady state are defined as

W s(S) =
{

(x,m) | limn→∞ Fn
β (x,m) = S

}
,

Wu(S) =
{

(x,m) | limn→−∞ Fn
β (x,m) = S

}
.

A transversal homoclinic point Q �= S, associated to the saddle S, is an intersection
point of the stable and unstable manifold of S. It was already pointed out by Poincaré
that the existence of a homoclinic intersection implies that the geometric structure of
both the stable and unstable manifold is quite complicated, and the system exhibits some
form of sensitive dependence on initial conditions. It is now well-known that a system
having a homoclinic point is in fact chaotic. See Palis and Takens (1993) for an extensive
mathematical treatment.

The unstable manifold of the steady state plays a crucial role for understanding the
global characteristics of the evolutionary dynamics. Figure 3 illustrates the geometric
shape of the unstable manifold of the steady state for diffent values of the intensity of
choice β. Using (2.20-2.21), the reader may easily verify that all points (0,m) are mapped
exactly onto the steady state (0,m∗) in the next period. This implies that the steady
state S has an eigenvalue 0 and the stable manifold of the steady state S must contain
the vertical line segment p = p∗, or in deviations, the vertical segment x = 0. For β > β1,
the steady state is locally unstable and has a second eigenvalue λ2 < −1. Therefore, the
unstable manifold has two different branches, each branch spiralling around one of the
two points of the (un)stable period 2 orbit, as illustrated in Figure 3. Moreover, when
the intensity of choice becomes large, each branch of the unstable manifold moves closer
to the vertical line segment x = 0 of the stable manifold. For β large, the ARED-system
is thus close to having a homoclinic orbit.

The geometric explanation for the dynamic complexity of the ARED-dynamics, based
upon the shape of the unstable manifold of the steady state, bears a close similarity to
the economic mechanism underlying complicated price fluctuations. On the one hand,
for high values of the intensity of choice the system is driven towards the steady state
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Figure 3. The unstable manifold of the steady state, for different values of the intensity of
choice β. The stable manifold contains the vertical line segment p = p∗, or equivalently x = 0.
The two branches of the unstable manifold spiral around the two points of the (un)stable 2-
cycle. As the intensity of choice increases, the unstable manifold moves closer to the vertical
line segment x = 0 contained in the stable manifold. For large β-values the ARED system is
therefore close to a homoclinic tangency between the stable and the unstable manifold of the
steady state.
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by a stabilizing force when most agents become rational. On the other hand, once prices
are close to their steady state, due to information costs for rational expectations most
agents switch to cheap naive expectations, leading to market instability and diverging
prices. Price fluctuations on the strange attractors are thus characterized by an irregular
switching between a destabilizing force of cheap free riding and a costly, but stabilizing
force of sophisticated prediction.

For a large value of the intensity of choice (corresponding to a high degree of ratio-
nality) the ARED system does not settle down to simple (periodic) behavior, but chaotic
price fluctuations on a strange attractor arise. Applying the mathematical theory of
homoclinic bifurcations (see e.g. Palis and Takens (1993)) BH97a have shown that the
ARED system exhibits complicated dynamical behavior for a large set of parameter val-
ues:

Theorem. Under assumption U, i.e. when the market is unstable under naive expecta-
tions, if information cost C for rational expectations is strictly positive, the ARED-model
(2.18-2.19) has strange attractors for a set of β-values of positive Lebesgue measure.

Adaptive rational equilibrium dynamics is a way of modeling evolutionary competition
in a market with heterogeneous traders. The example of the cobweb model with rational
versus naive expectations shows that differences in fitness may lead to market instabil-
ity and endogenous fluctuations. In the next subsection we discuss a financial market
applications of the evolutionary framework.

3 An asset pricing model

In this section we discuss a second application of the evolutionary framework proposed in
Brock and Hommes (1997a). This application has been coined Adaptive Belief Systems
(ABS), and has been introduced in Brock (1997) and Brock and Hommes (1997b,1998),
henceforth BH98. An ABS is in fact a standard discounted value asset pricing model
derived from mean-variance maximization, extended to the case of heterogeneous beliefs.

Agents can either invest in a risk free asset or in a risky asset. The risk free asset
is perfectly elastically supplied and pays a fixed rate of return r; the risky asset, for
example a large stock or a market index, pays an uncertain dividend. Let pt be the price
per share (ex-dividend) of the risky asset at time t, and let yt be the stochastic dividend
process of the risky asset. Wealth dynamics is given by

Wt+1 = (1 + r)Wt + (pt+1 + yt+1 − (1 + r)pt)zt, (3.1)

where bold face variables denote random variables at date t+1 and zt denotes the number
of shares of the risky asset purchased at date t. Let Et and Vt denote the conditional
expectation and conditional variance based on a publically available information set such
as past prices and past dividends. Let Eht and Vht denote the ‘beliefs’ or forecasts
of trader type h about conditional expectation and conditional variance. Agents are
assumed to be myopic mean-variance maximizers so that the demand zht of type h for
the risky asset solves

Maxzt
{Eht[Wt+1] − a

2
Vht[Wt+1]}, (3.2)
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where a is the risk aversion parameter. The demand zht for risky assets by trader type
h is then

zht =
Eht[pt+1 + yt+1 − (1 + r)pt]
aVht[pt+1 + yt+1 − (1 + r)pt]

=
Eht[pt+1 + yt+1 − (1 + r)pt]

aσ2
, (3.3)

where the conditional variance Vht = σ2 is assumed to be equal and constant for all
types.5 Let zs denote the supply of outside risky shares per investor, assumed to be
constant, and let nht denote the fraction of type h at date t. Equilibrium of demand and
supply yields

H∑
h=1

nht
Eht[pt+1 + yt+1 − (1 + r)pt]

aσ2
= zs, (3.4)

where H is the number of different trader types. BH98 focus on the special case of zero
supply of outside shares, i.e. zs = 0, for which the market equilibrium pricing equation
becomes6

(1 + r)pt =
H∑

h=1

nhtEht[pt+1 + yt+1]. (3.5)

3.1 The EMH benchmark with rational agents

Let us first discuss the EMH-benchmark with rational expectations. In a world where
all traders are identical and expectations are homogeneous the arbitrage market equilib-
rium equation (3.5) reduces to

(1 + r)pt = Et[pt+1 + yt+1], (3.6)

where Et denotes the common conditional expectation of all traders at the beginning
of period t, based on a publically available information set It such as past prices and
dividends, i.e. It = {pt−1, pt−2, ...; yt−1, yt−2, ...}. This arbitrage market equilibrium
equation (3.6) states that today’s price of the risky asset must be equal to the sum of
tomorrow’s expected price and expected dividend, discounted by the risk free interest
rate. It is well known that, using the arbitrage equation (3.6) repeatedly and assuming
that the transversality condition

lim
t→∞

Et[pt+k]
(1 + r)k

= 0 (3.7)

5Gaunersdorfer (2000) investigates the case with time varying beliefs about variances and shows
that the results are quite similar to those for constant variance.

6Brock (1997) motivates this special case by introducing a risk adjusted dividend y#
t+1 = yt+1−

aσ2zs to obtain the market equilibrium equation (3.5). In general however, the equilibrium
equation (3.5) ignores a risk premium aσ2zs for investors holding the risky asset. Since
dividends and a risk premium affect realized profits and wealth, in general they will affect the
fractions nht of trader type h. The question how exactly the risk premium affects evolutionary
competition should be investigated in future work, by taking zs as a bifurcation parameter.
The market equilibrium pricing equation (3.5) in fact represents the case of risk neutral
investors.
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holds, the price of the risky asset is uniquely determined by

p∗t =
∞∑

k=1

Et[yt+k]
(1 + r)k

. (3.8)

The price p∗t in (3.8) is called the EMH fundamental rational expectations (RE) price,
or the fundamental price for short. The fundamental price is completely determined by
economic fundamentals and given by the discounted sum of expected future dividends.
In general, the properties of the fundamental price p∗t depend upon the stochastic div-
idend process yt. We focus on the case of an IID dividend process yt, with constant
mean E[yt] = ȳ. We note however that any other random dividend process yt may be
substituted in what follows7. For an IID dividend process yt with constant mean, the
fundamental price is constant and given by

p∗ =
∞∑

k=1

ȳ

(1 + r)k
=

ȳ

r
. (3.9)

There are two crucial assumptions underlying the derivation of the RE fundamental price.
The first is that expectations are homogeneous, all traders are rational and it is common
knowledge that all traders are rational. In such an ideal, perfectly rational world the
fundamental price can be derived from economic fundamentals. Conditions under which
a RE price can be derived can be relaxed, to include for example noise traders or limited
heterogeneity of information. In general however, in a world with heterogeneous traders
having different beliefs or expectations about future prices and dividends, derivation of
a RE fundamental price requires perfect knowledge about the beliefs of all other traders.
In a real market understanding the beliefs and strategies of all other, competing traders
is virtually impossible, and therefore in a heterogeneous world derivation of the RE-
fundamental price becomes impossible. The second crucial assumption underlying the
derivation of the fundamental price is the transversality condition (3.7), requiring that
the long run growth rate of prices (and risk adjusted dividends) is smaller than the
risk free growth rate r. In fact, in addition to the fundamental solution (3.8) so-called
speculative bubble solutions of the form

pt = p∗t + (1 + r)t(p0 − p∗0) (3.10)

also satisfy the arbitrage equation (3.6). It is important to note that along the speculative
bubble solution (3.10), traders have rational expectations. Solutions of the form (3.10)
are therefore called rational bubbles. These rational bubble solutions are explosive and
do not satisfy the transversality condition. In a perfectly rational world, traders realize
that speculative bubbles cannot last forever and therefore they will never get started and
the finite fundamental price p∗t is uniquely determined. In a perfectly rational world, all
traders thus believe that the value of a risky asset equals its fundamental price forever.
Changes in asset prices are solely driven by unexpected changes in dividends and random
7Brock and Hommes (1997b) for example discuss a non-stationary example, where the dividend
process is a geometric random walk .
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‘news’ about economic fundamentals. In a heterogeneous evolutionary world however,
the situation will be quite different, and we will see that evolutionary forces may lead
to endogenous switching between the fundamental price and the rational self fulfilling
bubble solutions.

3.2 Heterogeneous beliefs

In the asset pricing model with heterogeneous beliefs, market equilibrium in (3.5)
states that the price pt of the risky asset equals the discounted value of tomorrow’s ex-
pected price plus tomorrow’s expected dividend, averaged over all different trader types.
In such a heterogeneous world temporary upward or downward bubbles with prices de-
viating from the fundamental may arise, when the fractions of traders believing in those
bubbles is large enough. Once a (temporary) bubble has started, evolutionary forces
may reinforce deviations from the benchmark fundamental. We shall now be more pre-
cise about traders’ expectations (forecasts) about future prices and dividends. It will be
convenient to work with

xt = pt − p∗t , (3.11)

the deviation from the fundamental price. We make the following assumptions about the
beliefs of trader type h:

B1 Vht[pt+1 + yt+1 − (1 + r)pt] = Vt[pt+1 + yt+1 − (1 + r)pt] = σ2, for all h, t.
B2 Eht[yt+1] = Et[yt+1], for all h, t.
B3 All beliefs Eht[pt+1] are of the form

Eht[pt+1] = Et[p∗
t+1] + fh(xt−1, ..., xt−L), for all h, t. (3.12)

According to assumption B1 beliefs about conditional variance are equal and constant
for all types, as discussed above already. Assumption B2 states that expectations about
future dividends yt+1 are the same for all trader types and equal to the conditional ex-
pectation. All traders are thus able to derive the fundamental price p∗t in (3.8) that would
prevail in a perfectly rational world. According to assumption B3, traders nevertheless
believe that in a heterogeneous world prices may deviate from their fundamental value
p∗t by some function fh depending upon past deviations from the fundamental. Each
forecasting rule fh represents the model of the market according to which type h believes
that prices will deviate from the commonly shared fundamental price. For example, a
forecasting strategy fh may correspond to a technical trading rule, based upon short run
or long run moving averages, of the type used in real markets.

Strictly speaking (3.12) is not a technical trading rule, because it uses the fundamental
price in its forecast. Including price forecasting rules depending upon past prices only,
not using any information about fundamentals, yields similar results. We will use the
short hand notation

fht = fh(xt−1, ..., xt−L) (3.13)

for the forecasting strategy employed by trader type h. An important and convenient
consequence of the assumptions B1-B3 concerning traders’ beliefs is that the heteroge-
neous agent market equilibrium equation (3.5) can be reformulated in deviations from
the benchmark fundamental. In particular substituting the price forecast (3.12) in the
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market equilibrium equation (3.5) and using the facts that the fundamental price p∗t
satisfies (1 + r)p∗t = Et[p∗t+1 + yt+1] and the price pt = xt + p∗t yields the equilibrium
equation in deviations from the fundamental:

(1 + r)xt =
H∑

h=1

nhtEht[xt+1] ≡
H∑

h=1

nhtfht, (3.14)

with fht = fh(xt−1, ..., xt−L). An important reason for our model formulation in terms
of deviations from a benchmark fundamental is that in this general setup, the benchmark
rational expectations asset pricing model is nested as a special case, with all forecasting
strategies fh ≡ 0. In this way, the adaptive belief systems can be used in empirical and
experimental testing whether asset prices deviate significantly from anyone’s favorite
benchmark fundamental.

3.3 Evolutionary dynamics

The evolutionary part of the model describes how beliefs are updated over time, that
is, how the fractions nht of trader types in the market equilibrium equation (3.14) evolve
over time. Fractions are updated according to an evolutionary fitness or performance
measure. The fitness measures of all trading strategies are publically available, but
subject to noise. Fitness is derived from a random utility model and given by

Ũht = Uht + εht, (3.15)

where Uht is the deterministic part of the fitness measure and εht represents noise. As-
suming that the noise εht is IID across h = 1, ...H drawn from a double exponential
distribution, in the limit as the number of agents goes to infinity, the probability that
an agent chooses strategy h is given by the well known discrete choice model or ‘Gibbs’
probabilities8

nht =
exp(βUh,t−1)

Zt−1
, Zt−1 =

H∑
h=1

exp(βUh,t−1), (3.16)

where Zt−1 is a normalization factor in order for the fractions nht to add up to 1. The
crucial feature of (3.16) is that the higher the fitness of trading strategy h, the more
traders will select strategy h. The parameter β in (3.16) is called the intensity of choice,
measuring how sensitive the mass of traders is to selecting the optimal prediction strategy.
The intensity of choice β is inversely related to the variance of the noise terms εht. The
extreme case β = 0 corresponds to the case of infinite variance noise, so that differences
in fitness cannot be observed and all fractions (3.16) will be fixed over time and equal
to 1/H. The other extreme case β = +∞ corresponds to the case without noise, so that
the deterministic part of the fitness can be observed perfectly and in each period, all
traders choose the optimal forecast. An increase in the intensity of choice β represents
8See Manski and McFadden (1981) and Anderson, de Palma and Thisse (1993) for extensive
discussion of discrete choice models and their applications in economics.
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an increase in the degree of rationality w.r.t. evolutionary selection of trading strategies.
The timing of the coupling between the market equilibrium equation (3.5) or (3.14) and
the evolutionary selection of strategies (3.16) is crucial. The market equilibrium price
pt in (3.5) depends upon the fractions nht. The notation in (3.16) stresses the fact that
these fractions nht depend upon past fitness Uh,t−1, which in turn depend upon past
prices pt−1 and dividends yt−1 in periods t − 1 and further in the past as will be seen
below. After the equilibrium price pt has been revealed by the market, it will be used
in evolutionary updating of beliefs and determining the new fractions nh,t+1. These new
fractions nh,t+1 will then determine a new equilibrium price pt+1, etc.. In the ABS,
market equilibrium prices and fractions of different trading strategies thus co-evolve over
time.

A natural candidate for evolutionary fitness is accumulated realized profits, as given
by

Uht = (pt + yt − Rpt−1)
Eh,t−1[pt + yt − Rpt−1]

aσ2
− Ch + wUh,t−1 (3.17)

where R = 1+ r is the gross risk free rate of return, Ch represents an average per period
cost of obtaining forecasting strategy h and 0 ≤ w ≤ 1 is a memory parameter measuring
how fast past realized fitness is discounted for strategy selection. The cost Ch for obtain-
ing forecasting strategy h will be zero for simple, habitual rule of thumb forecasting rules,
but may be positive for more sophisticated forecasting strategies. For example, costs for
forecasting strategies based upon economic fundamentals may be positive representing
investors’ effort for information gathering and market research, whereas costs for techni-
cal trading rules may be (close to) zero. The first term in (3.17) represents last period’s
realized profit of type h given by the realized excess return of the risky asset over the
risk free asset times the demand for the risky asset by traders of type h. In the extreme
case with no memory, i.e. w = 0, fitness Uht equals net realized profit in the previous
period, whereas in the other extreme case with infinite memory, i.e. w = 1, fitness Uht

equals total wealth as given by accumulated realized profits over the entire past. In the
intermediate case, the weight given to past realized profits decreases exponentially with
time.

Fitness can now be rewritten in deviations from the fundamental as

Uht = (xt − Rxt−1)(
fh,t−1 − Rxt−1

aσ2
) − Ch + wUh,t−1. (3.18)

3.4 Forecasting rules

To complete the model we have to specify the class of forecasting rules. Brock and
Hommes (1998) have investigated evolutionary competition between simple linear fore-
casting rules with only one lag, i.e.

fht = ghxt−1 + bh. (3.19)

It can be argued that, for a forecasting rule to have any impact in real markets, it has to
be simple. For a complicated forecasting rule it seems unlikely that enough traders will
coordinate on that particular rule so that it affects market equilibrium prices. Although
the linear forecasting rule (3.19) is extremely simple, it represent a number of important
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cases. For example, when both the trend parameter and the bias parameter gh = bh = 0
the rule reduces to the forecast of fundamentalists, i.e.

fht ≡ 0, (3.20)

believing that the market price will be equal to the fundamental price p∗, or equivalently
that the deviation x from the fundamental will be 0. Other important cases covered by
the linear forecasting rule (3.19) are the pure trend followers

fht = ghxt−1, gh > 0, (3.21)

and the pure biased belief

fht = bh. (3.22)

Notice that the simple pure bias forecast (3.22) represents any positively or negatively
biased forecast of next periods price that traders might have. Instead of these extremely
simple habitual rule of thumb forecasting rules, some economists might prefer the ratio-
nal, perfect foresight forecasting rule

fht = xt+1. (3.23)

We emphasize however, that the perfect foresight forecasting rule (3.23) assumes per-
fect knowledge of the heterogeneous market equilibrium equation (3.5), and in particular
perfect knowledge about the beliefs of all other traders. Although the case with perfect
foresight certainly has theoretical appeal, its practical relevance in a complex hetero-
geneous world should not be overstated since this underlying assumption seems highly
unrealistic.9

3.5 Simple examples

This section presents simple, but typical examples of ABS, with two, three resp. four
competing linear forecasting rules (3.19), where the parameter gh represents a perceived
trend in prices and the parameter bh represents a perceived upward or downward bias10.

9In the cobweb model with rational versus naive agents of the previous section, the implicitly
defined heterogeneous market equilibrium equation (2.8) remains tractable and can be solved
explicitly for the unique market equilibrium price (2.9). In general however, with one type of
agents having rational expectations or perfect foresight a temporary equilibrium model with
heterogeneous beliefs such as the asset pricing market equilibrium equation in (3.24) becomes
an implicitly defined dynamical system with xt on the LHS and xt+1 and e.g. xt−1 on the
RHS. Typically such implicitly defined evolutionary systems cannot be solved explicitely and
often they are not even well-defined.

10Brock, Hommes and Wagener (2004) recently introduced the notion of Large Type Limit (LTL)
to study the model with a large number of different belief types.
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The ABS then becomes (in deviations from the fundamental):

(1 + r)xt =
H∑

h=1

nht(ghxt−1 + bh) + εt (3.24)

nh,t =
exp(βUh,t−1)∑H

h=1 exp(βUh,t−1)
(3.25)

Uh,t−1 = (xt−1 − Rxt−2)(
ghxt−3 + bh − Rxt−2

aσ2
) + wUh,t−2 − Ch, (3.26)

where εt is a small noise term representing uncertainty about economic fundamentals, e.g.
random outside supply of the risky asset. In order to keep the analysis of the dynamical
behavior tractable, BH98 have mainly focused on the case where the memory parameter
w = 0, so that evolutionary fitness is given by last period’s realized profit. Here, we
review examples with two, three and four forecasting rules stating the most important
bifurcation results without; for proofs, the interested reader is referred to Brock and
Hommes (1998). A common feature of all examples is that, as the intensity of choice to
switch prediction or trading strategies increases, the fundamental steady state becomes
locally unstable and non-fundamental steady states, cycles or even chaos arise.

Costly fundamentalists versus trend followers The simplest example of an ABS
only has two trader types, with forecasting rules

f1t = 0 fundamentalists (3.27)
f2t = gxt−1, g > 0, trend followers (3.28)

that is, the first type are fundamentalists predicting that the price will equal its funda-
mental value (or equivalently that the deviation will be zero) and the second type are
pure trend followers predicting that prices will rise (or fall) by a constant rate. In this
example, the fundamentalists have to pay a fixed per period positive cost C1 for infor-
mation gathering; in all other examples discussed below information costs will be set to
zero for all trader types.

For small values of the trend parameter, 0 ≤ g < 1+r, the fundamental steady state is
always stable. Only for sufficiently high trend parameters, g > 1 + r, trend followers can
destabilize the system. For trend parameter, 1+r < g < (1+r)2 the dynamic behavior of
the evolutionary system depends upon the intensity of choice to switch between the two
trading strategies11. For low values of the intensity of choice, the fundamental steady
state will be stable. As the intensity of choice increases, the fundamental steady state
becomes unstable due to a pitchfork bifurcation in which two additional non-fundamental
steady states −x∗ < 0 < x∗ are created. The evolutionary ABS may converge to the
positive non-fundamental steady state, to the negative non-fundamental steady state, or,
11For g > (1 + r)2 the system may become globally unstable and prices may diverge to infinity.

Imposing a stabilizing force, for example by assuming that trend followers condition their
rule upon deviations from the fundamental e.g. as in Gaunersdorfer et al. (2000), leads to a
bounded system again, possibly with cycles or even chaotic fluctuations.
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in the presence of noise, switch back and forth between the high and the low steady state.
As the intensity of choice increases further, the two non-fundamental steady states also
become unstable due to a Hopf-bifurcation, and limit cycles or even strange attractors
can arise around each of the (unstable) non-fundamental steady states, as illustrated in
Figure 4. The evolutionary ABS may cycle around the positive non-fundamental steady
state, cycle around the negative non-fundamental steady state or, driven by the noise,
switch back and forth between cycles around the high and the low steady state.

This example shows that, in the presence of information costs and with zero memory,
when the intensity of choice in evolutionary switching is high fundamentalists can not
drive out pure trend followers and persistent deviations from the fundamental price may
occur. Brock and Hommes (1999) show that this result also holds when the memory
in the fitness measure increases. In fact, an increase in the memory of the evolutionary
fitness leads to bifurcation routes very similar to bifurcation routes due to an increase in
the intensity of choice.

Figure 5 illlustrates that the asset pricing model with costly fundemtalists versus
cheap trend following exhibits a rational route to randomness, i.e. a bifurcation route to
chaos as the intensity of choice to switch strategies increases.

Fundamentalists versus opposite biases In the cobweb model with rational versus
naive expectations in the previous section as well as in the two type asset pricing model
with fundamentalists versus trend followers rational routes to randomness occur due to
information costs for the sophisticated forecasting strategy. The second example of an
ABS is an example with three trader types without any information costs. The forecasting
rules are

f1t = 0 fundamentalists (3.29)
f2t = b b > 0, positive bias (optimists) (3.30)
f3t = −b − b < 0, negative bias (pessimists). (3.31)

The first type are fundamentalists again, but as stated above there will be no information
costs for fundamentalists or other types. The second and third types have a purely biased
belief, expecting a constant price above respectively below the fundamental price.

For low values of the intensity of choice, the fundamental steady state is stable.
As the intensity of choice increases the fundamental steady becomes unstable due to a
Hopf bifurcation and the dynamics of the ABS is characterized by cycles around the
unstable steady state. This example shows that, even when there are no information
costs for fundamentalists, they cannot drive out other trader types with opposite biased
beliefs. In the evolutionary ABS with high intensity of choice, fundamentalists and biased
traders co-exist with fractions varying over time and prices cycling around the unstable
fundamental steady state. Moreover, Brock and Hommes (1998, p.1259, lemma 9) show
that as the intensity of choice tends to infinity the ABS converges to a (globally) stable
cycle of period 4. Average profits along this 4-cycle are equal for all three trader types.
Hence, if the initial wealth is equal for all three types, then in this evolutionary system in
the long run accumulated wealth will be equal for all three types. This example suggests
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Figure 4. Time series of prices (deviations from the fundamental steady state) and fractions
and attractors in the phase space for 2-type model with costly fundamentalists versus trend
followers. The left panel shows chaotic dynamics without noise and the right panel illustrates
the model buffeted with small noise (SD=0.01 of noise term εt in (3.24)). Without noise (left
panel) the system settles down to the attractor with prices above the fundamental value. In
the presence of (small) noise, the system switches back and forth between the two co-existing
attractors with prices jumping between above and below fundamental values. Parameters are:
β = 3.6, g = 1.2, R = 1.1 and C = 1.
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Figure 5. Bifurcation diagram (top) and largest Lyapunov exponent plot (bottom) for 2-type
model with costly fundamentalist versus trend followers. In both plots the model is buffeted with
very small noise (SD = 10−6 for the noise term εt in (3.24)), to avoid that for large β-values the
system gets stuck in the locally unstable steady state. Parameters are: g = 1.2, R = 1.1, C = 1
and 2 ≤ β ≤ 4. A pitchfork bifurcation of the fundamental steady state, in which two stable
non-fundamental steady states are created, occurs for β ≈ 2.37. The non-fundamental steady
states become unstable due to a Hopf-bifurcation for β ≈ 3.33, and (quasi-)periodic dynamics
arises. For large values of β the largest Lyapunov exponent becomes positive indicating chaotic
price dynamics.
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Figure 6. Bifurcation diagram and largest Lyapunov exponent plot for 3-type model. In both
plots the model is buffeted with very small noise (SD = 10−6 for the noise term εt in (3.24)), to
avoid that for large β-values the system gets stuck in the locally unstable steady state. Belief
parameters are: g1 = 0, b1 = 0; g2 = 0, b2 = 0.2 and g3 = 0, b3 = −0.2; other parameters
are r = 0.1, 20 ≤ β ≤ 100, w = 0 and Ch = 0 for all 1 ≤ h ≤ 3 The 3-type model with
fundamentalists versus opposite biases exhibits a Hopf bifurcation for β ≈ 37.4. For large values
of β periodic and quasi-periodic dynamics occurs, but chaos with positive largest Lyapunov
exponent does not arise.
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that the Friedman argument that smart-fundamental traders will automatically drive out
simple habitual rule of speculative traders should be considered with care.

In this example with three trader types, cycles can occur but chaos does not arise.
This is illustrated in Figure 6 showing a bifurcation diagram and a plot of the largest
Lyapunov exponent. In the three type example with fundamentalists versus opposite
biases, even in the presence of (small) noise, price fluctuations will be fairly regular and
therefore returns will be predictable. This predictability will disappear however when we
combine trend following with biased beliefs.

3.6 Fundamentalists versus trend and bias

The third example of an ABS is an example with four trader types, with linear
forecasting rules (3.19) with parameters g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9,
b3 = −0.2 and g4 = 1 + r = 1.01, b4 = 0. The first type are fundamentalists again,
without information costs, and the other three types follow a simple linear forecasting
rule with one lag. The dynamical behaviour is illustrated in Figures 7 and 8.

For low values of the intensity of choice, the fundamental steady state is stable. As
the intensity of choice increases, as in the previous three type example, the fundamental
steady becomes unstable due to a Hopf bifurcation and a stable invariant circle around
the unstable fundamental steady state arises, with periodic or quasi-periodic fluctua-
tions. As the intensity of choice further increases, the invariant circle breaks into a
strange attractor with chaotic fluctuations. In the evolutionary ABS fundamentalists
and chartists co-exist with fractions varying over time and prices moving chaotically
around the unstable fundamental steady state. Figure 8 shows that in this 4-type ex-
ample with fundamentalists versus trend followers and biased beliefs a rational route to
randomness occurs, with positive largest Lyapunov exponents for large values of β.

The (noisy) chaotic price fluctuations are characterized by an irregular switching
between phases of close-to-the-EMH-fundamental-price fluctuations, phases of ‘optimism’
with prices following an upward trend, and phases of ‘pessimism’, with (small) sudden
market crashes, as illustrated in Figure 7. Recall from subsection 3.1 that the asset
pricing model with homogeneous beliefs, in addition to the benchmark fundamental price,
has rational bubble solutions as in (3.10). One might say that in the ABS prices are
characterized by an evolutionary switching between the fundamental value and these
temporary speculative bubbles. In the purely deterministic chaotic case, the timing and
the direction of the temporary bubbles seem hard to predict. However, once a bubble
has started, in the deterministic case, the length of the bubble seems to be predictable
in most of the cases. In the presence of noise, as in figure 7 (top right), the timing, the
direction and the length of the bubble all seem hard to predict.

In order to investigate this (un)predictability issue further, we employ a so called
nearest neighbor forecasting method to predict the returns, at lags 1 to 20 for the purely
chaotic as well as for several noisy chaotic time series, as illustrated in figure 9.12 Nearest
neighbor forecasting looks for past patterns close to the most recent pattern, and then
yields as the prediction the average value following all nearby past patterns. It follows
essentially from Takens’ embedding theorem that this method yields good forecasts for
12I would like to thank Sebastiano Manzan for providing this figure.
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Figure 7. Chaotic (top left) and noisy chaotic (top right) time series of asset prices in adaptive
belief system with four trader types. Strange attractor (bottom left) and enlargement of strange
attractor (bottom right). Belief parameters are: g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9,
b3 = −0.2 and g4 = 1 + r = 1.01, b4 = 0; other parameters are r = 0.01, β = 90.5, w = 0 and
Ch = 0 for all 1 ≤ h ≤ 4.

deterministic chaotic systems13. Figure 9 shows that as the noise level increases, the
forecasting performance of the nearest neighbor method quickly deteriorates. Hence, in
our simple nonlinear evolutionary ABS with noise it is hard to make good forecasts of
future returns. Our simple nonlinear ABS with small noise thus captures some of the
intrinsic unpredictability of asset returns also present in real markets.

This 4-type example shows that when memory is zero, even when there are no infor-
mation costs for fundamentalists, they cannot drive out other simple trader types and fail
to stabilize price fluctuations towards its fundamental value. As in the three type case,
the opposite biases create cyclic behavior but apparently the additional trend parameters
turn these cycles into unpredictable chaotic fluctuations.

13See Kantz and Schreiber (1997) for a recent and extensive treatment of nonlinear time series
analysis and forecasting techniques.
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Figure 8. Bifurcation diagram and largest Lyapunov exponent plot for 4-type model. In both
plots the model is buffeted with very small noise (SD = 10−6 for noise term εt in (3.24)), to
avoid that for large β-values the system gets stuck in the locally unstable steady state. Belief
parameters are: g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9, b3 = −0.2 and g4 = 1 + r = 1.01,
b4 = 0; other parameters are r = 0.01, β = 90.5, w = 0 and Ch = 0 for all 1 ≤ h ≤ 4. The 4-type
model with fundamentalists versus trend followers and biased beliefs exhibits a Hopf bifurcation
for β = 50. A rational route to randomness occurs, with positive largest Lyapunov exponents,
when the intensity of choice becomes large.
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Figure 9. Forecasting errors for nearest neighbor method applied to chaotic returns series as
well as noisy chaotic returns series, for different noise levels, in ABS with four trader types. All
returns series have close to zero autocorrelations at all lags. The benchmark case of prediction by
the mean 0 is represented by the horizontal line at the normalized prediction error 1. Nearest
neighbor forecasting applied to the purely deterministic chaotic series leads to much smaller
forecasting errors (lowest graph). A noise level of say 10% means that the ratio of the variance
of the noise term εt and the variance of the deterministic price series is 1/10. As the noise level
slowly increases, the graphs are shifted upwards. Small dynamic noise thus quickly deteriorates
forecasting performance.

4 Concluding remarks

We have reviewed two simple heterogeneous agent models. In both the cobweb model
and the asset pricing model we have focussed on the case of linear demand and supply
curves. Heterogeneity and evolutionary updating of trading strategies creates an im-
portant nonlinearity in the model. In particular, when agents are highly sensistive to
differences in evolutionary fitness the nonlinear evolutionary switching mechanism causes
complicated, unpredictable price fluctuations. In the cobweb model, due to costs for in-
formation gathering, perfectly rational agents can not drive out boundely rational agents
using simple habitual rule of thumb trading strategies. In the asset pricing model, even
without information costs for fundamentalist traders, prices need not converge to the
RE fundamental benchmark. Our evolutionary framework thus explains excess volatility
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and persistent deviations from the fundamental benchmark. More work is needed to
investigate how general these phenomena are, for example with respect to introducing
more memory in the evolutionary fitness measures.

Is a significant part of changes in stock prices driven by ‘Keynesian animal spirits’?
For many decades already, this question has lead to heavy debates among economic aca-
demics as well as financial practitioners. In the evolutionary adaptive belief systems
discussed here, price changes are explained by a combination of economic fundamentals
and ‘market psychology’. Negative economic ‘news’ (e.g. on inflation or interest rates)
may act as a trigger event for a decline in stock prices, which may become reinforced
by investors sentiment and evolutionary forces. Price movements are driven by an in-
teraction of fundamentalism and chartism, the two most important trading strategies in
financial practice.

Our evolutionary ABS may be seen as, what Sargent (1999) calls an approximate ra-
tional expectations equilibrium. Traders are boundedly rational and use relatively simple
strategies. The class of trading rules is disciplined by evolutionary forces based upon
realized profits or wealth. A convenient feature of our theoretical setup is that the
benchmark rational expectations model is nested as a special case. This feature gives
the model flexibility with respect to experimental and empirical testing. It is worthwhile
noting that Baak (1999) and Chavas (2000) have run empirical tests for heterogeneity in
expectations in agricultural data and indeed find evidence for the presence of boundedly
rational traders in the cattle market. It may seem even more natural that heterogeneity
and evolutionary switching between different trading strategies play an important role
in financial markets. Understanding the role of market psychology seems to be a crucial
part of understanding the huge changes in stock prices observed so frequently these days.
But much more insight into ‘financial psychology’ is needed, before ‘market sentiment’
based policy advice can be given. Theoretical analysis of stylized evolutionary adap-
tive market systems, as discussed here, and its empirical and experimental testing may
contribute in providing such insight.
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