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Abstract

Response Surface Methodology (RSM) is a tool that was introduced in the early 50°s by Box
and Wilson (1951). It is a collection of mathematical and statistical techniques useful for the
approximation and optimization of stochastic models. Applications of RSM can be found in
e.g. chemical, engineering and clinical sciences. In this paper we are interested in finding the
best settings for an automated RSM procedure when there is very little information about the
stochastic objective function. We will present a framework of the RSM procedures for finding
optimal solutions in the presence of noise. We emphasize the use of both stopping rules and
restart procedures. Good stopping rules recognize when no further improvement is being
made. Restarts are used to escape from non-optimal regions of the domain. We compare
different versions of the RSM algorithms on a number of test functions, including a
simulation model for cancer screening. The results show that considerable improvement is
possible over the proposed settings in the existing literature.
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1 Introduction

Response Surface Methodology (RSM) is a tool that was introduced in the early 50°s by Box
and Wilson (1951). It is a collection of mathematical and statistical techniques that is useful
for the approximation and optimization of stochastic functions. RSM is based on
approximations of the objective function by a low order polynomial on a small sub-region of
the domain. Using regression analysis based on a number of observations of the stochastic
objective function, the best local solution is determined together with a search direction for
possible improvement. To this end, the stochastic function is evaluated in a specific
arrangement of points referred to as an experimental design. Many applications of the RSM
procedure are performed in a manual setting, for example in physical, engineering, biological,
clinical and food sciences (Myers et al., 1989).

In a manual setting the user can interfere in the optimization process according to his/her
personal intuition and likings. In an automated RSM optimization exercise the settings of the
algorithm have to be fixed in a systematic manner. We want to design a RSM algorithm that
does not stop to ask for input from the user during an optimization run, instead the algorithm
reads the input, performs a systematic search for an optimum and reports the optimum back to
the user. The OPTQUEST (Glover et al. 1999) simulation optimization procedure operates in
similar way, yet it is primarily oriented at optimization of discrete decision variables and it
uses other techniques.

In this paper we are interested in finding the best settings for such an automated RSM
algorithm when there is very little information about the objective function. We consider
stochastic objective functions with unknown variance that are somewhat time-consuming to
evaluate for each solution. When optimizing a simulation model, one estimates the model
parameters that optimize specific stochastic output statistics of the simulation model. In this
optimization exercise the simulation model is considered to be a black box. The advantage of
such a procedure is that the original simulation model can be left intact, while procedures like
infinitesimal perturbation require software changes, that are not desirable in case of very
complex models.

For an automated RSM to be called successful it should be reliable, precise and fast. The
procedure should recognize when no further progress is being made and the differences in the
subsequent iterations can only be attributed to the noise in the objective function. Moreover,
the procedure should also be able to distinguish optimal solutions from random fluctuations.

In this paper we will present a framework of RSM procedures for finding optimal
solutions in the presence of noise. It includes feedback iterations, precision checks and a
restart procedure. We iterate between first-order and second-order approximations in order to
continue the search for optima beyond the first-order approximation. We therefore also
extensively discuss the use of stopping criteria.

Furthermore we study which settings and choices result in the best automated RSM
procedure, both with regard to computing time and precision. In the literature, which is
discussed extensively in section 2, we found rather confusing and non-systematic
recommendations for the settings of such a procedure. In order to standardize the algorithm
we fix some of the possible choices in the process based on the existing literature. Other
choices are defined in a number of test algorithms that are compared using randomized
deterministic test functions and a simulation model well known in the medical literature.

The setup of this paper is as follows. In section 2 we present our framework and we
extensively discuss the choices to be made in the RSM procedure. We fix a number of the
settings based on pre-tests and previous literature. Other choices are subject to experiments
and the design of the experiments is discussed in section 3. The test functions and the
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simulation model are described in section 4 and the results of our experiments are given in
section 5. Finally, in section 6 we discuss the test results and give our recommendations.

2 Response Surface Methodology

In this section we will describe all steps in RSM with emphasis on the choices that need to be
defined for an automated RSM algorithm. Without loss of generality, we discuss RSM for a
minimization problem. Secondly, we assume that the objective function is of a stochastic
nature, and that we want to optimize the expected value of the stochastic output.
Mathematically, this problem can be written as

(1) minf:D—)iR,DgiRk

where f(&,,...,&,) 1s equal to E(F((&,,....¢,)) . Here, F((&,,...,£, ) denotes stochastic output
for given mput {¢£,,...,&,}, and E(F((,,...,¢£,)) denotes its expected value. We further

assume that the variance in the function values is not known in advance. This situation
especially arises in simulation studies, where the objective function can be seen as a black box
that returns an output value for a given input. Simulation models do not assume a functional
form and are subject to an unknown stochastic error. A simulation optimization exercise aims
to find the input parameters that result into the minimum output value, such as finding the
order-up to level that minimizes total costs in an inventory model.

We need to make some comments about above model and its assumptions. Firstly, note
that the decision variables in problem (1) are continuous. Secondly, we consider an
unconstrained optimization problem. Although we focus on this kind of problems, RSM can
also be applied to constrained optimization problems. The interested reader is referred to
Smith (1976), Myers and Montgomery (1995) and Angiin (2004). Thirdly, since the
simulation model is treated as a black box, variance reduction is only possible by applying
more simulation runs.

In general the RSM procedure comprises two phases. In the first phase the stochastic
objective function is locally approximated by a first-order polynomial and in the second phase
by a second-order polynomial. For this purpose in both phases a region of interest (ROI) is
defined, which is a sub-region of the domain. To obtain approximations of the stochastic
objective function it is evaluated in the points of an experimental design. These points are
usually located on the borders of the region of interest. When the first-order model is found to
be adequate a steepest descent procedure is applied to find a new region of interest. Otherwise
the RSM algorithm moves to the second phase. When a second-order model approximates the
objective adequately, a stationary point is determined and classified and then an appropriate
action has to be taken. Usually the algorithm is terminated and the stationary point is returned.
However, we will discuss why it is profitable to continue the algorithm beyond the second
phase especially for a stochastic function with unknown error variance.

In particular we will define an extension where we return to a first-order approximation in
some cases and we include stopping rules based on the quality of the current centre point
rather than a certain phase in the optimization process. Furthermore, we also propose to apply
a restart procedure after the algorithm is ended for the first time. Figure 1 shows the
optimization process on a global scale and it displays when a stopping rule is checked. The
dotted arrows show the proposed extensions. The stopping rules applied are the same after
first and second phase. In this perspective we define an iteration of the RSM algorithm as the
run between two checks of the stopping criteria of the algorithm.



<< Insert Figure 1 about here.>>

There are a number of settings that need to be implemented in an automated RSM
procedure using a consistent decision rule. These settings can be divided into what we call
building blocks, strategic choices, stopping rules and a restart mechanism. In order to arrive at
an automated RSM procedure we therefore follow to a large part the steps of the framework
proposed by Neddermeijer et al. (2000a). Each step in this framework can be defined as a
building block or a strategic choice. The building blocks of the algorithm consist of well-
defined procedures that can be used to determine the next move of the algorithm. Strategic
choices of the algorithm determine the action taken when a building block returns a result. In
the next two sections we will discuss the literature and our extensions of the RSM algorithm
by describing the building blocks and the strategic choices. Moreover, in sections 2.3 and 2.4
we define stopping rules and a restart mechanism. In section 2.5 we discuss a number of
parameter settings, such as the significance levels of statistical tests that need to be chosen.
Ultimately the description in the next sections leads to the framework shown in Figure 2.

<<Insert Figure 2 about here.>>

2.1 Building blocks

In this section we describe the building blocks applied in our procedure. In Figure 2 building
blocks are given in rectangles.

2.1.1 Initialization

At the start of the algorithm an initial starting point and the initial size of the region of interest
(ROI) should be given. A restart may ask for a different initialization: the starting point may
be chosen randomly, be equal to the starting point used in the previous optimization run or
equal to the best point in the previous optimization run. Beforehand it has to be specified
when which choice is made. Note that this building block is not part of the first phase.

2.1.2 Approximate the objective function by a first-order model

In order to approximate the objective function it needs to be evaluated in the points of an
experimental design. There are many designs available, like fractional or full factorial, and
two-level or three-level designs (Myers and Montgomery, 1995). All designs can be
augmented by the centre point of the region of interest. In non-automated optimization the
user tries to fit a first-order approximation with different designs, apply coding of the factors
to obtain better parameter estimates or recalculate the objective values in the design points.
For instance, replicating the evaluation of the objective function in the centre point provides
protection against curvature (Myers and Montgomery, 1995).

For an automated RSM procedure we follow the literature and evaluate the objective
function once in the 2" points of a two-level full factorial design and 5 times in the centre
point of the current region of interest (Myers and Montgomery, 1995; Joshi, Sherali and Tew,
1998). This design is orthogonal and does not require as many points as a three-level full
factorial design. In our opinion two-level fractional factorial designs consist of too few points
to approximate objective functions with two or three parameters well enough. Furthermore,
full factorial designs can quite easily be augmented to derive a second-order design
(Neddermeijer et al., 2000a). Eventually, the coefficients of the first-order model are
determined by applying least squares on the observed function values, while using coded
variables to reduce the covariances of the parameter estimates.



2.1.3 Test the first-order model for adequacy

Usually, a test for lack of fit (Weisberg, 1985) and a test for significance of regression are
performed (Myers and Montgomery, 1995). Box and Draper (1987) showed that the test for
lack of fit is a joint test for interaction between factors as well as curvature. In non-automated
optimization one can decide to use other tests and one can vary the significance levels based
on the results from these tests. In automated optimization the levels should be fixed. This is
subject to tests.

2.1.4 Perform a line search in the steepest descent direction

If the first-order model is found to be adequate a line search is performed from the centre
point of the current region of interest in the steepest descent direction to find a point of
improved response. Numerous implementations of the line search have been proposed (Box
and Draper, 1987; Myers and Montgomery, 1995; Khuri and Cornell, 1996; Joshi, Sherali and
Tew, 1998; Neddermeijer et al., 1999; Kleijnen et al., 2003). We will use increments
A,,...,A, along the path of steepest descent equal to the distance from the centre point to the

k
point of intersection of the direction of steepest descent and the sphere given by ZAZI =1
i=1
(Neddermeijer et al., 1999). In a manual RSM algorithm one can observe the results of a line
search and use personal likings to stop the search. However, in automated optimization, the
algorithm needs a stopping rule that recognizes the lack of improvement in response during
the line search.

The most straightforward rule ends the line search when an observed value of the
objective function is higher than the preceding observation (Del Castillo, 1997). We will not
use this stopping rule, known as the 1-in-a-row rule, because it is very sensitive to the noise in
the response function function. In a similar way, the n-in-a-row stopping rule ends the line
search when n observed values of the objective function are higher than the preceding
observation. In the Myers and Khuri stopping rule (1979), the line search is ended when the
mean response in a line search point, is significantly (statistically) higher than the mean
response in a preceding line search point. This rule requires evaluating the response function
function in a line search point more than once, because the variance of the response is not
known at the start of the algorithm. In our algorithms we use the small sample t test in order
to compare the mean responses in different points. This statistical test is robust with respect to
both non-normality and unequal variances (Wackerley et al., 1996). We will test our version
of the Myers and Khuri rule against the 3-in-a-row rule for our setting, where the variance in
the stochastic objective function is not known a priori (contrary to the setup by Del Castillo
and Myers & Khuri).

2.1.5 Approximate the objective function by a second-order model

The coefficients of the second-order model are again determined by regression analysis,
applied to observations performed in an experimental design. A popular second-order design
is the central composite design (CCD; Myers and Montgomery, 1995). The CCD arises when
the full factorial design is augmented by adding 2k axial points (Box and Wilson, 1951). We
make this design spherical by choosing the axial points such that all points are equidistant
from the centre point of the current ROI Error! Reference source not found.. This design is
near-rotatable Error! Reference source not found.. A fully rotatable design ensures equal
variance of the estimate of the mean response at points equidistant from the centre point.
However, for a fully rotatable design the distance of the axial points to the centre point would
be large as compared to the distance of the existing points to the centre point.



2.1.6 Test the second-order model for adequacy

This module checks if the second-order model describes the behaviour of the objective
function in the current region of interest. Similar to the first-order model a lack of fit test is
performed. The null hypothesis of this test is that the true regression model is quadratic. In
manual optimization one can use different significance levels or decide to overrule the
outcomes of the lack of fit test. In automated optimization one has to determine these levels
beforehand. The exaxt setting of the significance level is subject to tests.

2.1.7 Perform canonical analysis and, if necessary, ridge analysis

In the canonical analysis the stationary point of the second-order model is located and
classified. Ridge analysis is done when the stationary point is a maximum, a saddle point or a
minimum outside the current region of interest. In the ridge analysis we look for a point of
minimum response inside the current region of interest since it is not correct to extrapolate the
second-order model outside the current region of interest (Myers and Montgomery, 1995).

2.2 Strategic choices

In this section we describe the strategic choices that have to be made in our procedure. In
Figure 2 these choices are given in ellipses. Although the choice whether to continue, to
restart or to stop the algorithm is also a strategic choice, we discuss stopping rules and a
restart mechanism separately in sections 2.3 and 2.4.

2.2.1 What to do when the first-order model is adequate?

If the first-order approximation is found to be adequate, a steepest descent procedure will be
applied from the centre of the current ROI to find a new centre point (Box and Wilson, 1951;
Box and Draper, 1987; Fu, 1994; Myers and Montgomery, 1995; Khuri and Cornell, 1996;
Joshi, Sherali and Tew, 1998). This new point is then used as the centre point of the next
region of interest. On this new region, the objective function will be approximated again by a
first-order model (Myers and Montgomery, 1995).

2.2.2 How to solve first-order model inadequacy?

If the first-order model is not accepted, there is some evidence of curvature or interaction
between factors on the current ROI, or the regression coefficients are all equal to zero. Most
references suggest approximating the response function function by a second-order model
(e.g. Fu, 1994; Myers and Montgomery, 1995; Neddermeijer et al., 2000a). An alternative is
to increase the precision of the function evaluation in the design points. However this
alternative is time-consuming and does not guarantee that the inadequacy is solved. We
proceed with the second phase or our algorithm if the first-order model is inadequate.

2.2.3 What to do when the second-order model is adequate / How to proceed after the
canonical analysis?

If the second-order approximation is found to be adequate then the appropriate action depends
on the location and the nature of the stationary point. It is shown (Greenwood, Rees and
Siochi, 1998) that for many functions a first-order model is inappropriate over a large
percentage of the domain, so the algorithm can turn to the second phase quite early. The first
stationary point found by a second-order approximation is therefore not likely to be the best
point in the domain. If we stop the algorithm at this point (Fu, 1994; Kleijnen, 1998) the
optimum could still be located far away from the current region of interest. We consider the
following alternatives.



If a minimum is found inside the region of interest, this point will be used as the centre
point of a new design and a new second-order approximation will be performed. We suggest
to reduce the size of the ROI and to continue with phase 2 since we assume that we are close
to the minimum of the objective function.

If the stationary point of the second-order polynomial is not a minimum inside the region
of interest we perform ridge analysis to find a new stationary point (see section 2.1.7). We
conclude that we are not close to the optimum and return to phase 1.

By considering these alternatives we now need stopping rules to decide when we are
satisfied with the current solution. In section 2.3 we will discuss a number of stopping criteria
and our tests will show the best stopping rules for specific functional forms.

2.2.4 How to solve second-order model inadequacy?

If the second-order model is inadequate, we conclude that either the region of interest is too
large or that the stochastic nature of the function disturbs the approximation process. Stopping
the algorithm at this point is only a good idea if there is an indication that the current centre
point is close to the optimum. If we do not have any indication we propose to continue the
algorithm and to redo the second phase. One way of solving the inadequacy of the
approximation is increasing the precision used in evaluating a design point, i.e. variance
reduction of the estimated response. This way the second-order polynomial will fit the
objective function better. We could also reduce the size of the current region of interest like
Joshi, Sherali and Tew Error! Reference source not found. propose. In our algorithm we
will either reduce the size of the current region of interest or we will increase the precision
used in evaluating the points of the second-order design. This is subject to tests.

2.3 Stopping rules

In automated optimization the RSM algorithm needs to be ended by consistent stopping rules
that do not end the algorithm before a good solution is found and also do not unnecessarily
prolong the algorithm. In section 2.2 we referred to the RSM literature where the optimization
is ended after estimating only one second-order model (see Error! Reference source not
found.,Error! Reference source not found.). We recommend ending the optimization if
either the estimated response value does not improve sufficiently anymore, or, in case there
are budget constraints, if a fixed maximum number of (function) evaluations has been
performed. In this section we explain why these criteria seem to be consistent and how we
apply them on the automatic algorithm. In our experiments we also consider the following
stopping criterion: the algorithm is ended if the input values do not change suffiently
anymore, i.e. if consecutive centre points are close to each other.

2.3.1 The estimated response does not improve sufficiently anymore (IMPROVE)

Algorithms for finding the optimum of a deterministic function can simply be ended when the
function value does not improve sufficiently in consecutive iterations. When optimizing
stochastic objective functions though, one has to take noise into account. Because we assume
that the variance of the response is not known at the start of the algorithm we have to estimate
it by evaluating the response in the new centre point of the region of interest more than once.
We then need some statistical test to determine if there is sufficient progress or if different
mean responses in two centre points are completely due to the noise. Notice that if the mean
response does not decrease significantly in consecutive centre points we could still make
progress. For instance the mean response may decrease from value 10.2 to 8.1 in 5 iterations,
while in each separate iteration the change is not significant. We therefore implement the
following criterion. Stop the algorithm if the mean response in the previous centre point does
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not differ significantly from the mean response in the penultimate centre point in n
consecutive iterations. It is important to note that the penultimate centre point is only changed
in case the mean response differs significantly from the mean response in the previous centre
point. The number of iterations is subject to tests. Notice that this stopping rule is based on
the stopping rules for the steepest descent line search. It makes use of elements of both the
Myers and Khuri rule as well as the n-in-a-row rule.

2.3.2 Convergence of input values (CONVERGE)

Algorithms that are used to find the optimum of a deterministic function are usually ended if
the input parameters of the function do not change anymore. Therefore, we propose to end the
algorithm if the Euclidian distance between two consecutive centre points is small, i.e. less

than ek , where ¢ is a small number and £ is the number of parameters of the objective
function. In this way, the precision of each estimated parameter will be approximately equal
to €.

2.3.3 Fixed maximum number of function evaluations (MAXEVAL)

Our interest in the RSM is especially intended for stochastic models where the evaluation of
the corresponding stochastic objective function is expensive or time-consuming. Therefore,
ending the algorithm after a maximum number of function evaluations is appropriate when
there are budget constraints. Notice that this stopping criterion does not consider the noise in
the objective function.

The stopping rules discussed here will be applied after the first phase and after the second
phase. It is then decided whether the algorithm is continued, restarted or really terminated.

2.4 A restart mechanism

Because RSM is a local search method there is no guarantee for finding a global optimum.
The first centre point used in the RSM procedure is either selected by the user or randomly
chosen and can influence the outcome of the procedure. Neddermeijer et al. (2000a) consider
multiple starting points and/or multiple searches from the same starting point, when
optimizing a stochastic objective function. In this study, we will use an adjusted mechanism
that is based on these suggestions.

In order to escape from a non-optimal region we propose to restart the algorithm as soon
as the algorithm is ended by one of the stopping criteria. The starting point of the restart is the
best centre point of the ‘normal run’. Because the algorithm cannot escape from a non-
optimal region when the size of the region of interest is too small, we propose to reset the size
of the region to its initial value. This way we ask the algorithm either to confirm the quality of
the solution already found or to admit that there exists a better solution.

In general one should apply randomly chosen starting points when optimizing stochastic
objective functions. If one has information about the unimodality of a function, it may not be
necessary, especially if one has some idea about a good starting point. In the test problems we
consider in this paper such was the case and we restart always in the same point. In this study
we will run algorithms more than once starting from the same point. This can be seen as
another restart mechanism and will give insight in the consistency of algorithms. We will
come back to this in section 5.

In all optimization runs the best solution, i.e. the parameter values for which the mean
response of the stochastic objective function is best, will be remembered. So our restart
procedure cannot deteriorate the solution found in the ‘normal’ optimization run. Note that
since the response function is stochastic, it is possible that the mean response measured in a
non-optimal point is better than the mean response measured in the real optimal point.

8



2.5 Parameter settings

A number of parameter settings will be subject to pre-tests. For instance, the lack of fit test
can be performed at significance levels of 2.5%, 5% or 10%. The size of the increment in the
precision of the function evaluation in the design points is also subject to tests. Furthermore, it
is tested by how much the size of the region of interest is decreased in order to solve the
inadequacy of the second-order model.

3 Test design

In this section we discuss our test design. In a pre-testing phase we have determined the
parameter values that give the best performance with respect to running time and quality of
the solutions returned. In our experiments we consider only choices that we feel have the most
impact on the efficiency of the RSM procedure. We benchmark our setup against the setup by
Fu (1994) who stops after doing the second phase only once.

In particular we consider the following alternatives. We test the 3-in-a-row stopping rule
against our version of the Myers and Khuri stopping rule for the steepest descent line search.
Myers and Khuri (1979) conclude that their stopping rule dominates the 3-in-a-row rule for
stochastic functions with known variance. When the variance is not known we are uncertain if
the Myers and Khuri (M&K) rule is still as successful. We expect that algorithms using our
version of the M&K rule are less efficient since every point in the line search is evaluated 5
times.

When the second-order model is found to be adequate and a minimum is found within the
region of interest we assume that we are close to an optimal solution. We then shrink the
region of interest with either 50% or 10%. These values are already set by pre-testing, but the
difference between these shrink-percentages is important. When the size of the region of
interest is decreased by 10% it will take more time to focus on a certain region that is
suspected to contain the global optimum and the algorithm could be prolonged unnecessarily.
However if we shrink the region of interest too soon, we are at higher risk of returning a non-
optimal solution. The success of the alternatives will closely interact with the stopping rules
and the restart procedure. For instance, we expect that the 50% shrink procedure (ensures fast
convergence) in connection with a strict stopping rule with respect to noise (ensures fast
convergence) and a restart procedure that returns to the original size of the region of interest
(recognize quality of solutions) will perform well.

When the second-order approximation is rejected either the noise is dominant or the
region of interest is too large. In order to solve this problem we either reduce the noise, e.g. by
performing more simulation runs, or we reduce the size of the region of interest. We think that
algorithms using noise reduction will give more accurate results since the quality of the
estimates of the response function is increased. We expect the running time to be higher for
these algorithms.

As a result we will test eight algorithms, using all proposed alternatives in combination
with the others. For all these eight algorithms we will study the effect of the stopping rules
and restart procedure explained in sections 2.3 and 2.4.

<< Insert Table 1 about here.>>

The setup of the experiments is as follows. First we apply the algorithms for a large
number of iterations and for each algorithm we record the relevant values for the application
of the stopping criteria. Especially, at each iteration we record (the mean response in) the
9



current (best) centre point, the number of function evaluations and the Euclidean distance
between the current and the last centre point. We then decide on the exact setting of each
stopping rule such that the average performance of each algorithm for a test set defined in the
next section is “best”. Each algorithm can have a different setting of the stopping rules for
which it performs best.

In the first place, the criteria for the preferred performance of the stopping rules are based
on the quality (or precision) of the solutions compared to the deterministic values of the test
functions. Precision is measured in two ways. On the one hand we look at the error of an
optimization run, which is defined as the difference between the expected simulation response
function value in the true optimal point and the expected simulation response in the observed
best point of the run. On the other hand we consider the distance of an optimization run,
which is defined as the Euclidean distance between the true optimal point and the observed
best point of the run. Notice that we have full knowledge of the optima of the test functions
and corresponding solution values. We can therefore observe the parameters of each stopping
rule of the RSM procedure for every test function and determine when the procedure is no
longer effectively improving the solutions.

Secondly, the preferred performance of the stopping rule is also based on the running
times of the algorithms needed to fulfil the different settings of the stopping criteria. We
measure the running time by the number of function evaluations. Note that the standard
deviation of the error and the distance of optimization runs can be used as an indicator of the
consistency of an algorithm.

The settings of the algorithms are now taken such that the average performance, i.e.
quality and running time, over the test functions is best. We do this because we assume that
we have no previous knowledge of the objective function. Note that we apply each algorithm
on each test function 100 times to find the average behaviour of the algorithm.

In a second phase of experiments we run the algorithms again for the new settings of the
stopping rules and we apply a restart procedure when each algorithm is stopped. The restart
procedure is applied once and the result of the algorithm after the restart is returned as the
output of the algorithm. We apply each algorithm 100 times on each test function. Note that
the replication of an optimization run is in itself a restart procedure and therefore allows us to
compare two different restart strategies. The performance of the eight algorithms is compared
to the performance of four algorithms using the setup of Fu (1994), applied to the same set of
test functions. Note that we deal with four algorithms since these algorithms are ended when
the objective is approximated adequately by a second-order polynomial once. So, for these
algorithms the third column of Table 1 (‘Shrink region of interest’) is of no importance. We
will speak about these algorithms as the Fu versions of the algorithms in Table 1.

4 The Test Problems

We will test the optimization algorithms on a set of seven test functions, which consist of a
deterministic and a stochastic term. Their optima are known. These functions were also used
in comparing different versions of Nelder and Mead simplex method (NMSM) (Neddermeijer
et al., 2000b) and in comparing RSM algorithms with NMSM algorithms (Neddermeijer et al.
1999). We will also consider a simulation version of an existing cancer-screening model. This
model has three parameters that need to be estimated from an observed data set using
minimization of a goodness-of-fit statistic (Neddermeijer et al., 1999). For this particular
model the optimal parameters can also be determined analytically, but we are interested in the
performance of the RSM procedure for this simulation exercise.
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4.1 One-stage-one test breast cancer model

The simulation model is a simulation implementation of the breast cancer-screening model
developed by Day and Walter (1984). In this model only one disease stage, the detectable pre-
clinical phase (DPCP) is modelled. The DPCP has incidence rate J and we assume that the
duration of the DPCP is exponentially distributed with parameter 4. At the end of the DPCP
a cancer is clinically detected, whereas during the DPCP a cancer can be detected by breast
cancer screening.

A screening program of four annual screening rounds is simulated. The sensitivity of the
screening test is denoted by ¢. In each simulation run 50,000 individual life histories,
including the disease processes and the impact of screening, are simulated. The simulation
model generates detection rates at each of the screening rounds and incidence rates of clinical
disease in the period following a negative screening test, for each of the screening rounds and
for different intervals since the screening test.

The model will be applied to data from the first randomized trial for breast cancer
screening, viz. the HIP study (Day and Walter, 1984; Shapiro et al., 1974; van Oortmarssen et
al., 1990). In the HIP study approximately 62,000 women, who were aged between 40 and 64
at entry, were randomly allocated to either a study group or a control group. Only the study
group was offered annual breast cancer screening for four years. About 65 percent of the
study group (20,166 women) agreed to take part and were screened at least once (these
women all attended the first screening). We will use follow-up data until 5 years after the last
screening. The results from the HIP screening trial that will be used are described by Day and
Walter (1984), and consist of 4 detection rates and 14 incidence rates of interval cancers
occurring after a previous negative test result.

The parameters J, A, and ¢ will be estimated from the observed data set through
minimization of a chi-square goodness-of-fit test statistic. The simulation objective function is
given by

18
2 F(J.2.0) =2, (0,(J.4,0) ~ E,(J, 2.0)* | E,(J.2,9)
i=1
where O, is the observed number of cancers during screening round or interval i and E, is

the number of simulated cancers during screening round or interval i, i=1,..,18.
The true optimal parameters of the model for the HIP data were derived using the
objective function

3) [ 2.0) =2 (0,(J. 2.0)— 4,(J. A.0)" | 4,(J. 2.0)

i=1

where 4; is the number of cancers during screening round or interval i, i=1,..,18, as

predicted by the analytical implementation of the breast cancer screening model (Day and

Walter, 1984). The optimal parameters (J*, 1°, ¢" ) of the model, applied to the HIP data,

are determined by extensive enumeration (using step sizes 10™ for J, 10~ for A, and 107 for

@) of f(J,A,@): f(J",A,¢")= £(0.00213, 0.614, 0.871) = 13.343 (Neddermeijer et al.,
2000b).

4.2 The test functions

In addition to the HIP screening simulation model we test randomized versions of seven
deterministic unconstrained nonlinear minimization problems. All problems have a unique
global optimum. We think that the test functions show a characteristic behaviour that may
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occur in stochastic objective functions resulting from simulation models. We randomize the
deterministic test functions by adding a normal distributed error term with zero mean and

variance o> = 1. For each optimization run we use independent random number streams. The
test functions are:

1. Rosenbrock function
f(xl’xz) =100(x, _x12)2 +(1 _x1)2

The minimum of this classical test function, given by f(1,1) =0, lies at the base of a banana-

shaped valley (Gill, Murray and Wright, 1981, among many others). Nearby this minimum,
the function increases fast in the direction of the second parameter.

2. Powell singular function
S, x,,x5,x) = (x, +10x2)2 +5(x;, _x4)2 +(x, _2x3)4 +10(x, _x4)4
This function has four parameters. The minimum is given by £(0,0,0,0)=0. Apart from a

small region around the optimum this function is very steep.

3. A 5-variable parabolic function

5
S (X x5) = lez
i=1

This function is symmetrical and rather easy to optimize if no noise is included (Neddermeijer
et al., 2000b). The minimum is given by £(0,0,0,0,0)=0.

4. Symmetrical Gaussian function
f(x,x,) =-10exp{-[(100-x,)* +(100-x,)*]/15000}

Apart from a small region around the optimum this symmetrical test function is very flat (Van
der Wiel, 1980; Neddermeijer et al., 2000b). The minimum of this function is given by
£(100,100) =-10.

5. An asymmetric function
8
f(xl IR xs) = 2[2%74 +(6- xi)]
i=1

Just like the simulation model, this test function is asymmetric. The minimum is given
by f(4.529,..,4.529) = 23.311.

6. Beale function

FOrxy) =[15-x0-x)f +[225-x,0=x)[ +[2.625-x,1 =)

This function is very steep apart from a small region around the optimum. Nearby this
optimum, given by f(3,0.5) =0, the function increases relatively fast in the direction of the

second parameter.

7. Wood function

12 f(xlax27x33x4) =100(x, _xlz)z +(1_x1)2 +90(x, _x32)2 +(1—X3)2



+10.1(1-x3)" +(1-x,)*)+19.8(1—x,)1-x,)
This function is very steep. The minimum is given by f(1,1,1,1) = 0.

5 Results

Below we discuss the results of the experiments. From preliminary tests we obtained the best
settings of the parameters we described in section 2.5. Table 2 shows these settings.

<< Insert Table 2 about here.>>

The last row of Table 2 contains two entries: 0.95 and 25%. For the seven randomized
deterministic test problems we multiply the variance by 0.95; for the simulation model we
increase the number of simulated life histories by 25% in order to solve second-order model
inadequacy. We expect that the latter has more or less the same effect on the variance of the
objective function of the simulation model.

5.1 Phase 1l

In phase 1 of our numerical experiments we determine the exact settings of the stopping
criteria. To this end we have recorded the results of the eight specified algorithms for a
number of settings of the stopping criteria. These settings are shown in Table 3. Note that the
settings of the stopping rules may depend on the number of parameters (k) of a test problem.

<< Insert Table 3 about here.>>

In Tables 4a-c the results of the application of algorithm 1 on test problems 2, 6 and 7 are
shown. The first column in each Table contains the description of the stopping criteria and in
the second column the setting of each criterion is given. The third column (ERROR) shows
the mean (standard deviation) of the absolute differences between the optimal value and the
expected value (i.e. without noise) of the objective function in the solution found. In the
fourth column (DISTANCE) the mean (standard deviation) of the Euclidean distances
between the actual minimum and the solution found is given. The fifth column (nEVAL)
shows the mean (standard deviation) of the number of evaluations needed to fulfil the
different stopping criteria. The last row contains the results of ending the algorithm after the
maximum number of iterations, in this case 150.

<< Insert Tables 4a-c about here.>>

The results in Tables 4a-c show that the more iterations an algorithm runs the lower the
error is. However, it appears that the Euclidean distance between the estimated parameters
and the actual location of the minimum is not always smaller as the algorithm runs longer.
This especially holds for the optimization of test problems 2 and 6, i.e. the Powell and the
Beale function. This is probably caused by the fact that these functions are very steep. We
expect that the restart mechanism solves this problem by enlarging the ROL.

It is also striking that in general the standard deviations of the errors of the algorithms are
roughly of the same order of magnitude as the errors themselves. This points out that the
algorithms do not consistently perform well; a small part of the solutions found worsens the

13



mean error. However, there is a high probability that a good solution is found when we apply
an algorithm more than once on the same problem.

As it was stated before, the performance of an algorithm does not only depend on the
precision of the solutions found, but also on the computing time. When optimizing stochastic
objective functions the number of function evaluations needed to obtain a certain solution is
an important indicator for the computing time. The values in the last column in Tables 4a-c
show that the difference in the number of function evaluations between the least restrictive
setting and the most restrictive setting of stopping criteria CONVERGE and IMPROVE can
be quite large. The extra running time needed to increase the precision does not always
balance the extra computing time. For example, for test function 6 we find that the second
setting of CONVERGE requires 569 evaluations on average. The precision of the solution
found however, is not much worse than the solution resulting from ending the algorithm by
the fourth setting of CONVERGE, requiring twice as many evaluations. Moreover, when the
algorithm is ended after 150 iterations, requiring more than 3000 evaluations, the precision of
the solution found is not much better. It only seems useful to prolong the optimization run for
test problems 2 and 7 which are very steep functions.

The mean error, the mean Euclidean distance and the mean number of evaluations do not
tell the whole story. Therefore we have also compared the 100 observed errors, distances and
number of evaluations separately for all algorithms by using nonparametric statistical tests.
This way we determined whether there is any stochastic difference between the different
settings of the stopping criteria CONVERGE, IMPROVE and MAXEVAL. The specific
nonparametric test we applied is the Kruskal-Wallis test (see e.g. Wackerley et al. (1996)).

The nonparametric tests do not give identical answers for the different test problems. It
appears that for most of the test functions less restrictive settings of the three stopping criteria
do not result in statistically lower errors and distances. That is, running the algorithms longer
does not improve the precision of the solutions found. However, the errors and distances for
the Wood and the Powell function and to a less extent the Beale and the Rosenbrock function
are significantly lower when the settings are less restrictive. Of course the computing time,
measured as the number of function evaluations, increases significantly when the settings of
the stopping criteria are less restrictive. The results of the nonparametric tests are uniform
over the different algorithms.

Since we want to find algorithms that optimize all test functions very precisely we cannot
choose the settings of the stopping rules too restrictive (in phase 2). In Table 5 the settings of
the rules IMPROVE and CONVERGE are given. These settings (see Table 3 for their
definition) are used to end the algorithms in our second phase of experiments. We decided not
to use MAXEVAL since this rule ends the algorithms on almost the same moment as
IMPROVE. We prefer IMPROVE since it takes noise into account whereas MAXEVAL is a
more rigid rule. As a consequence of this choice, we allow both IMPROVE and CONVERGE
to terminate the algorithms in the second phase of experiments.

<< Insert Table 5 about here.>>

5.2 Phase 2

In phase 2 of the experiments we do not only consider the eight algorithms using the
settings as given in Table 5. We also test versions of these algorithms that are ended quite
early. We expect that a comparison of both groups of algorithms gives us some understanding
of the performance of our algorithms and in particular of the quality of our stopping rules.
Moreover we test whether restarting the algorithm improves the precision of the solution.
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In Tables 6a-6d the results of applying the four Fu versions of the algorithms are shown.
Note again that we use the numbering of the algorithms as given in Table 1. This is done
since the four Fu versions are copies of the algorithms in Table 1, but they are ended when an
adequate second-order model is estimated. In these algorithms there is no action taken when a
minimum is found. So, we have applied Fu versions of algorithms 1, 2, 5 and 6. In the first
column of Tables 6a-6d the name of each test function is shown. In the second column the
mean (standard deviation) of the absolute deviations between the actual objective value in the
optimum and the actual value of the objective function in the minimum found (i.e. the error)
is given. The third column shows the mean number of function evaluations that the algorithm
has carried out to find the minimum. The fourth and fifth column contain the mean (standard
deviation) of respectively the errors and the additional number of evaluations when the restart
mechanism is also applied.

<< Insert Tables 6a-6d about here.>>

Tables 6a-6d show that for the most test functions the restart mechanism really improves
the precision of the solution found after the ‘normal’ run. The effect is not that large for the
simulation model, but in this case the restart contributes to more consistent performance of
the algorithm. Actually, for this particular test problem the normal run already finds quite
accurate solutions. The number of additional function evaluations done in the restart is
relatively small. We have to say however that in general the quality of the solutions found in
the normal run is quite bad. For example, if we compare the errors found in the normal run of
the four algorithms with the errors found by algorithm 1 in phase 1 using the most restrictive
setting of IMPROVE (see Tables 4a-4c), we conclude that the former errors are much higher
than the latter. The number of evaluations needed when using the most restrictive setting of
IMPROVE is in most cases much higher than it is for the Fu versions. This means that the Fu
versions of the algorithms do not perform enough function evaluations to find an accurate
solution.

In Table 7a the mean and standard deviation of the errors resulting from the application of
the eight different algorithms on the test functions are shown. It can be seen that in general
algorithm 5 finds the smallest errors and standard deviations. Note that algorithm 5 ends the
line search using the Myers and Khuri rule, shrinks the region of interest by 50% when a
minimum (inside this region) is found and solves the second-order model by reducing the
noise in the objective values.

<< Insert Table 7a about here.>>

We also find that the precision and consistency of the eight algorithms is higher than it is
for the Fu versions. This is also proved by nonparametric statistical tests. Furthermore, a
nonparametric statistical test indicates that the distance between the actual optimal solution
and the solution found by the eight algorithms is lower than it is for the Fu versions. On the
other hand, the Fu versions need significantly less function evaluations to find solutions.

Although the eight algorithms perform more consistently than the Fu versions the standard
deviations of the errors are still of the same order of magnitude as the errors. This means that
we cannot claim that these algorithms are consistently performing well. Actually, it turns out
that the algorithms are sometimes stuck in non-optimal points. It appears that in a number of
optimization runs the first- and second-order models are repeatedly inadequate in the first few
iterations. As a consequence the region of interest is decreased repeatedly and the algorithm is
ended by one of the stopping rules. Of course, one or two of these bad solutions can really
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influence the mean error. We have to note here that in the point (0,0) one of the partial
derivatives of the Rosenbrock function is equal to 0. The objective value in this point is 1.
The algorithms are usually stuck in this point, but this is not caused by inadequate
approximations of the functional form of the objective.

In Table 7b the mean and standard deviation of the ten smallest errors resulting from the
application of the eight different algorithms on the test functions are given. It appears that the
mean and standard deviation of the ten smallest errors are small compared to the mean and
standard deviation of all errors. This indicates that the algorithms perform very well in at least
10% of the optimization runs. On average, algorithms 3 and 5 find the best solutions. Note
that the best solutions can be retrieved by running many simulations for the parameter
solutions found by an algorithm. This way the best solutions can be selected in case this
cannot be determined analytically. In conclusion, performing a number of optimization runs
and then selecting the best solutions can be really advantageous. We come back to this later.

<< Insert Table 7b about here.>>

In Table 7c the mean and standard deviation of the number of evaluations resulting from
the application of the eight different algorithms on the test functions are shown. It can be seen
that algorithm 5 needs the highest number of evaluations, its natural counterpart, i.e.
algorithm 4, needs the least number of evaluations. This is not surprising since algorithm 5
uses the Myers and Khuri rule to end the line search. After all, this rule requires evaluating
the objective function more than once in each point on the line. It follows from Table 7¢ that
algorithms using this rule in general need more evaluations. Algorithms using noise reduction
to solve second-order model inadequacy also appear to evaluate the objective function more
than algorithms that shrink the region of interest. Moreover, algorithms that shrink the region
of interest by 50% when a minimum is found need more evaluations then algorithms that
shrink it by 10%. We cannot explain the latter results; we expected the counterpart since
shrinking the region of interest by 50% a number of times results in a very small region.

<< Insert Table 7c about here.>>

In Table 8a the mean and standard deviation of the errors resulting from the application of
the eight different algorithms using the restart mechanism on the test functions are shown. It
appears that the Powell and Wood function benefit the most from the restart. Both the mean
as well as the standard deviation of the errors are lower for these functions after applying the
restart. It can also be seen that in general algorithm 5 finds the smallest errors and standard
deviations. However, the standard deviations of the errors of this algorithm are in 5 out of 8
cases of the same order of magnitude as the errors themselves. This means that bad solutions
are still found.

<< Insert Table 8a about here.>>

In Table 8b the mean and standard deviation of the ten smallest errors resulting from the
application of the eight different algorithms using the restart mechanism on the test functions
are shown. Again we see that the ten best solutions found are much better than the other
solutions. Moreover, these solutions are better than the solutions found in the original run of
the algorithms. The mean errors of algorithms 3 and 5 are smallest.

<< Insert Table 8b about here.>>
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In Table 8c the mean and standard deviation of the number of evaluations resulting from
the application of the restart of the eight different algorithms on the test functions are given.
The results show that algorithms 1 and 5 need the highest number of evaluations in the restart;
algorithm 4 needs the least number of evaluations.

<< Insert Table 8c about here.>>

In Figures 3a-3h we have plotted the mean number of evaluations against the mean error
of every algorithm for each test function. This way we can distinguish efficient algorithms,
that is algorithms that find precise solutions in reasonable time. We call algorithms efficient
when they are closer to the origin than other algorithms. Note that we did not plot all test
functions in each Figure; if the error of an algorithm is too big the algorithm is not in the
Figure. It appears that algorithm 5r (i.e. algorithm 5 using the restart mechanism) finds
precise solutions for almost every test function, whereas algorithm 4 is the fastest algorithm.
However, as we observed earlier, there is no particular algorithm that is really efficient, i.e.
both fast and precise. It seems that algorithm 7 using the restart is most efficient among the
algorithms we have studied concerning the average precision over 100 optimization runs.
After all, this algorithm appears to be closest to the origin in most of the Figures. We also
have to mention algorithm 5 since it is almost equally efficient for a number of test functions.
Note that the only difference between algorithms 5 and 7 is the ‘shrinking percentage’. Also
note that the reader is allowed to determine for himself which algorithm is most efficient. The
efficiency utility curve expressing how much value one assigns to a combination of precision
and computing time, may differ among people. Some prefer fast algorithms with relatively
low precision to relatively slow algorithms with high precision. Others may think precision
and computing time are equally important.

<< Insert Figures 3a-3h about here.>>

Figures 4a-4h show plots of the mean number of evaluations against the mean error of the
best ten solutions of every algorithm for each test function. Here we use the mean number of
evaluations over all 100 optimization runs, since we need to do all runs before we can
determine the best ten solutions. We mentioned earlier that the best ten solutions of algorithm
3 (without restart) are relatively precise. It appears that this algorithm does not need much
more evaluations than algorithm 4, which is the fastest algorithm on average. So we may call
algorithm 3 efficient among the other algorithms, in the sense that selecting the ten best
solutions of this algorithm results in a high precision in reasonable time. Algorithm 3 uses the
3-in-a-row rule and noise reduction. The former setting yields a lower computing time, the
latter a higher precision. Apparently this combination is efficient.

<< Insert Figures 4a-4h about here.>>

6 Discussion

In this section we will discuss a number of important issues when using an optimization
technique like RSM. First of all, the algorithms we have studied can serve as a benchmark
algorithm in other studies. Here we aim at algorithm 5 in combination with the restart
mechanism, since it is the most precise algorithm, but also at algorithm 3, which seems to be
the most efficient algorithm concerning the ten best solutions. Moreover, algorithm 7 can be
used as benchmark for testing the efficiency concerning all solutions.
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Secondly, although the restart mechanism should not be seen as a procedure that always
recovers an algorithm when it is stuck in a bad point (solution), we have seen that the restart
mechanism increases the precision of the algorithm for a number of test functions. The main
lesson is that regularly enlarging the region of interest during the optimization run, may lead
to better solutions. An important question which is unanswered is how can we employ time
(read: the number of evaluations) best to search the domain of the objective function. One
answer to this question is using strict stopping criteria and multiple restarts.

Thirdly, in this paper we have applied all algorithms 100 times to each optimization
problem. We have seen that the algorithms do not perform consistently well. On the other
hand determining the best ten of the 100 solutions shows that the algorithms also find very
good solutions. Therefore it seems profitable to run an algorithm more than once and then
select the best solutions. Selecting good solutions is not easy; Boesel et al. (2003) present an
advanced method to select the best solution from all solutions visited during an optimization
run. We feel that running an optimization algorithm 100 times and then re-evaluating the ten
solutions with the lowest estimated response is a good way to find a good solution. Since we
have an estimated response based on 5 function evaluations for every solution, we do not need
additional evaluations for determining the best ten. Next, the ten best solutions are re-
evaluated using more simulation runs than used in the optimization procedure. The resulting
estimated responses are then compared using standard techniques.

Fourthly, since RSM uses factorial designs it can only be applied to problems with a small
number of variables. Even when the objective function is evaluated in the points of a
fractional two-level factorial design, the number of evaluations increases exponentially with
the number of parameters. For instances with, say, more than ten parameters, using techniques
like the Nelder and Mead Simplex method seem more appropriate. This method appears to
perform quite well, concerning both precision and computing time, for bigger problem
instances (see e.g. Barton and Ivey, 1996; Neddermeijer et al. 2000b).

7 Conclusions

In this paper we worked towards a standardized automated RSM algorithm. The basis for this
algorithm is the framework of Neddermeijer et al. (2001). We have extended this by
introducing stopping rules and a restart mechanism. Consequently, different settings for such
an automated RSM procedure for simulation optimization are analyzed. We compared the
precision and efficiency of the different algorithms for optimization of a set of test problems,
including a simulation model for cancer screening. Below we summarize our findings.

e The RSM algorithms proposed in this paper are suitable for optimizing objective functions
with up to eight variables quite precisely in reasonable time. Especially algorithm 3
appears to be efficient in this respect. The best ten solutions of this algorithm are of high
quality; the number of evaluations needed to find these solutions is quite low.

e The test problems considered in this paper have unimodal objective functions, which
means that they do not have local optima. Nevertheless it appears that the RSM algorithms
get sometimes stuck in non-optimal solutions. Generally, this occurs when the objective
function is very flat in comparison with the associated noise on a certain region of the
domain. This problem can be solved effectively by using the restart mechanism. Resetting
the region of interest to its initial size, i.e. an enlargement of this region, and starting the
search all over again, enables the algorithm to escape from regions where the objective
function is very flat.
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e We have tested a number of refinements. It appears that some of the modified RSM
procedures, e.g. the algorithms using noise reduction and the Myers & Khuri rule, find
more precise solutions. Unfortunately, using these settings has a drawback: the computing
time measured as the number of function evaluations, is higher for these algorithms.

e [t appears that rerunning the algorithms can lead to very different results. The standard
deviations of the error of the algorithms are sometimes, even when the restart mechanism
is applied, of the same order of magnitude as the errors themselves. This means that there
is no consistency in the quality of solutions. On the other hand, running an algorithm ten
times already gives a very high probability of finding a good solution.

e Stopping rules indeed make that the RSM procedures recognize when no further
improvement is being made. In the first phase of our experiments we noticed that most of
the algorithms were terminated too early. This leads to low precision. Moreover, the Fu
versions of the algorithms, which are ended after only one second-phase, are also
terminated too early. However, it is a little disappointing that the eight tested algorithms
need quite a lot of evaluations to decrease the mean error of all 100 optimization runs.
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. Stopping rule Shrink region of Solve second-order
Algorithm . .
steepest descent interest model inadequacy
1 3-in-a-row 50% Noise reduction
2 3-in-a-row 50% Shrink design
3 3-in-a-row 10% Noise reduction
4 3-in-a-row 10% Shrink design
5 Myers and Khuri 50% Noise reduction
6 Myers and Khuri 50% Shrink design
7 Myers and Khuri 10% Noise reduction
8 Myers and Khuri 10% Shrink design
Table 1: The test design
Parameter Setting
Significance level of 59,

all statistical tests ’

Shrink design for solving

) 50%
second-order inadequacy
Increase precision for solving 0.95 /25%
second-order inadequacy
Table 2: Parameter settings
Criterion Setting
IMPROVE 54, j=1,2,3,4,5
CONVERGE 5E-04j\k, j=1,2,4,10,20
MAXEVAL 502F, j=1234,5

Table 3: Possible settings of stopping criteria
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Criterion SETTING ERROR DISTANCE nEVAL
IMPROVE 5 0.746 (0.60) | 0.288 (0.086) 1628 (238)
10 0.472 (0.41) | 0.263(0.075) | 2113 (525)
15 0.370 (0.37) | 0.259(0.080) | 2735 (1253)
20 0.302 (0.31) | 0.260(0.090) | 3601 (1976)
25 0.261 (0.27) | 0.259(0.091) | 4562 (2686)
CONVERGE 1.0E-03 0.276 (0.35) | 0.260(0.092) | 5542 (3061)
2.0E-03 0.208 (0.27) | 0.265(0.091) | 8864 (3707)
4.0E-03 0.172 (0.15) | 0.262(0.078) | 11634 (3807)
1.0E-02 0.187 (0.16) | 0.264 (0.078) | 12898 (3258)
2.0E-02 0.185(0.14) | 0.267 (0.095) | 13598 (2341)
MAXEVAL 800 3731 (642) 3.94 (0.33) 800 (0)
1600 0.665 (0.60) | 0.280 (0.085) 1600 (0)
2400 0.369 (0.38) | 0.255 (0.081) 2400 (0)
3200 0.278 (0.27) | 0.254(0.079) 3200 (0)
4000 0.260 (0.27) | 0.256 (0.081) 4000 (0)
Max. iterations 500 0.169 (0.17) | 0.278(0.11) 18103 (236)

Table 4a: Results of applying algorithm 1 on test problem 2

Criterion SETTING ERROR DISTANCE nEVAL
IMPROVE 5 0.329 (0.31) | 1.88(0.029) 281 (118)
10 0.283(0.19) | 1.87(0.035) 517 (269)
15 0.266 (0.18) | 1.88(0.036) 805 (405)
20 0.255(0.17) | 1.88(0.045) 1038 (520)
25 0.254 (0.17) | 1.88(0.044) 1218 (613)
CONVERGE 7.071E-04 0.319(0.30) | 1.88(0.038) 354 (193)
1.414E-03 0.264 (0.19) | 1.88(0.046) 569 (305)
2.828E-03 0.249 (0.17) | 1.88(0.052) 863 (418)
7.071E-03 0.241 (0.16) | 1.88(0.054) 1076 (458)
1.414E-02 0.243 (0.16) | 1.88(0.054) 1266 (542)
MAXEVAL 200 0.347(0.32) | 1.88(0.024) 200 (0)
400 0.275 (0.20) | 1.87(0.035) 400 (0)
600 0.263 (0.18) | 1.87(0.038) 600 (0)
800 0.262 (0.18) | 1.88(0.042) 800 (0)
1000 0.241 (0.16) | 1.88(0.056) 1000 (0)
Max. iterations 150 0.228 (0.14) | 1.88(0.074) 3272 (133)

Table 4b: Results of applying algorithm 1 on test problem 6
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Criterion SETTING ERROR DISTANCE nEVAL
IMPROVE 5 4.96 (4.0) 0.533 (0.19) 1720 (402)
10 2.76 (3.7) 0.396 (0.20) 2577 (735)
15 1.99 (2.6) 0.348 (0.17) | 3515 (1247)
20 1.62 (2.1) 0.325(0.16) | 4588 (1941)
25 1.50 (2.1) 0.315(0.16) | 5775 (2598)
CONVERGE 1.0E-03 16.7 (14) 0.930 (0.36) 1128 (586)
2.0E-03 2.42 (4.0) 0.360 (0.22) | 3507 (1724)
4.0E-03 1.26 (2.0) 0.294 (0.16) | 9183 (3780)
1.0E-02 1.38 (2.0) 0.310 (0.16) | 11109 (4137)
2.0E-02 1.57 (2.2) 0.323(0.17) | 11366 (3945)
MAXEVAL 800 31.8 (25) 1.27 (0.45) 800 (0)
1600 5.62 (4.0) 0.572 (0.18) 1600 (0)
2400 2.64 (3.3) 0.395 (0.18) 2400 (0)
3200 2.04 (2.9) 0.351 (0.18) 3200 (0)
4000 1.67 (2.5) 0.327 (0.17) 4000 (0)
Max. iterations 500 1.06 (1.8) 0.277(0.16) | 18085 (252)

Table 4c: Results of applying algorithm 1 on test problem 7

Algorithm
Stopping rule - ! 3 > 6 8
IMPROVE 5 5 4 5 4 4
CONVERGE 2 3 3 3 3 3
MAXEVAL --- --- --- -—- --- --- --- -

Table 5: Settings of the different stopping criteria in phase 2
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Algorithm 1 NO RESTART RESTART

Test Function ERROR nEVAL ERROR nEVAL
Rosenbrock function 9.92 (86) 107 (10) 1.28 (0.40) 20.5 (10)
Powell singular function | 19334 (0.0) 34.6 (4.1) 18287 (0.0) 36.9 (8.7)
Gaussian function 0.96 (1.16) 37.7 (13) 0.24 (0.25) 23.1 (8.5)
Parabolic function 1102 (3524) 346 (136) 120 (1200) 109 (89)
Asymmetric function 7.83 (19.8) 1411 (654) 0.33(0.36) 853 (605)
Beale function 1207 (701) 38.6 (35) 679 (739) 41.0 (35)
Wood function 4203 (3174) 199 (244) 2664 (3069) 188 (239)
Simulation model 0.109 (0.11) 28.5(9.1) 0.094 (0.099) 25.1(5.3)

Table 6a: Results of applying the Fu version of algorithm 1
Algorithm 2 NO RESTART RESTART

Test Function ERROR nEVAL ERROR nEVAL
Rosenbrock function 44.7 (190) 103 (19) 1.25 (0.37) 24.4 (19)
Powell singular function 19345 (76) 34.6 (4.1) 18328 (141) 35.7(6.9)
Gaussian function 1.36 (1.47) 33.8(12) 0.31(0.33) 24.6 (9.8)
Parabolic function 1235 (3724) 334 (94) 0.30 (0.23) 113 (90)
Asymmetric function 3.68 (13.8) 1436 (542) 0.37(0.32) 844 (558)
Beale function 1134 (746) 42.9 (36) 672 (746) 38.6 (34)
Wood function 4026 (3219) 207 (264) 2184 (2965) 230 (251)
Simulation model 0.116 (0.15) 259 (5.7) 0.089 (0.107) 25.0 (4.2)

Table 6b: Results of applying the Fu version of algorithm 2
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Algorithm 5 NO RESTART RESTART

Test Function ERROR nEVAL ERROR nEVAL
Rosenbrock function 69.6 (233) 374 (106) 1.13 (0.21) 50.0 (101)
Powell singular function 19334 (0.0) 37.2(9.1) 18287 (0.0) 34.9 (5.0)
Gaussian function 1.05 (1.23) 48.0 (19) 0.29 (0.32) 23.6 (13)
Parabolic function 735 (2924) 1187 (282) 120 (1200) 141 (254)
Asymmetric function 4.72 (15.5) 1700 (604) 0.88 (5.7) 917 (589)
Beale function 1160 (727) 117 (159) 620 (732) 120 (155)
Wood function 4274 (3148) 431 (597) 2609 (3053) 416 (548)
Simulation model 0.094 (0.11) 27.5(9.6) 0.085 (0.108) 25.0 (4.2)

Table 6¢: Results of applying the Fu version of algorithm 5
Algorithm 6 NO RESTART RESTART

Test Function ERROR nEVAL ERROR nEVAL
Rosenbrock function 70.7 (237) 372 (103) 1.11 (0.18) 49.7 (102)
Powell singular function 19345 (76) 34.6 (4.1) 18315 (127) 35.2(7.0)
Gaussian function 1.29 (1.42) 46.2 (21.2) 0.31 (0.43) 25.6 (14.1)
Parabolic function 864 (3164) 1182 (307) 0.23 (0.17) 160 (296)
Asymmetric function 2.40 (10.8) 1688 (502) 0.34 (0.29) 861 (675)
Beale function 1164 (730) 117 (158) 685 (746) 109 (150)
Wood function 4867 (2918) 358 (606) 3117 (3135) 439 (572)
Simulation model 0.107 (0.12) 26.5(7.2) 0.089 (0.081) 26.9 (7.3)

Table 6d: Results of applying the Fu version of algorithm 6
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Algorithms

Test function 1 2 3 4 5 6 7 8
Rosenbrock 1.13 1.14 1.16 1.19 1.03 1.07 1.04 1.08
function (0.21) (0.21) (0.27) (049) (0.16) (0.16) (0.10) (0.17)
Powell sing. 0.27 0.86 0.25 1.09 0.24 1.43 0.26 0.77
function (0.28)  (0.93) (0.24) (1.70) (0.23) (5.90) (0.29) (0.82)
Gaussian 0.19 0.18 0.17 0.16 0.16 0.17 0.19 0.19
function (0.20)  (0.19) (0.20) (0.17) (0.15) (0.16) (0.21) (0.21)
Parabolic 0.24 0.23 0.22 0.27 0.20 0.23 0.21 0.22
function (0.16) (0.17) (0.17) (0.35) (0.13) (0.17) (0.13) (0.16)
Asymmetric 0.18 0.25 0.20 0.55 0.21 0.31 0.18 0.25
function (0.15) (0.17) (0.16) (2.71) (0.18) (0.32) (0.15) (0.19)
Beale 0.25 0.64 0.31 0.40 0.20 0.23 0.24 0.28
function (0.18) (291) (0.25) (0.63) (0.10) (0.22) (0.14) (0.33)
Wood 1.44 28.1 4.77 32.4 0.81 20.7 3.16 24.5
function (1.9) (37) (7.8) (36) (0.87) (28) (5.7) (30)
Simulation | 0.067 0.11 0.061 0.089 0.068 0.090 0.073 0.094
model (0.081) (0.13) (0.074) (0.099) (0.060) (0.11) (0.098) (0.12)

Table 7a: Mean and standard deviation of the errors of the eight algorithms using the new
stopping criteria

Algorithms
Test function 1 2 3 4 5 6 7 8

Rosenbrock 0.849 0918 0.826 0.893 0.758 0.874 0.875 0.850
function (0.093) (0.028) (0.070) (0.061) (0.157) (0.040) (0.042) (0.083)
Powell sing. | 0.020 0.057 0.019 0.087 0.021 0.050 0.023 0.049
function (0.012) (0.022) (0.013) (0.032) (0.011) (0.018) (0.012) (0.024)
Gaussian 0.010 0.006 0.003 0.009 0.009 0.016 0.012 0.025
function (0.006) (0.006) (0.002) (0.006) (0.007) (0.007) (0.007) (0.012)
Parabolic 0.047 0.050 0.037 0.049 0.046 0.053 0.059 0.056
function (0.020) (0.013) (0.016) (0.014) (0.017) (0.018) (0.017) (0.017)
Asymmetric | 0.035 0.054 0.032 0.042 0.040 0.051 0.030 0.059
function (0.010) (0.021) (0.012) (0.011) (0.006) (0.016) (0.011) (0.008)
Beale 0.127 0.124 0.129 0.127 0.123 0.126 0.125 0.127
function (0.002) (0.002) (0.002) (0.001) (0.005) (0.003) (0.003) (0.001)
Wood 0.108 0.786 0.083 1.882 0.077 0.363 0.106 0.445
function (0.042) (0.449) (0.039) (0.968) (0.050) (0.187) (0.052) (0.245)
Simulation 0.006 0.004 0.004 0.003 0.005 0.006 0.005 0.004
model (0.003) (0.003) (0.002) (0.001) (0.003) (0.003) (0.002) (0.002)

Table 7b: Mean and standard deviation of the ten smallest errors of the eight algorithms using
the new stopping criteria
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Algorithms

Test function 1 2 3 4 5 6 7 8
Rosenbrock 798 582 405 318 972 844 686 659
function (252) (189) (157) (123) (230) (197) (208) (179)
Powell sing. 4475 2612 4239 2391 5257 3915 4166 3606
function (2471) (846) (1951) (820) (2884) (1047) (1734) (906)
Gaussian 1382 1026 662 568 1576 1131 685 629
function (777) (450) (275) (167) (701) (521) (288) (241)
Parabolic 6151 3727 4968 2784 7096 4516 4313 4000
function (5080) (2141) (4035) (1559) (5264) (2084) (2393) (1844)
Asymmetric | 31179 18255 31121 18611 32815 18844 19003 16269
function (26362) (11874) (21364) (12144) (27925) (9987) (12915) (9588)
Beale 800 632 398 382 935 827 680 660
function (332) (231) (165) (145) (260) (221) (212) (220)
Wood 5319 2904 2701 2138 6626 3973 4022 3646
function (2041) (1101) (1116) (861) (2780) (1115) (1068) (1239)
Simulation 817 596 202 204 501 402 184 207
model (420) (273) (113) (118) (250) (224) (113) (136)

Table 7c: Mean and standard deviation of the number of evaluations of the eight algorithms
using the new stopping criteria

Algorithms
Test function 1 2 3 4 5 6 7 8
Rosenbrock 1.10 1.09 1.11 1.10 1.02 1.05 1.03 1.05
function (0.18) (0.17) (0.21) (0.18) (0.15) (0.15) (0.11) (0.16)
Powell sing. 0.20 0.36 0.21 0.35 0.19 0.35 0.22 0.34
function (0.19)  (0.32) (0.19) (0.27) (0.18) (0.28) (0.19) (0.28)
Gaussian 0.15 0.16 0.15 0.13 0.14 0.14 0.15 0.15
function (0.15) (0.17) (0.14) (0.15) (0.14) (0.11) (0.17) (0.16)
Parabolic 0.22 0.22 0.21 0.22 0.19 0.23 0.21 0.21
function (0.15) (0.17) (0.17) (0.15) (0.12) (0.16) (0.13) (0.15)
Asymmetric 0.18 0.23 0.19 0.24 0.19 0.21 0.14 0.20
function (0.15) (0.17) (0.16) (0.18) (0.16) (0.16) (0.11) (0.14)
Beale 0.22 0.23 0.28 0.28 0.20 0.20 0.21 0.25
function (0.13) (0.17) (0.24) (0.22) (0.10) (0.11) (0.11) (0.18)
Wood 0.47 5.39 1.18 5.85 0.41 3.19 0.85 5.93
function (0.38) (7.26) (2.67) (6.74) (0.43) (4.54) (1.33) (12.9)
Simulation 0.061 0.090 0.056 0.081 0.066 0.064 0.069 0.075
model (0.056) (0.096) (0.055) (0.081) (0.059) (0.059) (0.094) (0.065)

Table 8a: Mean and standard deviation of the errors of the eight algorithms using the new
stopping criteria and the restart mechanism
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Algorithms

Test function 1 2 3 4 5 6 7 8
Rosenbrock | 0.836 0.829 0.805 0.851 0.731 0.855 0.860 0.776
function (0.082) (0.099) (0.070) (0.044) (0.146) (0.031) (0.041) (0.162)
Powell sing. | 0.019 0.043 0.016 0.037 0.018 0.037 0.022 0.034
function (0.010) (0.012) (0.012) (0.017) (0.009) (0.015) (0.010) (0.017)
Gaussian 0.008 0.006 0.003 0.006 0.006 0.009 0.009 0.011
function (0.005) (0.005) (0.002) (0.004) (0.004) (0.005) (0.005) (0.010)
Parabolic 0.044 0.048 0.037 0.049 0.044 0.049 0.053 0.058
function (0.018) (0.012) (0.016) (0.014) (0.015) (0.017) (0.017) (0.019)
Asymmetric | 0.034 0.042 0.030 0.042 0.041 0.042 0.030 0.047
function (0.006) (0.015) (0.011) (0.011) (0.005) (0.014) (0.010) (0.012)
Beale 0.127 0.124 0.128 0.127 0.122 0.125 0.125 0.127
function (0.002) (0.002) (0.002) (0.001) (0.004) (0.003) (0.003) (0.001)
Wood 0.076 0.280 0.057 0.314 0.029 0.193 0.057 0.145
function (0.025) (0.137) (0.024) (0.243) (0.019) (0.055) (0.021) (0.063)
Simulation 0.006 0.004 0.004 0.003 0.004 0.006 0.006 0.005
model (0.003) (0.003) (0.002) (0.001) (0.002) (0.002) (0.002) (0.003)

Table 8b: Mean and standard deviation of the ten smallest errors of the eight algorithms using
the new stopping criteria and the restart mechanism

Algorithms
Test function 1 2 3 4 5 6 7 8

Rosenbrock 655 492 275 250 582 460 316 247
function (248) (175) (151) (121) (260) (185) (163) (145)
Powell sing. 3192 1707 2688 1475 3170 1710 1786 1469
function (3122) (1179)  (1988) (886) (2660) (967) (1721) (818)

Gaussian 1346 949 642 517 1332 1044 648 551
function (762) (487) (286) (229) (723) (547) (275) (216)
Parabolic 5107 2796 4446 2728 4206 3055 3042 2573
function (4615) (2111) (4039) (1612) (3291) (1892) (2373) (1722)
Asymmetric | 23785 13284 23214 13238 27503 15834 17481 14311
function (18956) (8856) (19591) (8217) (23980) (9546) (15337) (9591)

Beale 686 528 300 251 602 443 267 244
function (291) (214) (185) (140) (243) (174) (135) (141)
Wood 3266 2148 1856 1584 3155 2052 1572 1600
function (2432) (862) (1357) (903) (2293) (1022)  (1075) (873)

Simulation 717 583 166 202 480 370 163 172
model (323) (281) (113) (135) (278) (183) (91) (128)

Table 8c: Mean and standard deviation of the number of evaluations done in the restart of the
eight algorithms using the new stopping criteria
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Figure 2: Framework for automated RSM algorithms with building blocks, strategic choices,
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algorithm is also a strategic choice.
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Figures 3a-h: Mean number of evaluations versus mean error of algorithms
Ir denotes algorithm 1 using the restart mechanism
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Figures 4a-h: Mean number of evaluations versus mean error of best 10 solutions
It denotes algorithm 1 using the restart mechanism
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