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Abstract

Over the last decade, isotone recursive methods have provided uni-
�ed catalog of results on existence, characterization, and computa-
tion of Markovian Equilibrium Decision Processes (MEDPs) in in�-
nite horizon economies where the second welfare theorem fails. Such
economies include models with production nonconvexities, taxes, val-
ued �at money, models with monopolistic competition, behavioral het-
erogeneity, and incomplete markets. In this paper, we survey this
emerging class of methods. Our methods use a qualitative approach to
economic equilibria �rst introduced in the work in operations research
by Veinott and Topkis. As the methods emphasize the role of order,
they are amenable for obtaining conditions for monotone comparison
theorems on the space of economies. We are also able to describe
monotone iterative procedures that provide the needed foundations
for a theory of numerical solutions for MEDPs and stationary Markov
equilibrium (SME). One interesting additional result of independent
interest is we construct su¢ cient conditions for the existence of a new
class of envelope theorems for nonconcave programming problems.

�Email addresses: Manjira.Datta@asu.edu, Kevin.Re¤ett@asu.edu. We are deeply in-
debted to Len Mirman and Olivier Morand for numerous lengthy discussions concerning
many issues discussed in this survey. Many of the results presented in this paper were
developed originally in some form during our joint work with Len and Olivier over the last
�ve years. We dedicate this paper to Len Mirman on the occasion of his sixty-�fth birth-
day. Indeed, this paper would not have been written without Len�s ongoing pioneering
work on equilibrium growth under uncertainty. We also thank Elena Antoniadou, Hec-
tor Chade, John Coleman, Jeremy Greenwood, Seppo Heikkila, Ken Judd, Tom Krebs,
Cuong Le Van, Robert Lucas, Jr., Jianjun Miao, Chris Shannon, John Stachurski, Yiannis
Vailakis, Charles Van Marrewijk, Jean-Marie Viaene, Itzhak Zilcha, and especially Robert
Becker and Manuel Santos for many helpful conversations over the past years. All mistakes
remain our own.
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1 Introduction

A foundation of modern macroeconomics is the stochastic growth model
originally introduced in the seminal work of Brock and Mirman[15]. Their
original model is an in�nite horizon economy with a continuum of identi-
cal households, each with access to a complete set of �nancial markets that

insure them against all sources of idiosyncratic risk. There is single sector
production that employs capital and labor whose returns are summarized by
a stochastic neoclassical production function representing an aggregate con-
vex production set with identical private and social returns to inputs. There
is also aggregate risk taking the form of a collection of identically and inde-
pendently distributed (i.i.d.) random variables, the agents in the economy
face no frictions in information acquisition (i.e., there is no learning), labor
supply is inelastic, and there are no equilibrium distortions. The authors
characterize the unique Markovian Equilibrium Decision Process (MEDP)
and its associated unique (non-trivial) long-run equilibrium dynamics, in
particular, the Stationary Markovian Equilibrium (SME). Their method-
ological approach was pioneering, and relied heavily on recursive methods.
Implicitly, it exploits the validity of a second welfare theorem and one can
interpret the economic outcomes of the �ctional social planner�s problem
from the perspective of a decentralized economic system. A fully decentral-
ized recursive formulation of the Brock-Mirman framework is put forward
by Prescott and Mehra[61] (see also, Stokey, Lucas, with Prescott[73]).

Over the last three decades, extensions of this model have become the
foundation for the systematic study of many diverse issues in quantitative
dynamic macroeconomic theory. Applications include models of economic
�uctuations and business cycles, production-based asset pricing, the posi-
tive and normative implications of incomplete �nancial markets and public
goods, the wealth inequality, the dynamic structure of altruistic economies,
stochastic life-cycle models, models with physical and human capital, and
the role of activist �scal and/or monetary policy etc. However, many recent
applications emphasize economic environments where the second welfare
theorem is not available. These modi�cations create serious complications
for a systematic study of the underlying structure of the MEDPs and the
SME. A prevalent approach is to develop extensive applications of numer-
ical methods to characterize MEDPs and the SME. From a mathematical
perspective, many of these approaches have been ad hoc as they cannot
be developed rigorously without providing characterizations of qualitative
structure of the MEDPs and/or the SME.

An important question naturally emerges from this apparent disconnect
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between mathematical principle and macroeconomic practice: can one pro-
vide sharp and constructive characterizations of the MEDPs or the SME for
generalized Brock-Mirman environments where the second welfare theorem
fails? The most signi�cant advance in providing an a¢ rmative answer to this
question has been the recent literature on �monotone methods" (also known
as �monotone map" methods or �isotone recursive methods"). The pioneer-
ing work of Coleman [18][19][20][21], Greenwood and Hu¤man[34], Datta,
Mirman, and Re¤ett[22] and Morand and Re¤ett[57] provide the genesis of
the study of isotone recursive methods over the last �fteen years (they refer
to them, as the "monotone-map" method). These papers present the �rst set
of conditions under which constructive methods can be applied for studying
the structure of a decentralized Markovian equilibrium in economies with
or without non-classical production technologies.1 An important general-
ization of this monotone-map approach is found in Mirman, Morand, and
Re¤ett[54]. Here, a new and more general isotone map approach is presented
(with the Coleman-Greenwood-Hu¤man approach as a special case) and
can be applied to a larger collection of dynamic economies with production
nonconvexities (in the reduced-form production function). In this setting,
sets of su¢ cient conditions for the existence of semicontinuous, continuous,
Lipschitz continuous, and once-di¤erentiable MEDPs are given. Since suf-
�cient conditions for MEDPs to be di¤erentiable are presented, therefore
the error bounds constructed in Santos and Vigo[70] and Santos[69] apply.
Finally a theory of ordered MEDPs is developed applying the seminal work
in operations research on lattice programming and the qualitative study of
equilibrium introduced in Veinott[80][81] and Topkis[76][77][78].

The chapter is organized as follows: in the next section, we introduce
some useful terminology. Section 3 provides a survey of the existing litera-
ture on �xed point theory in order spaces. This �xed point theory is critical
in the development of isotone recursive methods. In Section 4, we consider
homogeneous agent economies with classical production technology and in-
�nite horizon. In this section, we develop an �Euler equation" approach to
isotone recursive methods. We discuss the case studied in Coleman[19] for
nonoptimal homogeneous agent economies. In Section 5, we discuss the gen-
eralizations found in Mirman, Morand, and Re¤ett[54]. Section 6 considers

1The literature on monotone map methods is vast, and also includes the papers of
Lucas and Stokey [51], Bizer and Judd [14] etc. An interesting alternative monotone
method is developed in Becker and Foias [9].
For non-existence of a continuous MEDP, see Santos [68] and Krebs [45]. Mirman,

Morand, and Re¤ett ([54], section 4) show that although the Santos [68] example is robust
to a large class of economies, in many case MEDPs are semi-continuous and isotone.
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the case of elastic labor supply as in Coleman[20] and Datta, Mirman and
Re¤ett[22]. In section 7, we conclude with a brief discussion of new fron-
tiers in monotone recursive methods, to models with heterogeneous agents
including the overlapping generations models with stochastic production
(e.g., Erikson, Morand and Re¤ett[31]), models with unbounded stochas-
tic nonoptimal growth (e.g., Morand and Re¤ett[57]), Ramsey-type models
with heterogeneous agents (e.g., Datta, Mirman, Morand and Re¤ett[23],
and the mixed monotone recursive methods discussed in Re¤ett[63] and
Mirman, Re¤ett, and Stachurski[55].

2 Preliminaries

2.1 Ordered Spaces

We begin with some useful terminology. For a more complete accounting
of the ideas in this section, see Birkho¤[13], Veinott[81], and Davey and
Priestley[24].

Qosets and Posets: Let X be a set. We say X is quasi ordered (or
a qoset) if X is equipped with an order relation �X : X � X ! X that is
re�exive and transitive. In our subsequent discussion, we shall respect two
notational conventions: (i) we write "� " in place of "�X " when the order
relation �X : X � X ! X is clearly implied; and (ii) for two elements of
an qoset X, say a and b; the order relation "a � b " can also be written
as "b � a": If every element of as qoset X is comparable, we say X is a
complete qoset.

The set X is referred to as a partially ordered set (or poset or simply
an ordered set) if X is equipped with an order relation � that is re�exive,
transitive, and antisymmetric. If every element of a poset X is comparable,
then we say X is a totally ordered set or chain. As we shall see in the
immediate sequel, every chain has an inherent lattice structure.

Lattices. Let X be a poset equipped with a partial order � : An upper
( respectively, lower) bound for a set B � X is an element xu(respectively,
xl) 2 B such that for any other element x 2 B; x � xu (respectively, xl � x)
for all x 2 B: If there is a point xu (respectively, xl) such that xu is the least
element in the subset of upper bounds of B � X (respectively, the greatest
element in the subset of lower bounds of B � X), we say xu (respectively,
x;) is the supremum (respectively, in�mum) of B: Clearly if they exist, both
the supremum (or, sup) and in�mum (or, inf) must be unique. We say X
is a lattice if for any two elements x and x0 in X; X is closed under the
operation of in�mum in X , denoted x ^ x0; and supremum in X, denoted
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x_ x0:The former is referred to as �the meet�, while the latter is referred to
as �the join�of the two points, x; x0 2 X: A subset B of X is a sublattice of
X if it contains the sup and the inf (with respect to X) of any pair of points
in B: A lattice is complete if any subset B of X has a least upper bound
_B and a greatest lower bound ^B in B. If every chain C � X is complete,
then X is referred to as a chain complete poset (or equivalent, a complete
partially ordered set or CPO). A set C is countable if it is either �nite or
there is a bijection from the natural numbers onto C: If every chain C � X is
countable and complete, then X is referred to as a countably chain complete
poset. Finally, a subset A of a set C � P is co�nal if for each x 2 C; there
is a y 2 A such that x � y:

Ordered vector spaces and cones. A partially ordered vector space or
linear semi-ordered space is a posetX that is real vector space equipped with
a partial order � that is compatible with the following algebraic structure:
(i) if x � x0; then x+ z � x0 + z; for all z 2 X; (ii) if x � x0; then �x � �x0
for all � � 0 : Any partially ordered vector space that is also a lattice
is called a vector lattice. If the space has a norm k x kX which satis�es
whenever j x j�j x0 j in X; k x k�k x0 k, we say X has a lattice norm: A
complete normed vector space is a Banach space. A normed vector lattice is
a vector lattice equipped with a lattice norm. A normed vector lattice X
that is complete in the Cauchy sense, and is endowed with a lattice norm is
referred to as a Banach lattice.

Let X be a topological space. The set X+ = fx 2 X, x � 0g is the
order cone of X if X is nonempty convex closed set that has the following
two properties: (i) x 2 X+ =) �x 2 X+ for � � 0; (ii) if x and -x in
X+; x = 0 where 0 denote the zero of the cone. The partial order induced
by the cone structure of X+ has x1 � x2 if x1 � x2 2 X+: Now, assume X
is a real Banach space. A cone X+ of X is normal if there exists a constant
m such that for any x1; x2 2 X+; k x1 + x2 k� m; k xi k= 1 for i = 1; 2:
Intuitively, the restriction of normality of the cone geometrically bounds the
angle between any two unit vectors away from �; so a normal cone cannot
become "too large". An increasing sequence in the cone fxtgt=1t=1 , xt 2 X+

is a sequence that satis�es x1 � x2 � ::: � xn � ::: We say a cone X+ is
regular if if every increasing and bounded order sequence in X+ has a limit
in X+: We say X+ is fully regular if every increasing and norm bounded
sequence in X+ has a limit in X+: A fully regular cone is also regular. A
regular cone is normal. (See Guo and Lakshmikantham[35], Theorem 1.2.1).
A cone X+ is solid if its interior �X+ is nonempty.

Let [a) = fxjx 2 X;x � ag be the upperset of a; (b] = fxjx 2 X;x � bg
the lowerset of b. X is an ordered topological space if X is equipped with a
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partial order and topology that implies [a) and (b] are closed in the topology
on X: An order interval is de�ned to be [a; b] = [a) \ (b], a � b. Therefore
in an ordered topological space, all [a; b] � X (e.g., order intervals) are
closed in the topology of X. In our work, we will often study �xed point
problems where the domain/range is a compact order interval in a normal
and solid cone of positive continuous functions X+ = C+(S) endowed with
the C0 uniform norm topology (where each function itself is de�ned on
compactum S). Such a space is not a regular cone. We will often work on a
transformation space that is a compact suborder interval in C+(S) (where
compactness will be used to compensate for the loss of regularity in the cone
C+(S)).

2.2 Mappings

We now de�ne some important properties of mappings, especially those
de�ned on lattices and posets:

Isotone (or Order Preserving) Mappings on a Poset: Let (X;�X)
and (Y;�Y ) be Posets. A mapping is a relational statement between two
spaces, say X and Y: We shall consider both �point-to-point" and �point-
to-set" mappings. In the case of a �point-to-point" mapping, we refer to
the mapping as a function ( or equivalently as an operator). A function
m : X ! Y is said to be isotone on X if it is �order-preserving", i.e.,
m(x0) �Y m(x); when x0 �X x; for x; x0 2 X: If m(x0) >Y m(x) when
x0 >X x for x; x0 2 X, we say the functionm is increasing. Ifm(x0) >Y m(x)
when x0 �X x; x0 6= x, we say the function m is strictly increasing. We
say m(x) is antitone (or, order-reversing) if m(x) �Y m(x0) if x0 �x x: A
function that is either isotone or antitone is monotone. When the mapping
m(x) is a self-mapping on X, we also refer to m(x) as a transformation of
X, and the set X as a transformation set. If our concern is the �xed points
of a transformation m(x) on X; we refer to the transformation set X as the
�xed point space.

Notions of monotonicity are also available for multifunctions or corre-
spondences. By a correspondence or multifunction, we always refer to a
nonempty-valued mapping M : X ! 2Y ; e.g., a nonempty-valued �point-
to-set" mapping. We say a correspondence or multifunction is ascending
in the set relation S (denoted by �S) if M(x0) �S M(x); when x0 �X x
where (X;�X) is a partially ordered space: If this set relation �S induces a
partial order on the powerset 2Y (or, perhaps, 2Y n;), we refer the ascending
correspondence also as an isotone correspondence.

To make concrete the notion of an isotone versus ascending correspon-
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dence, we discuss some particular set relations; some that induce partial
orders on 2Y (or, 2Y n?), others that do not.2 The set relations we consider
are each compatible with pointwise set comparisons, and, therefore, closely
related to the su¢ cient conditions under which correspondences admit iso-
tone selections. We focus primarily on four such set relations. Let Y be
a set, and A;B 2 2Y : We de�ne : (i) the Veinott-Weak Set relation �won
2Y n? : A �w B; if for any a 2 A; b 2 B, either a ^ b 2 B; or, a _ b 2 A;
(ii) the Veinott-Strong Set Order �s on 2Y n? : A �a B; if for any a 2 A;
b 2 B; a^ b 2 B and a_ b 2 A; (iii) the Smithson�Weak Set relation �ason
2Y : A �as B if we have either (C1) for any b 2 B; there exists an a 2 A
such that a � b; or, (C2) for any a 2 A; there exists an b 2 B such that
a � b; (iv) the Pointwise Strong Set Order �sson 2Y n? : A �ss B if and
only if a 2 A; b 2 B; then a � b in the partial order structure on A; for
all a; b:A �nal classic partial order on the powerset 2Y is commonly referred
to as set inclusion. We say a subset A �SI B under set inclusion �SI if
B � A:

Fixed points. Let � : X ! 2X be a non-empty valued correspondence
for each x 2 X: The correspondence � is said to have a �xed point if
there exists an x such that x 2 �(x): Therefore, if � is a function, then
a �xed point is an x� such that x� = �(x�): A �xed point x� is minimal
( respectively, maximal) if there does not exist another �xed point, say y�,
such that y� � x� (respectively, x� � y�). If a �xed point is either minimal
or maximal, we say it is extremal.

3 Fixed Point Theory In Ordered Spaces

In this section, we provide an account of �xed point theory in ordered spaces.
For a more extensive discussion, see excellent surveys in Amann[4], Guo and
Lakshmikantham[35], Heikkila and Lakshmikantham[36] and Jachymski[40].

3.1 Existence

First, we discuss the existence and characterization of solutions for two pro-
totypical classes of parameterized �xed point (or, transformation) problems
often encountered in economic applications. Consider X is a poset, T is an
ordered topological space. The two problems are stated as Problem 1 and
Problem 2.

2For a more detailed discussion, we refer to the classic references of Smithson [72] and
Veinott [81]
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Problem 1: To characterize the �xed points of the mapping,

f(x; t) : X � T ! X and f is isotone on X for each t 2 T:

Problem 2: To characterize the �xed points of the mapping,

F (x; t) : X�T ! 2X ; F is ascending (�as) in (C1) or (C2) on X for each t 2 T:

Recall that �as denotes Smithson�s weak set relation on the powerset
2X :

3.1.1 Lattice Theoretic Fixed Point Theorems

A classical case of Problem 1 occurs when X is a nonempty, complete lattice.
This is the case studied in the seminal work of Tarski[74],[75] in the early
1940s, see also Kantorovich[43].3 We say a space Y has a �xed point property
for isotone functions (or, more compactly, fpp) if and only if each isotone
transformation of Y; say f : Y ! Y , has a �xed point. We denote the �xed
point correspondence, in either Problem 1 or Problem 2, as G(t):

We state Tarski�s theorem adapted to Problem 1:

Proposition 1 (Tarski[75], Theorem 1): Fix t 2 T; and let f(x; t) : X �
T ! X; f be isotone in x for each t 2 T: Then G(t) is an nonempty complete
lattice for each t 2 T .

We make a few remarks on this result. First, the theorem does not say
G(t) is subcomplete in X . In general, it is not. Second, the operator f is
assumed to have no continuity properties on X (e.g., we assume no order or
topological continuity properties for f(x; t)).

Often in economic applications, because of the absence of su¢ cient con-
cavity in the agent�s decision problem along equilibrium trajectories, equi-
librium �xed point problems cannot be posed in terms of a single valued
operator such as in Problem 1; rather, they must be posed in a more ab-
stract setting of the �xed point of multifunctions, as in Problem 2. For the
general case, a key generalization of Tarski was obtained by Veinott[80] in
the 1970s, see also Veinott[81] (Chapter 4, Theorem 14).4

3Tarski�s original result dates from around 1942 and is available in Tarski [74]. It is a
generalization of a result he developed with Knaster in 1921 (for isotone correspondences
under set inclusion). A related result for semi-ordered linear spaces is in Kantorovich [43].

4Zhou [83] proves it independently in Theorem 1.
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Proposition 2 (Veinott[81]):Let F (x; t) : X � T ! 2Xn?. For any �xed
t 2 T; assume that F (x; t) is a nonempty, isotone in Veinott�s strong set
order, closed, and sublattice-valued correspondence on X: If G(t) is the �xed
point correspondence for F (x; t) at t 2 T; then G(t) is a nonempty complete
lattice for each t 2 T .

Propositions 1 and 2 provide su¢ cient conditions for the existence of a
complete lattice of �xed points for an isotone and/or ascending transforma-
tions of a complete lattice X. An interesting question is necessity: i.e., can
one obtain a complete characterization of a complete lattice using the �xed
point property? Davis[25] (Theorem 1) provides the converse to Tarski�s
theorem: a lattice X is complete if and only if every isotone transformation
f : X ! X has a �xed point. In the context of Problem 2, the Davis charac-
terization of a complete lattice X is also provided. Smithson[72] (corollary
1.8) proves the following: if X is a lattice and F (x) is a multifunction then
X is complete if and only if the correspondence F (x) is (a) ascending in the
Smithson-weak set relation (C1) (respectively, ascending in the Smithson-
weak set relation (C2)), and (b) the least upper bound (F (x; t)) 2 F (x; t)
(the greatest lower bound (F (x; t)) 2 F (x; t)) for all x 2 X; t 2 T; and G(t)
is nonempty for each t 2 T:

Other useful characterizations of complete lattices are available, and we
use them in the sequel, as needed. For example, one can characterize a
complete lattice X in terms of its interval topology (Frink[32]). Recall, the
interval topology for a set X takes all the closed intervals [a; b] as a subbasis
for the closed sets of X. Frink[32] provides the following characterization of
a complete latticeX:X is a complete lattice if and only if X is compact in its
interval topology (see also Birkho¤ [13], Chapter 10, Theorem 20). Another
very useful characterization of a complete lattice is in Davey and Priestly[24]
(Theorem 2.31). Their result provides the following characterization of a
complete lattice X : let X be a nonempty ordered set; then the following
statements are equivalent (i) X is a complete lattice; (ii) for any subset
S � X; inf(S) 2 X; and X has a top element and inf(S) 2 X for every
nonempty subset of X: These two characterizations of a complete lattice X
are used repeatedly in this chapter.

3.1.2 Fixed Point Theory in Complete Partially Ordered Sets

Next, we now consider Problems 1 and 2 when the �xed point space X is
not a complete lattice. A natural set of regularity conditions for an ordered
set X to have the �xed point property turns out to be chain-completeness.
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Recall a set X is chain complete if for any chain C; inf(C) and sup(C) are
in X: A set X has a bottom element a (respectively, top element b) if for
every x 2 X; a � x (respectively, x � b): A set X is a complete partially
ordered set (or, CPO) if and only if (i) X has a bottom element, and (ii) for
each directed net D � X; we have a sup D 2 X: A set X is a CPO if and
only if every chain C in X has a least upper bound, sup(C) 2 X. (Davey
and Priestley[24], Theorem 8.11). Therefore, the notion of a set X being
�chain-complete" is equivalent to the space X being a CP0. We often use
this terminology when discussing chain-completeness.

Chain completeness is a natural condition to check in applications. For
example, every relatively compact chain C in an ordered topological space
has an in�mum and a supremum, inf(C) and sup(C): See Amann[4], Lemma
3.1. Therefore, every compact ordered topological space is chain complete
(Amann[4], Corollary 3.2). One of the earliest results on the existence of
a �xed point for a self map on a poset is obtained in Bourbaki[16]. As a
consequence of Zorn�s lemma, it is shown that ifX is an ordered set such that
every chain has an upper bound (respectively, a lower bound), and f(x) on
X is increasing in the following sense: for all x 2 X , x � f(x) (respectively,
f(x) � x), then f has at least one �xed point. An improvement on this
result is given in Abian and Brown[1] (Theorems 2,3,4) and Pelczar[60].The
version of the theorem that we state is due to Amann[4] (see also Zeidler
[84], Section 11.9 for a proof):

Proposition 3 (Amann[4], Theorem 1.4): Let X be a CPO, f(x; t) : X �
T ! X be isotone in X for each t 2 T: Suppose there exists a pair (xL; xU ) 2
X � X; xL � xU such that xL � f(xL) and f(xU ) � xU : Then f has a
minimal and a maximal �xed point in [xL; xU ]:

We next consider a converse to this theorem.5 That is, as in the case of
a complete lattice, we ask if one can obtain a characterization of a CPO X
using the �xed point property relative to isotone transformations: Clearly,
an arbitrary ordered set X does not have a �xed point property; but it turns
out that if X is an ordered set, and for each isotone operator f(x) on X;
f(x) has a least �xed point, then X is a CPO. Alternatively, if G is the set
of �xed points of an isotone self-map f(x); and X is a CPO, then G is a
CPO.

5An important converse to the Bourbaki �xed point principle (also due to Zermelo) is
related to the �xed point result in the Abian-Brown-Pelczar theorem is in Jachymski[41].
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Proposition 4 (Davey and Priestley[24], Propositions 8.25, 8.26). Let X
and �x t 2 T . Then we have the following: (i) if every isotone map in
X; f(x; t) : X � T ! X; has a minimal �xed point x�(t), then X is a CPO;
(ii) if f(x; t) : X ! X is isotone on X for each t 2 T; and G(t) denotes the
set of �xed points of f(x; t)at t; then if X is a CPO, G(t) is a CPO.

Next, we discuss generalizations of Proposition 3 to the case of mul-
tifunctions. The seminal references are Smithson[72] and Muenzenberger
and Smithson[59]. Let X and Y be CPOs, F (x) : X! 2Yn? be a non-
empty correspondence, and X � X a subchain. If for any isotone func-
tion f(x) : X ! Y such that f(x) 2 F (x), for x0 = supX; we have
f(x0) � y(x0) 2 F (x0); we say the mapping F (x) has the property of
Majorizing Chain Subcompleteness (MCSC). For correspondences that are
ascending in Smithson�s weak set relation (C1) or (C2), and that satisfy
MCSC, we have the following generalization of Amann[4]:

Proposition 5 (Smithson[72], Theorem 1.1): Let X be a CPO, and sup-
pose F (x; t) is isotone in the Smithson-weak set relation, (C1) and/or (C2),
and satis�es Condition MCSC. If there is a point xL 2 X and a point
y 2 F (xL) such that xL � y; then F (x; t) has a �xed point for each t:

Note that Smithson[72] (Proposition 1.6) obtains a generalization of
Abian and Brown�s[1] �xed point theorem for the case the X is a CPO.
In recent work, Heikkila and Hu [38] and Heikkila and Re¤ett[37] have gen-
eralized it further.

3.2 Computational Fixed Point Theory

Recall that an operator f(x) : X ! Y is order-continuous if for any count-
able chain fxng having a supremum; we have sup f(xn) = f(supxn): If
operators are order-continuous in Problem 1, we can weaken the conditions
on the �xed point space X , and also obtain stronger results on comput-
ing extremal �xed points by successive approximation on an operator from
lower solutions xL (e.g., a point xL that has xL � f(xL) and upper solutions
xU (e.g., a point xU that has f(xU ) � xU ):The successive approximations
indexed on the natural numbers can be shown to converge to extremal �xed
points. If the underlying space is an ordered metric space, numerical im-
plementations of our methods via Krasnoselskii et al[44] (Chapter 4) can be
shown to provide a posteriori error bounds in the underlying metric on X.
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This is particularly useful in our work, as many of the �xed point spaces we
use have uniform metric topologies (the economies studied in Sections 4-6).

We next discuss a result due to Kantorovich[43]. This result is available
in a number of places in the literature (e.g., Dugundji and Granas[30] Theo-
rem 4.2, Vulikh[82] Theorem XII.2.1, and Davey and Priestley[24] Theorem
8.15). We have the following result for a special case of Problem 1:

Proposition 6 (Kantorovich[43]): Let X be a poset, D = [a; b] � X count-
ably chain complete. Assume for each t 2 T; f(x; t) : X � T ! X is order
continuous in x; such that a � f(a; t) and f(b; t) � b: Let G(t) be the �xed
point correspondence of f(x; t) for t 2 T:Then (i) G(t) is nonempty, and
(ii) limn fn(a; t)! inf G(t) (respectively, limn fn(b; t)! supG(t)).

An alternative setting that is common in economic applications of Prob-
lem 1 has the following structure: (i) the domain D � X is a compact or-
der interval in a normal cone of positive continuous functions C(X), where
X � Rn is also compact, and (ii) the operator f(x; t) continuous and com-
pact (e.g., completely continuous) in x for each t 2 T . This is true in case of
Coleman[19] and Datta et al[22] for the �xed point problem that constructs
MEDPs. In this case, one can apply an important theorem due to Amann[3]:

Proposition 7 (Amann[3], Theorem 6.1; corollary 6.2): Let X be an or-
dered Banach space, [xL; xU ] an order interval with xL; xU 2 X; xL � xU ;
f(x; t) : X � T ! X is isotone on [xL; xU ], compact and continuous in x,
such that for each t, xL � f(xL) and f(xU ) � xU : Let G(t) be the set of
�xed points of f(x; t) at t 2 T: Then (i) G(t) is nonempty for each t 2 T ;
(ii) limn!1 f(xL; t) ! inf G(t) and f(xU ; t) ! supG(t) and the sequences
ffn(xL; t)gt=1n=0 and ffn(xU ; t)gn=1n=0 are increasing and decreasing sequences,
respectively.

For both propositions above, it is important that we obtain su¢ cient
conditions that allow one to tie directly the computation of extremal �xed
points to well-known numerical approximation algorithms in the existing
literature (e.g., Krasnoselskii et al[44] and Judd[42]). In some cases, such
indexation on the natural number are not su¢ cient to show that successive
approximation from lower or upper solutions for a particular set of �xed
points actually computes an extremal �xed point. See the example in Davey
and Priestley[24], section 8.16 or Heikkila and Lakshmikantham[36], example

12



1.1.1. In such cases, one can still de�ne iterations on well-de�ned index
sets that are subsets of chains. Heikkila and Lakshmikantham [36] address
this issue and deliver a generalized iterative method on a chain. A critical
advantage of their approach is that it does not require either the axiom
schema of replacement or the axiom of choice.

Proposition 8 (Heikkila and Lakshmikantham[36], lemma 1.1.1): Let D
be the set of subsets of P , P a poset with ? 2 D and f : D ! P; there is a
unique well-ordered chain C so that x 2 C if and only if x = ffy 2 Cjy < xg:
If f(C) exists, it is not a strict upper bound of C.

We discuss the elements in the chain C:Standard trans�nite iterations
are contained: let x0 = f(?); xn+1 = f(fx0; x1; :::; xng) for xn < xn+1; ;
xw = f(fxngn=1n=0 ) with xw a strict upper bound of fxngn=1n=0 ; then xw is a
next successor element of C; and so forth. When establishing conditions in
applications under which the generalized iterations of the mapping f can be
indexed on countable sets, it is useful to recall that by Zorn�s lemma, if each
well-ordered chain C in P has an upper bound in P; then P has a maximal
element. From Heikkila and Lakshmikantham[36], Lemma 1.1.2, we know
that each chain of any poset contains a well-ordered co�nal chain. Further,
by another lemma in Heikkila and Lakshmikantham[36] Lemma 1.1.4, a well-
ordered chain C in a poset P is countable if its subchains possess countable
co�nal chains. Finally, a monotone sequence in an ordered topological space
X converges if each of its subsequences has a cluster point. A natural
question concerns su¢ cient conditions under which iterations on f from
some lower solution xL converge to �xed points on a countable indexation
of iterations. One set of su¢ cient conditions are as follows:

Proposition 9 Heikkila and Lakshmikantham[36], Lemma 1.1.7; Proposi-
tion 1.1.5; Proposition 1.1.6: (i) If a chain C in an ordered topological space
X has a separable co�nal subset A, and if each nondecreasing sequence of
A has a cluster point in X, then C contains a nondecreasing sequence that
converges to supC; (ii) a well ordered chain of X is countable if the fol-
lowing occurs: (a) X is �rst countable, and each subchain of C is relatively
compact; (b) each subset of C is separable and each nondecreasing sequence
of C has a cluster point; (iii) If C is a chain in an ordered metric space X,
and if each nondecreasing sequence of C has a cluster point, then C contains
a nondecreasing sequence which converges to supC, and C is countable if
each nondecreasing sequence of C has a cluster point.
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3.3 Monotone Selections and the Equilibrium Correspon-
dence

In Problem 1 and Problem 2, a natural question to analyze is the existence
of monotone comparison theorems on the space of parameters T .6 Let G(t) :
T ! 2Xn? denote the �xed point correspondence. We say the �xed point
Problem 1 or 2 exhibits a strong comparative structure (SCS) if the �xed
point correspondence G(t) is an isotone correspondence from T ! 2Xn?:
We say Problem 1 or 2 exhibits a weak comparative structure (WCS) if its
�xed point correspondence G(t) admits an isotone selection. First, consider
the SCS. Known su¢ cient conditions for G(t) to be consistent with SCS
involve the �xed point space X be a complete lattice, ordering the range
of G(t) using Veinott�s strong set order on 2Xn?; and proving that G(t)
has a sublattice structure in 2Xn?: For example, if G(t) is isotone from
T to 2Xn? in Veinott�s strong set order, one immediately has the extremal
selections supG(t) and inf G(t) as isotone operators on T . The most general
version of the result we discuss is due to Veinott[81] (Chapter 4, Theorem
14) and Topkis[78] (Theorem 2.5.2). The Veinott-Topkis Monotone Selection
Theorem is stated as follows (see Topkis[78], Theorem 2.5.2 for a proof):

Proposition 10 (Veinott[81]; Topkis[78]): Suppose X is a nonempty com-
plete lattice, T a poset, F (x; t) : X�T ! 2Xn? for each (x; t) 2 X�T; and
assume that the correspondence F (x; t) is isotone in Veinott�s strong induced
set order on X � T: Let G(t) be the �xed point correspondence of F (x; t) at
t 2 T ; then (a) for each t 2 T; supG(t) and inf G(t) exist; (b) supG(t) and
inf G(t) are isotone in t 2 T ; (c) If, in addition, supG(t) < inf G(t0) for
t < t0, then supG(t) and inf G(t) are strictly increasing in t on T .

Second, consider the case of WCS. There are many alternative su¢ cient
conditions under which �xed point problems exhibit WCS. Di¤erent forms
of su¢ cient conditions are provided in Veinott[81] and Smithson[72]. We
consider some additional isotone selection theorems that prove useful in the
study of WCS in economic applications. These theorems apply in cases
where the range of the �xed point correspondence does not necessarily pos-
sess the sublattice structure required to apply the Veinott-Topkis monotone
selection theorem. For the �rst proposition, instead of assuming that the
correspondence is isotone in Veinott�s strong set order jointly in (x; t), we

6A well-known reference for monotone comparative statics in economics is Milgrom
and Shannon [53]. However, their results built on prior results in operations research and
reported in Veinott [80] and Topkis [76]. See Veinott�s [81] lecture notes and Topkis [78].
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assume that F (x; t) is ascending in Veinott�s weak set relation in x for each
t 2 T:We also assume that the �xed point correspondence has the following
structure: (i) G(t):T ! 2Y n? is a nonempty and chain subcomplete, and
(ii) G(t) is ascending in Veinott�s weak set order. We now state Veinott�s
weak monotone selection theorem:

Proposition 11 (Veinott[81], Theorem 5) Let X be a lattice, T be a par-
tially ordered set. Assume that G(t) : T ! 2Xn? is a chain subcomplete
correspondence that is ascending in the Veinott�s weak set relation. Then,
(a) G(t) admits an isotone selection. If, in addition, we assume G(t) is
meet- (respectively, join-) sublattice-valued for each t 2 T , then (b) the iso-
tone selection is ^G(t) (respectively, _G(t)):

Veinott proves more versions of the above isotone selection theorem as-
suming stronger hypotheses than (a), e.g., G(t) quasi-sublatticed valued for
each t 2 T , but with weaker hypotheses than assumed for result (b). We
present two di¤erent set of su¢ cient conditions for the existence of WCS
from Smithson[72].

Proposition 12 (Smithson[72], Theorem 1.7 ): Let X be a partially or-
dered set, T a set, and let G(t) : T ! 2X be a nonempty correspondence
that is ascending in Smithson�s weak set relation (C1) (respectively, (C2)) in
(x; t). If, in addition, supG(t) 2 G(t) (respectively, inf G(t) 2 G(t)) for all
t 2 T; the there is an isotone selection, namely g(t) = supG(t) (respectively,
g(t) = inf G(t)).

We now de�ne Range Majorizing Condition (RMC) and Range Intersec-
tion Property (RIP) that are required for stating the second isotone selection
theorem. We say a correspondence F (x) satis�es Range Majorizing Condi-
tion if for C = fzjx1 � z � x2g; x1 � x2;when F (x) \ C 6= ?; sup(F (x) \
C) 2 F (x)\C:Further, if for any x1 � x2; y(x1) 2 F (x1) and y(x2) 2 F (x2)
such that y(x1) � y(x2); and for all x 2 [x1; x2]; F (x) \ [y(x1); y(x2)] 6= ?
then we say that F (x) has the Range Intersection Property (RIP).

Proposition 13 (Smithson[72], Theorem 1.9) Let X be a partially ordered
set which contains an element xu 2 X that is a least upper bound in X. If
for each t 2 T; G(t) : T ! 2Y is nonempty and satis�es conditions MCSC,
RIP, and RMC, then G(t) admits an isotone selection.
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We make a �nal remark on last two propositions. The proofs of each
propositions relies heavily on an application of the Axiom of Choice (namely,
the Zorn�s lemma). In principle, this can be a serious problem for de-
veloping constructive methods that address the question of approximating
monotone selections. Recently, alternative methods are developed for the
results in Smithson [72] that do not rely upon the Axiom of Choice (see,
Jachymski[40], Theorem 2.21). Also, Heikkila and Re¤ett[37] develop chain
methods for computing particular selections that are not based on either the
Axiom Schema Replacement or the Axiom of Choice. These extensions are
important if one wants to avoid the non-constructive nature of the monotone
selection results based on applications of the Axiom of Choice.

4 An Economy with Classical Technology

We generalize Brock and Mirman[15] to allow for more general "distorted
classical" stochastic technologies. In these economies, time is discrete and
indexed by t 2 T = f0; 1; 2; :::g. There is a continuum of ex ante and ex
post identical in�nitely-lived households. The only form of uninsured risk is
aggregate production function shock and production in each state is assumed
to be constant returns to scale in private returns. Therefore, the value of all
�rms is zero in equilibrium. Each period households are endowed with a unit
of time which is supplied inelastically in competitive markets. For simplicity,
we assume uncertainty comes in the form of a �nite state, �rst-order Markov
process denoted by �t 2 �, with stationary transition probabilities �(�; �0):
Let the set K�R+ contain all feasible values for the aggregate endogenous
state variable K, i.e., the capital to labor ratio, and de�ne the product space
S : K��. Since the household also enters each period with an individual
level of the endogenous state variable k, the individual capital to labor ratio,
we denote the state of a household by the vector s = (k; S) 2 K�S.

The preferences are represented by a period utility index u(ci), where
ci 2 K � R+ is period i consumption. Letting �i = (�1; :::; �i) denote
the history of the shocks until period i, a household�s lifetime preference is
de�ned over in�nite sequences indexed by date and history c = (c�i) and is,

U(c) = E0

( 1X
i=0

�iu(ci)

)
;

where E0 is the mathematical expectation with respect to the probability
structure of the shocks over the in�nite horizon. We impose the following
assumption on preferences:
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Assumption - P1 :The utility function u : K 7! R is bounded, twice
continuously di¤erentiable, strictly increasing, strictly concave. In addition,
marginal utility, u0(c) satis�es the standard Inada conditions:

lim
c!o

u0(c) =1 and lim
c!1

u0(c) = 0:

We assume that the output available to the household in the current
period can be represented by the function F (k; 1;K; 1; �; t) = f(k;K; �; t),
where t is a parameter that is possibly in�nite dimensional (e.g., a contin-
uous mapping that represents distortions and thus in�uences technology).
We assume that this production function is evaluated at equilibrium em-
ployment levels with n = N = 1 and make the following assumptions on
technology:

Assumption - T1 The production function F (k; n;K; n; �; t) is such
that:

(i) F (k; n;K; n; �; t) is constant returns to scale in (k; n) for each (K;N; �; t)
such that F (0; 1;K; 1; �; t) = f(0;K; �; t) = 0 for all K 2 K; � 2 � and
t 2 T .

(ii) f (k;K; �; t) is twice continuously di¤erentiable, strictly increasing
in (k;K) and strictly concave in its �rst argument.

(iii) f1(K;K; �; t) is weakly decreasing (i.e., non-increasing) in K.
(iv) There exist k̂(�) > 0 such that f(k̂(�);K; �; t) + (1� �)k̂(�) = k̂(�)

and f(k;K; �; t) < k for all k > k̂(�) and for all � 2 �.

The restrictions on the primitives in Assumptions P1 and T1 are stan-
dard. As we consider some baseline comparative statics issues, we consider
the economy studied in Coleman [19]. In this setting, there is a state con-
tingent capital income tax; in addition, we allow for nonconvexities in pro-
duction in social returns. The distorted reduced-form technology f can be
written as follows:

f(k;K; �; t) = (1� t1(K; �))g(k;K; �) + t2(K; �);

where g is also a reduced-from distorted classical production function, the
parameters t1(K; �) : S! [0; 1] and t2(K; �) can be interpreted as the state-
contingent tax and a lump sum transfer, respectively. If we de�ne the stan-
dard lexicographic order relation on the set of parameter vectors t 2 T as
t0(K; �) � t(K; �) if either t01(K; �) > t1(K; �) for all S 2 (K; �) 2 K��=S,

17



or t
0
1(K; �) = t1(K; �) and t

0
2(K; �) � t2(K; �), then f(k;K; �; t) is increasing

in t:
We make the following assumption on the nature of distortion:
Assumption - D1: The functions t1(K; �) and t2(K; �) are Lipschitz

continuous on K��=S:

In developing our existence arguments, we �x t 2 T:(and, for the moment
suppress notation). For any given t 2 T, de�ne the household�s feasible
correspondence to be �(k;K; �) where � de�nes the set of actions (c; k0)
that satisfy the standard budget constraint:

c+ k0 = f(k;K; �); and c; k0 � 0:

Under Assumption T1, �(k;K; �) is a �well-behaved" nonempty correspon-
dence for each s = (k;K; �) 2 K�S. In particular, as f is continuous and
isotone, we conclude that � is a non-empty, compact and convex-valued,
continuous correspondence for each state s that is ascending in (k;K; �) for
each t in the set inclusion order on 2KxK along an equilibrium restriction
where k = K and a balanced budget for the government:

Let C(S) denote the space of continuous functions h(S):S!K equipped
with the standard uniform norm topology (i.e., k h k= supS2S jh(S)j) and
pointwise Euclidean partial order where S is a compactum, and let C+(S)
be its cone. To construct the household�s decision problem, consider that
aggregate capital-labor ratio evolves according to:

K 0 = h(K; �) 2 C+(S); 0 � h � f;

where for any given t, h(S) : S!K is continuous in both its arguments,
increasing in K for each �. The household solves the following dynamic
program:

J(s) = sup
(c;k0)2�(s;t)

fu(c) + �
Z
�
J(s0)�(�; d�0)g: (1)

Standard arguments prove the existence of a J 2 V that satis�es this func-
tional equation, where V is a space of bounded, continuous, real valued func-
tions with the sup norm (see, for instance, Stokey, Lucas and Prescott[73]).
In addition, under assumptions P1-T1, following the argument in Mirman
and Zilcha[56] (lemma 1) J is di¤erentiable in k.

We de�ne an recursive equilibrium as follows:

De�nition: A (recursive) competitive equilibrium for this economy con-
sists of a parameter vector (t1; t2); a value function for the household J(s);
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and the associated individual decisions c and k0 such that: (i) J(s) sat-
is�es the household�s Bellman equation (1), and c; k0 solve the optimiza-
tion problem in the Bellman�s equation given t; (ii) all markets clear: i.e.,
k0 = h(S) = K 0and (iii) the government budget balances.

4.1 The Existence of MEDPs

The second welfare theorem does not apply in this economy. Therefore,
the social planning approaches to characterizing MEDPs do not su¢ ce. We
adopt an alternative strategy, the so-called �Euler equation approach�.7

To facilitate our construction, we consider a stronger version of Amann�s
theorem in Proposition 7, Section 3. This result is proved in Morand and
Re¤ett [57] and considers Amann�s theorem for isotone transformations of
equicontinuous �xed point spaces.

Proposition 14 Let E be an equicontinuous �xed point space of continuous
functions, each de�ned on a compact set X; equipped with the sup continuous
uniform topology and the pointwise partial Euclidean order. Let [y; by] be a
closed suborder interval in E. Suppose that A : [y; by]! [y; by] is an isotone,
continuous map. Then A has a maximal �xed point bx and bx = limn!1Anby,
and the sequence fAnbyg1n=0 is decreasing.

Proof : See Morand and Re¤ett[57], Proposition 2.�
To construct existence of recursive equilibrium, we de�ne a candidate

nonlinear operator A whose �xed points coincide with a MEDP. The Euler
equation associated with the optimal policy function in Bellman�s equation
(1) along an equilibrium trajectory where k = K (appealing to the Mirman-
Zilcha envelope condition) generates the following necessary and su¢ cient
condition for a recursive competitive equilibrium: the existence of a function
c�(K;K; �) = c�(K; �) such that

u0(c�(K; �)) = �

Z
�
u0[c�(F (K; �)�c�(K; �); �0)]r(F (K; �)�c�(K; �); �0)�(�; d�0):

(2)

7This is in contrast to the �value function� or the �Bellman equation� approach, in
which one looks for a �xed point of the Bellman�s operator in the space of value functions.
In a non-smooth environment, the Bellman equation approach is useful while the Euler
equation approach need not be.
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Here, F (K; �) = f(K;K; �; t) and r(K; �) = f1(K;K; �; t) for notational
simplicity.

De�nition: H0 is the set of consumption functions h such that:(i).
h : S!K;(ii). 0 � h(K; �) � F (K; �) for all (K; �) 2 S;(iii). 0 �
h(K 0; �) � h(K; �) � F (K 0; �) � F (K; �) for all K 0 � K; (K;K 0) 2 K�K
and all �:

EquipH0 with the standard sup uniform metric topology; and adopt the
Euclidean partial order � induced by the cone structure of C+(S). That is,
h0 � h if and only if h0(K; �) � h(K; �) for all (K; �) 2 S. The following
lemma summarizes some important properties of the space H0.

Lemma 15 Under assumption T1, (i) H0 is a closed, convex, equicontin-
uous order interval of continuous function (e.g., a convex compact order
interval); (ii) H0 is a complete lattice.

Proof : (i) See Coleman[19] Proposition 3. (ii) See Morand and Re¤ett[57],
Lemma 1.�

To construct a recursive equilibrium, we de�ne a nonlinear operator Ah
based on an equilibrium version of the Euler equation. To do this, consider
any h 2 H0; h > 0, and any (K; �):

De�nition: The operatorAh(K; �) = fyjy : for h > 0; u0(y) = �
R
� u

0(h(F�
y; �0); �0)r(F � y; �0)�(�; d�0); if h = 0 in any (K; �), we set Ah(K; �) = 0g:

The following lemma lists a few key properties of the operator A:.

Lemma 16 Under Assumptions P1 ,T1, and D1:(i) For any h 2 H0, and
any (k; �), there exists a unique Ah(k; �);(ii) A maps H0 into itself (e.g.,
is a transformation of H0);(iii) A is continuous on H0; (iv) there exists a
maximal �xed point h� 2 H0 and the sequence fAnFg converges uniformly
to h�; and, (v) the maximal �xed point is strictly positive.

Proof : The proofs of (i)-(iii) are in Coleman[19] (Proposition 4). Claim
(iv) follows directly from Proposition 14. Claim (v) follows from a standard
dynamic programming argument that is presented in the main theorem in
Greenwood and Hu¤man[34] p 615.�

It is important to note that neither (i), (ii), nor (iii), rely on compactness
of the state-space, and are therefore valid under Assumptions P1 and T1
only. We can now state our existence result for MEDPs.
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Proposition 17 Under Assumptions P1, T1 and D1, there exists a recur-
sive equilibrium.

Proof : Follows from Lemma 15 and Lemma 16.�

4.2 The Uniqueness of MEDPs

We next consider the uniqueness of MEDPs. We present a new result that
dispenses with the k0�monotonicity condition used commonly in the liter-
ature and obtain uniqueness from the concavity of the �xed point operator.
Let C+ be a cone in a real Banach space C, and consider a transformation
A : C+ ! C+: We say an operator A : C+ ! C+ is e�concave if there
exists non-zero e 2 C+; such that (i) for an arbitrary non-zero c 2 C+ the
inequalities �e � Ac � �e; where � and � are positive, are valid and (ii) for
every c 2 C+ such that �1(c)e � c � �1(c)e with (�1(c); �1(c)) � 0; and
there is a number �(c; t) > 0 such that A(tc) � (1+ �)tAc for any t 2 (0; 1):
An operator is said to be pseudo-concave on C+ if for all t 2 (0; 1); c 2
C+; c > 0; Atc >> tAc: Let C+ be a solid cone, the operator A : C+ ! C+

is strongly sublinear if Atc >> tAc for all non-zero c 2 C+ and 0 < t < 1.
(See Guo and Lakshmikantham[35], De�nition 2.2.2).

Let H � C+(S) be an compact order interval where C+(S) is the space
of positive continuous functions on the compact set S = K��: We say an
operator A is k0�monotone on H if it is (i) isotone on H, and (ii) if for
any strictly positive �xed point h1, there exists a k0 > 0, 0 � k1 � k0 and
h2 2 H such that h2 � h1, for all k � k1; and h1(k; �) � Ah2(k; �) all
k � k1; for all �: To construct new su¢ cient conditions for uniqueness, we
�rst construct the operator bA as in Coleman[21] but we prove additional
properties of this operator that are useful for our argument that are not in
Coleman. We de�ne the set of functions M as follows:

De�nition: M = f m : R+ � � ! Rj(i) m is continuous, (ii) for
all (K; �) 2 R+ � �; 0 � m(K; �) � F (K; �) and (iii) for any K = 0;
m(K; �) = 0g

EndowM with the standard partial pointwise order and the C0uniform
topology. We note that H0 and M can be directly related to each other by
a simple mapping. For m 2M; consider the function 	(m(K; �)) implicitly
de�ned by,

u0[	(m(K; �))] =
1

m(K; �)
; for m > 0, 0 elsewhere:
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Clearly, 	 is continuous, increasing, limm!0	(m) = 0, and limm!F (K;�)	(m) =
F (K; �):Using the function 	, for any m > 0; we denote the solution (for y)
to the following equation by bAm(K; �);

bZ(m; y;K; �) = 1

y
� �E�[

H(F (K; �)�	(y); �0)
m(F (K; �)�	(y); �0) ] = 0;

and set bAm = 0 when m = 0. Since bZ(m; y;K; �) is strictly decreasing and
continuous in y and limy!0 bZ(m; y;K; �) =1 and limy!F (K;�) bZ(m; y;K; �) =
�1, for each m(K; �) > 0;with K > 0; and � 2 �, there exists a uniquebAm(K; �):

It is easy to show that to each �xed point of the operator A corresponds
a �xed point of the operator bA: Indeed, consider x such that Ax = x and
de�ne y = 1

u0(x) (or, equivalently 	(y) = x). It is also easy to verify that
Am �M and is monotone on M: By de�nition, for all (K; �), x satis�es,

u0(x(K; �)) = �E�fH(F (K; �)� x(K; �); �0)� u0(x(F (K; �)� x(K; �); �0))g:

Substituting the de�nition of y into this expression yields

1

y
= �E�f

H(F (K; �)�	(y(K; �)); �0)
y(F (K; �)�	(y(K; �); �0)) g;

which shows that y is a �xed point of bA.
We are now prepared to prove our new uniqueness result:

Proposition 18 Under Assumptions P1, T1, D1, (i) The operator bA is
strongly sublinear; (ii) Â has at most one strictly positive �xed point; and,
(iii) there exists a unique recursive equilibrium in H0:

Proof : (i). First note both H0 and M are order intervals in solid
cones of continuous functions de�ned on a compact set. Therefore since bZ is
strictly decreasing in its second argument, a su¢ cient condition for strong
sublinearity of Âm is:

bZ(tm; t bAm;K; �) > bZ(tm; bAtm;K; �) = 0: (3)

By de�nition,

bZ(tm; t bAm;K; �) = 1

t bAm � �E�f
H(F (K; �)�	(t bAm(K; �)); �0)
tm(F (K; �)�	(t bAm(K; �)); �0)g;
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so that,

t bZ(tm; t bAm;K; �) = 1bAm � �E�f
H(F (K; �)�	(t bAm(K; �)); �0)
m(F (K; �)�	(t bAm(K; �)); �0)g:

Since 	 is increasing and H(K 0; �0)=m(K 0; �0) is decreasing in K 0,

1bAm � �E�f
H(F (K; �)�	(t bAm(K; �)); �0)
m(F (K; �)�	(t bAm(K; �)); �0)g

>
1bAm � �E�f

H(F (K; �)�	( bAm(K; �)); �0)
m(F (K; �)�	( bAm(K; �)); �0)g = 0;

and bZ(tm; t bAm;K; �) > 0 so it must be the case that Âtm > t Âm:Therefore,
Âm is strongly sublinear.

(ii) As Âm is strongly sublinear, by theorem 2.2.1(a) in Guo and Lakshmikantham[35],
we conclude Âm is e�concave. As Âm is additionally increasing on m, by
Guo and Lakshmikantham[35] (Theorem 2.2.2) we conclude Âm has at most
a single strictly positive �xed point in M. By the lemma 16(iv), Ah has a
strictly positive �xed point M: Therefore, we conclude by the de�nition of
Âm; that Âm has a unique strictly positive �xed point in M.

(iii) As the Âm has a unique strictly positive �xed point in M; by the
de�nition of Âm and the fact that Â[M ] is isomorphic to A[H0]; we conclude
there is a strictly positive �xed point h� 2 H0: By an standard argument
(e.g., see Vailakis[79], Section 5) , interiority of consumption and investment
(along with the fact h� 2 H0) is su¢ cient in this case to support prices in
l1+nf0g:�

Remark 19 A careful reading of our new proof of uniqueness in Proposi-
tion 18 provides a new method for characterizing the existence of recursive
equilibrium with prices in l1+nf0g: This proof di¤ers substantially from the
proof of su¢ cient conditions for interiority often used in the existing litera-
ture for the existence of strictly positive �xed point (e.g., the proof given in
Greenwood and Hu¤man[34], that is used also in Coleman[20] and Datta,
Mirman and Re¤ett[22] for models with elastic labor supply). The equiva-
lence of strictly positive �xed points can be shown. Note that, as M is an
order interval in a normal cone of continuous functions, Âm is e�concave
and isotone. Then by a theorem in Guo and Lakshmikantham[35] (Theorem
2.2.3), we conclude Âm is a cone compression.8 And, by a remark in Guo

8See the discussion in Guo and Lakshmikantham ([35], p64-5) for a discussion of cone
compressions.
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and Lakshmikantham[35] (p65), we arrive at the complete characterization
of the existence of a strictly positive �xed point: Âm is a cone compression
if and only if Âm has a strictly positive �xed point.

4.3 Monotone Comparison Theorems using Euler Equation
Methods

In this section, we construct monotone comparison theorems using Euler
equation methods. The monotonicity of the mapping A in lemma 16 can
be exploited to derive strong comparative statics (SCS) results on the space
of deep parameters t 2 T using the selection theorems in Section 3. The
set of equilibrium is a non-empty complete lattice, so, in the absence of the
uniqueness result, comparative statics analysis requires de�ning orders on
both the set of parameters and on the set of equilibrium. We show that
the set of equilibrium is ascending in the strong set order of Veinott in t,
consequently, we conclude that the minimal and maximal �xed points are
also monotonic in t.

Proposition 20 Suppose that the assumptions of lemma 16 and Proposi-
tion 17 are satis�ed for each mapping At belonging to the set fAt : H0 ! H0,
t 2 Tg, where (T;�T ) is a poset, and G(t) is the �xed point correspondence
of At. If At is isotone in t, that is if t0 �T t implies that, for all x in X,
At0x � Atx; then G(t) is ascending in Veinott�s strong set order �s on 2H

0

and the minimal and maximal �xed points (respectively, ^G(t) and _G(t))
of At are isotone mappings into H0on T .

Proof: The claims follow from the proof in Morand and Re¤ett[57],
Theorem 2, noting that G(t) is isotone in Veinott�s strong set order, a direct
implication of Proposition 10.�

For an application of this result, consider a perturbation in the discount
rate �. Since the right side of the Euler equation in (2) is increasing in �; as
a consequence, the root y�(K; �; h; t) = At=�(c) that de�ned the operator, is
increasing in � 2]�1; 0[= T , where T is endowed with the dual order �T on
the real line (i.e., �

0 �T � if �
0 � �). By Proposition 20, the maximal and

minimal �xed points increase with t (i.e., decrease with �). By Proposition
18, the set of MEDPs increase in the pointwise strong set order �ss and
there is a unique isotone selection.
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For another application, consider the tax rate t 2 T , where T is the set
of continuous functions t(K; z) 2 [0; 1] that are monotone in K. Endow T
with the standard pointwise Euclidean order for a space of functions, i.e.,
t0 �T t if t0(K; z) � t(K; z) for all (K; z). Then At0c � Atc in the order
de�ned on E and the equilibrium set (the set of �xed points of the operator
At) is isotone in t the strong set order. Again, by Proposition 18, we can
obtain a unique isotone selection on T from the set of MEDPs.

5 An Economy with Nonclassical Technology

We now allow for more general versions of bounded nonconvex production
technologies, linear preferences, Markov technology shocks and a role for
public policy. By �distorted nonclassical" production technologies, we mean
two cases: the reduced-form production function f(k;K; �) is such that (i)
f1(k;K; �) is not decreasing in k when k = K; and/or (ii) f is not neces-
sarily constant returns to scale in private inputs. In (ii), that there is an
issue with interpreting exit and entry conditions in the industry within the
equilibrium model but we ignore the industry dynamics. Uncertainty (and
much of the model) is as before. Preferences and technologies are denoted
as before, except we now have weaker assumptions:

Assumption - P2: The utility index u(c) 2 U where U consists of all
u(c) : K 7! R that are bounded, continuous, strictly increasing, and either
strictly concave on K or linear on K.

Assumption - T2: The aggregate production functions f 2 F , where
F consists of isotone functions f(k;K; �) :K�K��, each space ordered
with pointwise Euclidean orders, f is continuous in k and there exists k̂(�) >
0 such that f(k̂(�); �) + (1� �)k̂(�) = k̂(�) and f(k; �) < k for all k > k̂(�)
for all � 2 �; and f is twice di¤erentiable its arguments.9

We impose a joint restriction on the curvature of u(c) relative to the
complementarity of the equilibrium distortion in f(k;K; �). This restriction
is used only for our methods when f 2 F such that f(K;K; �) is not con-
cave in K:(See section 6.2 for further discussion of this point, and how this
restriction can be eliminated in the case f(K;K; �) is concave.)

9We also refer to an isotone function as a monotone function.
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Assumption - PT1:The utility index u 2 U and the aggregate pro-
duction technology f 2 F are such that u0(
(K))f1(k;K; �) is isotone in
K for each function 
(K) where 
(K) satis�es 0 � 
(K 0) � 
(K) �
f(k;K 0; �)� f(k;K; �) for K 0 � K:10

We need a regularity property on the stochastic process of shocks.

Assumption - M1: The transition matrix � 2 � is an irreducible
Markov process that satis�es the standard Feller property.

When discussing the long-run properties of a Markovian equilibrium (and
equilibrium comparative statics on limiting distributions), it is useful to
restrict attention to a subset of economies where we can prove Markovian
dynamics are jointly monotone in (K; �): Therefore, we note the following
additional assumptions:

Assumption - PT2: The class U and F have u0(
(�))f1(k;K; �) are
isotone in � for each 
(�) such that 0 � 
(�0) � 
(�) � f(k;K; �0) �
f(k;K; �):11

Assumption - M2: The measure � 2 � is stochastically increasing (or
equivalently, totally positive of order 2).12

The case of optimal growth under uncertainty in embedded in above
assumptions. Our results are more general than those obtained for the op-
timal growth model with Markov shocks in Hopenhayn and Prescott[39].
Although they claim a more general result, a careful reading of their proofs
reveals that Hopenhayn and Prescott can only claim su¢ cient conditions for
monotone controls in the optimal growth model with Markov shocks when
production functions are the �xed-coe¢ cient, Leontief-type.13 Note that,
10 If one is willing to adopt the slightly stronger complementarity condition related to

the one mentioned in Hopenhayn and Prescott [39] (i.e., u00(c)f1f2+u0(c)f12 � 0), we can
allow u(c) in assumption P2 to be concave (but not necessarily linear).
11This assumption includes the case for Markov shocks mentioned (but not studied) in

Hopenhayn and Prescott [39] for the optimal growth model.
12See Topkis [78] for a de�nition of stochastically increasing.
13This key problem with applying a key theorem of Topkis [78] (Theorem 2.7.6) also

arises in Amir [5]. In this paper, if one follows his proofs, one realizes that the author
can only claim the existence of monotone controls in the nonclassical optimal multisector
growth model when production functions are either (i) Leontief or (ii) de�ned on domains
where the inputs are chained. Our approach using generalized envelopes can be easily
applied in the multisector growth model to obtain more general su¢ cient conditions for
monotone controls in multisector models than found in Amir�s work.
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we can dispense with assumption M1 or M2 for the optimal growth case.
Also, if the class of shocks � 2 � consists of a collection of independent and
identically distributed random variables, then we obtain joint monotonic-
ity for decentralized Markovian equilibrium under weaker conditions. We
can completely dispense with Assumption PT2, and we still obtain joint
monotonicity of the decentralized MEDPs. For the optimal growth case, we
only require u 2 U concave, and f(K; �) monotone in (K; �).

5.1 The Parameter Space and Household Decision Problems

Consider the existence of MEDPs under the assumptions P2, T2, PT1 and
M1. We begin by de�ning the �xed point space we use to compute MEDPs.

De�nition: C1 = fhj 0 � h(K; �) � f(K;K; �) 8 (K; �); h(K 0; �) �
h(K; �) � 0 if K 0 � K;h measurable on Sg:

Here h 2 C1 � B(S), S is a compact partially ordered topological space
with the pointwise Euclidean order (and the usual topology on Rn). B(S)
is the set of bounded functions SK endowed with the standard pointwise
Euclidean order and C0 uniform topology, and C1 consists of all positive
functions that are isotone in K, measurable, and socially feasible, monotone
in K.

Assume that households take as given the recursion h on per-capita
aggregate capital stockK, which is used to compute future returns on capital
(and, therefore, factor prices),

K 0 = h(K; �) 2 C1; 0 � h � f:

If we make additionally assume PT2 and M2, we obtain stronger charac-
terizations of Markovian equilibrium. For that situation, consider the space,

De�nition: C2 = f hjh(K; �) 2 C1 that are jointly isotone in (K; �)g.

Clearly C2(S) is a closed sublattice of C1 � B(S). The spaces C1 and
C2 are used to �nd Markovian equilibrium for economies without and with
assumptions PT2 and M2, respectively. We next prove a lemma that is
useful in constructing a Markovian equilibrium.

Lemma 21 Both C1 and C2 are convex and subcomplete in B(S):
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Proof: See Mirman, Morand, and Re¤ett[54], lemma 1. �
Therefore, C1 (respectively, C2) is a natural place to pose the existence

question.
We now characterize the best response mapping of households facing

an aggregate environment h 2 C1; under the assumptions P2, T2, PT1
and M1. Consider a household entering the period in state p = (pc; �) 2
P = K�K��; pc = (k;K) 2 K�K; facing an aggregate economy with
aggregate dynamics (and prices) summarized by the function h 2 C1. Let
consumption and investment be given as a = (c; y) 2 A � K�K: The
value function for the household is a function v�(p; h) that is a solution of
the functional equation:

v�(p;h) = sup
a2�(p)

fu(c) + �
Z
�
v�(y; h(K; �); �0;h)�(�; d�0)g; (4)

where the feasible correspondence �(p) = fajc+y � f(p); c; y � 0g: In order
to study the existence of a v� that satis�es the above functional equation,
consider the operator BC :

BCv(p;h) = sup
a2�(p)

fu(c) +

�

Z
�
v(y; h(K; �); �0;h)�(�; d�0)g:

Here the operator BC is de�ned on the space Vc = fv(p;h) : P�C1!R,
v bounded in (k;K; �; h), isotone in p for each h; continuous in k for each
(K; �; h)g: Equip Vc with the standard C0 topology (and the associated uni-
form metric) and the pointwise Euclidean partial order. Vc is a complete
metric space. Lemma 22 provides a set of results characterizing the unique
function v� that satis�es (4):

Lemma 22 Under assumptions P2, T2, PT1 and M1, (i) BCv � Vc;(ii)
there exists a unique v� 2 Vc that satis�es the Bellman equation (4); and,
(iii) the �xed point v� is strictly increasing in p for each h 2 C1.

Proof: A standard argument. See Stokey, Lucas, and Prescott[73]:�
We now use lattice programming to further characterize the value func-

tion.14 De�ne the optimal solution associated with v�(p;h) by a�(p; h),
14We assume familiarity in this section with the basic terminology of lattice program-

ming (supermodular functions etc.). Important references are LiCalzi and Veinott [49],
Veinott [81], and Topkis [78].
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a�(p;h) = farg sup
c;y2�(p)

fu(c) +

�

Z
�
v(y; h(K; �); �0;h)�(�; d�0)gg: (5)

To characterize the optimal solution a�(p; h) � 2A; we de�ne a set of partial
orders over choices of consumption c and investment y. The class of partial
orders is referred to as �direct value" orders and was pioneered in the work
of Antoniadou[7]. To �x ideas, consider the simple two good version of the
consumer decision problem. Assume that the relative price is one. De�ne a
collection of direct value orders for unit price for a = (c; y) 2 A � K�K
(denoted by �vi; where i 2 I, an index set) as follows: a; a0 2 A; we say
a0 �vi a if and only if c0

0
+ y0 �e c+ y and a0 �Li a : Here �e is referred to

as the value quasi-order on A; and �Li is the standard lexicographic order
de�ned using the index set I = fc; ygon A � R2+. We use this collection of
valuation lattices (A;�vi) to model the action space for the stochastic growth
model A � R2+. When indexing the lexicographic order in the valuation
order by c; we refer to the resulting lattice, on the commodity space (A;�vc);
as the consumption value lattice. We also make reference to the investment
value lattice when indexing the lexicographic order in the valuation order
by investment (A;�vy). Antoniadou [7] shows that the space (A;�vi) is
(i) a partially ordered set for each i 2 I = fc; yg, and (ii) �vi induces a
lattice structure on A for each i = c; y: De�ne, �(p) = faj c+ y � m; c; y �
0;m = f(p)g � A when (A;�vi) i = 1; 2:Under assumptions P2, T2, PT1
and M1, and each index i = c; y, the feasible correspondence �(p) is (i) an
isotone mapping P ! 2A in the strong set order �a endowed with either of
the partial orders i = c; y; and (ii) it is a nonempty, continuous, compact,
convex, and complete sublattice for each p 2 P .

We turn next to a characterization of supermodular functions on the
collection (A;�vi): In the next lemma, we characterize additively separable
supermodular objectives on the direct value lattices (A;�vi). Let U(x; y):
A! R on the lattice (A;�vi).

Lemma 23 Assume U(x; y) = u1(x)+u2(y); where each ui(:) is isotone for
i = 1; 2. Then (i) U(x; y) is supermodular (strictly supermodular) on the x
valuation lattice (A;�vx) if and only if u2(y) concave (strictly concave); (ii)
U(x; y) is supermodular (strictly supermodular) on the collection (A;�vI) for
I = x; y if and only if both u1(x) and u2(y) are concave (strictly concave).
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Proof: See Mirman, Morand, and Re¤ett[54] Lemma 4. �
Now, we consider su¢ cient conditions for monotone controls a�(p; h)

from (5) to be isotone in the Euclidean order on A. The parameters of in-
terest are pc = (k;K) and h 2 C1: A major obstacle to studying the dynamic
complementaries in (5) is characterizing su¢ cient conditions for preserving
supermodularity under maximization. One set of su¢ cient conditions for
preserving supermodularity under maximization on arbitrary projections to
the parameter space is found in Topkis[78] (Theorem 2.7.6). This set of
su¢ cient conditions cannot be applied in growth models with multidimen-
sional parameter spaces as they require the graph of the feasible correspon-
dence to be sublattice valued in the powersets of A � P ; a condition not
available in growth models unless the production function is Leontief. We,
therefore, do not follow this line of argument. We develop results on gen-
eralized envelope conditions found in the literature on nonsmooth analysis.
See Clarke[17] (chapter 2) and Rockafellar and Wets[66]. This approach is
used in Askri and LeVan[8] who study envelope theorems in the multisector
optimal growth model with nonclassical technologies. Unfortunately, how-
ever, their results only apply to economies for which the optimal solutions
are strictly interior. In our framework, their methods cannot be directly ap-
plied. We extend Askri and LeVan[8] results to economies without boundary
restrictions, such as Inada conditions. Our method is based on Gauvin and
Dubeau[33].

Let p 2 P: Note that P is a convex sublattice. Consider the subspace
of value functions V (p) � Vc consisting of the v(k;K; �; h) 2 Vc with the
following additional restrictions:

(i) v(p) is supermodular in pc = (k;K) 2 Pc for each �;
(ii) Lipschitz in k with the Lipschitz constant,

L = sup
c;k;K;�;h

jfu0(c)f1(k;K; �); u0(0)f1(k;K; �) + "j;

where " = �
R
u0(f(k; h(K; �); �0))f1(k; h(K; �); �

0)�(�; d�0)�u0(0): The sub-
set V is a closed subset of the complete metric space of functions Vc:Also,
recall that supermodularity is closed under pointwise limits (see Topkis[78],
lemma 2.6.1). We have the following monotonicity result,

Proposition 24 Let us assume P2, T2, PT1 and M1 and let v 2 V (p):
Then (i) the optimal solution a�(h; p): C1 ! 2A is ascending in h in the
strong set order �aon the investment valuation lattice (A;�vy); and, (ii) the
maximal and minimal selections for investment auy(h; p) = maxy a

�(h; p) and
aly = miny a

�(h; p) are measurable isotone functions from C1 ! A.
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Proof: See Mirman, Morand, and Re¤ett[54], Theorem 5. �
Notice that monotonicity on the investment lattice (A: �vy) implies that

investment monotonicity on the Euclidean lattice (A;�E): Proposition 24
implies that the extremal selections of the best response map are monotone
on the space C1 for each (k;K; �):Corollary 25 shows that the extremal
selections form self maps to the space C1:

Corollary 25 Assume P2, T2, PT1 and M1, let v� 2 V in equation (4)
and for each � 2 �; then for h 2 C1 (i) the optimal solution a�(pc; �;h)
is ascending from Pc ! 2A in the strong set order �aon the investment
valuation lattice (A;�vy); and, (ii) the minimal and maximal selections for
investment auy(pc; �;h) = maxy a

�(pc; �;h) and aly = miny a
�(pc; �;h) are

measurable isotone functions from Pc ! A:Under additional assumptions
PT2 and M2, and for h 2 C2 ,(iii) the optimal solution a�(p;h) is ascending
from P to 2A in the strong set order �a on the investment valuation lat-
tice (A;�vy); and, (iv) the minimal and maximal functions for investment
auy(p) = maxy a

�(p) and aly = miny a
�(p) are measurable isotone functions

from P ! A.

In the proof of Proposition 24 and Corollary 25 in Mirman, Morand,
and Re¤ett[54] , they also prove a new envelope theorem that generalizes
the result in Mirman and Zilcha [56], Amir, Mirman, and Perkins[6], and
Askri and LeVan[8]. With this envelope, it is straightforward to check that
the right side of (4) at a solution v� has all the requisite complementary
structure to obtain isotone increasing controls in Veinott�s strong set order
�s (namely, the requisite increasing di¤erences between the controls and the
parameters). Given that this new generalized envelope is of independent
interest, we present the argument for its existence.

We need to de�ne some terms. A correspondence �(p) is said to uni-
formly compact near p if there is a neighborhood N(p) of p such that the
closure of [p02N(p)�(p0) is compact. Given the continuity of f in p for
economies � 2 E; one can prove that the feasible correspondence on (4),
�(p); is uniformly compact near p: Rewrite the constraints in (4), more
generally, as �(p) = faj g(a; p) � 0g where g(a; p) is the set of implicit
constraints de�ned in (4). We say a pair (a; p) 2 gr�(p) satis�es the
Mangasarian-Fromowitz regularity conditions ( or, are MF-regular) if there
exists a direction r 2 R2 such that the Jacobian rag(a; p)r < 0; g(a; p) =
0.15 Here gr�(p) is the graph of �(p). In our problem, the constraints are

15As all constraints are inequalities, we are writing that MF regularity constraint quali�-
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additively separable with constant gradients in the controls, for any pair
(a; p) 2 A � P ; therefore each point (a; p) is MF regular. Therefore, any
optimal solution (a�(p; h); p) 2 gr�(p) is a MF-regular point: Further, be-
cause these coe¢ cients do not change as a function of a; we also note that
we have a stronger constraint quali�cation present, namely that the basis
elements rag(a�(p; h); p) are linearly independent. Therefore, our problem
also satis�es the so-called �linear independence� (LI) constraint quali�ca-
tion discussed in Gauvin and Dubeau[33].

Next, note a few properties of Bellman operator Bc. Let v 2 V: We know
that the feasible correspondence �(p) :P ! 2A is a continuous, strong set
order ascending correspondence in p = (k;K; z) for each h 2 C1. Further,
for each p;�(p) is nonempty, compact, convex and subcomplete in (A;�vi)
for i = c; y. As u(c) is Lipschitz (as its C1 with bounded gradient on any
neighborhood of K that is strictly interior), and the sum of two Lipschitz
functions is Lipschitz, we conclude that the objective is Lipschitz in (c; y)
for each (p; h): By a standard application of Berge�s maximum theorem[11]
p.116), the value function BCv is continuous in k; and the optimal solutions
a�(p; h) form a nonempty, compact-valued correspondence for each (p; h).
Noting the continuity of the objective, a� is also upper hemi-continuous
correspondence in k. As the order on P pointwise Euclidean, when P is
endowed with the standard metric/topology, P is a Banach lattice with
a continuous lattice structure. Also note that (A;�vi) i = c; y; A has a
continuous lattice structure, and A=K � K is Hausdor¤. Therefore, by
Debreu[26], the optimal solutions a�(p) :P !! 2A is are upper-measurable.
(See also Hopenhayn and Prescott[39] for discussion of upper-measurability).

We next prove that the value function is locally Lipschitz. This result
is needed to obtain a global Lipschitz estimate that is useful for proving
Bcv 2 V:

Proposition 26 The Bellman operator, Bc : P � C1 ! R; is locally Lip-
schitz near k > 0; for each (K; z; h) and v�(k;K; �; h) is Clarke di¤erentiable
in its �rst argument for each (K; �; h):

Proof: We have two cases.
Case 1: The optimal solutions a�(p; h) are strictly interior in A = K�K;

i.e., for all a(p; h) 2 a�(p; h); a(p; h) 2 int(R2+)

cations for a problem with only inequality constraints, i.e, we do not require for all binding
constrants, say h(a; p) = 0; to satisfy that the direction r is othrogonal to rah(a; p) where
h is the collection of all the equality constraints.
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By a result in Amir, Mirman, and Perkins[6] (lemma 3.3) left and right
Dini derivatives exist in k for each (K; z; h) and are bounded. By Rockafellar[65]
(Proposition 5), Bcv is therefore locally Lipschitz with a upper estimate of
the Lipschitz modulus of Lv(p; h) = supp;k>0fBc+v;Bc�vg � L where for
example Bc+ is the right Dini at (p; h); k > 0:

Case 2: The optimal solutions a�(p; h) is such that there is an a(p; h) 2
a�(p; h) not interior.

Using a standard Lagrangian approach, the operator Bcv is given as
follows: for h 2 C1,

Bcv = sup
a;�;'c;'y

L(a; p; h) (6)

= sup
a;�;'c;'y

u(c) + �

Z
v(y; h(K; �); �0)�(�; d�0) + �(f � c� y) + 'cc+ 'yy

where �; 'c; 'y are the multipliers associated with the respective constraints
that de�ne �(p) = fajc + y � f(k;K; z); c � 0; y � 0g: As (i) each el-
ement of (a�(p; h); p) is MF-regular such that it also satis�es the condi-
tion (LI) and (ii) the primitive data of the problem is Lipschitz, by corol-
lary 4.4 in Gauvin and Dubeau[33], Bcv has bounded right and left Dini
derivatives in k with Bc+vk(k;K; z; h) = maxa2a�(p)r+k L(a; p; h) � L; and
Bc�vk(k;K; z; h) = maxa2a�(p)r�k L(a; p; h) � L for k > 0; p 2 P . Then by
Gauvin and Dubeau[33] (Theorem 5.1), Bcv is locally Lipschitz in k > 0,
p 2 P; h 2 C1 (see also Rockafellar[65], Proposition 5):�

This generalized Clarke envelope is a critical step: the economies that
satisfy assumptions P2, T2, PT1 and M1, the value function v�(k;K; �; h)
has increasing di¤erences in (k;K;h) for each �: If, in addition, we assume
PT2 and M2, then we obtain v� also having increasing di¤erences in (k; �):

5.2 The Existence of MEDPs

We prove the existence of a complete lattice of Markovian equilibrium. Not-
ing the dependence of best responses on the environment (in the next section
we conduct monotone comparative statics on the space of environments), we
denote a correspondence,

Th(K; �) = fa(K;K; �;h)ja any monotone selection in a� in (6)g

We state some useful properties of the correspondence Th: In particular, we
focus on the sublattice structure of its range:
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Lemma 27 Under assumptions P2, T2, PT1 and M1, Th � C1; Th is as-
cending on C1 in the strong set order �a to 2C1 and is complete-latticed
valued; with additional assumptions PT2 and M2, Th : C2 ! 2C2 is ascend-
ing in the strong set order �aand T is complete lattice valued:

Recalling the Veinott-Zhou version of Tarski�s theorem in Proposition
2, we obtain our �rst result (the proof follows directly from Lemma 27 and
Proposition 2),

Proposition 28 Under the assumptions P2, T2, PT1 and M1, the set of
�xed points '�T is a nonempty complete lattice in C1; with additional condi-
tions PT2 and M2, the set of �xed points '�T is a nonempty complete lattice
in C2:

5.3 Monotone Comparison Theorems via Lattice Program-
ming Methods

We �rst point out straightforward monotone comparison results with respect
to changes in the discount rate and shock process. Consider ordered pertur-
bations of the discount rate � and/or uncertainty � 2 � (where the ordered
perturbation of measure � take place in a setting of �rst order stochastic
dominance). Using variations of existing arguments (e.g., Amir, Mirman
and Perkins[6] (Theorem 5.1) and Hopenhayn and Prescott[39] (corollary
7) for perturbations in � and �; respectively), we obtain a Veinott strong
set order monotone comparative statics result in the pointwise Euclidean
order from the extremal selections of agent investment decisions for invest-
ment a�y(p; h;�; �); under assumptions P2, T2, PT1 and M1. Then by the
Veinott-Topkis SCS theorem, we obtain Veinott strong-set order �xed point
correspondence comparison with the operator Th by '�T (�; �) and have
the SCS via Proposition 10, Section 3. We conclude that the �xed point
correspondence '�T (�; �) exhibits strong set order comparative statics, i.e.,
'�T : (0; 1)� �! 2C1 is a strong set order increasing correspondence.

To study monotone comparative statics with respect to the space of
reduced-form distorted production functions, our argument requires the de-
velopment of a set of partial orders that is suitable for ordering the enve-
lope conditions for agents�decisions. This partial order involves �gradient
monotonicity" conditions. In�nite dimensional single crossing properties rel-
ative to a space of payo¤ functions for a collection of parameterized dynamic
programs have been studied by Lovejoy[50]. Consider the order on the space
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of technologies F : f 0 �F f when u(f 0(k;K; z)) � u(f(k;K; z)) is increas-
ing in k, for each (K; z) with f 0 � f = 0; when k = 0; (k;K; z) 2 P; and
P is compact.16 Observe the following: (a) (F;�F ) is a partially ordered
space antisymmetry follows given f vanishes at zero), (b) f 0 �F f implies
f 0(p) � f(p) for all p in the pointwise Euclidean order, and, (c) f 0 �F f
implies that the gradients, @kf 0(p) � @kf (p); are pointwise ordered in the
Euclidean order.

Proposition 29 provides some monotone comparative statics results. We
have examples of SCS and WCS. As a prerequisite to stating this result, we
de�ne a few terms that are useful in characterizing the order theoretic prop-
erties of the random dynamical systems. Let M(K � Z) be the space of
�nite measures on K � Z; endow M with the stochastic dominance par-
tial order, that is �0 �M � if for every monotone, measurable, nonnegative,
and bounded function f : K� Z ! R+ ,

R
f�0(dk � d
) �

R
f�(dk � d
).

Hopenhayn and Prescott[39] (Proposition 3) show that when this order is
restricted to the space of monotone, measurable, bounded, and nonnegative
functions, (M; �M ) is a partially order set under the stochastic dominance
order �M . When viewed from a topological perspective, Dudley[29] (Propo-
sition 11.3.2) provides a metric under which M is a compact metric space.
Let (K� Z;B(K)�B(Z)) be measurable spaces where B(:) denotes the Borel
measurable subsets. Consider the adjoint operator J(�;h) :M(K� Z)�C2
!M(K� Z) de�ned as,

J(�;h)(A�B) =
Z
IA(h(k; z))�(z;B)�(dk � dz); (7)

where IA is the indicator function for a measurable set A 2 B(K); B 2 B(Z).
For each h 2 C2; de�ne the �xed point correspondence for the operator J
(�;h) to be 	�J(h) = f� 2 M;� = J(�; h)g. De�ne �m(h) = min	�J(h);
and let '�J(f) be the set of invariant distributions associated with the set of
Markovian equilibrium '�T (f); for any production function f 2 F:We have,

Proposition 29 Assume P2, T2, PT1 and M1, let f 2 (F;�F ): Then (i)
the correspondence of Markovian equilibrium, '�T (f) : F ! 2C1 is ascending
in the strong set order �a :Further, with additional assumptions PT2 and
M2, (ii) the set of equilibrium invariant distributions '�J(f) : F ! 2M is

16Note that the partial order de�ned with respect this di¤erence is increasing in each
component of p: We �x (K; z); and emphasize the role of k in our discussion below.
Also, similar orders can be developed to obtain monotone controls in consumption,

relative to the space of production function by developing the obvious dual argument
using the dual order relative to capital.
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ascending in the Smithson-weak set relation �asand admits a monotone se-
lection on F ; and (iii) the dynamics exhibit monotone comparative dynamics
in the Smithson-weak set relation.

Note that standard arguments can be used to prove the existence of
an invariant distribution for a Markovian equilibrium in '�T (f): The main
contribution of Proposition 29 concerns comparative dynamics results on
the space of equilibrium correspondence. The problem of ruling out limiting
distributions that do not have ergodic sets on a strictly positive support
is nontrivial. We leave further characterization of a stationary Markovian
equilibrium for future work. Note that, isotone selections in '�J(f) exist
as one can easily check the conditions of Smithson�s weak isotone selection
theorem discussed in Section 3, Proposition 12.

6 An Economy with Elastic Labor Supply

We revisit the model with classical technology (Section 4) and allow for
elastic labor supply. This model is formulated as in Datta, Mirman and
Re¤ett[22]. As in the previous sections, we consider a continuum of house-
hold/�rms populating the economy. Uncertainty and market structure are
also similar to that in Sections 4 and 5 but the household cares about leisure.
For each period and state, preferences are represented by a period utility in-
dex u(ci; li); (ci; li) 2 R+�[0; 1]. Letting �i = (�1; :::; �i) denote the history
of the shocks until period i, the households lifetime preferences are addi-
tively separable and de�ned over in�nite sequences indexed by dates and
histories,

U(c; l) = E0

( 1X
i=0

�iu(ci; li)

)
:

Here E0 is the expectation with respect to the probability structure of future
histories of the shocks �i given the transition matrix �. The period utility
function u : R� [0; 1] 7! R; satis�es,

Assumption - P3: The period utility index u(c; l) is such that:
(i) u(c; l) is continuously di¤erentiable, strictly increasing, and strictly

concave in (c; l).
(ii) The partial derivatives uc(c; l) and ul(c; l) satisfy the Inada condi-

tions:

limc!0 uc(c; l) =1; limc!1uc(c; l) = 0; liml!0ul(c; l) =1:

(iii) The second partials satisfy,
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ucc
uc

� ulc
ul
;
ull
ul
� ucl
uc
:

The assumptions on period utility are standard. (See Datta et al[22] and
Vailakis[79] for discussion of this assumption). Note that condition P3(iii)

can be thought of as �normality". It also means that the marginal rate of
substitution ul

uc
is non-decreasing in c and ul

uc
is non-increasing in l: And

this is slightly stronger than quasi-concavity of the period utility function
(we assume it to be strictly concave) because it implies,

u2cull + u
2
l ucc � 2uculucl;

which is a necessary condition for quasi-concavity. This condition is au-
tomatically satis�ed if ucc(c; l) < 0; ull(c; l) < 0 and ucl(c; l) � 0: If the
cross-partial is negative, the condition restricts its magnitude.

Each household is endowed with a unit of time, and enters into a period
with an individual stock of capital k: We assume a decentralization where
�rms do not face dynamic decision problems. Households own the �rms as
well as both the factors of production, and they rent these factors of pro-
duction in competitive markets. In addition, to allow for externalities in the
production process, as in previous sections, we assume that the production
technologies of the �rms to depend on per capita aggregates. Assume that
technology satis�es,

Assumption - T3: The production function f : K�[0; 1]�K�[0; 1]�
�! R satis�es,

(i) f(0; 0;K;N; �) = 0 for all (K;N; �) 2 K� [0; 1]��;
(ii) f(k; n;K;N; �) is continuous, increasing, di¤erentiable; in addition,

it is concave and homogeneous of degree one in (k; n):
(iii) f(k; n;K;N; �) also satis�es the standard Inada conditions in (k; n)

for all (K;N; �) 2 K� [0; 1]��; i.e.,

lim
k!0

fk(k; n;K;N; �) = 1;

lim
n!0

fn(k; n;K;N; �) = 1;

lim
k!1

fk(k; n;K;N; �) = 0:

(iv) There exists a k̂(�) > 0; such that f(k̂(�); 1; k̂(�); 1; �) + (1� �)k̂(�) =
k̂(�) and f(k; 1; k; 1; �) < k for all k > k̂(�); for all � 2 �.

Assumption T3 is standard in the stochastic growth literature (see Brock
and Mirman[15]). With the initial stock k0, we can de�ne �k = maxfk0; sup� k̂(�)g
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and the state space for the capital stock and output can be de�ned on the
compact set K� [0; �k]: Let K+ denote the set of strictly positive values for
k:

6.1 The Household Decision and Equilibrium

Imagine a consumer faced with a choice problem of a single good and leisure
in the �rst stage. The objective is to maximize the di¤erence between
the level of utility and the expenditure to obtain that level of utility (see
Topkis[78]). Normalizing on the price of consumption goods, consumers take
the price of leisure w(K; �), the level of per capita consumption C, and the
per capita leisure level L(C;K; �), as given. Here C 2 K; w : K !R++ , L
: K�S! [0; 1]; and L is a continuously once-di¤erentiable function, and as
in previous sections, S := K��:Given w, the household solves,

�(C;K;L; �)) = sup
l2[0;1]

u(C; l)

uc(C;L)
� wl;

for each (C;K;L; �) 2 K2� [0; 1]��. Given the assumption P3, standard
arguments using the Theorem of the Maximum, establish that the value
function � is well-de�ned and continuous (e.g., see Berge[11], p.115). Fur-
ther, by the strict concavity of period utility in P3, the optimal policy cor-
respondence associated with � is a singleton. The necessary condition for
this �rst-stage maximization problem is,

ul(C; l
�(C;K; �))

uc(C;L)
= w(K; �):

To �nish our description of the �rst stage, we need to determine equi-
librium factor prices as functions of the aggregate state variable. We do
this from the representative �rm�s static production problem. Assume that
�rms maximize pro�ts under perfect competition, i.e., the �rms maximize
pro�ts subject to given factor prices, say �r(K; �) and �w(K; �); the rental
rate for capital and the wage rate, respectively. The factor prices are con-
tinuous functions of the aggregate state variable. The representative �rm�s
maximum pro�t is,

�(�r; �w;K;N; �) = supk;nf(k; n;K;N; �)� �rk � �wn

where anticipating the standard de�nition of competitive equilibrium, we
set k = K and n = N(S); for S 2 S.
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In the second-stage, the household solves a dynamic capital accumu-
lation problem. To describe this problem, we parameterize the aggregate
economy facing a typical decision maker. De�ne to be the space of bounded,
continuous functions with domain S and range R+. To parameterize the
household�s decision problem, we �rst describe the aggregate economy.

If the aggregate per capita capital stock is K; then households assume
a continuous function for per capita labor supply 0 � N(S) � 1, and a
recursion of the capital stock K 0 is given by,

K 0 = h(S); h 2 C+(S);0 � h � f(K; 1�N(S); �)

where C+(S) is as before the space of positive continuous functions on S
with the uniform topology. Using the solution to the household�s �rst stage
decision problem (and, imposing equilibrium on the labor market), de�ne
the per capita aggregate labor supply N(S) = 1 � l�(C;K; �). Then the
aggregate economy consists of functions 
 = (w; r; h; C;N) from a space of
functions with suitable restrictions needed to parameterize the household�s
decision problem in the second-stage. Assume that the policy-induced equi-
librium distortions have the following standard form,

r = [1� �k(S)]�r; w = [1� �n(S)] �w;

where � = [�k; �n] is a continuous mapping S![0; 1) � [0; 1). We assume
regularity conditions on the distorted prices,

Assumption - D2 :The vector of distortions � = [�k; �n] is such
that the distorted wage w = (1 � �n(K; �)) �w and the distorted rental rate
r = (1� �n(K; �))�r satisfy,

(i) w : K � � ! R+ is continuous, at least once-di¤erentiable and
(weakly) increasing in K,

(ii) r : K+ ��! R+ is continuous and decreasing in K such that,

lim
K!0

r(K; �)!1:

In other words, we assume that the distorted wage and rental rates
behave as the non-distorted rates �w; �r or the marginal products of labor
and capital, respectively. Assumptions D2(i) and P3(iii) imply that leisure
increases with higher consumption and decreases with larger capital accu-
mulation.

Next de�ne the lump-sum transfer to each agent, d(S) = �kK+�nN(K; �).
Then household�s total income is y(s) = rk+wN +�+ d(s) where s is the
individual household�s state, s = (k; S) = (k;K; �) and � is pro�t. Note
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that under assumptions P3, T3 and D2, y(s) is a continuous function. We
next de�ne the household�s feasible correspondence, 	(s); which consists of
the set (c; k0) 2 R2+ that satisfy,

c+ wl�(C;K; �) + k0 = y;

given (k;K; �) � 0: Notice that 	(s) is well behaved. In particular since
� is continuous, 	 is a non-empty, compact and convex-valued, continuous
correspondence.

Next, we state the second stage decision problem for the household. At
the beginning of any period the aggregate state for the economy is given by
S 2 S. Each household enters the period with their individual capital stock
k 2 K , so their individual state is s 2 K�S: Then the households dynamic
decision problem is summarized by the Bellman equation,

v(s) = sup(c;k0)2	(s)u(c; l
�(C;K; �)) + �

Z
�
v(s0)�(�; d�0) (8)

Standard arguments show the existence a v 2 V that satis�es this functional
equation, where V is again the space of bounded, continuous functions with
the uniform norm. In addition, since u is strictly concave in c, standard
arguments also establish that v is strictly concave in its �rst argument,
k. Once again, from Mirman and Zilcha[56], the strict concavity of v also
implies that the envelope theorem applies and the solution v to the Bellman
equation is once di¤erentiable in k.

We are now prepared to de�ne equilibrium.
De�nition: A (recursive) competitive equilibrium for this economy con-

sists of sequences functions r; w; d; and �; a value function for the household
v(s) 2 V and the associated individual decisions c�(s) and n�(s) such that
(i) given r; w; d and � , v(s) satis�es the household�s Bellman equation (12);
(ii) c�(s) solves the right-hand side optimization in the Bellman�s equation,
l�(s) = 1 � n� (s) solves the �rst-stage utility maximization; (iii) all mar-
kets clear: i.e., k0 = h(S) = K 0; n�(s) = N(S); c�(s) = C(S) and the
government budget constraint holds, i.e., d = �kk + �nn�

6.2 The Existence of Equilibrium

Before we state the existence problem, we de�ne a number of functions.
In equilibrium, c(s) = C(S); k = K; n = N(S);then y(s) = F (K; �) =
f(K; 1 � l�(C(S);K; �); �) + (1 � �)K: The next period capital stock, in
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equilibrium, is given as K 0 = y�C: Also, for later reference, de�ne l̂(S) as
the solution to,

ul(f(K; 1� l̂(S); �); l̂(S))
uc(f(K; 1� l̂(S); �); l̂(S))

= (1� �n(S))fn(K; 1� l̂(S); �): (9)

Notice that l̂ is the amount of leisure that is compatible with no household
investment in the �rst-stage utility maximization. At any (aggregate) state
S;the maximum possible amount of consumption occurs if c = f and, i.e., if
there is no investment. In general, the amount of consumption is less than
f and leisure, which is positively related to consumption, is therefore less
than l̂(S). That is, for a given state S; 1� l̂(S) is the lower bound for the
amount of labor supplied. In addition, l̂(S) is di¤erentiable with respect to
K; by the implicit function theorem, since the marginal utilities, technology
and the distorted wage is di¤erentiable in K. Moreover, for the special case,
ucl � 0; l̂(S) is increasing in K. l̂(S) is also increasing in K; for the case
ucl < 0; if

ull � fnucl < 0; ucl � fnucc > 0:
The Euler equation, associated with the right side of the Bellman equa-

tion (8) above, can be rewritten as,

uc(c; l
�(c;K; �)) = �

Z
�
uc(c(K

0; �0); l�(c0;K 0; �0))r(K 0; �0)�(�; d�0): (10)

Here the 0 notation refers to next period value of the particular variable.
Given a candidate function c(S); we rewrite the Euler equation (10) in equi-
librium as,

uc(c; l
�(c;K; �)) = �

Z
�
uc(c(Fc � c; �0); l�(c(Fc � c; �0);K 0; �0)) �

r(Fc � c; �0)�(�; d�0); (11)

where Fc = f(K; 1 � l�(c(K; �);K; �); �) + (1 � �)K: We can use equation
(11) to de�ne a nonlinear operator that yields a strictly positive �xed point
in the space of consumption functions. This �xed point is an equilibrium
for the economy.

De�ne F u(S) = F u(K; �) = f(K; 1� l̂(K; �); �)+ (1� �)K and consider
the following space of functions,

De�nition: Hl = fh : S! K ; h continuous, h(S) 2 [0; F u(S)] and
h such that uc(h(S); l�(h(S); S)) is decreasing in h; uc(h(S); l�(h(S); S)) is
decreasing in K:g
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Equip Hl with the sup norm. Note that the assumption the marginal
utility of consumption is decreasing in h means that the space Hl di¤ers
from the space of consumption functions studied in Coleman[20]. It is easily
veri�ed that for the preferences considered in that paper, the restriction uc
decreasing in h is implied. However, since the class of preferences studied
in this paper is larger than that studied in Coleman, additional restriction
is necessary on the space of consumption functions.

De�ne the extended real valued mapping Z : Hl � Y �K� Z ! �R
where Y � R+; as

Z(h; �;K; �) = 	1(�;K; �)�	2(h; �;K; �); (12)

	1 = uc(�; l
�(�;K; �)); (13)

	2 = �

Z
�
uc(h(F� � �; �0); l�(h(F� � �; �0); F� � �; �0))r(F� � �; �0)�(�; d�0):

(14)
Here F� = f(K; 1�l�(�;K; �)+(1��)K: Then de�ne the nonlinear operator
A : Hl!H0 as follows:

Ah(K; �) = f� such that Z(h; �;K; �) = 0; h > 0;Ah(K; �) = 0 elsewhereg
(15)

where H0 at this point is an appropriate Banach space.
We discuss some properties of the operator A;as de�ned by equations

(12) - (15).

Proposition 30 Under Assumptions P3, T3 and D2, for any h 2 Hl, there
exists a unique Ah = ~h such that Z(h; ~h;K; �) = 0; for any (K; �):

Proof: Datta, Mirman and Re¤ett[22], Proposition 1. �

Proposition 30 implies that for all states, the operator Ah is well de�ned
and under the continuity assumptions on preferences, technologies, and dis-
torted prices, continuity of Ah is obvious. To study the �xed points of A,
we �rst establish that A is a transformation of Hl: i.e., A : Hl!Hl: It will
be convenient to assume

Assumption - P4: The cross-partial of the utility function is non-
negative, that is, ucl � 0:

Greenwood and Hu¤man [34] only consider the case where ucl = 0: Cole-
man [20] allows for ucl � 0 and also some cases where ucl < 0. However,
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he considers a restricted homothetic class of preferences and, in addition,
imposes more restrictions (jointly on utility, production functions and dis-
tortions) to study the case of negative cross partials of u. The same case
of negative cross-partials of u can be handled in our setting also. At this
stage, we are unable to capture more general cases of negative cross partials
of u than Coleman [20], therefore, we focus only on the ucl � 0 case. And,
we have the following:

Proposition 31 Under assumptions P3, P4, T3 and D2, Ah � Hl:

Proof: Datta, Mirman and Re¤ett[22], Theorem 1.�

Notice that Hl is a non-empty, convex subset of a space of continuous,
bounded real-valued functions but it not equicontinuous, and is therefore not
relatively compact.17 Since it is well known that the space of all continuous
functions on a compactum X; denoted by C(S); with the sup-norm metric
is a Banach lattice, Hl is a sublattice in C(S): Now, a closed subset of
continuous, bounded real-valued functions (on a compact domain) equipped
with sup-norm metric is compact if and only if it is equicontinuous. The
theorem of Arzela and Ascoli (see Dieudonne [27] , p.136-137) says that a
set of equicontinuous, pointwise compact subset of the continuous functions
is relatively compact.

De�ne the following subset of Hl,
De�nition: �H = fh 2 Hl such that 0 � j h(K2; �) � h(K1; �) j�j

F (K2; l
�(h(K2; �);K2; �) � F (K1; l

�(h(K1; �);K1; �) j; for all K2 � K1:g

A standard argument shows that the space of consumption functions
�H � Hl is a closed, pointwise compact, and equicontinuous set of functions.
Then by a standard application of Arzela-Ascoli, �H is a compact, convex,
order interval inHl. Notice that the restriction on consumption in the space
�H that distinguishes it from Hl implies that the investment function K 0 =
Fh�h is an increasing functions of the current capital stock K which follows
because Fh is increasing in K (since l� is decreasing in K; the marginal
products of capital and labor are positive).

We note some important properties of the operator A and the space �H,

17A set is relatively compact if its closure is compact.
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Proposition 32 Under assumptions P3, P4, T3 and D2, �H is a complete
lattice and A is a transformation on �H, i.e., Ah � �H:

Proof: See Datta, Mirman, and Re¤ett[22] Lemma 1 and Theorem 2.�
To apply a lattice-theoretic �xed point theorem, we need to verify iso-

tonicity,

Proposition 33 Under assumption P3, P4, T3 and D2, A is isotone on
Hl.

Proof: Datta et al[22] Theorem 3.�
We now restrict the mapping A to the subspace �H (which is well-de�ned

since A is continuous, �H is compact, order subinterval in Hl and apply a
version of Amann�s theorem,

Proposition 34 Under assumptions P3, P4, T3 and D2 , the set of �xed
points of A : �H! �H has a maximal �xed point Ah� 2 �H such that
limn!1AnF ! Ah� = h�; uniformly.:

Proof: Apply Proposition 14; see also Datta et al[22] Proposition 2.�

6.3 The Uniqueness of Equilibrium

Lastly, we show uniqueness of equilibrium with strictly positive consump-
tion. The proof of strict positivity exploits the strong sublinearity of the
operator Ah (or, the related operator Âm):First, de�ne a function fu(K; �)
= f(K; 1� l̂(K; �); �) and consider the set of functionsM for the inverse of
marginal utility in equilibrium,

De�nition: Ml= fm(K; �) j m : K��! K is continuous; 0 �
m(K; �) � 1

uc(fu(K;�);l̂(K;�))
for K > 0 ; m(K; �) = 0 for K = 0; and

r(K0;�)
m(K0;�) �

r(K;�)
m(K;�) for K

0 � Kg
By assumption D2, r(K; �) is continuous and K is a compact set, there-

fore, r is uniformly continuous. As in Section 4, one can verify thatMl is a
closed, equicontinuous, pointwise compact subset of the space of continuous
functions on a compact topological space, namely C(S): Ml is, therefore,
compact.
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We now de�ne a suitable operator on the space Ml and �nd a unique
strictly positive �xed point of this operator (to prove the uniqueness of
recursive equilibrium in �H). As before, de�ne the function H(m;K; �) for
each m 2Ml implicitly as follows (the following lemma makes sure that this
de�nition is meaningful),

uc(H(m(K; �);K; �); l(H(m(K; �);K; �);K; �)) =
1

m(K; �)
;m > 0;

and H(m;K; �) = 0; m = 0:

Note that, H(m(K; �);K; �) = h(K; �); pointwise. The proof of uniqueness
takes place in three lemmata.

Lemma 35 Under assumptions P3, P4, T3 and D2, the mapping H(m;K; �)
is well-de�ned for each m;K and �:

Proof: Datta, Mirman and Re¤ett[22] Lemma 2.�

To characterize H(m;K; �); take m0 � m in the pointwise partial order
onMl. De�ne h2 = H(m0;K; �) and h1 = H(m;K; �). Notice whenm0 � m;
we have h2 � h1: We can now show that f(k; 1 � l(H(m;K; �);K; �)) �
H(m;K; �) is decreasing in m by the de�nition of H(m;K; �): De�ne

�(h; fh�h; �) = �
Z
uc(h(fh�h; �0); l(h(fh�h; �0); fh�h; �0))r(fh�h; �0)�(�; d�0))

Then for m0 � m; we have the following inequality

uc(Ah1; l(Ah1;K; �) = �(h1; fAh1 �Ah1; �)
� �(h2; fAh1 �Ah1; �)

Therefore, for such a perturbation of h; the mapping Z used in the de�nition
of Ah is now nonnegative. Therefore, the �rst term in the de�nition of Z
must decrease and the second term must increase in a solution Ah2. The
latter implies fAh2 � Ah2 � fAh1 � Ah1: Consequently, by the de�nition
of H(m;K; �); f(K; 1� l(H(m;K; �);K; �))�H(m;K; �) = fH(m) �H(m)
must be decreasing in m:

Now, de�ne the mapping

Ẑ(m; ~m;K; �) =
1

~m
� �

Z
�

r(f ~m �H( ~m;K; �); �0)
m(f ~m �H( ~m;K; �); �0)

�(�; d�0);
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where fm �H(m;K; �) = f(K; 1� l(H(m;K; �);K; �); �)�H(m;K; �) and
we are ready to de�ne the operator,

Â(m) = f ~m 2Ml j Ẑ(m; ~m;K; �) = 0; for m > 0; and, 0 elsewhereg:

De�ning the standard partial order onMl, that is, m0 � m; m0;m 2Ml

if and only if m0(K; �) � m(K; �) for all (K; �). Finally, if m0(K; �) >
m(K; �); m;m0 2Ml; the mappingH must be such that uc(H(m;K; �); l(H(m;K; �);K; �))
is decreasing in m for each (K; �): Since h 2 �H , uc(c; l(c;K; �) is decreasing
in c, and there exists h; h0 2 �H such that h0 = H( 1

uc(h0;l(h0;K;�))
;K; �) =

H(m0;K; �) and h = H( 1
uc(h;l(h;K;�))

;K; �) = H(m;K; �).

If the operator Âm is well de�ned, we are able to relate orbits of the
operator Ânm0 2 Ml to those of the operator Anh0 2 �H by the following
construction. Consider some h0 2 �H. For such an h0; there exists an
m0 =

1
uc(h0;l(h0;K;�))

2Ml such that H( 1
uc(h0;l(h0;K;�))

) = h0: By de�nition,

Ẑ(m0; Âm0;K; �) = Ẑ(H(
1

uc(h0;l(h0;K;�))
;K; �); ÂH( 1

uc(Ah0;l(Ah0;K;�))
);K; �) =

Z(h0; Ah0;K; �):
Therefore, h1 = Ah0 = H( 1

uc(Ah0;l(Ah0;K;�))
) = H(Âm0): A similar ar-

gument establishes Anh0 = H(Ânm0), n = 1; 2; ::: We next show that the
operator Âm is well de�ned.

Lemma 36 Under assumptions P3, P4, T3 and D2, the operator Â is a

well-de�ned transformation on Ml.

Proof: Datta et al[22] Lemma 3.�

We now provide the last step of our argument.

Lemma 37 Under assumptions P3, P4, T3 and D2, if Â has a strictly
positive �xed point then it is unique.

Proof: Since Ẑ is increasing in m, and decreasing in ~m = Âm; Âm1 �
Âm2 for m1 � m2: A su¢ cient condition for strong sublinearity is,

Ẑ(tm; tÂm;K; �) > Ẑ(tm; Âtm;K; �):
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This inequality follows since m 2Ml; and r decreasing in K. Thus,

Ẑ(tm; tÂm;K; �) =
1

~m
� �

Z
�

r(f ~m �H(t ~m); �0)
m(f ~m �H(t ~m); �0)

�(�; d�0) > 0;

and Ẑ(tm; Âtm;K; �) = 0: Therefore, by the same argument in Proposition
18, if Â has a strictly positive �xed point, it is unique inMl (and, therefore,
in �H). �

Finally, we prove the existence a strictly positive �xed point.

Proposition 38 Under assumptions P3, P4, T3 and D2, there is a unique
strictly positive MEDP.

Proof: Note that, asMl is an order interval in a solid cone of continuous
functions, and Âm is strongly sublinear (see proof of lemma 37), by Guo and
Lakshmikantham[35], Theorem 2.2.1.(a), Â is e-concave onMl: As Â is also
isotone andMl is also an order interval in a normal cone of continuous func-
tions, by Guo and Lakshmikantham[35], Theorem 2.2.3, we conclude Â is a
cone compression. Then by the discussion in Guo and Lakshmikantham[35]
(p65):An operator Â is a cone compression if and only if Â has a strictly
positive �xed point. By lemma 37, we conclude that this strictly positive
�xed point must be unique in Ml. Finally, (noting the relationship be-
tween the orbits of Â and A discussed earlier in this section) as we have a
unique strictly positive �xed point for Â, namely m� > 0; we must have a
unique �xed point for A , say h� > 0:Since h� > 0 implies strictly positive
consumption, it is a MEDP. �

It is clear that Remark 19 also applies here. Therefore, the existence
of a strictly positive �xed point is characterized by the operator Â being
a cone compression. Also, note that h� > 0 is crucial in Vailakis[79] for
characterizing prices in l1+nf0g:

7 Concluding Remarks

In this chapter, we survey a new and emerging approach to recursive com-
petitive equilibrium theory that is commonly referred to as isotone recursive
methods and we focus on homogenous agents�economies. These methods
allow one to unify results on the existence, characterization and computation
of MEDPs and the SME for a large class of economies commonly encoun-
tered in applied dynamic macroeconomics. Datta, Mirman, Morand and
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Re¤ett[23] develop isotone recursive methods to study MEDPs in the sto-
chastic Ramsey models of Becker and Zilcha [10] with heterogeneous agents.
They �nd su¢ cient conditions for MEDPs to be isotone and Lipschitz con-
tinuous and for MEDPs that are simply Lipschitz continuous. Another
application of isotone recursive methods to the case of heterogeneous agent
models is in overlapping generation models. These models form the basis
of much work in lifecycle theory and the theory of social security. Erikson,
Morand and Re¤ett[31] apply the isotone recursive approach to a class of
two period stochastic lifecycle-overlapping generations models with social
security, production nonconvexities and public policy (�scal or monetary).
Primarily, they consider the case of i. i. d. shocks but provide some prelim-
inary results with Markov shock.

Potentially the most important extension of isotone recursive methods is
the so-called �mixed-monotone" recursive methods �rst presented system-
atically in Re¤ett[64], and subsequently applied in Mirman, Re¤ett, and
Stachurski[55] to Bewley models with a single asset. The mixed-monotone
method build upon the mixed-monotone �xed point theory (also known as
�coupled" �xed point theory) that has been developed in the literature on
discontinuous di¤erential equations. These methods appear powerful, and
deliver MEDPs on the natural state space of current states even in situa-
tions where MEDPs are not unique. Discussions of mixed monotone �xed
point theory are found in Amann[4], Heikkila and Lakshmikantham[36] and
Re¤ett[63], to name a few. The discovery of mixed-monotone recursive
methods appears to be a giant step forward in developing methods based on
constructive �xed point theory that can be applied in a wide-array of eco-
nomic situations. One no longer needs to have isotone operators (nor �xed
point spaces) where underlying constructions are based on isotonicity. One
problem with this method is that one requires su¢ cient topological struc-
ture relative to the �xed point space for antitone transformations to possess
the �xed point property. Preliminary discussion in Re¤ett[62][63][64] in-
dicates that for many interesting economies, such �xed point spaces are
available. For example, these methods provide successive approximation al-
gorithms for computing Bewley models of the sort studied in Aiyagari[2],
Krusell and Smith[47], and Miao[52]. In addition, isotone recursive meth-
ods are a special case of mixed monotone recursive methods and can be
studied in a �single" step using an isotone operators instead of multi-steps
for mixed-monotone operators. Mixed monotone recursive methods unify
the existing approaches to characterize MEDPs and the SME by allowing
researchers to obtain more general results that relate monotone iterative
computational procedures to actual �xed point constructions. As numerical
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methods described in standard monographs (e.g., Krasnoselskii et al[44]) can
build on explicit operators to obtain error estimates of Santos and Vigo[70]
and Santos[69]. In principle, one might be able to obtain a complete set
of iterative methods for studying numerically, the quantitative properties
of the SME in a large class of macroeconomic models to a speci�ed degree
of accuracy, which seems to be the goal of quantitative macroeconomics
(e.g., real business cycle studies). Indeed, qualitative methods can provide
an essential, �rst step in obtaining a useful (and, mathematically credible)
quantitative theory of macroeconomic �uctuations and long-run growth.
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