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Abstract

Risk managers use portfolios to diversify away the un-priced risk of

individual securities. In this paper we compare the bene…ts of portfolio

diversi…cation for downside risk in case returns are normally distributed

with the case fat tailed distributed returns. The downside risk of a security

is decomposed into a part which is attributable to the market risk, an

idiosyncratic part and a second independent factor. We show that the

fat-tailed based downside risk, measured as Value-at-Risk (VaR), should

decline more rapidly than the normal based VaR. This result is con…rmed

empirically.
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1 Introduction

Risk managers use portfolios to diversify away the un-priced risk of individual

securities. This topic has been well studied for global risk measures like the

variance, see e.g. the textbook by Elton and Gruber (1995, ch.4). In this

paper we study the bene…ts of portfolio diversi…cation with respect to extreme

downside risk measure known as the zeroth lower partial moment and its inverse;

where the inverse of the zeroth lower partial moment is better known as the

VaR -Value at Risk- risk measure. Choice theoretic considerations for this risk

measure are o¤ered in Arzac and Bawa’s (1977) analysis of the safety …rst

criterion. In Gourieroux et al. (2000), the implications under the assumption

of normally distributed returns are investigated, while Jansen et al. (2000)

implement the safety …rst criterion for heavy tailed distributed returns. There

is some concern in the literature that the VaR measure lacks subadditivity as

a global risk measure. As a measure for the downside risk, however, the VaR

exhibits subadditivity if one evaluates this criterion su¢ciently deep in the tail

area.1

The portfolio diversi…cation e¤ects for the downside risk are evaluated in

terms of the diversi…cation speed. The diversi…cation speed is measured in two

1At least this holds for the normal distribution and the class of fat tailed distributions
investigated in this paper.
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di¤erent ways. Let the "VaR-diversi…cation-speed" be the rate at which the

VaR changes as the number of assets included into the portfolio increases.

Usually the safety …rst criterion and the VaR criterion are evaluated at a …xed

probability level. It is also possible to do the converse analysis by …xing the VaR

level and let the probability level change as the number of assets increases.

This gives what we term the "Diversi…cation-speed-of-the-risk-level". We will

study both concepts. Much of the theoretical literature in …nance presumes that

the returns are normally distributed. For a host of questions this is a reasonable

assumption to make. Empirically, it is well known that the return distributions

have fatter tails than the normal, see e.g. Jansen and De Vries (1991). For the

downside risk measures this data feature turns out to make a crucial di¤erence.

The diversi…cation speeds are shown to be quite di¤erent for the cases of the

normal and the fat tailed distributions. The VaR-diversi…cation-speed is higher

for the class of (…nite variance) fat tailed distributions in comparison to the

normal distribution, but is lower with respect to the Diversi…cation-speed-of-

the-risk-level. The intuition for this result is as follows. Start with latter result.

The tails of the normal density go down exponentially fast, while the tails of

fat tailed distributions decline at a power rate (this is the de…ning characteris-

tic of these distributions). Since an exponential function eventually beats any

power, it stands to reason that the Diversi…cation-speed-of-the-risk-level under

normality is larger. The VaR-diversi…cation-speed measures the speed in terms

of quantiles, which are the inverse of the probabilities. Taking the inverse re-

verses the diversi…cation speed. Consider for example the case of the normal
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versus Student-t distributed returns with degrees of freedom. It is well known

that the VaR-diversi…cation-speed for the normal distribution follows the square

root rule. Per contrast, the Student-t VaR-diversi…cation-speed is 1¡1 . This

is above 1 2 if 2 (guaranteeing a …nite variance). This intuition is made

rigorous below by means of the celebrated Feller convolution theorem for heavy

tailed (i.e. regularly varying) distributions.

For the empirical counterpart of this analysis, we brie‡y review the semi-

parametric approach to estimating the (extreme) downside risk. The heavy tail

feature is captured by a Pareto distribution like term, of which one needs to

estimate the tail index (the equivalent of the degrees of freedom in case of

the Student law) and a scale coe¢cient. We consider estimation by means of a

pooled data set on basis of the assumption that the tail indices of the di¤erent

securities and risk components are equal. We do allow for heterogeneity of the

scale coe¢cients, though. Most securities’ distributions display equal hyperbolic

tail coe¢cients, but do di¤er considerably in terms of their scale coe¢cients, see

Hyung and de Vries (2002). Within this framework it is possible to calculate

the diversi…cation e¤ects beyond the sample range and for hypothetically larger

portfolios, if we make some assumptions regarding the market model betas and

scale coe¢cients of the orthogonal risk factors. The diversi…cation speeds are

analyzed graphically.

We start our essay by reviewing the Feller’s convolution theorem for distri-

butions with heavy tails. Subsequently, we study the diversi…cation problem

in more detail by adding the market factor. The relevance of the theoretical
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results for the downside risk portfolio diversi…cation question is demonstrated

by an application to S&P stock returns.

2 Diversi…cation E¤ects and the Feller Convo-

lution Theorem

In this section we only consider securities which are independently distributed.

In the next section this counterfactual assumption, as least as far as equities

are concerned, is relaxed by allowing for common factors. Let denote the

logarithmic return of the ¡th security. Suppose the f g are generated by a

distribution with heavy tails in the sense of regular variation at in…nity. Thus,

far from the origin the Pareto term dominates:

Pr f · ¡ g = ¡ [1 + (1)], 0, 0 (1)

as ! 1. The Pareto term implies that only moments up to are bounded

and hence the informal terminology of heavy tails. Per contrast the normal

distribution has all moments bounded thanks to the exponential tail shape.

Distributions like the Student-t, Pareto, non-normal sum-stable distributions

all have regularly varying tails. Downside risk measures like the VaR, i.e. at the

desired probability level : Pr f · ¡VaRg = , directly pick up di¤erences in

tail behavior.

An implication of the regular variation property is the simplicity of the tail
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probabilities for convoluted data. Suppose the f g are generated by a heavy-

tailed distribution which satis…es (1). From the Feller’s Theorem (1971, VIII.8),

the distribution of the ¡sum satis…es2

Pr

(X
=1

· ¡
)
= ¡ [1 + (1)], as !1.

From this one can derive the diversi…cation e¤ect for the equally weighted port-

folio = 1
P

=1 , see Dacorogna et al. (2001). The following …rst order

approximation for the equally weighted portfolio diversi…cation e¤ect regarding

the downside risk obtains3

Pr

(
1X

=1

· ¡
)
¼ 1¡ ¡ (2)

Under the heterogeneity of the scale coe¢cients , the equivalent of equation

(2) reads

Pr

(
1X

=1

· ¡
)
¼ ¡

ÃX
=1

!
¡ (3)

To summarize, if at a constant VaR level one increases the number of

securities included in the portfolio, this decreases the probability of loss by

1¡ see (2).

The other case is where the are independent standard normally dis-

2Note that in this analysis !1, while is a …xed number.
3Note that this diversi…cation result only holds as ! 1 Garcia, Renault and Tsafack

(2003) show that for symmetric stable distributions, the diversi…cation result applies anywhere
below the median. This has to do with the fact that the sum stable distributions are self
additive throughout their support, while this only applies in the tail region for the class of fat
tailed distributions.
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tributed

Pr

(
1X

=1

· ¡
)
» (0

1
)

The following is the equivalent of (1) for the normal distribution

Pr f · ¡ g = 1 1p
2
exp(¡1

2
2)[1 + (1)] as !1

For the equally weighted portfolio it thus holds

Pr

(
1X

=1

· ¡
)
= Pr

½
1p · ¡

¾
' 1p 1p

2
exp(¡1

2
2) (4)

It follows that under normality

lnPr

ln
' ¡1

2
¡ 1
2

2 (5)

while under fat tail model from equation (2),

lnPr

ln
' 1¡ (6)

Hence, for su¢ciently high but …xed the normal distribution implies a higher

Diversi…cation-speed-of-the-risk-level.

Next consider holding the probability constant but letting the VaR level

change, which is the typical case considered under the safety …rst criterion, to

determine the VaR-diversi…cation-speed. Thus in case of the normal model we
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are interested in comparing VaR levels and such that

Pr f · ¡ g = Pr
(
1X

=1

· ¡
)
= Pr

½
1p · ¡

¾
(7)

Using the additivity properties of the normal distribution, or equivalently using

(4) on both sides of (7), it is immediate that

= p

So that the normal based VaR-diversi…cation-speed reads

ln

ln
= ¡1

2
(8)

For the fat tailed model the equivalent of ( 7) is

¡ = Pr f · ¡ g = Pr
(
1X

=1

· ¡
)
= ¡

ÃX
=1

!
¡

Solving for gives

=

ÃP
=1

!1

Furthermore, if the scale coe¢cients are identical this simpli…es to

=
1¡1
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So that if 2 i.e. when the variance exists,

ln

ln
= ¡(1¡ 1

) ¡1
2

(9)

Compare ( 9) to ( 8). If 2, then the VaR-diversi…cation-speed is a higher

for fat tailed distributed returns than if the returns were normally distributed.

3 Diversi…cation E¤ects in Factor Models

We relax the assumption of independence between security returns and allow

for non-diversi…able market risk. The market risk reduces the bene…ts from

diversi…cation to the elimination of the idiosyncratic component of the risk.

First consider a single index model in which all idiosyncratic risk is assumed

independent from the market risk

= + (10)

and where is the (excess) return on the market portfolio, is the amount

of market risk and is the idiosyncratic risk of the return on asset . The

idiosyncratic risk may be diversi…ed away fully in arbitrarily large portfolios

and hence is not priced. But the cross-sectional dependence induced by common

market risk factor has to be held in any portfolio.

We apply Feller’s theorem again for deriving the bene…ts from cross-sectional

portfolio diversi…cation in this single index model. Consider an equally weighted
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portfolio of assets. Let = 1P
=1 . The case of unequally weighted

portfolios is but a minor extension left to the reader for consideration of space. In

this single index model the are cross-sectionally independent and, moreover,

are independent from the market risk factor . Suppose in addition that the

satisfy Pr f · ¡ g ¼ ¡ for all , and that Pr f · ¡ g ¼ ¡ .

The diversi…cation bene…ts from the equally weighted portfolio regarding the

downside risk measure for the case of homogenous scale coe¢cients =

then follow as

Pr

(
1X

=1

· ¡
)
¼ 1¡ ¡ [1 + (1)] + ¡ [1 + (1)], (11)

as !1. If the scale coe¢cients are heterogenous, the equivalent of equation

(11) reads

Pr

(
1X

=1

· ¡
)
¼ ¡

ÃX
=1

!
¡ + ¡ (12)

In large portfolios one should see that almost all downside risk is driven by the

market factor, if 1

Pr

(
1X

=1

· ¡
)
¼ ¡

for large, but …nite .

In general one …nds the single index model does not hold exactly due to

the fact that Cov[ ] is typically non-zero for o¤ diagonal elements as well.
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Thus though the may be independent from the market risk factor (they are

uncorrelated with by construction), they are typically not cross sectionally

independent from each other. This case is usually referred to as the market

model. For example, let there be one other common factor . This factor

is assumed independent from , but the Cov[ ] Cov[ ] = say. Let

= 1
P

=1 , and assume that Pr f · ¡ g ¼ ¡ . Then, by analogy with

the foregoing results

Pr

(
1X

=1

· ¡
)
¼ ¡

ÃX
=1

!
¡ + ¡ + ¡ (13)

To study the case of non-identical in (12), one has to consider two cases:

Case 1 = 1 = = +1 · +2 · ·

Case 2 1 = = +1 · +2 · · and 1

Here stands for the tail index of the market portfolio return, and the

are the indices of the idiosyncratic parts of the security return. Then

corresponding expressions to (12) are for case (1)

Pr

(
1X

=1

· ¡
)
¼ ¡

ÃX
=1

!
¡ + ¡

and for case (2)

Pr

(
1X

=1

· ¡
)
¼ ¡ 1

ÃX
=1

!
¡ 1
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Next, consider holding the probability constant but letting the VaR level

change in (12) as the number of assets increases. From (12) we had

Pr

(
1X

=1

· ¡
)
¼ ¡

"X
=1

+

ÃX
=1

! #
¡

By …rst order inversion, cf. De Bruijn’s theorem in Bingham et al. (1987), one

obtains

= =
1
"X
=1

+

ÃX
=1

! #1
¹¡1 (14)

and where ¹ is the …xed probability level. With homogenous scale coe¢cients,

we may simplify this to

=
1

1¡1

24 +

³P
=1

´ 351 ¹¡1

This should be compared with the results from the previous section on the

VaR-diversi…cation-speed, where the part stemming from the market factor was

absent. In particular we …nd

ln

ln
= ¡1 + 1

+
(
P

=1 )

which is smaller, i.e. gives a higher speed, than the simple ¡1+1 from before.
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4 Estimation by Pooling

To investigate the relevance of the above downside risk diversi…cation theory, we

need to estimate the various downside risk components. To explain the details

of the estimation procedure, consider again the simple setup in (3). To be able

to calculate the downside risk measure, one needs estimates of the tail index

and the scale coe¢cients . A popular estimator for the inverse of the tail

index is Hill’s (1975) estimator. If the only source of heterogeneity are the scale

coe¢cients, one can pool all return series. Let f 11 1 1 g be

the sample of returns. Denote by ( ) the -th descending order statistic from

f 11 1 1 g. If we estimate the left tail of the distribution, it

is understood that we take the losses (reverse signs). The Hill estimator reads

d1 =
1 X

=1

ln
¡

( )

¢¡ ln ¡ ( +1)

¢
(15)

This estimator requires a choice of the number of the highest order statistics

to be included, i.e. one needs to locate the start of the tail area. We imple-

mented the subsample bootstrap method proposed by Danielsson et al. (2000)

to determine . The estimator for the scale when = for all is

b= ( ( +1))
b

Note that is the empirical probability associated with ( +1), and the

estimator b follows intuitively from (1). Under the heterogeneity of one
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takes

b = ( ( +1))
b

where is such that

(1) ¸ ¸ ( ) ¸ ( +1) ¸ ( +1) ¸ ¸

Note that
P

=1 = . This implies that by the pooling method we obtain

exactly the same portfolio probabilities whether or not one assumes (counter-

factually incorrect) identical or heterogenous scale coe¢cients, since

¡b ÃX
=1

b ! ¡b = ¡b ÃX
=1

( ( +1))
b! ¡b

= ¡b
³P

=1

´
( ( +1))

b ¡b
= 1¡b b ¡b

We can adapt this pooling method to the market model with little modi…ca-

tion. Pooling the series f g f 1g f g, one can use the same procedure as

in the case of cross-independence.4 For the estimation of the tail index one uses

again (15), where in this case f g = f 1 11 1 1 g.

4The determination of the parameters and the residuals entering in the de…nition of
the market model is done by regressing the stock returns on the market return. The coe¢cient
is thus given by the ordinary least squares estimator, which is consistent as long as the

residuals are white noise and have zero mean and …nite variance. The idiosyncratic noise
is obtained by subtracting times the market return to the stock return.
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Estimators for the scales are

b = ( ( +1))
b = 1 and

where is such that

(1) ¸ ¸ ( ) ¸ ( +1) ¸ ( +1) ¸ ¸

where can be or

In case the tail indices di¤er across securities and risk factors, the above

can be easily adapted to estimation on individual series. There is however

considerable evidence that the tail indices are comparable for equities from the

S&P 500 index, see e.g. Jansen and De Vries (1991) and Hyung and De Vries

(2002). Therefore we decided to proceed on basis of the assumption that the

tail indices are equal.

5 Empirical Analysis of the Diversi…cation Speed

We now apply our theoretical results to the daily returns of a set of stocks. In

order to estimate the parameters of the market model we choose the Standard

and Poor’s 500 index as a representation of the market factor. This is certainly

not the market portfolio as in the CAPM; nevertheless, the S&P 500 index

represents about 80% of the total market capitalization. To see the e¤ects of

portfolio diversi…cation, we choose 15 stocks arbitrarily from the S&P 100 index
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in March of 2001. We use the daily returns (close-to-close data), including cash

dividends. The data were obtained from the Datastream. The data span runs

from January 2, 1980, through March 6, 2001, giving a sample size of = 5,526.

Thus more than 20 years of daily data are considered, including the short-lived

1987 crash. All results are in terms of the excess returns above the risk free

interest rate (three month US Treasury bills).

The summary statistics for each stock return series and the market factor

are given in Table 1. On an annual basis the excess returns hover around

7.5% and have comparable second moments. The excess returns all exhibit

considerably higher than normal kurtosis. This latter feature is also captured

by the estimates of the tail index in Table 2. In this table we report tail index

and scale estimates using the individual series, counter to the pooling method

outlined above. This is done in order to show that the tail indices are indeed

rather similar, while there is considerable variation in the scales. This motivates

the single tail index, heterogenous scale model implemented in the other tables.

Table 2 also gives the beta estimates for the market model.

In Table 3 computations proceed by using the pooling method, assuming

identical tail indices for all risk components. We report the estimates of the

scale parameter , and the optimal number of order statistics . Both are

calculated for the series of excess returns and for the (constructed) orthogonal

residuals from the market model (using the betas). The tail index estimate using

all excess returns is 3.163, while when we use all the residuals the tail index is

3.246. The scale parameter estimates, however, di¤er considerably since these
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range between 14.4 and 46.4 for the excess returns, and are between 4.3 and

42.2 for the market returns and residuals respectively. We note that the scale

estimates for the excess returns using the pooling method are more homogeneous

than when using the individual series approach from Table 2.

The e¤ects of portfolio diversi…cation are reported in Table 4. The downside

risk measure is the probability of a loss in excess of the VaR level ; we report

at four di¤erent loss levels (respectively =7.10, 11.69, 13.33 and 15.97)5 . Four

di¤erent levels of portfolio aggregation are considered: one stock, 5 stocks, 10

stocks and 15 stocks. The numbers in row EMP are the probabilities from the

empirical distribution function of the total return series. The normal law is

often used as the workhorse distribution model in …nance, even though it does

not capture the characteristic tail feature of the data. Therefore in the rows

labelled NOR we give the probabilities from the normal model based formula,

using the mean and variance estimates from the averaged series. The estimated

values in rows FAT were obtained by the heavy tail model using the averaged

total excess returns
P

=1 . The rows CDp give the probability estimates

from the pooled series on the basis of (12) assuming the heterogenous scale

model. One notes that the normal model does well in the center, but performs

poorly as one moves into the tail part. Per contrast, the averaged series in

rows FAT is always quite close to the empirical distribution function in the

tail area. This shows that the heavy tail model much better captures the tail

properties. If we turn to the last rows, one notes that the model in (12) does

5We choose these particular set of VaR values from the 5.0, 1.0, 0.5 and 0.25% quantiles
of the market returns.
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Figure 1.1 Downside Risk Decomposition at s = -7.10 (Fat-tailed case)
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capture a considerable part of the tail risk of the portfolio, but that there is

a gap between the tail risk which is explained by the model and which is left

unexplained. This is further interpreted below.

To judge these results and to study the speed of diversi…cation a graphical

exposition is insightful. In Figures 1.1 and 1.2 we show the Diversi…cation-speed-

of-the-risk-level by plotting the probability of loss for two di¤erent VaR levels

against the number of securities which are included in the portfolio6. Figure 1.1

is for the 7.10 VaR level, and Figure 1.2 concerns the 15.97 VaR level. The top

line gives the total amount of tail risk by means of the empirical distribution

function. The grey area constitutes the market risk component, while the black

area contains the idiosyncratic risk from (12). Note that the idiosyncratic risk is

basically eliminated once the portfolio includes about seven stocks. To put this

6The order by which the securities are included corresponds to the numbering in Table 1.
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Figure 1.2 Downside Risk Decomposition at s = -15.97 (Fat-tailed case)
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Figure 2. Variance Decomposition
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result into perspective, we also provide a graph for the speed of diversi…cation

concerning the variance, see Figure 2. This is a global risk measure and under

independence, the variance of the idiosyncratic part should decline linearly in .

As can be seen from this latter …gure, it takes approximately double the number

of securities to eliminate the variance part contributed by the idiosyncratic risk

part, cf. Elton and Gruber (1995). Note that this corroborates the rate given

in (6) and the value of ' 3 as in Table 2 (while the variance declines at

speed 1). Interestingly as noted at the end of the previous paragraph, another

remarkable di¤erence between the last …gure and the …rst two …gures is the size

of the residual risk driven by the factors other than the market factor. While

this component is relatively minor for the variance risk measure, it is even larger

than the market risk component for the downside risk measure. This points to

the presence of another factor uncorrelated with as in (13). This other

factor induces a small correlation between the residuals, see Figure 2. This

small correlation not withstanding, the other factor appears important with

respect to the downside risk. In future research we hope to relate this factor to

economic variables.

Next we compare the VaR-diversi…cation-speed under the normal model with

the fat tail model. To plot the VaR-diversi…cation-speed we now look in the

VaR- space. From (14) it is clear one cannot separate the market part form

the idiosyncratic part, due to the power 1 . Nevertheless, one can …rst plot

the VaR level doing as if only the market factor were relevant (e.g. this would

be the case if the idiosyncratic risks have a higher tail index compared to the
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market index). The market factor is from (14)

= (
1X

=1

) [ ]1 ¹¡1 (16)

The next line plots the combined e¤ect, market factor and idiosyncratic com-

ponents, which simply is (14). Third, one plots the empirical quantile function

as more assets are added. Similarly, one can proceed in this fashion under the

assumption that the returns follow the normal distribution.

Figure 3.1 - Figure 4.2 show the decreasing level of VaR for the given prob-

ability. Figure 3.1 is for the 0.05 probability level, and Figure 3.2 concerns the

0.0025 probability level in case of the fat tailed distribution. The top line gives

the total amount of VaR by means of the empirical distribution function. The

grey area constitutes the VaR level from market risk component as in (16), while

the black area plus the grey area displays (14). Figure 4.1 is for the 0.05 prob-

ability level, and Figure 4.2 concerns the 0.0025 probability level for the case of

the normal distribution. These …gures clearly display the theoretical prediction

(9), that the VaR-diversi…cation-speed for the idiosyncratic risk is lower for the

normal model than for the fat-tailed model.

6 Out-of-sample, Out-of-portfolio

The semi-parametric approach we followed to construct the downside risk mea-

sure can also be used to go beyond the sample. We consider two possible

applications of this technique which might be of use to risk managers. The …rst
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Figure 3.1 VaR Decomposition at p = 0.05 (Fat-tailed case)
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Figure 3.2 VaR Decomposition at p = 0.0025 (Fat-tailed case)
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Figure 4.1 VaR Decomposition at p = 0.05 (Normal case)
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Figure 4.2 VaR Decomposition at p = 0.0025 (Normal case)
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application asks the question how much extra diversi…cation bene…ts could be

derived from adding more securities, without having observations on these secu-

rities. By making an assumption regarding the value of the average beta and the

average scale of the residual risk factors in the enlarged portfolio, one can use

(12) to extrapolate to larger than sample size portfolios. A second application is

to increase the loss levels at which one wants to evaluate the downside risk level

beyond the worst case in sample. Moreover, even at the border of the sample

our approach has real bene…ts. By its very nature the empirical distribution is

bounded by the worst case and hence has its limitations, since the worst case

is a bad estimator of the quantile at the 1 probability level (and vice versa).

Thus increasing the loss level in (12) beyond the worst case gives an idea

about the risk of observing even higher losses.

In Table 5 the block denoted as Case I just summarizes some information

from the previous Table 4. The Case III block addresses the …rst application

by increasing the number of securities beyond the sample value of 15. We

assumed the following average beta values: = 0 7, 0 83 and 0 9. The Case II

block increases the loss return level. In Table 4 we used 15.97 as the highest

loss level. Above this level many securities have no observations. There is one

equity with much higher loss returns and we used this one to provide the ‘out

of sample’ loss levels of 22.03, 25.21, 33.69 and 40.45 respectively. To interpret

Case III, note that the inclusion of more stocks that have a close correlation

with the market component increases the loss probability for a given VaR level.

For example consider a portfolio of = 30 stocks, at the -15.97 quantile when
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= 0 7 the probability is 0.0169 but when = 0 9 the probability increases to

0.0381.

7 Conclusion

Risk managers use portfolios to diversify away the un-priced risk of individual

securities. In this paper we study the bene…ts of portfolio diversi…cation with

respect to extreme downside risk, or the VaR risk measure. The risk of a security

is decomposed into a part which is attributable to the market risk and an inde-

pendent risk factor. The independent part consists of an idiosyncratic part and

a second common factor. Two di¤erent measures for diversi…cation e¤ects are

studied. The VaR-diversi…cation-speed measure holds the probability level con-

stant and gives the rate of change by which the VaR declines as more securities

are added to the portfolio, while the Diversi…cation-speed-of-the-risk-level holds

the VaR level constant and measures the decline in the probability level. For

the VaR-diversi…cation-speed measure we argued fat tailed distributed idiosyn-

cratic risk factors should go down at a higher speed than normal distributed

idiosyncratic risk factors. This theoretical prediction was also found empiri-

cally to be the case. Furthermore, we provide predictions for the downside risk

diversi…cation bene…ts beyond the range of the empirical distribution function.

This research can be extended in several directions. Given the large gaps in

Figures 1 and 2 between the total downside risk and the market factor downside

risk contribution, it is of interest to see whether one can identify the remaining

25



risk factors as in (13). Moreover, one would like to explain why these re-

maining risk factors are relatively unimportant for the global risk measure such

as the variance. Moreover, the above analysis may explain why many investors

seem to hold not so well diversi…ed portfolios if a global risk measure like the

variance is used as the yardstick.
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Table 1. Selected Stocks and Summary Statistics of Excess returns

Series Name 1 2 3 4

S&P 500 Index .0747 2.52 -2.31 55.49
1 ALCOA .0707 4.84 -0.26 13.39
2 AT & T .0392 4.33 -0.35 16.41
3 BLACK & DECKER -.0168 5.61 -0.32 10.57
4 CAMPBELL SOUP .0897 4.37 0.28 9.06
5 DISNEY (WALT) .0981 4.86 -1.30 29.82
6 ENTERGY .0454 4.06 -0.97 23.66
7 GEN.DYNAMICS .0764 4.53 0.26 10.24
8 HEINZ HJ .0968 3.99 0.11 6.35
9 JOHNSON & JOHNSON .1053 4.08 -0.32 9.45
10 MERCK .1212 3.96 -0.03 6.31
11 PEPSICO .1170 4.43 -0.04 7.82
12 RALSTON PURINA .1077 4.08 0.70 15.41
13 SEARS ROEBUCK .0542 4.91 -0.24 16.83
14 UNITED TECHNOLOGIES .0851 4.19 -0.10 6.83
15 XEROX -.0423 5.48 -1.78 33.74

Note: Observations cover 01/01/1980 - 03/06/2001, giving 5526 daily observa-
tions. The 1 2 3 and 4 denote the sample mean, standard error, skew-
ness and kurtosis of annualized excess returns, respectively. The estimates are
reported in terms of the excess returns above the risk free interest rate (US
Treasury bill 3 months).
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Table 2. Left Tail Parameter Estimates

Series
2.963 2.522 298

1 3.789 110.117 113
2 2.785 7.953 289
3 3.220 58.601 136
4 3.505 48.766 68
5 2.549 6.211 496
6 1.981 1.339 682
7 3.218 27.687 140
8 3.404 25.811 197
9 3.377 23.663 292
10 4.035 104.724 62
11 3.789 103.171 71
12 3.136 14.106 190
13 3.166 28.244 256
14 4.335 288.036 66
15 2.098 2.999 537

Note: The values in columns and are respectively the tail index, the
scale parameter, the estimated optimal number of order statistics and market
model beta.
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Table 3. Left Tail Parameter Estimates

Excess returns Residuals
Series

23.0 1609 - 19.6 1021
- - 1 4.3 15

1 26.2 122 0.877 24.7 86
2 19.5 91 0.929 15.2 53
3 46.4 216 0.938 42.2 147
4 22.7 106 0.719 19.5 68
5 24.0 112 1.012 22.1 77
6 14.4 67 0.475 14.9 52
7 25.3 118 0.710 25.0 87
8 16.3 76 0.640 14.9 52
9 13.9 65 0.927 10.6 37
10 15.7 73 0.854 11.5 40
11 24.2 113 0.867 18.7 65
12 15.0 70 0.669 16.4 57
13 29.0 135 1.074 17.5 61
14 20.2 94 0.895 13.2 46
15 32.4 151 0.949 26.7 93

Note: The values in row give estimates from the pooled series imposing
scale homogeneity. The values in rows 1 2 15 give estimates for the
market returns and the individual stock series for the total excess returns and
the residual parts. The values in columns and are the scale parameter and
the estimated optimal number of order statistics imposing identical tail indices.
The values in column are the market model beta.
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Table 4. Lower Tail Probabilities in Percentages

-7.10 -11.69
1 5 10 15 1 5 10 15

EMP 4.995 1.195 0.633 0.579 0.995 0.253 0.145 0.145
NOR 7.325 0.934 0.225 0.198 0.817 0.005 0.000 0.000
FAT 6.551 1.181 0.741 0.706 0.988 0.265 0.185 0.171
CDp - 0.633 0.392 0.423 - 0.125 0.078 0.084

-13.33 -15.97
1 5 10 15 1 5 10 15

EMP 0.489 0.163 0.109 0.127 0.235 0.109 0.090 0.090
NOR 0.309 0.000 0.000 0.000 0.051 0.000 0.000 0.000
FAT 0.603 0.179 0.129 0.118 0.304 0.104 0.078 0.071
CDp - 0.082 0.051 0.055 - 0.046 0.028 0.030
Note: The entries in rows EMP are the probabilities from the empirical distri-
bution. The rows NOR and FAT report the probabilities calculated directly
from the parameters of the averaged series itself, where in the former case one
uses the presumption of normality and in the latter case regular variation is
imposed. The numbers in rows CDp are the probabilities estimated using the
pooled series. The denotes the number of individual stocks included in the
averaged series, and is the loss quantile. Note probabilities are written in
percentage format.
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Table 5. Lower Tail Probabilities: Beyond the Sample and the Market

-7.10 -11.69 -13.33 -15.97 -22.03 -25.21 -33.69 -40.45
% 5.0 1.0 0.5 0.25 0.090 0.054 0.018 0.009

CASE I CASE II
EMP 1.1946 .2534 .1629 .1086 .0362 .0362 .0181 .0181

5 FAT 1.1900 .2660 .1798 .1045 .0397 .0265 .0111 .0064
CDp .6093 .1205 .0789 .0439 .0154 .0100 .0039 .0021
EMP .6335 .1448 .1086 .0905 .0181 .0181 .0181 .0181

10 FAT .6800 .1490 .1001 .0578 .0217 .0144 .0060 .0034
CDp .3914 .0774 .0507 .0282 .0099 .0064 .0025 .0014
EMP .5792 .1448 .1267 .0905 .0181 .0181 .0181 .0181

15 FAT .7087 .1722 .1189 .0712 .0286 .0195 .0086 .0051
CDp .4227 .0836 .0547 .0304 .0107 .0069 .0027 .0015

CASE III
CDp1 .2375 .0470 .0307 .0171

20 CDp2 .4190 .0829 .0543 .0302
CDp3 .5318 .1052 .0689 .0383
CDp1 .2359 .0467 .0305 .0170

25 CDp2 .4175 .0826 .0541 .0301
CDp3 .5302 .1049 .0687 .0382
CDp1 .2350 .0465 .0304 .0169

30 CDp2 .4166 .0824 .0540 .0300
CDp3 .5294 .1047 .0686 .0381

Note: The entries in rows EMP are the probabilities from the empirical distri-
bution. The numbers in rows FAT are the probabilities calculated directly from
the parameters of averaged series itself. The numbers in row CDp are the proba-
bilities from the fat tail market model (12). The numbers in rows CDp1,2and 3
are calculated by imposing = 0 7 0 8358 and 0 9, respectively. The denotes
the number of individual stocks included in the averaged series, and gives the
loss quantile. Note probabilities are written in percentage format.
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