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Abstract

A situation in which a finite set of players can obtain certain payoffs by cooperation can be
described by a cooperative game with transferable utility, or simply a TU-game. A solution
for TU-games assigns a set of payoff distributions (possibly empty or consisting of a unique
element) to every TU-game. Harsanyi solutions are solutions that are based on distribut-
ing dividends. In this paper we consider games with limited communication structure in
which the edges or links of an undirected graph on the set of players represent binary
communication links between the players such that players can cooperate if and only if
they are connected. For such games we discuss Harsanyi solutions whose dividend shares
are based on power measures for nodes in corresponding communication graphs. Special
attention is given to the Harsanyi degree solution which equals the Shapley value on the
class of complete graph games (i.e. the class of TU-games) and equals the position value on
the class of cycle-free graph games. Another example is the Harsanyi power solution that
is based on the equal power measure, which turns out to be the Myerson value. Various

applications of our results are provided.

Keywords: Cooperative TU-game, Harsanyi dividend, communication structure, power
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1 Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can be
described by a cooperative game with transferable utility, or simply a TU-game, being a pair
(N,v), where N C N is a finite set of players and v: 2¥ — R is a characteristic function
on N such that v(()) = 0. For any coalition S C N, v(S) is the worth of coalition S, i.e. the
members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate. Unless
stated otherwise, we assume that N = {1,...,n}, i.e. N is a set of n players, indexed by
1=1,...,n.

A payoff vector x € R" of an n-player TU-game (N, v) is an n-dimensional vector
giving a payoff x; € R to any player i € N. A (single-valued) solution for TU-games is
a mapping F' that assigns to every game (N, v) a payoff vector f(N,v) € R". A payoff
vector z for game (N, v) is efficient if it exactly distributes the worth v(N) of the ‘grand
coalition” N, i.e. if Y ..y x; = v(IV). A solution f is efficient if the payoff vector f(V,v) is
efficient for any TU-game (N, v).

In its classical interpretation, a TU-game describes a situation in which the players
in every coalition S of N can cooperate to form a feasible coalition and earn the worth v(.S).
However, one can add certain restrictions on cooperation. One of the most well-known
restrictions are the games with limited communication structure in which the members of
some coalition S can realize the worth v(S) if and only if they are connected nodes within
a given communication graph on the set of players. These graph-restricted games were
first studied in Myerson [24]. Solutions for graph-restricted games usually correspond to
modified classical solutions for cooperative games.

In this paper we introduce Harsanyi power solutions for graph restricted games
which are based on the, so called, Harsanyi solutions for TU-games. These Harsanyi
solutions are proposed as solutions for TU-games in Vasil’ev [35], [37] (see also Derks,
Haller and Peters [10], where a Harsanyi solution is called a sharing value). The idea
behind a Harsanyi solution is that it distributes the Harsanyi dividends (see Harsanyi [16])
over the players in the corresponding coalitions according to a chosen sharing system which
assigns to every coalition S a sharing vector which specifies for every player in S its share
in the dividend of S. The payoff to each player 7 is thus equal to the sum of its shares
in the dividends of all coalitions in which he is a member. A famous Harsanyi solution is
the Shapley value (Shapley [28]) which distributes the dividend of each coalition equally
among the players in that coalition.

In this paper we apply Harsanyi solutions to games with a limited communication
graph. The novelty of our approach is that we associate sharing systems with some power
measure for communication graphs. A power measure for (communication) graphs is a

mapping which assigns a nonnegative real number to every node in any (communication)



graph. These numbers represent the strength or power of those nodes in the graph. Given
a power measure we define the corresponding sharing system such that the share vectors
for every coalition are proportional to the power measure of the corresponding subgraphs.
The resulting Harsanyi solution is called a Harsanyi power solution.

Out of a big variety of possible power measures (and corresponding power solu-
tions), we give special attention to the degree measure that assigns to every player in a
communication graph the number of players with whom it is directly connected. We show
that on the class of cycle-free graph games, the corresponding Harsanyi power solution is
equal to the position value, introduced in Borm, Owen and Tijs [4]. Applying the equal
power measure that assigns equal power to all players, we obtain the Myerson value as in-
troduced in Myerson [24] as the corresponding Harsanyi power solution. After weakening
some of the axioms used in [4] to characterize the position- and Myerson value on the class
of cycle-free graph games, we generalize these axioms to obtain axiomatic characteriza-
tions of all Harsanyi power solutions. Finally we discuss various applications, in particular

assignment games, ATM-games and auction games.

The underlying paper is organized as follows. Section 2 is a preliminary section containing
cooperative TU-games, communication graphs and (communication) graph games. In Sec-
tion 3 we discuss the Harsanyi power solution induced by the degree measure. In Section
4 we consider the class of all Harsanyi power solutions and give axiomatic characteriza-
tions on the class of cycle-free graph games. In Section 5 we discuss applications. Finally,

Section 6 concludes.

2 Preliminaries

2.1 Cooperative TU-games

A characteristic function v is monotone if v(S) < v(T) for all S C T C N. A characteristic
function v is convez if v(SUT)+v(SNT) > v(S)+v(T) for all S, C N. Throughout the
paper we assume that any game is zero-normalized, i.e. v({i}) = 0 for all i € N and we
denote the collection of all zero-normalized characteristic functions on player set N by GV .
A special class of monotone and convex games are unanimity games. For each non-empty
T C N, the unanimity game (N,u”) is given by u”(S) = 1if T C S, and v’ (S) = 0

otherwise. It is well-known that the unanimity games form a basis for GV and that for



each game® v € GV we have that

v = Z A (v)u?®,
SeQN

where QY is the collection of all non-empty subsets of N, and the Harsanyi dividends A®(v)

(see Harsanyi [16]) are given by

AS(v) =) (1)1, S e V. (2.1)

TCS

Equivalently, by applying the Mébius transformation, we have that

v(S) =Y AT(v), SeqV. (2.2)

TCS

Observe that every dividend Al (v) =0, i € N, because of the assumption that each game
is zero-normalized.

In this paper we consider so-called Harsanyi solutions which have been proposed
by Vasil’ev [35], see also Vasil’ev [37], and have been applied recently by van den Brink,
van der Laan and Vasil’ev [9] to the class of line-graph games. First, a sharing system on
N is a system p = (p°)geqn, where p¥ is an |S|-dimensional vector assigning a nonnegative
share p? to every player i € S with ZjeS p]S =1, 8 € Q. The collection of sharing

systems on NN is given by

PN = {P = (p%) seqn

p° € R with p° > 0 and ijs =1, for each S € QN} )
jes

For a game (N, v) and sharing system p € PV, let the payoff vector h?(N,v) € R" be given

by

hY(N,v) = Z p? A%(v), for all i € N,
SeQN ieS

i.e. the payoff hY(IV,v) to player i € N is the sum over all coalitions S € Q¥ containing i,
of the share p¥ A®(v) of player i in the Harsanyi dividend of coalition S. We therefore call
the payoff vector h?(N,v) a Harsanyi payoff vector. A Harsanyi solution is a single-valued
solution that assigns for a given sharing system p € PV the Harsanyi payoff vector h?(N, v)
to each game (N,v). Observe that, due to the equality v(N) = > g qn A®(v), for each
sharing system p € P" it holds that >, y hf(N,v) = v(N), and thus each Harsanyi payoff

vector is efficient.

n case there is no confusion about the set of players N we sometimes identify a TU-game (N, v) by
its characteristic function v.



An example of a Harsanyi solution is the Shapley value (see Shapley [28]) (N, v),
defined by

Yi(N,v) = Z LAS(U), for alli € N,

SeQN icS |S|
i.e. the Shapley value is the Harsanyi solution that assigns to any game (V,v) the Harsanyi

payoff vector which equally distributes the Harsanyi dividend of S over the players in 5,
TﬁSeQﬂieS

i.e. it uses the sharing system p given by p;

Before we proceed to discuss graph-games, we mention some results on Harsanyi solutions
for TU-games. First, in Derks, Haller and Peters [10] a Harsanyi solution is called a sharing
value. These authors discuss the relationship between the class of sharing values, random
order values, see Weber [39], and weighted Shapley values, see Shapley [28], Kalai and
Samet [21], Monderer, Samet and Shapley [22] and Hart and Mas-Colell [19]. In particular
we have that for a vector of (positive) weights w € R}, the Harsanyi solution given by
the sharing system
s Wi
b > jes Wi 7

is the weighted Shapley value with respect to the weight vector w. Clearly, the class of

SeV ies

weighted Shapley values is a subset of the class of Harsanyi solutions?.

Second, Harsanyi solutions are related to the set-valued solution® that is known as
the Selectope, see Derks, Haller and Peters [10], or Harsanyi set, see Vasil’ev and van der
Laan [38], independently introduced by Hammer, Peled and Sorensen [15] and Vasil’ev [34],
respectively. This solution assigns to any game the collection of all payoff vectors obtained
by distributing the dividend of each coalition S over the players in S in any possible way,
and thus is given by

H(N,v) = {h?(N,v) | p€ P"}.

Clearly, by definition we have that H(N,v) # () for all (N, v), since every Harsanyi solution
assigns a Harsanyi payoff vector to any game. In fact, a Harsanyi solution selects for any
game the payoff vector in the Harsanyi set corresponding to a fixed sharing system. Note
that a solution that always selects a payoff vector from the Harsanyi set need not be
a Harsanyi solution, since for different games it might need different sharing systems to

obtain a Harsanyi payoft vector.

2For consistency of weighted Shapley values, see Hart and Mas-Colell [19] and Derks, Haller and Peters
[10].

3A set-valued solution for TU-games is a mapping F that assigns to every game (N,v) a set of payoff
vectors F'(N,v) C R".



Another well-known set-valued solution is the Core (introduced in game theory by Gillies

[12]), assigning to every game (NN, v) the (possibly empty) set

C'(N,U):{:UGIR” in:U(N), and inZU(S), foreachSCN}.

1EN €S

It is well-known that C'(N,v) is non-empty if and only if v is balanced, see e.g. Bondareva
[1] or Shapley [29]. It further holds that C(N,v) C H(N,v) with equality if and only if
v is almost positive?, see e.g. Derks, Haller and Peters [10] or Vasil’ev and Van der Laan
(38].

2.2 Notions in graph theory

An undirected graph is a pair (N, L) where N is the set of nodes® and L is a collection
of edges, i.e. L C {{i,j}i,j € N, i # j} is a collection of subsets of N such that each
element of L contains precisely two elements of N. Because the elements of L represent
the binary communication links between the players, in the sequel we will call them links
instead of edges. If {i,j} € L, then the nodes i and j are adjacent (neighboring) to each
other and are incident with the link {7, j}. The set of nodes adjacent to i in graph (N, L) is
called the neighborhood of i and will be denoted by Rn,y(i) = {j € N\ {i} | {i,j} € L}.
The number of nodes adjacent to node i € N in graph (N, L) is known as i’s degree
in (N, L). This yields for every graph (N, L) the degree vector d(N,L) € R" given by
di(N, L) = |R(n,r)(i)| for all i € N.

A sequence of k different nodes (i1, ...,4) is a path in (N, L) if {ip,ip+1} € L for
h=1,...,k—1. Two nodes i,j € N are connected in graph (N, L) if there exists a path
(11,...,1) with i; =4 and i, = j. A graph (N, L) is connected if any two nodes i,j € N
are connected. For some K C N, the graph (K, L(K)) with L(K) = {l € L|l C K} is
called a subgraph of (N, L). The notions of degree and neighborhood are straightforwardly
extended to subgraphs. For given graph (NN, L), a set of nodes K is said to be a connected
subset of N when the subgraph (K, L(K)) is connected. A subset K of N is a component of
N in (N, L) if the subgraph (K, L(K)) is maximally connected, i.e. (K, L(K)) is connected
and for any j € N\ K, the subgraph (K U{j}, L(K U{j})) is not connected. Clearly, for
any graph (N, L), the collection of components of N forms a unique partition of N.

We introduce the following notation. For a graph (N, L) and set K C N, we denote
by C(K) the collection of all connected subsets of K in the subgraph (K, L(K')). Observe
that for a subset K’ of K, the subgraph (K’, L(K")) is a connected subgraph of (K, L(K))

4A TU-game is almost positive if AS(v) > 0 when |S| > 2.
5Since in this paper the nodes in a graph represent the players in a game we use the same notation for

the set of nodes as the set of players.



if and only if it is a connected subgraph of (N, L). Hence
C(K)={K'C K| (K',L(K'")) is a connected subgraph of (N, L)}.

Further, we denote by C,,(K) the collection of all maximally connected subgraphs of
(K, L(K)), i.e.

Cn(K)={K'C K| K'is a component of K in (K, L(K))}.

Notice that a maximally connected subgraph of the subgraph (K, L(K)) does not need
to be a maximally connected subgraph of (N, L). In fact, it follows straightforward from

above that the collection C,,(K) can also be written as
Cn(K)={K'CK|K e€C(K)and K'U{j} ¢ C(K) for any j € K\ K'}. (2.3)

A sequence of nodes (i1, ...,ik4+1) is a cycle in (N, L) if (i) k£ > 3, (ii) all nodes 4y, ...,
are different elements of N, (iii) ix41 = i1 and (iv) {ip,ip41} € Lfor h=1,... k. A graph
(N, L) is cycle-free when it does not contain any cycle. Finally, the complete graph on N
is the graph (N, L¢) with L® = {{i,j} | 7,7 € N, @ # j} in which all nodes are adjacent
to each other. For more notions on communication graphs and general graphs we refer to,

respectively, van den Nouweland [25] and Harary [18].

2.3 Graph-restricted games and solutions

In this paper we assume the players in a cooperative TU-game (N, v) to be part of a
communication structure that is represented by an undirected graph (V, L), with the player
set N as the set of nodes and the collection L as the set of links representing the binary
communication links between the players. We denote the class of all possible sets of links on
N by £V (ie. if L € LY then (N, L) is a graph). Further, £, denotes the class of all sets
L € LV such that (N, L) is a cycle-free graph on N. A game (N,v) with communication
graph (N, L) is denoted shortly by (N,v,L) and is referred to as a graph game. In the
graph game (N, v, L) players can cooperate if and only if they are able to communicate
with each other, i.e. a coalition S can realize its worth v(S) if and only if (S, L (S5)) is a
connected subgraph of (N, L). Whenever this is not the case, players in S can only realize
the sum of the worths of the components of (S, L(S)). As introduced by Myerson [24], this
yields the restricted game (N, v’) given by

vH(S) = > w(T), SCN. (2.4)

TeCnm(S)

Borm, Owen and Tijs [4] refer to the restricted game (N,v") as the point game corre-

sponding to (N, v, L). They also introduce the link game (L,r"), whose set of players is

6



the set of links L. and whose characteristic function gives for every subset £/ C L of links
the worth that the ‘grand coalition” N of the players in the game (NN, v) earns when E is
the set of all communication links®. So, the link game (L, 7") induced by the graph game
(N, v, L) is given by

r®(E) = vP(N) for all E C L. (2.5)

Two well-known single-valued solutions for graph games are the Myerson value and the
position value. The Myerson value (Myerson [24]) of graph game (N, v, L), denoted by
p(N,v, L), is obtained by taking the Shapley value of the restricted game (N, v%), i.e.

(N, v, L) = (N, v*), for all v € GV and L € LV.

The position value (see [4]) of graph game (N, v, L), denoted by (N, v, L), is defined in
two steps. First, the Shapley value of the link game (L,r") is determined. Second, the
Shapley value of each link is distributed equally among the nodes incident with it. So,

m(N,v,L) = ZGZL %z/)l(L, r’) for all i € N,
with L, = {{h,j} € L | i € {h,j}} and ¢;(L,7") being the Shapley value of the link
[ in the link game (L,7%). In [4] a characterization is given for both the Myerson- and
the position value on the class of cycle-free graph games. To give the axioms for these
characterizations, we need the following three notions. First, link [ € L is called superfluous
in (N,v, L) if v®(N) = vPYB3(N) for all E C L. Second, graph game (N, v, L) is said to
be link anonymous if there exists a function g”: {0,1,...,|L|} — R such that r*(E) =
g*(|E|) for all E C L, i.e. in the corresponding link game the value of a coalition of
links depends only on the number of links in the coalition. Third, graph game (N, v, L)
is called point anonymous if there exists a function ¢”: {1,...,|D(N, L)|} — R such that
vE(S) = ¢"(|SND(N, L)|) for all S C N, where D(N, L) = {i € N | R(y,1,(i) # 0} denotes
the set of non-isolated nodes in (N, L), i.e. in the restricted (point) game the value of a
coalition of players depends only on the number of non-isolated players in the coalition.

We now state the following five axioms for a solution f on the class of graph games.

Component efficiency For every graph game (N, v, L) and every component S of N in
(N, L) it holds that ). ¢ fi(NV,v, L) = v(S).

Additivity For every pair of graph games (N,v,L),(N,w,L) it holds that” f(N,v +
w,L) = f(N,v,L)+ f(N,w,L).

6In [4] this game is called the arc game. Here we we follow e.g. Slikker [31] and call this game the link
game.
"For two characteristic functions v, w € GV we define (v + w)(S) = v(S) + w(S) for all S C N.

7



Superfluous link property If [ € L is a superfluous link in graph game (N,v, L), then
f(N,v, L) = f(N,v, L\ {l}).

Degree measure property If graph game (/V,v, L) is link anonymous, then there is an
a € R such that f(N,v,L) = ad(N,L).?

Communication ability property If graph game (NN,v, L) is point anonymous, then
there is an a € R such that f;(N,v,L) = « for all i € D(N, L), and f;(N,v,L) =0
for alli € N\ D(N,L).

For the proof of the following results, we refer to [4].

Proposition 2.1

(i) The position value satisfies component efficiency, additivity, the superfluous link prop-
erty and the degree measure property on the class of all graph games. Moreover, it is the
unique solution on the class of cycle-free graph games satisfying these four properties.

(ii) The Myerson value satisfies component efficiency, additivity, the superfluous link prop-
erty and the communication ability property on the class of all graph games. Moreover, it

18 the unique solution on the class of cycle-free graph games satisfying these four properties.

The proposition states that both the position value and the Myerson value satisfy four
of the five axioms on the class of all graph games, and that both values are the unique
solution satisfying the four properties on the class of cycle-free graph games. Observe
that the position value does not satisfy the communication ability property and that the
Myerson value does not satisfy the degree measure property.

We conclude this section by weakening the latter two properties by replacing the
link (respectively point) anonymity by link (point) unanimity. A graph game (N, v, L) is
called link unanimous if it is link anonymous with g (k) = vX(N) if k = |L|, and g*(k) = 0
for k € {0,1,...,|L] — 1}, i.e. in the link game the worth of any coalition not containing
all links is zero. A graph game (N, v, L) is point unanimous if it is point anonymous with
gP (k) = vL(N) if k = |D(N, L)|, and ¢g”(k) = 0 for k € {1,...,|D(N, L)| — 1}, i.e. in the
point game the worth of any coalition not containing all non-isolated nodes is zero. We

now have the next two axioms for a solution f.

Weak degree measure property If graph game (N, v, L) is link unanimous then there
is an @ € R such that f(N,v, L) = ad(N, L).

8Recall that d(N,v) is the degree vector.



Weak communication ability property If graph game (V,v, L) is point unanimous
then there is an @ € R such that f;(N,v, L) = aforalli € D(N, L), and f;(N,v, L) =
0forallie N\ D(N,L).

It can be verified from the proofs given in [4] that in the two characterization statements (i)
and (ii) of Proposition 2.1 the degree measure, respectively communication ability property
can be replaced by the weaker properties stated above. Of course, the stronger properties
still hold on the class of all graph games. In Section 4 we use these weaker variants to
characterize a class of of Harsanyi solutions for cycle-free graph games containing both the

Myerson and the position value.

3 The Harsanyi degree solution

Given a set of nodes NV, a power measure on N is a function which assigns to any S C N a
nonnegative vector o(5, L(5)) € ]R‘f‘, yielding the nonnegative power o;(S, L(S)) of node
i € S in the subgraph (S, L(S)). A Harsanyi power solution for graph games is a Harsanyi
solution applied to the restricted game v” such that the shares in the Harsanyi dividends
are determined by some power measure for graphs. We first discuss the Harsanyi degree
solution, being the power solution obtained by applying the degree measure d, which assigns
to every subgraph (S, L(S)) of (N, L) the degree vector d(S, L(S)). The corresponding
Harsanyi degree solution ¢? is

¢ (N,v,L) = "' (N, v")

4,9

with sharing system p? = (p%¥)gcqn given by

4,5 di(S, L(S)) :
P = , for 7 € S whenever d;(S,L(S)) # 0,
> s (5 L(9)) 2 (S US)

and p® = ﬁ for all 7 € S whenever » .y d;(S, L(S)) = 0. In fact, in the latter case the
shares do not matter?. So, we distribute the (non-zero) dividends in the restricted game
(N, vl) proportional to the degree of the players in the corresponding subgraphs. Clearly,

the Harsanyi degree solution yields the Shapley value on the class of complete graph games

(which then also equals the Myerson value).

Proposition 3.1 If L = L, then ¢*(N,v,L) = (N,v) for all v € GV.

9Explicit formulas for the dividends in the restricted game (N, v%) in terms of the original game (N, v)
can be found in Owen [27] for cycle-free graphs and Hamiache [17] for arbitrary graphs. In particular it
holds that any unconnected coalition has zero dividend in the restricted game, implying that the dividend
of a coalition S is zero if ), d;(S, L(S)) = 0.



PROOF
The proposition follows straightforward since (i) v = v when L = L¢ and (ii) d;(.S, L¢(S)) =
|S| — 1, and thuspf’szﬁfor alli € S e QY. O

It is also straightforward to verify that ¢? is component efficient and additive and also
satisfies the (weak) degree measure property on the class of all graph games. However, it
does not satisfy the superfluous link property for all graph games. Instead, it satisfies the
weaker inessential link property. A link [ € L is called inessential in graph game (N, v, L)
if

A% (v") =0, for each S € Q,

where QY is the set of all non-empty subsets of N containing both nodes incident with link
l,ie. Se€QV ifand only if | C S.

Inessential link property If [ € L is an inessential link in graph game (NV,v, L), then
f(N,v, L) = f(N,v, L\ {l}).

Lemma 3.2 The Harsanyi degree solution satisfies the inessential link property.

PROOF

L\l

To prove the lemma, we first show that v\l = vl when [ € L is inessential, where L \ [

denotes L \ {/}. Using equation (2.4), we have that

VM9 = > w(T and M) = Y w(T), SCN. (3.6)

TeCH(5) TecEM (5)

When S ¢ Q| then C’,ﬁ\l(S) = CL(S) and thus v*V(S) = v*(S). Next consider the case
that S € QF and let T" be the component in CL(S) containing I. Since CL(S) \ T! =
CL(S\ T") we have that the equations in (3.6) become

VM) =o(T)+ Y (), SCN. (3.7)
TeCL (S\T)

and
VS = > M= > @+ D ), SCN (3.8)
Teck\(s) TeckN (T TeCcEN(S\11)

Clearly the second right-hand term in equation (3.8) is equal to the second right-hand term

of equation (3.7). So, it remains to show that

o(T)= > (). (3.9)

TeCEN (1)

10



If T' is connected in (S, L(S) \ {l}), then C’é\l(Tl) = {T'} and thus equation (3.9) holds.
If 7" is not connected, then C’é\l(T ') contains precisely two subsets of T, say T" and T2,
because T is connected in (.S, L(S)) and only link [ is removed. Clearly, any of these three
sets is connected in (N, L) and thus v(R) = v (R) for R € {T',T,T?}. Now, suppose
that

o(TY) = oM (T") # o5 (TY) + v™(T?) = v(T") + v(T?).

Since T' U T? = T', it then follows from the ‘dividend’ equation (2.2) that there exists at
least one subset R C T' containing the nodes incident with link [ such that AZ(vE) #£ 0,
contradicting that link [ is inessential. Hence v(T") = v(T") + v(T?), implying that v =
oI\

To complete the proof, from v’ = v\ it follows that
AS(wl)y = AP, S e Q.

Then for S & Q. we have that L\ {l}(S) = L(S) and so d;(S, L(S)) = d;(S, L\ {I}(S)) for
all i € S, implying that the share of i € S in A%(v¥) is equal to the share of i in A%(vE\).
When S € QF, we have that A%(vF) = AS(wF\) = 0, so that the shares don’t matter.

Hence

P! (N, v, L) = (N, v, L\ {1}),
which proves the lemma. O

As was stated before, link | € L is superfluous if v¥(N) = v®Y(N) for all E C L.
Since it is assumed that the games are zero-normalized, it follows straightforward from the
definition of the restricted game that this condition holds if and only if v* = v“\ ¥, Hence,

the next corollary follows immediately from the proof of Lemma 3.2.

Lemma 3.3 If link | € L is inessential in graph game (N, v, L) then it is also superfluous
in (N,v,L).

Since the reverse is not true, Lemma 3.2 does not imply that the Harsanyi degree solution
satisfies the superfluous link property, see also Example 5.4 on assignment games. However,

if the graph is cycle-free, then link [ is superfluous if and only if [ is inessential.

Lemma 3.4 If L € LY. then | € L is inessential in graph game (N,v, L) if and only if |

is superfuous in (N, v, L).

11



PROOF

Because any inessential link is superfluous, we only need to proof that in a cycle-free graph
game any superfluous link is inessential. Let [ be a superfluous link in cycle-free graph
game (N,v,L). Then v/ = v*MI} and thus AS(vl) = AS(WPM) for any S. Moreover,
since (N, L) is cycle-free, we have that in graph (N, L \ {i}), every coalition S € QF is
unconnected. Since any unconnected coalition has zero dividend in the restricted game
(see Owen [27] or Hamiache [17]), we have that A%(v/M%) = 0 for any S € Q, and thus
it follows that A%(vl) =0 for any S € Q. Hence [ is inessential in (N, v, L). O

From Lemma 3.4 it follows immediately that the Harsanyi degree solution equals the po-

sition value on the class of cycle-free graph games.
Proposition 3.5 If L € LY then ¢?(N,v,L) = n(N,v, L) for any v € GV.

PRrROOF

From Proposition 2.1 we have that on the class of cycle-free graph games the position value
is characterized by component efficiency, additivity, the degree measure property and the
superfluous link property. It is straightforward to verify that ¢ satisfies the first three
properties on the class of of all graph games, while Lemmas 3.2 and 3.4 show that it satisfies
the superfluous link property on the class of cycle-free graph games. Hence the Harsanyi

degree solution is equal to the position value on this class. O

This proposition shows that to define and compute the position value for cycle-free graph
games we do not need to introduce the link game as done in [4], since it is a Harsanyi
solution applied to the Myerson restricted (point) game. For arbitrary graph games the
position value is not a Harsanyi solution and the characterization in [4] does not work
either. In fact, the position value even may give a payoff vector outside the Harsanyi set
of the corresponding restricted game, implying that the position value may differ from the

Harsanyi degree solution if the graph contains a cycle.

Proposition 3.6 Let L € LY. Then n(N,v,L) € H(N,v") for all v € GV if and only if
Le Ly

Proor
The ‘if” part follows from Proposition 3.5 and the fact that by definition (N, v, L) is a
Harsanyi payoff vector of (N,v%) for any L € LV,

To prove the ‘only if’ part, suppose that L € £V \ LY. Then (N, L) contains a
minimal cycle, i.e. for some k& > 3 there is a cycle (iy,...,%41) such that {i;,i,} € L if

and only if m = j+1, j = 1,..., k. Take v = v} being the unanimity game of two

12



neighboring nodes in the cycle. Since {iy,is} € L, we have that v* = v = u!2} and thus
all i € N\ {iy,iz} are null players in (N, vl), i.e. vF(S) = vE(S\ {i}) for alli € N\ {iy, iz}

Since null players earn a zero payoff in any Harsanyi payoff vector we have
z; =0 for all x € H(N,v") and i € N\ {i1,i}. (3.10)

However, since the cycle (iy, .. .,ix,1) is minimal we have that rZ(E) — r¥(E\ {is,i3}) = 1
for £ = {{i;,4;:1} | j = 2,...,k}. Hence the link {49,435} is not a null player in the link
game (L, r"). Moreover, since v = uf2} is monotone, it follows that also r* is monotone,
and thus the Shapley value of the link game satisfies ¢y, ;1 (L, 7*) > 0 and ¢;(L, %) > 0
for all | € L. But then m;, (N, v, L) > 34,453 (L, %) > 0. With (3.10) it then follows that
m(N,v,L) ¢ H(N,vb). O

We end this section by giving an example which motivates that the Harsanyi degree solution

may be preferred above the position value and the Myerson value for certain graph games.

Example 3.7 Consider the graph game (N, v, L) with N = {1,2,3,4}, v = u{%?3} and
L ={{1,2},{1,3},{1,4},{2,4}}.1° The payoffs assigned to this graph game by the posi-
tion value, the Myerson value and the Harsanyi degree solution, respectively, are

1 1 1
m(N,v,L) = ﬂ(11,4, 7,2), w(N,v,L) = §(1, 1,1,0) and (N, v, L) = Z(2, 1,1,0).

In this graph game player 1 clearly has a more central position than players 2 and 3.
Since v = w123} it is therefore reasonable that player 1 should have a higher payoff than
players 2 and 3. The Myerson value does not satisfy this requirement. Further, player 4 is
a null player in the restricted game v’ and should therefore receive a zero payoff. However,
according the position value player 4 gets a positive payoff. From these three solutions only
the Harsanyi degree solution meets both requirements that player 1 receives more than the

players 2 and 3 and that player 4 gets zero payoff. O

4 Axiomatizations of Harsanyi power solutions for cycle-

free graph games

4.1 Harsanyi power solutions

In this section we generalize the Harsanyi degree solution by allowing to take any arbitrarily
given power measure yielding in any (.S, L(S)) positive power to any node in S having at

least one neighbor in (S, L(S)). In the following we call such a measure a positive power

10This graph game is taken from [4], Example 6.1.
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measure. Given a set of players N and a positive power measure ¢ on N, we now define

the corresponding Harsanyi power solution for graph games as the solution

7 (N,v, L) = b (N, v")

J,S)

with sharing system p” = (p”°)gcqn given by!!

0,8 o;(S, L(95)) .
p; = for all 7 € S whenever o;(S,L(S)) # 0.
> jes 05(S, L(S)) J;V (5, L(S))

So, we distribute any (non-zero) dividend of a coalition in the restricted game (N,vl)
proportional to the power measure of the corresponding subgraph. In the previous section
we already discussed the Harsanyi degree solution which is based on the degree measure.

Examples of some other positive power measures for undirected graphs are the following!2.
1. The B-measure is given by

Bi(S, L(S)) = Z ;, forallie S and S C N.

R
j€R<s7L(s>><i)| s,L(sy) ()]

This measure is introduced in van den Brink and Gilles [8] for directed graphs, and
applied to undirected graphs in Borm, van den Brink, Hendrikx and Owen [3]. Ac-

cording to the [-measure, any node ¢ is assigned an amount of power

1
[Rs,Ls)) )l
from each of its neighbours, or equivalently, each node distributes one unit of power

equally amongst its neighbours (if any).

3

2. The positional power measure'® is introduced in Herings, van der Laan and Talman

[20] for directed graphs. Applied to undirected graphs it yields the power measure o
given by

1
04(S, L(S)) = | Ris.0(s (1)) + & > 0i(S L(S)), forall i € S and S C N,

JER(s,L(s)) (1)

i.e. the positional power of node i is equal to the number of neighbours of i (as in

the degree measure) plus a fraction ‘—§| of the total power of its neighbours'.

HRecall that unconnected coalitions have zero dividend, so the shares p°° do not matter when
> jen 05(S,L(S)) = 0.
120ther examples are centrality measures as considered in, e.g. Monsuur and Storcken [23].

BDespite its name, the positional power measure is not related to the position value.
4Observe that for S C N, this power measure requires to solve an |S|-dimensional system of equations.

Tt is shown in Herings, van der Laan and Talman [20] that this system has a unique non-negative solution
(with positive numbers for the nodes having at least one neighbour) and therefore the measure is well-
defined.
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3. The equal power measure is the straightforward power measure given by ~;(S, L(.5)) =
|—é| forall7 € Sand S C N. This measure gives equal power to every node irrespective

of the links in the graph.

It follows straightforward that for the equal power measure v the corresponding Harsanyi

power solution is the Myerson value.
Proposition 4.1 For every graph game (N, v, L) it holds that ©"(N,v, L) = u(N,v, L).

PRrOOF
For graph game (N, v, L) we have that

Uy 7 (S, L(S))
QOZ Nava - hp N 'U
( ) SC;GS des v;(S, L(S))

. ﬁmw:MN,UL):;L(N,U,L)-

SCN,ieS

A5 (vh)

4.2 An axiomatization using the weak oc-measure property

Next, we consider cycle-free graph games. On this class of graph games we generalize
the characterization of the position value as given by Borm, Owen and Tijs [4] (see (i)
of Proposition 2.1) but with the degree measure property replaced by the weak degree
measure property. In order to do this, we adapt the weak degree measure property for any

positive power measure o on /N.

Weak o-measure property If graph game (N, v, L) is link unanimous then there is an
a € R such that f(N,v,L) = ac(N, L).

To show that ¢” satisfies the weak o-measure property we first prove the following lemma
(recall that D(V, L) denotes the set of non-isolated nodes in (N, L)).

Lemma 4.2 If (N,v, L) is link unanimous, then v* = cu®™N-1) for some c € R.

PROOF
If D(N,L) = (), then L = () and thus v” is the null-game, i.e. v*(S) =0 for all S C N.

Clearly, then v’ = cu? ML) with ¢ = 0.1

15 Although we did not define the unanimity game of the empty set, multiplying it by zero yields the

null-game.
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Next, consider the case that D(N, L) # () and let (N,v, L) be a link unanimous
graph game, so v“M3(N) = 0 for all | € L. Then v satisfies the following two sufficient
properties.

1. Let S C N be such that D(N,L) € S. Take i € D(N, L) \ S. Denoting by C! (N) the
set of components in (IV, L(S)) we have that

UL‘S)(N)ZT ;(N)U(T) = T;(S)U(T)fz]v;sv({i}) = o"(8) = v!(9),

where the second equality follows from the fact that all nodes outside S are singletons
in the set of components in (N, L(S)) and the third equality follows from v being zero-
normalized. (The other equalities follow from the definition of the restricted game.) From
(N, v, L) being link unanimous it further follows that v*(*)(N) = 0 since L(S) is a proper
subset of L because S does not contain D(N, L). So, we conclude that

vE(S) = v!N(N)Y =0 if D(N,L)Z S. (4.11)

2. Let S, T C N be such that D(N,L) C S and D(N,L) CT. Then D(N,L) C SNT. By

definition of v* we have that
VIS = > u@) = ). w2+ v(Z).
ZeCm(S) Z€eCm(S),|Z]=1 ZeCm/(9),|Z|>2

Since v is zero-normalized (and thus the first sum is zero) and Z C D(N, L) if |Z]| > 2 and

is a component of S in (S, L(S)), this equation becomes

v (9) = > v(Z) = > v(Z) — > v(Z)

Z€Cm(S),ZCD(N,L) Z€C(S),Z2CSNT Z€Cm(S),ZC(SNT),ZZD(N,L)

= > v(Z) = oH(T).

2€Cm (T),ZCD(N,L)

So,

v (S) = v*(T) if D(N,L)C S and D(N,L)CT. (4.12)
The lemma follows from the properties (4.11) and (4.12). O
The next proposition characterizes ¢? on the class of cycle-free graph games.

Proposition 4.3 For a positive power measure o, the Harsanyi power solution ©° satis-
fies component efficiency, additivity, the inessential link property and the weak o-measure
property on the class of all graph games. Moreover, it is the unique solution on the class

of cycle-free graph games satisfying these four properties.
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PROOF

First we show the first part of the proposition.

1. Since AS(v%) = 0 if S is not connected in (N, L), for every component T € C,,(N) in
(N, L) we have

Zapf(N,v,L) = th (N,v") Z Z p7SAS (vt

€T €T i€T SCNES
— 2 : § po’ SAS § 2 :pa’ SAS
i€T SCT,ieS SCT €S
= Y ASh) =oM(T),
SCT

showing that 7 satisfies component efficiency.
2. For v,w € GV and L € £ it holds that

w+w)(S) = Y t+w) (D)= D @T)+w())=v"S)+w"(S)

TECm(S) TeCm(S)
and thus A%((v +w)F) = AS(vE) + AS(wk) for all S € N. Then
K (Nv+w, L) = > pP¥A%(v+w)")
SCN,ieS

= ) (AN + AS(wh) = 7 (N,v, L) + ¢ (N, w, L),
SCN,ieS
showing that ¢7 satisfies additivity.
3. Analogously as to the proof of Lemma 3.2, it follows that ¢ satisfies the inessential
link property.
4. If (N,v, L) is link unanimous then by Lemma 4.2 we have that v* = cu?™-F) for some

¢ € R. Then the weak o-measure property is satisfied by definition of 7.

For the second part of the proposition, recall from Lemma 3.4 that in a cycle-free graph
game a link is inessential if and only if it is superfluous and thus ¢ satisfies the superfluous
link property on the class of cycle-free graph games. Then the proof that ¢ is the unique
solution satisfying the four properties is similar to the uniqueness proof for the position

value in [4] and is therefore omitted. O

Note that ¢ satisfies component efficiency, additivity, the weak o-measure property and
the inessential link property for any graph game, but that these four properties characterize
©? only on the class of cycle-free graph games. Also note that the Propositions 4.1 and
4.3 imply the following corollary, yielding a characterization of the Myerson value on the
class cycle-free graph games. Observe that the weak equal power measure property states

that in a link unanimous graph game the payoffs of the non-isolated players are equal.

17



Corollary 4.4 The Myerson value satisfies component efficiency, additivity, the inessen-
tial link property and the weak equal power measure property on the class of all graph games.
Moreover, it is the unique solution on the class of cycle-free graph games satisfying these

four properties.

In case the power measure is symmetric'® the corresponding Harsanyi power solution ¢°
extends the Shapley value to the class of graph games in the sense that it yields the Shapley
value of game (N, v) whenever the graph (N, L¢) is the complete graph.

Proposition 4.5 If o is symmetric then ©° (N, v, L¢) = ¢ (N,v) for all (N,v) € GV.

PROOF
If o is symmetric then % = ﬁ for all i € S C N. Moreover, AS(v) = A%(vL°)
o c o;(S,Le(S c
forall S € QY. Thus @7 (N, v, L) = D scnes %AS(M ) = 2 scnes \_}ﬂAS(U) =
Yi(N,v) for all : € N. O

4.3 An axiomatization using the weak o-communication ability
property

In the previous subsection we characterized the Harsanyi power solutions on the class of
cycle-free graph games using the weak o-measure property. As noted in Section 2.3, Borm,
Owen and Tijs [4] used the degree measure property to characterize the position value,
and the communication ability property to characterize the Myerson value on the class of
cycle-free graph games. Since we showed that the Myerson value is also a Harsanyi power
solution, we also characterized that value using some degree measure property, namely the
weak equal power measure property. In a similar way we can generalize the communication
ability property to characterize the Harsanyi power solutions (including the position value)

on the class of cycle-free graph games.
Lemma 4.6 If (N,v, L) is point unanimous, then v* = cu® ™) for some c € R.

PROOF

Let (N,v, L) be a point unanimous graph game. If D(N,L) = @, then v’ is the null-
game, and thus v* = cuP™") with ¢ = 0. Suppose that D(N, L) # (). Then v*(S) = 0 if
S < D(N,L). If S,T C N are such that D(N, L) C S and D(N, L) C T, then by definition
of point unanimity we have that v*(S) = v*(T) = ¢*(|D(N, L)|). Thus, v* = cuP L) for
some ¢ € R. O

16A power measure o on N is symmetric if for i,j € S C N with R(g 1(s))(0) \ {j} = Rs,r(s)) () \ {i}
it holds that o;(S, L(S)) = 0;(5, L(S)).
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Note that this lemma implies that the weak communication ability property can be refor-
mulated by saying that in a point unanimous graph game the dividends of the restricted
game are distributed among the players in the corresponding coalition proportional to the
equal power measure v. (In a similar way the communication ability property, using point
anonymous graph games, can be reformulated.)

On the class of cycle-free graph games the characterization of the Myerson value
in [4], (see (ii) of Proposition 2.1) can be generalized for any positive power measure o on

N by adapting the (weak) communication ability property as follows.

Weak o-communication ability property If graph game (IV,v, L) is point unanimous
then there is an @ € R such that f(N,v, L) = ac(N, L).

Proposition 4.7 For a positive power measure o, the Harsanyi power solution ¢° satisfies
component efficiency, additivity, the inessential link property and the weak o-communication
ability property on the class of all graph games. Moreover, it is the unique solution on the

class of cycle-free graph games satisfying these four properties.

PRrROOF

If (N,v, L) is point unanimous then with Lemma 4.6 and the definition of ¢7, it follows
that ¢7 satisfies the weak o-communication ability property.

The second part of the proposition is proved similar to the uniqueness proof for the Myerson
value in [4], taking into consideration that Lemma 3.4 says that in a cycle-free graph game
a link is inessential if and only if it is superfluous and thus ¢ satisfies the superfluous link

property on the class of cycle-free graph games. The proof is therefore omitted. O

Clearly, the Myerson value is obtained by taking the equal power measure, and thus the
weak equal power-communication ability property. Taking the degree measure, and thus
the weak degree-communication ability property, yields another characterization of the
position value. Whereas Borm, Owen and Tijs [4] characterize the position value using
the weak degree measure property and the Myerson value using the weak communication
ability property!'”, we generalized both characterizations so that they both include char-
acterizations of the position value and the Myerson value, taking the appropriate power
measure. So, the view that the difference between the position value and Myerson value
(on cycle-free graph games) is about using the weak degree measure property (which is
defined using link unanimous graph games) or the weak communication ability property

(which is defined using point anonymous graph games) has to be reconsidered. Both values

17 Although [4] states the stronger versions of these axioms, in their proofs they only apply the weak
versions.
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satisfy the weak o-measure property and the weak o-communication ability property, but
the difference is with respect to which power measure o to use, the degree measure or the

equal power measure.

5 Applications

5.1 Assignment games

The assignment game, introduced by Shapley and Shubik [30], is a game in which the
player set N is partitioned in two sets, say the set V' of sellers and the set W of buyers.
Any pair {i,j}, i € V, j € W, can realise a nonnegative surplus a; ; from trade. However,
any seller 7 € V' can trade with only one buyer j € W. A matching on a subset S C N
of players is a collection M of subsets {i,7} C N,i € VNS, je WnS, such that for
any ¢ € V' NS it holds that [{{h,j} € M|h=1i}| <1 and for any j € W NS it holds that
{{i,h} € M|h = j}| <1, ie. anyselleri € VNS and any buyer j € W NS is in at
most one element of the collection M of subsets {i,j} of N. For S C N, let M(S) be the
set of all matchings on S. Then the maximum surplus that can be obtained by a coalition
S C N is given by

with v(S) = 0 when M(S) =0, i.e. when SCV or S CW.

We now consider the communication graph on N in which the links reflect all
matching possibilities, so the graph on N is the bipartite graph (N, L) with {i,j} € L if
and only if i € V and j € W. Clearly, by definition of (N, v, L), the characteristic function
v¥ of the point game (N, v%) is equal to v. Since in the bipartite graph, any coalition only
containing either sellers or buyers is unconnected, any such a coalition has zero dividend in
the point game. Thus AS(UL) =0if S CVorS CIW. A connected coalition contains at
least one seller and at least one buyer and the dividend of such a coalition S in the point

game (N, vl) is given by

AS(vh) = > (=1)IS=Tly ().

{TCS| min(|TOV], [TAW )21}

Example 5.1
Consider the assignment game with one seller V' = {1} and two buyers W = {2,3}. So,
the bipartite graph is given by L = {{1,2},{1,3}}. Further, let a;o = 1 and a;35 = 2.
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Then the assignment game (N, v) is given by
1 if S ={1,2},
o) =4 2 i 5e{{1,3),{1,23}
0 otherwise.
and the dividends of the point game (N, v’) by
if $ ={1,2),
2 if S={1,3},
~1 it S=1{1,23},
0  otherwise.

For the coalitions with nonzero dividends, the degree measures of the subgraphs are given

by dl({la 2}7L({172})) = d2({172}7 L({L 2})) = dl({la 3}7 L({1,3})) = d3({173}7 L({L 3})) =

dy(N,L) = d3(N,L) = 1 and dy(N,L) = 2, which yields the Harsanyi degree solu-
tion ¢?(N,v,L) = (1,1,3).
position value. As an alternative solution, the f-measure yields (51({1,2}, L({1,2})) =
A({1,2}, L({1,2})) = Ai({1,3}, L({L,3})) = Bs({1,3}, L({1,3}) = 1, Au(N, L) = 2
and fBo(N,L) = (3(N,L) = ;, and the resulting Harsanyi power solution is given by
PP(N,v, L) = (3,3 3)-

Example 5.2 In an assignment game with two sellers V' = {1,2} and two buyers W =
{3,4}, the bipartite graph is given by L = {{1,3},{1,4},{2,3},{2,4}}. Further, let

a3 =1, a14 = 3, a3 = 4 and az4 = 5. Then the nonzero dividends of the point game

Since, the graph is cycle-free, this solution is equal to the

(N, vl) are given by

ai itS=1{i,j},ieV, jeW,
—minfay;, ag;] i S={1,2,5}, jeW,
—minfa;3, a;4] if S={i,3,4}, i€V,

3 it S=Vuw.

AS(vl) =

For these coalitions with nonzero dividends, the degree measures of the subgraphs are
given by d;(S,L(S)) = d;(S,L(S)) = 1if S = {i,j},i € V, j € W, &(S,L(S)) =
dy(S, L(S)) = %dj(S, L(S)) =1if S ={1,2,5} with j € W, ds(S, L(S)) = du(S, L(S)) =
+d;(S,L(S)) =1if S = {i,3,4} withi € V, and d;(N,L) = d;(N,L) =2fori eV, je W
if N =V UW. From this it follows that by distributing the dividends according to the
degrees, the Harsanyi degree solution is given by ¢*(N,v, L) = (5,4,2,2).

However, in this case the graph is not cycle-free and so the Harsanyi degree solution
is not equal to the position value. It follows that the Shapley value of the link game (L, )
is given by sy (L") = 5, Ypag(L,rh) = 2, gy (L,rh) = § and Ypgy(L,rh) = .

6
This yields the position value w(N,v, L) = (%, %, 1L, 22). O
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Although Example 5.2 shows that in the assignment game the position value is not equal
to the Harsanyi degree solution, in both solutions the total payoff to the sellers is equal to
the total payoff to the buyers. Clearly, in the communication graph as defined above each
link is a link between a seller and a buyer. So, the position value is obtained by distributing
the Shapley payoff of each link in the link game (L, ) equally between the seller and the
buyer. For the Harsanyi degree solution we have that in each connected coalition the sum
of the degrees of the sellers is equal to the sum of the degrees of the buyers, so any dividend
is equally shared between sellers and buyers. Since both solutions are component efficient,

we have the following corollary.

Corollary 5.3 Let (N,v) with N =V UW be an assignment game and let (N, L) be the
corresponding bipartite graph with L = {{i,j}|i € V, j € W}. Then

Y el (N, L) =Y @lN,v,L) =Y m(N,v,L)=> m(N,v,L).

eV JEW ieV jew
Moreover, ¢*(N,v, L) = n(N,v, L) if [V| =1 or |W| = 1.

The next example shows that the Harsanyi degree solution does not satisfy the superfluous

link property.

Example 5.4 Consider the assignment game given in Example 5.1 and suppose now that
also the two buyers 2 and 3 can communicate, i.e. the communication graph is given by
Le = {{1,2},{1,3},{2,3}} = L U {{2,3}} with L the graph in Example 5.1. Clearly

vE(N) = vFY23H(N) for all E C L¢, so {2, 3} is superfluous in L¢. Hence, according to the

13
40 4
distributing the dividends according to the degree measure, each player has degree 2 in the
71 4
67676
the Shapley value of v), which is not equal to (N, v, L). The communication possibility

superfluous link property we have that =(N,v, L¢) = (N, v, L) = (1 ). However, when

grand coalition NN, so the Harsanyi degree solution becomes (N, v, L¢) = ( ) (being
between the two buyers decreases their payoffs. It shows that communication might be

harmful, because it may give bigger shares in negative dividends. ]

We end this subsection by considering the case that buyers and sellers cannot trade directly
with each other, but need intermediaries to connect them. We do this by assuming that
the set IV is partitioned in three sets: a set V' of sellers, a set W of buyers and a set I of
intermediaries. Now the communication graph on N is the graph (N, L) in which every

intermediary is connected to every buyer and seller, i.e. L ={{i,j}|i€l, j€e VUW}.

Example 5.5 We consider Example 5.1 with a single intermediary player, labeled 4. So
I = {4} and L = {{i,4} | i = 1,2,3}. Now the point game (N,v") follows from the
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assignment game (/V,v) in Example 5.1 and is given by

1 if S ={1,2,4},
vE(S) =< 2 if S e {{1,3,4},{1,2,3,4}},

0 otherwise.
and the dividends of the point game (N, v’) by

if $ = {1,2,4},
2 if §={1,3,4},
~1 if S =1{1,2,3,4},

0  otherwise.

For any coalition S with nonzero dividend we have that the degree of ¢ is 1 if ¢ # 4, while
the degree of player 4 is equal to |S| — 1. From this it follows that the Harsanyi degree
solution is given by ¢*(N,v, L) = (%, 55, 75, 1). Since, the graph is cycle-free, this solution
is equal to the position value. O

Observe that the graph (IV, L) is not cycle-free when |I| > 2 and thus the position value will
differ from the Harsanyi degree solution when there are multiple intermediaries. However,
also if |I| > 2, any link in the graph connects one of the intermediaries with either a buyer
or a seller. So, in both the position value as the Harsanyi degree solution the total payoft
to the intermediaries will be equal to the total payoff to the sellers and the buyers. Since

both solutions are component efficient, we have the following corollary.

Corollary 5.6 Let (N,v) with N =V UWUI be an assignment game with intermediaries
and let (N, L) be the corresponding graph with L = {{i,j} |i€ I, j € VUW}. Then

ZQO?(NJ)’L): Z 90] NU L ZW'LN'U L Z Wj(N,'U,L).

i€l JEVUW iel JEVUW

Moreover, ¢*(N,v,L) = n(N,v, L) if |I| = 1.

5.2 ATM games

In this subsection we consider ATM games as introduced recently in Bjorndal, Hamers and
Koster [2]. An ATM-game models a situation of n banks on a single location, where some
banks have an Automated Teller Machine (money dispenser) and others do not. The banks
may agree to cooperate, meaning that customers of banks not having an ATM are allowed
to make use of the ATMs of the other banks, resulting in cost savings because using ATMs

is a relatively cheap way of cash withdrawals.
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We first consider a situation that there is only one single bank having an ATM.
Specifically, let the banks not having an ATM be indexed by i = 2,...,n and let player 1
be the only bank that has an ATM. The number of visits of customers of bank 7 # 1 to
the ATM of bank 1 is given by w;. We assume that each visit yields a cost saving of one.
So, coalition S = {1,i} can realize the non-negative worth w;, i = 2,... n and thus the
characteristic function of the game is given by

> w;, ifl1es,

v (S) = ies\{1}
0, otherwise.

Clearly, it follows straightforward that

As(v):{ wi, iftS={1d}, 1=2,...,m,

0, otherwise,

i.e. only the two-player coalitions {1,7}, i # 1, have positive dividends. All other coalitions
have zero dividend. From [26] (Theorem 4.3) we know that for such games with non-zero
dividends only for two-player coalitions we have that the Shapley value 1 coincides with
the 7-value (see Tijs [32]) and the nucleolus 7 of (N, v). The game (N, v) is also a so-called
peer group game, see Branzei, Fragnelli and Tijs [5], such that the underlying tree is given
by the communication graph (NV,L) on N with L = {{1,i} | i = 2,...,n}, i.e. (N,L)
is the graph on NN such that there is a link between the single ATM bank and any other
bank!®. Clearly, since only the two player coalions {1,7}, ¢ # 1, have non-zero dividends, it
follows that v¥ = v. Moreover, in any two player coalition {1,i}, ¢ # 1, both players have
degree one, so that according to both the Harsanyi degree solution and the Hatsanyi -
measure solution the dividend of such a coalition is shared equally between the two players
in the coalition. Thus these two solutions are equal to each other and are also equal to the
Shapley value of (N,v) and the Myerson value of (V,v, L). Since the graph is cycle-free,
we also have that the position value equals the Harsanyi degree solution. Hence we have
that

W(vavL) = Spd(NaUa L) = SOB(N’U’L) = M(vavL)
and also
p(N,v, L) = ¢(N,v) = 7(N,v) = n(N,v) € C(N,v),

where the latter inclusion follows from the fact that all dividends are nonnegative and
therefore the game is convex. Observe that all these solutions satisfy the equal split prop-

erty, see Bjorndal, Hamers and Koster [2], i.e. the cost savings w; obtained from the

18Tn fact, in [5] a peer group game is a game on a directed graph, which in this example is given by
D={1,i)|i=2,...,n}.
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cooperation between bank i, i # 1, and ATM bank 1 is equally distributed between i and
1. In each solution the payoff to the ATM bank 1 is equal to Y ., %wi and the payoff to
bank 7 is %wi, 1=2,...,n.

Let us now consider the case that there are multiple banks having an ATM. We
suppose that there is only one single bank without an ATM. Let {1,...,n — 1} be the
set of banks who possess ATMs and let bank n be the bank without ATM. The value of
any coalition containing bank n and at least one other bank equals the total number of

customers w,, of bank n. So, the characteristic function is given by

0, otherwise.

i >
U(S):{ Wy, ifneSand|S|>2,

It follows that the dividends are given by

Wy, ifn e Sand|S|>2isodd,
AS(v) = —wy, ifn e Sand|S|>2is even,
0, if SC N\ {n}.

Note that the game is equivalent to the assignment game with n — 1 sellers (the banks
with ATMs) and one buyer (bank n without ATM), which can realise the surplus w, with
anyone of the sellers. Let (N, L) be the corresonding bipartite graph with L = {{i,n}) | i =
1,...,n—1}, i.e. Lis the set of links between the single bank without ATM and any other
bank. Observe that v = v%. Since the graph is cycle free, it follows that the Harsanyi
degree solution is equal to the position value. Furthermore, from Corollary 5.3 it follows

that the payoff to player n according to these solutions is given by

(N, v, L) = ¢4 (N,v, L) = %

Hence, by symmetry and component efficiency of ¢? and 7 it follows that

w
mi(N,v, L) = ¢(N,v, L)) = ————, i=1,....,n— 1.

It is instructive to find out what distribution of the total value w,, other solution concepts

prescribe. First, we consider the Shapley value. The marginal contribution of player n is

always w,,, unless the permutation of all players is such that he enters first, which occurs

in (n — 1)! cases. Hence,

n!—(n—1)! n—1

' Wy = W,
n! n

wn(Na U) =

Again by the symmetry property and efficiency of the Shapley value, we obtain

1
 w, i=1,....n—1
n(n—l)w ! "

"%(Na U) =
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Since v = v, the Myerson value equals the Shapley value: u(N,v, L) = 1(N,v). When

n > 3, the core of the game consists of a single point z* € IR", namely
x, =wpand x; =0, i=1,...,n— 1.

Furthermore, the game is easily checked to be quasi-balanced (see Tijs [32]), so that both

the T-value and nucleolus 7 satisfy
T(N,v) =n(N,v) =z
Summarizing these observations, we obtain the following relations (in case n > 3)

wp = Tn(N,v) =0 (N,v) > y(N,v) = pn(N,v, L) > gpr(N,v,L),
0=m(N,v) =n(N,v) < ¥;(N,v)=p;(N,v,L) < @f(N,U,L) =m;(N,v, L), i #n.

The Harsanyi degree solution shares the cost savings equally between the banks with ATMs
and the single bank without ATM, whereas the 7-value and the nucleolus assign all the
value to the buyer, the bank without ATM, saying that this bank can use the money
dispensers of the other banks for free. The Shapley value is between the nucleolus and the
Harsanyi degree solution, converging to the former when n goes to infinity.

In Bjorndal, Hamers amd Koster [2] a single solution concept is proposed for both
situations with one ATM and situations with multiple ATMs (in that case we may suppose
that there is a single bank without ATM). They call this solution the equal split solution.
Despite this name, this solution, is given by the nucleolus, i.e. it shares the surplus equally
between the ATM-bank and the others in case of a single ATM, but it gives all the surplus
to the bank without ATM in case of multiple ATMs. In view of the analysis above, the
only solution giving an equal split in both situations is the Harsanyi degree solution. In
reality, banks cooperate using each other’s ATM’s by agreeing on a fee between banks for
each visit to an ATM, i.e. for each visit that a customer makes to an ATM of another bank,
the bank of this customer has to pay a fee to the owner of the ATM. This fee does not
depend on the location, i.e. it does not depend on whether or not there is a single ATM.
The equal split solution ES (the nucleolus) results in different fees for the two situations.
The Harsanyi degree solution yields a uniform fee, namely equal to half of the cost savings,
so fee f = % is to be paid for each visit. In case of a single ATM this fee results in the
Harsanyi degree payoff. In case of multiple ATMs, usually the customers are free to choose
which ATM they want to use. Since the total number of visits is w,, a fee of f = % for
any visit gives a total payoff of %wn to the owners of the ATMs. When the customers of
bank n choose randomly between the available ATMs, the Harsanyi degree solution gives
the expected payoff to the ATM-banks.
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5.3 Auction games

Consider a second-price sealed bid auction with n bidders. Suppose that their private
valuations are arranged in a non-increasing order 6y > 6, > ... > 6, 7 > 6, > 0, and
let us assume that the seller attaches utility 6,1 € [0,6,) to the object which serves as
a reservation price. If all n bidders collude and reveal their private valuations!®, they can
earn as mush as 6y — 6,,.1. How should they share this surplus?

The communication structure of this game can be represented as a line-graph
L ={{i,i+1}|i€e {l,...,n—1}}. Any coalition not including player 1 (player with
the highest private valuation) generates zero worth. For any coalition S that includes
player 1, the worth of S, is equal to 6y — 641, where k + 1 = min{j € N| j ¢ S}.
So, the worth of S including 1 is determined by its largest connected part [1, k], where
[i,7] = {i,1+1,...,7 — 1,5} denotes the coalition of consecutive players from i to j. By

applying Theorem 3.1 from van den Brink, van der Laan and Vasil’ev [9] we have

A%@—{@_%H’ﬁszuﬁ’

B 0, otherwise.

Observe that all dividends are non-negative, thus this auction game is totally positive®.
Consequently, the set of Harsanyi payoff vectors coincides with the core of the game.
Moreover, since the graph is cycle-free the Harsanyi degree solution coincides with the
position value.

For any connected coalition S = [7, j] in a line-graph, the degree measure is given
by

1, ifked{ij}

2, ifkeS\{ij} (5.13)

dy. (5, L (5)) = {

Applying the degree measure, given by (5.13) it can be verified that

1 <= AL (p) 1 [(<~0,—0
d(N ) = Al N\, - hl Zk — Tk+1
1 . "ALE () g — 6 " G —0
d _ [1,4] _ i+1 k k+1
AN =5 W 2 S 2(¢—1)+Z k1
k=i+1 k=i+1

for any ¢ € {2,...,n — 1}, and
1

- - [Ln]( ):M
2(n—1)

Pa(N,v) = Y1)

19Tn second-price auctions collusion is not at all unrealistic. In fact, there is a simple incentive-compatible
mechanism that induces bidders to disclosure their private information about valuations and fosters collu-
sive behavior, see Graham and Marshall [13].

20Totally positiveness of the game implies its convexity.

27



It is interesting to note that the Shapley value 1) was proposed as a solution for this type
of games by Graham, Marshall and Richard [14]. For players 1 and n the latter is equal to

" ALK
) = a0 + 3 5
and
[1777/}
Gn(N.v) = 2
n

It is easily shown that if n > 3 it holds that 1, (N, v) > ¢4(N,v), and 1, (N,v) > ¢%(N,v)
for the bidder with the lowest valuation. Thus, the Harsanyi degree solution gives more to

‘central’” players at the expense of the ‘end’ ones.

6 Concluding remarks

In this paper we studied Harsanyi power solutions for graph games, i.e. cooperative TU-
games in which the cooperation possibilities are restricted because the players belong to
a limited communication (graph) structure. In such solutions the sharing system that
is used in distributing the Harsanyi dividends in the restricted game is determined by a
power measure for (communication) graphs. Although any positive power measure can be
applied, we gave special attention to the degree measure and the equal power measure. On
the class of cycle-free graph games, the Harsanyi power solution that is based on the degree
measure is equal to the position value. This is not the case for arbitrary graph games. The
Harsanyi power solution that is based on the equal power measure is always equal to the
Myerson value. We argued that for some graph games the Harsanyi degree solution seems
better than both the position value and the Myerson value since it assigns zero payoff to
null players that are not connecting any non-null player (a property that is not satisfied
by the position value) and it assigns higher payoffs to more central players (which is not
done by the Myerson value).

We gave two axiomatic characterizations of the Harsanyi power solutions on the
class of cycle-free graph games. One axiomatization uses the weak o-degree measure prop-
erty, and the other uses the weak o-communication ability property. Both give character-
izations for the position value and the Myerson value as special cases. So, the difference
between the position value and the Myerson value (on cycle-free graph games) is not about
using the weak degree measure property or the weak communication ability property but
about which power measure to use.

We also applied the Harsanyi power solution to some specific classes of games, in

particular to assignment games, ATM games and auction games. It was shown that in
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assignment games, both the position and the Harsanyi degree solution give half of the
payoffs to the buyers and half to the sellers. These two solutions differ in the distribution
of the payoffs among the buyers and among the sellers (except when there is only one buyer
or seller, in which case the corresponding graph is cycle-free). If we allow for intermediaries
then in both solutions half of the payoffs always go to the intermediaries. In ATM games
with one bank owning an ATM the corresponding game is a peer group game, and we saw
that the position value, Harsanyi degree solution and Myerson value coincide with many
known solutions (such as the 7-value and nucleolus) and assign to every bank without ATM
half of the cost reduction its customers generate by using the ATM while the ATM bank
obtains the other half. This is also a Core element. In case there are more banks with an
ATM then the corresponding game is not a peer group game, but again the bank without
an ATM obtains half of its cost reduction, while the other half is equally split among the
ATM banks. In auction games we saw that applying the Harsanyi degree solution to the
corresponding line-graph game distributes the extra valuation of a player above the next
highest valuation among this player and its ‘predecessors’ (i.e. the players with higher
valuation) in such a way that this player and player 1 (with highest valuation) get a share
that is half of the shares of the intermediary players.

Finally, we would like to mention that the results of this chapter can be restated
for asymmetric directed graphs. A directed graph or digraph is a pair (N, D) where N
is the set of nodes and D C N x N = {(4,j) | i,7 € N,i # j} is a binary relation on
N consisting of ordered pairs called directed links or arcs. The digraph (N, D) is called
asymmetric if (i,j) € D implies that (j,7) ¢ D. Suppose that the players in a TU-game
(N, v) are organized according to a directed graph (N, D) on the player set N and denote
such a digraph game shortly by (N,v, D). The asymmetry of (N, D) reflects the idea that
one player incident with a link has more control over that link than the other player.
Again we assume that the directed graph is a communication graph in the sense that the
restricted game of a digraph game (V,v, D) is the Myerson restricted game vI” of the
corresponding undirected graph (N, LP), with L? = {{i,j} | (i,j) € D}. So, cooperation
in a coalition S' is possible if and only if there is a path in the associated undirected graph
LP between any pair of players of S.2! However, in distributing the dividends of the
restricted game we take account of the direction of the arcs by using a power measure for
directed graphs. Similar as with undirected graphs, a power measure for directed graphs
on a set of nodes NV is a function that assigns to any S C N and digraph D on N a
nonnegative vector o(S, D(S)) € ]le‘, yielding the power o;(S, D(S)) of node ¢ € S in
the directed subgraph (S, D(S)), where D(S) = {(i,j) € D|{i,j} € S}. We say that

21This is different from the approach in games with a permission structure where the direction of the
arc is relevant in determining feasability of coalitions, see Gilles, Owen and van den Brink [11], van den
Brink and Gilles [7] as well as van den Brink [6].
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a measure is positive if in any subgraph (S, D(Y5)) it assigns positive power to any node
in S who has at least one follower in (S, D(5)), where the set of followers of i € N in
digraph (N, D) is given by Fy.p)(i) = {j € N | (i,j) € D}. Given a set of players N
and a positive power measure o on DV the corresponding Harsanyi power solution for
digraph games is defined as ¢” (N, v, D) = h*" (N, v%"”) with (for the connected coalitions)

the sharing system p” = (p”°)

,S Uz(SaD(S)) .
pl” = for all ¢« € S whenever o;(S,D(S 0.

Again, S is unconnected?? (and thus has zero dividend in the restricted game) when no
ies (S, D(S)) = 0 and we
for all ¢ € S. For cycle-free digraph

sean given by

player in S has a follower. So, the shares do not matter when
could take any sharing vector, for example p;”s = ﬁ
games? we obtain similar characterizations as for undirected graph games in Section 4.
Similarly to the proof of Proposition 4.3, it can be shown that for a positive power measure
for digraphs, the Harsanyi power solution ¢ is the unique solution for cycle-free digraph
games that satisfies appropriate modifications of the properties of component efficiency,
additivity, the inessential arc property and the weak o-measure property to the class of
digraph games. In a similar way the characterization using a weak o-communication ability
property can be adapted for digraph games.

An example of a positive power measure for digraphs that can be used is the
outdegree measure d°*, which assigns to every node its outdegree, i.e. its number of followers
d?""(N,D) = |Fn,py(i)|. The corresponding Harsanyi power solution is the Harsanyi
outdegree solution for digraph games according to which the dividend of a coalition S in
the restricted game (NN, ULD) is distributed proportional to the outdegree of the players
in the corresponding digraph restricted to S. Other examples of positive power measures
for digraphs are the S-measure which distributes the power of every node i € N that has
ingoing arcs equally among its predecessors, or the positional power measure which assigns

to every node i the number of followers of i (i.e. the nodes to which ¢ has an outgoing

1

5 of the total power of its followers in distributing the dividend of

arc) plus a fraction
coalition S C N.
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