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1. Introduction 

Let us consider the following two examples.  Suppose a car manufacturer has to choose one 

from many potential prototype projects in order to launch a new car model.  The selection 

criteria must pay attention to both technical (performance) and esthetical (design) 

considerations.  Since the company policy gives high priority to safety and quality standards, 

the selection procedure is organized as follows.  First, a group of engineers from R&D 

department tests the technical performance of each available project and, based on the 

information gathered, selects, let us say, n best projects to be further investigated.  Then, a 

group of designers from the marketing department compares those projects and, depending on 

how “good” they look, selects the model that will be eventually launched in the market.  There 

are two types of complications that make the decision-making in this example very difficult.  

The first comes form the consideration that companies have limited budgets and, consequently, 

the resources each department can allocate to projects’ evaluations are limited.  In our example 

it is reasonable to assume that, if the marketing department is left with too many projects, it 

will not be able to rank them very accurately.  Therefore, the actual number of projects pre-

selected by the R&D department may well affect the overall accuracy of the selection 

procedure.  The second complication arises from the fact that communication is always 

imperfect.  This is due to inevitable information contamination, or to a high degree of 

specialization, which makes it hard for people with different backgrounds to understand each 

other.  In the example, it is a necessity to combine both performance and design characteristics 

into a single measure that requires information sharing between the two departments.  Hence, 

the overall quality of selection crucially depends on information that is actually communicated 

between R&D and marketing departments. 

In the second example we look at an individual who must select a car for a purchase.  He, 

first, looks through a car magazine and, based on the information he gathers there (i.e., prices, 

features, driving performance, etc.) selects a number of car models he may be interested in.  

Then, he goes to a car dealer where he personally compares the “look-and feel” of the cars 

selected form the magazine and, eventually, buys one of them.  Like the budget of a company, 

the time and attention that a person can allocate to interpret different alternatives are limited.  

In our example one may think that the accuracy with which the individual is able to investigate 

each car decreases if his attention is spread over too many models.  Moreover, as his decision 

must rely on different pieces of information obtained at different points in time, the information 
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the individual remembers from the magazine can be crucial for the overall quality of the 

decision made. 

These two examples clearly show that internal information-processing limitations may 

prevent an otherwise perfect decision-maker (an organization in the former example and an 

individual in the latter example) from selecting the best feasible alternative with certainty.  It is 

the limited amount of information an individual can absorb at a time, and his limited memory 

capacity that are responsible for such imperfections.  Similarly, organizations of individuals 

have constraints both in acquiring and communicating information.  Hence, the amount of 

information may adversely affect the outcome of the selection procedure.  Quantitatively, more 

information means more alternatives and this requires more resources to evaluate all 

alternatives.  Qualitatively, more complex information requires more resources to evaluate each 

alternative. 

In accordance with this dichotomy we distinguish two limitations in information 

processing.  The first one manifests itself in a sample size - accuracy trade-off: the more 

alternatives are simultaneously processed, the smaller is the accuracy with which each 

alternative is evaluated.  We will refer to this limitation as imperfect information acquisition.  

The second limitation plays a role on the information transmission level due to imperfect 

communication between members of the same organization, or to the fact that an individual 

does not remember some information that he previously knew.  Since a decision-maker can be 

thought as an information–processing network, this limitation can be interpreted as imperfect 

transmission form one node of the decision-maker’s internal structure to another.  We will, 

therefore, call it imperfect information transmission. 

The aim of this paper is to incorporate both these information-processing limitations in a 

model of fully rational individuals.  More precisely, we consider a two-stage selection 

procedure with two selectors who evaluate an exogenous number of alternatives in order to 

select the best one.  Since selectors can be seen as two team members of the same organization 

in the sense of Marschak and Radner (1972), or as one individual who moves at two different 

points in time (possibly, with imperfect recall), the selection problem can be naturally modeled 

as a two-stage game where two players have the same preferences over the outcomes of the 

game. 

The game is as follows.  First, nature assigns the types to each alternative.  For the sake of 

simplicity, alternatives are assumed to come into two types: high or low.  In stage 1, each 

alternative generates an imprecise binary, i.e., high or low, signal about its quality.  Having 

observed the signal outcomes, selector 1 selects a sub-sample of the alternatives to be passed to 
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the next stage.  In stage 2 each pre-selected alternative generates another imprecise binary 

signal, and selector 2 selects one out of them.  The payoff of each selector is the probability that 

a high quality alternative is selected in stage 2. 

In terms of the model the first example is formalized as follows.  Each project can be of 

either high or low quality.  Both R&D and marketing departments are given criteria that they 

apply to projects.  First, the R&D department screens all the projects.  It observes a high signal 

if a project meets the requirement and a low signal otherwise.  Based on these observations, the 

R&D department selects a sub-sample of projects and passes it to the second selection stage, 

i.e., to the marketing department.  Similarly, the latter applies its criterion to each alternative in 

the sub-sample and observes a high signal if a project meets the requirement. 

In general settings, each type of alternatives may generate either a high or a low signal in 

every stage.  We also consider two special cases of the model, where results can be generalized 

to an arbitrary number of stages.  In the first case the screening requirements are set so high 

that no low quality alternative can ever meet them.  We call this case high-standard filtering 

selection as only high types can pass screening filters by generating high signals.  In the 

opposite case the screening requirements are set so low that every high quality alternative 

meets them for sure.  We call this case low-standard filtering selection as only low types may 

fail to pass screening filters by generating low signals. 

In our analysis we consider four cases.  The first one is a benchmark case where the two 

information-processing limitations are absent: both transmission and acquisition of information 

are perfect.  This situation is captured by assuming that all information obtained at stage 1, i.e., 

signal outcomes that each alternative generated in stage 1, is available at stage 2, and that the 

accuracy of signals in stage 2 is constant.  We refer to this case as full memory and constant 

accuracy case (FM-CA case).  The benchmark scenario is reminiscent of a perfect statistical 

environment where handling large samples is not costly and all the information gathered form 

sequential experiments could be used.  In order to analyze the effect of each of the information-

processing limitations on the behavior of rational agents, we then depart form the benchmark 

FM-CA scenario by analyzing three other cases.  In the first one the information acquisition is 

kept perfect, but the assumption of perfect information transmission is relaxed by assuming that 

no information gathered in stage 1 is available in stage 2.  We refer to this case as no memory 

and constant accuracy case (NM-CA case).  In the second scenario, on the contrary, the 

information transmission is kept perfect, but not the information acquisition.  We assume there 

that the signals’ accuracy in stage 2 is decreasing in the number of alternatives to be evaluated, 

i.e., in the sample size in stage 2.  We refer to this case as full memory and decreasing accuracy 
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case (FM-DA case).  Lastly, combining both types of imperfections we analyze the fourth 

scenario, which we refer to as no memory and decreasing accuracy case (NM-DA case). 

It turns out that in any scenario, regardless of the underlying informational assumptions, 

there always multiple Nash equilibria exist.  That is why we treat the problem of selecting the 

best alternative from a game-theoretic perspective rather than from a purely statistical point of 

view.  However, there exists a unique trembling-hand perfect Bayes-Nash equilibrium (PBNE) 

for all generic values of the model’s primitives. 

The results are as follows.  The PBNE in FM-CA case is such that independently of the 

signal outcomes in stage 1 all alternatives are passed to stage 2, and selector 2 makes use of 

both signals of each alternative in order to select the best one.  This equilibrium captures a 

well-known concept in statistics: calculate likelihoods of all possible alternatives using all 

available information, and then select the alternative with the largest likelihood value. 

When we depart form the benchmark perfect information scenario, the paradigm “more 

information is better” does not hold true any longer.  Irrespective of the sources of 

imperfection, in some cases selector 1 is better of by neglecting some potentially valuable 

information.  We call this phenomenon information overload.  The causes of information 

overload are different depending on the specific information-processing limitations. 

Introducing the no memory assumption, not surprisingly, reduces incentives of selector 1 

to select both high and low signals into a single pool as such mixing makes it impossible for 

selector 2 to distinguish between them later on.  However, mixing does occur in equilibrium, 

although only a subset of the low signals is selected.  The PBNE in NM-CA case has the 

following properties: all high signals in stage 1 are passed to stage 2, while some low signals 

may not be selected.  Thus, in no-memory settings, information overload takes the form of a 

bound on the number of relatively bad alternatives to be passed to the next selection round.  

This upper-bound of the number of low signals is decreasing in the number of high signals 

observed, in the prior share of high type alternatives in the population, and in the screening 

accuracy in stage 1. 

In the FM-DA case, it is the decrease in accuracy in stage 2 that prevents selector 1 form 

taking too many alternatives, and that gives rise to information overload.  The PBNE in FM-

DA case has the following properties: either all high signals are selected but some low signals 

are neglected, or some high signals are neglected and no low signals are selected.  Thus, in 

decreasing accuracy settings, information overload takes the form of a bound on the total 

number of alternatives, i.e., good and bad alternatives, to be passed to the next selection round.  

Contrary to the NM-CA case, in the FM-DA case the screening accuracy in stage 1 has an 
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ambiguous impact on the upper-bound of the number of low signals while both the number of 

high signals observed and the prior share of high type alternatives in the population negatively 

and monotonically affect it. 

In the fourth scenario, when both sources of informational imperfections are present, 

information overload takes its most severe form as both imperfections work hand-in-hand and 

bound the sample size even further. 

Finally, in multi-stage filtering selection we obtain the following results.  In case of high-

standard filtering selection information overload never occurs.  The initial set of alternatives 

passes through screening filters on every stage until at least one high signal is generated and 

one of the corresponding alternatives is selected.  On the other hand, if the standards are low, 

only high signals are passed to the next stage, and on the later stages of the selection 

information will be heavily overloaded.  More precisely, only two high signals are passed to the 

next stage provided that the alternatives have passed a sufficiently large number of filtering 

stages. 

The rest of the paper is organized as follows.  Section 2 reviews the existing related 

literature.  Section 3 states the model.  Section 4 analyzes four different informational 

scenarios, namely the benchmark FM-CA case and NM-CA, FM-DA and NM-DA cases.  

Section 5 analyzes two special filtering selection cases and section 6 concludes.  The appendix 

contains all the proofs. 

2. Related literature 

This paper relates primarily to the bounded rationality literature on limited capacity.  Since the 

assumption of perfect rationality has been questioned in the 50’s, economic theory started a 

hunt for «Rational choice that takes into account the cognitive limitations of the decision 

maker – limitations of both knowledge and computational capacity», Simon (1987).  In the 

existing literature much attention has been focused on finding plausible ways to model bounded 

rationality.  Limited capacity models emphasize the role of cognitive heuristics and simplifying 

knowledge structures in reducing information-processing demands.  Lipman (1995) provides an 

exhaustive survey of such economic literature where authors use different ways to model 

information-processing limitations. 

Morris (1992), Lipman (1992) and Gilboa and Schmeidler (1992) follow an axiomatic 

approach.  In non axiomatic models, processing limitations take a form of computational 

constraints like in Spear (1989), Anderlini (1991), and Anderlini and Felli (1992), or a form of 
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a costly processing phase like in Rubinstein (1986), Abreu and Rubinstein (1988), and Kalai 

and Stanford (1988).  Finally, Mount and Reiter (1990), and Radner and van Zandt (1992) 

study information processing limitations in the context of optimal processing networks. 

Yet, there are relatively few papers that explore the implications of bounded rationality.  

The main reason is the lack of agreements on how to model this phenomenon.  Our paper is a 

contribution in this direction as it enables us to endogenously explain a phenomenon of 

information overload, which is usually imposed exogenously in most bounded rationality 

models.  Therefore, our model provides a rational foundation to bounded rationality in a form 

of information overload. 

The idea that human brain is better equipped for working with relatively small number of 

alternatives has also been extensively exploited in the field of psychology.  Baddley (1994) 

gives a good overview of this literature.  More precisely, in his seminal paper, G. A. Miller 

(1956) pointed out that it is the span of absolute judgment and the span of immediate memory 

that imposes severe limitations on the amount of information we are able to simultaneously 

process and remember.  We account for those two limitations in an economic framework by 

introducing imperfect information acquisition and imperfect information transmission. 

Iimperfect information acquisition has also been present in many economic studies, both 

empirical and theoretical.  Early, as well as more recent, works in marketing (see Jacoby et al. 

(1974) and Hahn et al. (1992), among others) provide evidence that supports the adverse effect 

of excessive information on the quality of the decision.  Chernev (2003) points out that such 

phenomenon becomes even stronger when preferences do not have articulated attributes, and 

vanishes when preferences are more articulated.  Most theoretical models (see van Zandt 

(2001), among others) introduce imperfect information acquisition in a form of an exogenous 

hard limit on the number of items an individual can process.  In contrast, in Ficco (2004) 

imperfect information acquisition is also modeled as a sample size - accuracy trade-off, but its 

implications are studied in the context of a monopsony market. 

Imperfect information transmission is taken into account by the literature on the economics 

of organizations, which is also closely related to our model.  The idea that individuals have 

limited capacities to process information suggests that organizations (groups of individuals) 

may be able to make better decisions than any single individual.  Consequently, a substantial 

amount of such literature views individual agents as single nodes in a large information-

processing network of the organization.  Although information transmission imperfections 

appeared in many of these studies (See, e.g., Radner (1993), Sah and Stiglitz (1986), Visser 
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(2000), among many others.), they have not yet been treated in the context of imperfect 

information acquisition in a fully rational environment. 

Our model in no memory settings also studies the implications of imperfect recall on a 

multistage selection problem.  A substantial amount of literature has been devoted to address 

different issues concerning the imperfect recall assumption in multistage games (see. i.e., 

Battigalli (1997), Gilboa (1997), Grove and Halpern (1997), Halpern (1997), Lipman (1997), 

and Piccione and Rubinstein (1997a, 1997b)). 

We share with Moscarini and Smith (2002) the interpretation of the amount of information 

as the number of drawn signal outcomes.  Finally, in our multistage selection model learning 

occurs via Bayes updating.  On the contrary, Borgers, Morales and Sarin (2004) consider 

general learning rules in environments in which little prior and feedback information is 

available to the decision maker. 

3. The Model 

There are two selectors and a population of N alternatives, which come into two types: high-

type and low-type, denoted as θH and θL respectively.  The expected share of θH within the 

population is denoted by α.  The game lasts two stages.  In stage 1 each alternative generates a 

binary signal { }LH sss 111 ,∈ , i.e., either a high signal Hs1  or a low signal Ls1 , which is correlated 

with its true type with the following revealing probabilities: 

( ) ( )1,0Pr 11 ∈= HHH qs θ , ( ) ( )1,0Pr 11 ∈= LLL qs θ . 

Having observed a signal composition (H1,L1), i.e., H1 high signals and L1 low signals, selector 

1 selects a sub-sample of alternatives (h1,l1), which consists of [ ]11 ,0 Hh ∈  high signals and 

[ ]11 ,0 Ll ∈  low signals. 

In stage 2, each pre-selected alternative again generates a binary signal { }LH sss 222 ,∈  in 

accordance with the revealing probabilities ( )1,02 ∈Hq  and ( )1,02 ∈Lq .  In FM-case selector 2 

makes his choice based on two signals, s1 and s2, observed in both stages.  The pair (s1, s2) 

determines the overall likelihood value for each alternative.  In NM-case, on the contrary, the 

signaling history is not available, and selector 2 makes his choice based only on signals s2.  

Having observed realizations of signals in stage 2, selector 2 selects one alternative, which 

becomes the outcome of the selection procedure.  We assume that all signals in stages 1 and 2 

are statistically independent: 
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Assumption 1.  ( ) ( ) ( )iii ssss θθθ 2121 PrPr,Pr = , i=H, L. 

For binary types and signals the labeling of the types can always be done in such a way, 

that the so-called monotone likelihood ratio property holds: high signal H
ts  gives more chances 

of being generated by a high type θH alternative.  Formally, we assume that it is indeed the 

case. 

Assumption 2.  High and low signals are defined such that L
t

H
t qq −> 1 , and, therefore, for all t: 

( ) ( )( )
( )

( ) ( ) ( ) L
t

L
t

H
L
tt

H
tt

H
tt

L
tt

H
tt

H
ttH

t
HH

t s
qq

q
qq

qs γθ
αα

α
αα

αθγ ≡=
−+−

−>
−−+

=≡ Pr
11

1
11

Pr . 

The information acquisition technology in the model is represented by revealing 

probabilities H
tq  and L

tq .  The numbers Hq1  and Lq1 , i.e., the screening accuracy in stage 1, are 

exogenously given.  In contrast, it is the sample size N2=h1+l1 that determines screening 

accuracy in stage 2.  We assume that both Hq2  and Lq2  are either strictly decreasing functions of 

N2 in case of DA, or they are constants in case of CA. 

Since the revealing probability functions q2(n) are strictly decreasing and bounded 

functions in DA cases, they can be written as ( ) ( )nfqnq 1
2 +=  where 0≥q  and f(x) is a strictly 

increasing function such that f(x)=0.  Function f can be treated as a production function of 

information acquisition technology and its argument n
1  represents the amount of resources 

allocated for each alternative.  We assume that q2(n) is a well-behaved function for all large 

enough values of its argument, i.e., f(x) is a well-behaved function at zero. 

Assumption 3.  0>q  and f(x) can be written as ( ) ( )xgxxf λ=  for some λ>0 and an arbitrary 

function g(x), which is differentiable at x=0 and satisfies ( ) 00 >g . 

The pay-off of each player is the probability that a high type alternative Hθ  is eventually 

selected.  An equilibrium strategy for selector 1 is the optimal sample composition 

( ) ( ) ( )( )11
*
111

*
1

*
1

*
1 ,,,, LHlLHhlh =  for all possible signal compositions (H1,L1).  An equilibrium 

strategy for selector 2 is to select an alternative in accordance with his preference relation by 

comparing likelihoods of each alternative. 
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4. Analysis 

Due to the finiteness of the strategy space of the game, a Bayes-Nash equilibrium always 

exists, possibly in mixed strategies.  Moreover, a pure strategy Bayes-Nash equilibrium always 

exists as the players are team members.  In what follows we will consider Bayes-Nash 

equilibria in pure strategies only. 

The model, regardless of the underlying informational assumptions, has always multiple 

Nash equlibria.  In order to see why this is the case, consider the following strategy profile: 

selector 1 passes only one signal, preferably high, to stage2; selector 2 selects one alternative 

with the lowest likelihood of being θH type.  Given the strategy of player 2, player 1 wants to 

effectively end the selection procedure in stage 1 by making the team’s pay-off independent on 

the signal realization in stage 2.  Thus, he optimally selects only one alternative, and it must be 

one who generated a high signal Hs1 , if there is one.  Player 2, in turn, gets the same pay-off 

irrespective of his strategy, thus there is no profitable deviation for him. 

It is clearly seen that the equilibrium we just described is based on playing weakly 

dominated strategies.  That is why in what follows we impose an additional refinement, namely 

that no weakly dominated strategies are a part of an equilibrium.  The set of strategies that are 

not weakly dominated can be characterized as follows: selector 1 (2) selects a number of 

signals (one signal) with the largest likelihood(s) of being θH type. 

We begin with the benchmark FM-CA case, where the informational environment, apart 

from inaccurate screening, is perfect. 

4.1.FM-CA case 

In CA-case there are no costs of passing large samples to stage 2.  In addition, selector 2 

observes all signals from stage 1.  Hence, he can rank all the previously selected alternatives in 

accordance with its preference relation.  Thus, selector 2 has a unique weakly undominated 

strategy.  Selector 1, in turn, selects all potentially valuable alternatives in stage1.  This is the 

content of Proposition 1. 

Proposition 1.  In FM-CA case, the game has a unique PBNE such that: 

a) ( ) 111
*
1 , HLHh = , i.e., player 1 selects all high signals. 
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b) ( )

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i.e., player 1 selects all low signals if the screening accuracy in stage 2 is higher than in 

stage 1 and the other way around. 

c) Player 2 selects an alternative in accordance with the following preference relation 

( ) ( ) ( ) ( )LLLHHLHH ssssssss 21212121 ,,,, fff  if L
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Proposition 1 is proven as a sub-case of Proposition 3 in the appendix.  It can be easily 

generalized to an arbitrary number of stages.  Proposition 1 states one of the most general 

concepts in statistics that prescribes a calculation of full likelihoods for all available 

alternatives and then selection the maximum value.  When the screening accuracy in stage 1 is 

higher than in stage 2, i.e., when ( ) ( )HLHLHH ssss 2121 ,Pr,Pr θθ > , and, therefore, 

( ) ( )HLLH ssss 2121 ,, f , only high signals are selected.  If, on the contrary, stage 2 signaling is more 

accurate, i.e., ( ) ( )HLHLHH ssss 2121 ,Pr,Pr θθ < , selector 1 selects all the alternatives. 

Having established the result in the benchmark case, we will see now how informational 

imperfections affect the resulting equilibrium strategies.  First, we introduce imperfections in 

information transmission, which we classified as no memory case. 

4.2.NM-CA case 

If no information from stage 1 is available for selector 2, he still has a unique strategy but now 

based only on the following preference relation over the signals from stage 2: 

( ) ( )LH ss 22 f . (1) 

Selector 1 now faces the following task.  Observing a signal composition (H1, L1) he has to 

choose a sample composition (h1, l1) to be passed to stage 2 in order to maximize the team’s 

pay-off.  An equilibrium sample composition is denoted by ( )*
1

*
1 ,lh .  Proposition 2 shows how 

the realization of signals in stage 1 affects the optimal sample composition. 
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Proposition 2.  In NM-CA case there exists a generically unique PBNE such that: 

a) ( ) 111
*
1 , HLHh = , i.e., player 1 selects all high signals. 

b) for all H1≥1 there exist an upper-bound ( ) [ )∞∈ ,011 HL  and a lower-bound 

( ) ( )[ ]1111 ,0 HLHL ∈  such that: 

( ) ( ){ } ( )
( )





<

≥
=

111

111111
11

*
1 if,0

if,,min
,

HLL

HLLHLL
LHl , 

i.e., if the number of low signals does not exceed ( )11 HL , none of them are selected; 

otherwise all of them up to ( )11 HL  are selected in stage 1. 

c) ( )11 HL  does not increase and strictly decreases whenever ( ) 011 >HL . 

d) There exists a number ( ) 11~
11 +≤ LH  such that ( ) ( ) ( ) 0, 111

*
1 === hLhLLhl  for all 1

~Hh ≥ , 

i.e., if there are sufficiently many high signals, none of low signals are selected in stage 1. 

e) ( ) ( ) ( ) 0, 111
*
1 === hLhLLhl  for all 1≥h  if L

L

H

H

L

L

H

H

q
q

q
q

q
q

q
q

1

1

1

1

2

2

2

2

1111 −−
<

−−
, i.e., if the 

screening accuracy in stage 1 is higher than in stage 2 none of low signals are selected in 

stage 1. 

f) ( ) 11
*
1 ,0 LLl = , i.e., if there are no high signals available, all low signals are selected.  

Formally, ( ) +∞=01L , ( ) 001 =L . 

g) The total sample size in stage 1 *
1

*
1 lh +  is not a strictly monotone function of H1: it weakly 

decreases when 0*
1 >l  and strictly increases when 0*

1 =l . 

h) Player 2 selects an alternative in accordance with the preference relation (1). 

The statements of Proposition 2 can be understood as follows.  First, PBNE is generically 

unique as the pay-off function of player 1 turns out to be a regular analytical function of the 

model’s primitives and, therefore, takes generically different values for all different values of 

its arguments, which number is finite.  Then, selecting all high signals is always optimal due to 

Assumption 2, part (a).  Selecting one extra low signal has two effects on the pay-off.  The first 

effect, which is positive, is a sample size effect: selecting more signals in stage 1 increases the 

probability of observing at least one high signal in stage 2.  The other effect, which is a mixing 



 12

effect, is negative due to the no memory assumption.  Mixing high and low signals in stage 1 in 

a single pool makes it impossible to distinguish between them later on in stage 2 and, therefore, 

decreases the probability of selecting the best alternative. 

The sample size effect vanishes exponentially with the number of selected low signals 

while the mixing effect decreases reciprocally to that number.  Hence, for a large number of 

selected low signals the latter dominates the former and there is an upper bound 1L  such that 

1
*
1 Ll ≤ .  If only a few low signals are available, it might be possible that taking none of them is 

optimal even if 01 >L  as the mixing effect is absent in this case.  Thus, the existence of the 

lower bound 1L  is established, part (b). 

When the number of high signals goes up, the sample size effect vanishes faster then the 

mixing effect.  Therefore, selector 1 has less incentives to select low signals.  As a result, the 

upper-bound 1L  strictly decreases w.r.t. H1 until it becomes zero, and stays at zero afterwards, 

part (c) and (d).  Selector 1 selects high and low signals only if the screening accuracy in stage 

1 is lower than in stage 2.  Otherwise none of low signal will be selected, part (e). 

When there are no high signals available, only the sample size effect plays a role and, 

therefore, all low signals must be selected, part (f).  Finally, the total sample size in stage 1 

cannot be a strictly monotone function as for H1=0 and H1=N all signals will be selected, thus 

Nlh =+ *
1

*
1  in these two cases. 

As we see, departing from the benchmark case by imposing the no memory assumption 

leads to the overload of information in stage 1.  This phenomenon comes into play when 

selector 1 observers heterogeneous signals.  In this case only a part of low signals will be 

selected in equilibrium and, therefore, only a part of all available information will be used in 

the decision-making, the rest will be neglected.  Due to a non-monotone behavior of the total 

sample size *
1

*
1 lh + , it does not fully reveal the sample composition (how many high and low 

signals have been selected in stage 1).  Thus, in a multistage (T>2) selection game, selector 2 

faces a non-trivial task of updating sample composition beliefs, which makes the model 

practically intractable for T>2. 

For exposition purposes we have numerically calculated the function ( )11 HL  in the 

following example. 
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Example 1. 

Picture 1 shows the numerically calculated function ( )11 HL  for α=0.5 and three values of 
LH qq 11 = : 0.51, 0.65 and 0.78.  Its monotone property can be easily seen there, as well as 

non-monotone behavior of the maximum sample size ( ) 111 HHL + . 

Picture 1 also shows how the accuracy in stage 1 affects the sample composition.  If 

the signaling stage 1 is almost uninformative, picture (a), the sample size effect is very 

large and selector 1 aggressively mixes signals for a wide range of H1.  If, on the contrary, 

the accuracy in stage 1 is sufficiently high, picture (c), the mixing effect dominates and 

selector 1 always neglects low signals.  Another feature of the equilibrium is that player 1 
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Picture 1. 

The upper-bound 1L , denoted as L(H), and the maximum sample size in stage 1, denoted as L(H)+H, as functions 
of H1, denoted as H, for 9.022 == LH qq , α=0.5 and different values of 111 qqq LH == . 
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Picture 2 

Regions of the primitives where ( )11LL =  takes particular values.  Here the space of variable primitives is 
( ) [ ] [ ]1,5.01,0, 1 ×=qα  with 111 qqq LH == , and 9.022 == LH qq . 
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selects “very many” low signals only if the prior is low, the accuracy in stage 1 is low and 

the number of high signals available is also low. 

Picture 2 shows regions of the prior α and the first stage accuracy LH qq 11 =  where 

( )11LL =  takes different values, for the case 9.022 == LH qq .  One may note that both the 

prior and the first stage accuracy monotonically and negatively affect the upper-bound 

( )11L .  This monotone dependence of ( )11 HL  is confirmed by numerous numerical 

calculations, yet the analytical proof is to be found. // 

Summarizing, imperfect information transmission between selectors limits the number of 

low signals selected in stage 1.  The mixing effect, which is responsible for such information 

overload, gets relatively stronger if: (i) the prior share of high type alternatives in the 

population is larger; (ii) signaling in stage 1 is more informative; (iii) the number of high 

signals in stage 1 is larger. 

Having established the properties of NM-CA equilibrium we turn to another imperfection 

of information processing, namely to imperfect information acquisition.  This is tFM-DA case. 

4.3.FM-DA case 

In FM-CA case we have seen that the preferences of selector 2 are different for different values 

of the primitives of the model.  If the accuracy in stage 1 is higher than in stage 2, signal 

realization ( )LH ss 21 ,  is preferred to ( )HL ss 21 ,  and the other way around.  In FM-DA case, 

however, the accuracy in stage 2 is endogenously determined by the sample size, i.e., by the 

number of alternatives selected in stage 1.  But the sample size is the variable that is readily 

observable in stage 2.  Hence, selector 1, by selecting alternatives, implicitly selects one of the 

two possible preference relations, and selector 2 has consistent preferences in all states of the 

world, i.e., for all possible signal realization in stage 2. 

Thus, like in FM-CA case, selector 2 has a unique weakly undominated strategy, which is 

determined by its preference relation, which, in turn, is determined by selector 1.  For the sake 

of the simplicity of exposition we assume here that both revealing probability functions 

coincide, i.e., ( ) ( ) ( )nqnqnq LH
222 == . 

It turns out that there exists a generically unique PBNE of the game, which always exhibits 

information overload in stage 1. 
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Proposition 3.  In FM-DA case there exists a generically unique PBNE such that: 

a) There exists an upper-bound [ )∞∈ ,11H  such that ( ) 111
*
1 , HLHh ≤ , i.e., player 1 selects not 

more than 1H  high signals. 

b) for any 01 ≥H  there exist an upper-bound ( ) [ )∞∈ ,011 HL  and a finite set of lower-bounds 

{ }K

k

kL
11 =
, ( )111 HLK <≤ , ( )11

1
11

1
10 HLLLL kk ≤<<≤ +  such that: 

( )
( ){ } ( )

[ )





∈

≥
=

+1
1111

111111
11

*
1

,if,

if,,min
,

kkk

K

LLLL

HLLHLL
LHl , 

i.e., if the number of low signals does not exceed 1
1

+kL , only kL1  of them are selected; 

otherwise all of them up to ( )11 HL  are selected in stage 1. 

c) ( )11
*
1 , LHh  is a weakly increasing function of H1 and does not depend on L1. 

d) ( ) 011 =HL  whenever 11 HH > . 

e) ( ) ( ) ( ) 0, 1
1

11
*
1 === hLhLLhl  for all *

1hh ≥  if ( ) 1
*
12 qhq < , i.e., if selecting optimal number 

of high signals *
1h  makes the screening accuracy in stage 2 lower than in stage 1, none of 

low signals are selected in stage 1. 

f) Player 2 selects an alternative in accordance with the following preference relation: 

( ) ( ) ( ) ( )LLLHHLHH ssssssss 21212121 ,,,, fff  if ( ) 1222 qLHq >+ , 

( ) ( ) ( ) ( )LLHLLHHH ssssssss 21212121 ,,,, fff  if ( ) 1222 qLHq <+ . 

The statements of Proposition 3 can be understood as follows.  First, like in Proposition 2, 

PBNE is generically unique as the pay-off function of player 1 turns out to be a regular 

analytical function of the model’s primitives and, therefore, takes generically different values 

for all different values of its arguments.  Then, selecting one extra signal has two effects on 

pay-offs.  The first effect is the same sample size effect as in Proposition 2: selecting more 

signals in stage 1 increases the probability of observing at least one high signal in stage 2.  The 

other effect, which is now a decreasing accuracy effect, is negative due to the decrease in q2.  

The decreasing accuracy effect, in contrast to the mixing effect from Proposition 2, prevents 

selecting too many signals of both types, thus, there are upper-bounds 1L  and 1H , parts (a) and 
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(b).  If only a few low signals are available, it might be possible that taking none of them is 

optimal even if 01 >L .  Thus, the existence of the lower bound 1L  is established. 

High signals in stage 1 are always more favorable than low signals and, therefore, 

( )11
*
1 , LHh  is a weakly increasing function of H1 and does not depend on L1, part (c).  Due to 

the same reason, none of low signals will be selected if some high signals are neglected, part 

(d).  Selector 1 selects low signals in addition to high signals only if the screening accuracy in 

stage 2 is still higher than in stage 1.  Otherwise none of low signal will be selected, part (e). 

Comparing Proposition 2 and Proposition 3 one may note that the only difference between 

NM case and DA case is when signals in stage 1 are homogeneous: DA case exhibits 

information overload while NM case does not.  In order show other differences between the 

two cases we provide numerically calculated functions ( )11 HL  and ( )1
*
1 Hh  in the following 

example. 

Example 2. 

In this example we have selected ( ) nnq 2
2 01.089.0 ⋅+=  for modeling the decreasing 

accuracy in order to make it comparable with Example 1.  In both cases ( ) 9.022 =q , and 

the decrease in q2 here seems to be negligible.  It turns out, however, that even such small 

decrease in stage 2 accuracy is enough to generate the overload. 

Picture 3 shows, first, that as in NM-CA case, the upper-bound ( )11 HL  is a non-

increasing function and is strictly decreasing function when ( ) 011 >HL .  Second, the 

maximum sample size in stage 1, just like in NM-CA case, is not a monotone function. 

Like in NM-case, the prior α monotonically affects the sample composition: the 

higher the prior is, the less low signals are selected, see next Picture 4.  In contrast, the 

accuracy in stage 1 affects the sample composition non-monotonically: the minimum low 

signals are selected either for very informative stage 1 signals or for almost uninformative 

ones.  Contrary to the NM-CA case, under FM-DA the decrease in stage 2 accuracy 

prevents selector 1 from taking very many low signals even if stage 1 signaling is almost 

uninformative. // 
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As we see, both types of information processing imperfections yield information overload 

in stage 1.  The causes of the overload, however, are different.  In NM case it is the purely 

statistical mixing effect that reduces the incentives to mix heterogeneous signals into a single 

pool.  In DA case it is the decrease in accuracy that makes selection of large samples costly.  

Example 2 shows that even a tiny decrease in accuracy results in the overload.  In order to 

highlight the common features the distinctions in information overload due to these two effects 

we compare equilibrium properties obtained analytically in Proposition 2 and Proposition 3, 

and obtained numerically in Example 1 and Example 2. 

First of all, the mixing effect manifests itself only in heterogeneous samples.  That is why 

in NM case the overload does not arise if only high or only low signals are observed.  
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Picture 3. 

The upper-bound ( )11 HL , denoted as L, the optimal number of high signals ( )1
*
1 Hh , denoted as h and the 

maximum sample size in stage 1 L+h as functions of 1H , denoted as H for α=0.5, different values of 111 qqq LH ==  
and ( ) nnq 2

2 01.089.0 ⋅+= . 

 

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1

L =0

20<L <40

40<L

10<L <20
5<L <10

0<L <5

 
Picture 4. 

Regions of the primitives where ( )11LL =  takes particular values.  Here the space of variable primitives is 
( ) [ ] [ ]1,5.01,0, 1 ×=qα  with 111 qqq LH == , and ( ) nnq 2
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Furthermore, when the accuracy in stage 1 vanishes, so does the overload in NM case.  This is 

so because the accuracy in stage 1 determines how heterogeneous high and low signals are. 

When the signaling in stage 1 is very accurate, but still less accurate than in stage 2, the 

sample size effect, which is the other determinant of the overload, vanishes.  In this case the 

overload prevents selecting low signals in stage 1 whatsoever.  Therefore, and this is the second 

principal difference between NM and DA overloads, the accuracy in stage 1 affects the number 

of selected low signals non-monotonically in DA case whereas in NM case this dependence in 

monotone. 

Apart from these two distinctions all the other equilibrium features of NM and DA 

scenarios are very much alike due to the similarities between the mixing effect and the 

decreasing accuracy effect.  Both effects become stronger relative to the sample size effect 

when the number of high signals increases.  That is why the number of selected low signals 

weakly decreases with the number of observed high signals and weakly increases with the 

number of observed low signals in both settings.  When the number of the high signals is 

sufficiently large, none of low signals will be selected. 

Both effects become stronger also for large value of the prior.  In other words, the overload 

is the highest when there are only few low types in the population.  On the contrary, when the 

initial share of high types is very low and, therefore, both high and low signals in stage 1 came 

from low types almost surely, both effects vanish and so does the overload in NM and DA 

cases.  The last, but not least, common feature of NM and DA scenarios is that the resulting 

sample size in stage 1 is a non-monotone function of the sample composition.  This becomes 

very important in a multi-stage generalization of the model 

4.4.NM-DA case 

We finish the analysis of the general 2-stage binary selection model by allowing both sources 

of imperfections, which is our NM-DA case.  Combining Proposition 2 (NM case) and 

Proposition 3 (DA case) we get the following result. 

Proposition 4.  In NM-DA case there exists a generically unique PBNE such that: 

a) There exists an upper-bound [ )∞∈ ,11H  such that ( ) 111
*
1 , HLHh ≤ , i.e., player 1 selects not 

more than 1H  high signals. 
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b) for any 01 ≥H  there exist an upper-bound ( ) [ )∞∈ ,011 HL  and a finite set of lower-bounds 

{ }K

k

kL
11 =
, ( )111 HLK <≤ , ( )11

1
11

1
10 HLLLL kk ≤<<≤ +  such that: 

( )
( ){ } ( )

[ )





∈

≥
=

+1
1111

111111
11

*
1

,if,

if,,min
,

kkk

K

LLLL

HLLHLL
LHl , 

i.e., if the number of low signals does not exceed 1
1

+kL , only kL1  of them are selected; 

otherwise all of them up to ( )11 HL  are selected in stage 1. 

c) ( )11 HL  does not increase and strictly decreases whenever ( ) 011 >HL . 

d) There exists a number ( ) 11~
11 +≤ LH  such that ( ) ( ) ( ) 0, 111

*
1 === hLhLLhl  for all 1

~Hh ≥ , 

i.e., if there are sufficiently many high signals, none of low signals are selected in stage 1. 

e) ( ) ( ) ( ) 0, 1
1

11
*
1 === hLhLLhl  for all *

1hh ≥  if ( ) 1
*
12 qhq < , i.e., if selecting optimal number 

of high signals *
1h  makes the screening accuracy in stage 2 lower than in stage 1, none of 

low signals are selected in stage 1. 

f) The total sample size in stage 1 *
1

*
1 lh +  is not a strictly monotone function of H1: it weakly 

decreases when 0*
1 >l  and strictly increases when 0*

1 =l . 

g) Player 2 selects an alternative in accordance with the preference relation (1). 

The proof of Proposition 4 can be obtained by adjusting the proof of Proposition 2 to 

decreasing ( )nq2  function and, therefore, is omitted.  Naturally, when both types of 

informational imperfections are present in the model, the overload of information is the largest.  

The following Example 3 shows the result of imposing the no memory assumption on the FM-

DA case. 

Example 3. 

This example differs from Example 2 only in the memory assumption.  Picture 5 shows 

that in NM-DA case the sample size in stage 2 is even smaller than in FM-DA case.  Next, 

Picture 6 shows that the regions of the prior α and the first stage accuracy LH qq 11 =  where 

selector 1 selects many low signals get smaller. 

One may see that there hardly can be found any criteria that would allow us to classify 

both types of imperfections based on exogenous variables only.  As we have already 
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noticed, the major difference between NM and DA imperfections is in the way they react 

to changes in the accuracy of stage 1 screening, compare Picture 2, Picture 4 and Picture 6 

  // 

We have seen that whatever informational imperfections are, they overload stage 1 

selection.  If it is imperfect information transmission then only low signals will be neglected 

due to the mixing effect.  If it is imperfect information acquisition, both types are affected due 

to the decreasing accuracy effect.  The resulting sample size in stage 2 turns out to be a non-

monotone function of the signal composition in stage 1.  In NM settings this makes the model 

extremely difficult for analytical analysis if there are more than two selection stages.  Indeed, 

Bayesian updates of the beliefs about signaling history of each selected in stage 1 alternative 
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Picture 5. 

The upper-bound ( )11 HL , denoted as L, the optimal number of high signals ( )1
*
1 Hh , denoted as h and the 

maximum sample size in stage 1 L+h as functions of 1H , denoted as H for α=0.5, different values of 

111 qqq LH ==  and ( ) nnq 2
2 01.089.0 ⋅+= . 
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Picture 6. 

Regions of the primitives where ( )11LL =  takes particular values.  Here the space of variable primitives is 
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requires accounting for a bi-variate binomial distribution of signal realizations in stage 2, a 4-

variate distribution in stage 2 and, in general 2t-1-variate distribution in stage t.  In FM settings 

the very same distributions must be taken into account as well, though not within the beliefs on 

later stages but rather in calculating expected pay-offs in stage 1 

In the following section we will show a way to organize stage-screening procedures such 

that the model becomes analytically tractable in a multistage environment. 

5. Filtering Selection 

We have started the paper by arguing that the decision-maker has internal informational 

imperfections that prevent him from achieving the first best outcome, which is the selection of 

the best feasible alternative with probability 1.  In these circumstances it is very reasonable to 

assume that the very same decision-maker will have difficulties with selecting the optimal 

selection rule for every selection stage (PBNE equilibrium of the game) as well.  Let us 

consider the problem of selection of the best feasible alternative in a wider framework. 

A decision-maker (either a human or a firm) faces the following task.  First, he has to 

decide how many selection stages he is going to implement.  Second, he has to work out 

screening procedures for every stage.  The latter means that the decision-maker derives 

imprecise performance measures, i.e., likelihood functions that will be computed for all 

previously selected alternatives at every stage.  Third, the decision-maker has to find an optimal 

selection rule, i.e., PBNE of the selection model he has built.  And finally fourth, he follows the 

rule in order to select the best alternative. 

In the previous section we analyzed the selection game for arbitrary screening procedures 

on both stages.  It turns out, that imposing either very strong or very weak requirements on all 

stages of the game allows us to generalize the model to an arbitrary number of selection stages. 

When the passing requirements are so strong that only high type alternatives are able to 

meet them, i.e., to pass the filter, low type alternatives always generate low signals.  In other 

words, 1=L
tq .  Thus, the screening filters all high signals as they have necessarily come from 

high types.  When the passing requirements are so weak that only low type alternatives may fail 

to meet them, high type alternatives always generate high signals.  In other words, 1=H
tq .  

Thus, the screening filters all low signals out as they have necessarily come from low types. 
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We will call such selection procedures as filtering selection.  In this section we will 

investigate properties of such filtering selection procedures.  We begin with the high standard 

filter 1=L
tq . 

5.1.High Standard Filtering 

It is easily seen that if at a certain stage t the selector t observes some number of high signals, 

in a PBNE he selects one high signal at random and effectively ends the selection with the 

pay-off of 1.  If, on the other hand, he observes only low signals, he can select only low signals 

but not high signals.  Thus, mixing of types does not occur in equilibrium, which has a great 

impact on the solvability of the subgame with an arbitrary number of stages.  Indeed, without 

mixing effect, memory plays no role as every player, having observed more than one 

alternative, infers that all of them generated only low signals in the past. 

It turns out that the high standard filtering selection procedure exhibits no information 

overload provided the initial set of alternatives is large enough. 

Proposition 5.  There exists a threshold level of the population size N  such that for all NN >  

the filtering selection game with 1=L
tq  has a unique PBNE ( ){ }T

ttt lh 1
**, =  such that for all 

Tt ,,1K= : 

a) ( )tt Hh sign* = , i.e., player t selects one high signal H
ts  in stage t if there is one and the 

team gets the pay-off of 1; 

b) ( )( ) ttt LHl sign1* −=  and ( )( )TT Hl sign1* −= , i.e., player t selects no low signals L
ts  if there 

is at least one high signal H
ts  and he selects all LT=N low signals L

ts  otherwise. 

The proof of Proposition 5 is in the appendix.  When the sample size asymptotically 

increases, the probability of observing a high signal in the next stage approaches 1.  Thus, if the 

initial set of alternatives is large enough, every selector selects the whole population if no 

alternative has passed the filter, i.e., only low signals have been generated. 

5.2.Low Standard Filtering 

Like in the previous case, mixing of types does not occur here.  Indeed, if there are high signals 

available, it is strictly dominated to take any number of low signals in addition to the high 

signals.  The only possibility for selecting low signals is when no high signals are available.  In 
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this case selecting any numbers of alternatives are pay-off equivalent and generate zero pay-off.  

Thus, the uniqueness property of PBNE fails.  In what follows we assume that the player who 

observes only low signals is forced to select only one alternative, effectively ending the 

selection. 

Contrary to the filter 1=L
tq , filter 1=H

tq  always exhibits information overload in a two-

stage filtering selection game. 

Proposition 6.  In the filtering selection game with 121 == HH qq  there exists a generically 

unique PBNE such that: 

a) There exists an upper-bound [ )∞∈ ,11H  such that ( ) 111
*
1 , HLHh ≤ , i.e., player 1 selects not 

more than 1H  high signals. 

b) ( ) ( )111
*
1 1, HsignLHl −= , i.e., none of low signals are selected unless there are no high 

signal available. 

c) ( )11
*
1 , LHh  is a weakly increasing function of H1 and does not depend on L1. 

d) Player 2 selects an alternative in accordance with the preference relation (1). 

The proof of Proposition 6 can be easily obtained from the proof of Proposition 3 by 

taking 121 == HH qq  and, therefore, omitted.  More interesting results, however, can be obtained 

for the case when the initial prior α is close enough to 1.  The following proposition states the 

result. 

Proposition 7.  There exists a threshold level of the prior 1* <α  such that for all ( )1,*αα ∈  a 

T-stage filtering selection game with 1=H
tq  has a unique PBNE ( ){ }T

ttt lh 1
**, =  such that for all 

Tt ,,1K= : 

a) ( )tt Hh ,2min* = , ( )tT Hh ,1min* = , i.e., player t selects not more than two high signals H
ts  

in stage t; 

b) ( )tt Hl sign1* −= , i.e., player t selects no low signals L
ts  if there are high signals H

ts  

available.  Otherwise, he selects one signal L
ts  and the team gets the pay-off of zero. 

We have seen in section 4 that in the general two-stage selection model the overload 

increases when the prior gets larger.  Proposition 7 shows to what extent the overload limits the 
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number of selected high signals: the minimum possible number of alternatives for making a 

nontrivial choice in later stages, namely two, will be selected.  This result holds true for any 

strictly decreasing function ( )nqL
t .  The reason is that the sample size effect vanishes when α 

approaches 1 and only decreasing accuracy effect is still working.  The following corollary is a 

direct consequence of Proposition 7. 

Corollary 1.  If the number of selection stages T in the filtering selection game with the filter 

1=H
tq  is sufficiently large, then starting from a certain stage T* every selector selects at most 2 

high signals, i.e., ( )tt Hh ,2min* =  for all t>T*. 

Indeed, selecting only high signals in the beginning of the game assures that at stage T* the 

prior share of high types *T
α  becomes sufficiently close to 1 as 

( ) ( )( )∏
=

−−+
= t

k
k

L
k

t

nq
1

11 αα

αα , 

and 1lim =
∞→ tt

α .  When α does not satisfy conditions of Proposition 7, the number of selected 

high signals remains to be a relatively small integer.  For instance, for two-stage selection 

game, if the revealing probability function ( )nqL
t  satisfies the following condition for all nn ≥ : 

( ) ( ) ( ) ( )( )nLnLL nqnqnq 111 2
1

22 +−>+− −α , (2) 

then player 1 never selects more than n  high signals.1  One can easily see that condition (2) is 

satisfied for 2≥n  for any strictly decreasing ( )nqL
t  when α approaches 1, which is exploited in 

the proof of Proposition 7.  Condition (2) can also be generalized for an arbitrary number of 

selection stages.  Due to the exponential structure of the right-hand-side of (2), the condition is 

satisfied for relatively small numbers.  For example, even for the tiny decrease in the accuracy 

generated by the function ( ) n
L
t nq 1000001.09.0 ⋅+=  and for α=0.5 the inequality is satisfied for 

all 27≥n  and, therefore, not more than 27 alternatives are selected.  The true upper-bound in 

this case is equal to 25. 

                                                 
1 See appendix for the proof. 
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6. Conclusion 

We developed a model of fully rational agents with internal informational imperfections.  

Those imperfections are introduced by assuming limits on information acquisition and 

information transmission.  These assumptions are justified and supported by the clear analogy 

they have with the human brain’s computational limitations already pointed out by 

experimental studies in psychology.  With this framework we are able to obtain and explain 

information overload phenomenon.  It enables us to challenge the paradigm «more information 

is better» as in our model neglecting valuable information emerges as an endogenous behavior 

of fully rational agents, while in most models of bounded rationality such behavior is 

exogenously imposed.  The forces and mechanisms responsible for the overload are also 

investigated in deep details. 

Even more striking results are obtained, when we turn our attention on screening 

procedures that take a form of filtering.  When selection requirements at all stages are weak in a 

sense that good alternatives always satisfy them and bad alternatives are gradually filtered out, 

information overload appears in its most severe form: relatively few alternatives are sufficient 

in order to make an efficient choice.  An opposite case, when selection requirements at each 

stage are highly demanding, meaning that bad alternatives never satisfy them and even good 

alternatives may fail to do so, is the only example where information overload does not arise at 

all and the whole set of alternatives has to be passed to the next selection stage. 
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Appendix 

Proof of Proposition 2.  First, we derive the team’s pay-off function u(h1,l1) provided selector 

2 plays his unique weakly undominated strategy and the screening accuracy in stage 1 is lower 

than in stage 2.  u turns out to be a rational analytical function of the model primitives 
LHLH qqqq 2211 ,,,,α  and, therefore, it takes generically different values for different values of its 

arguments ( ) [ ] [ ]1111 ,0,0, LHlh ×∈ .  Hence, there exists a generically unique PBNE. 

Then, we show that u strictly increases with h1 and, therefore, ( ) 111
*
1 , HLHh = , i.e., 

statement (a) of the proposition.  Next, we fix 11 ≥H  and investigate the shape of u as a 

function of discrete argument L1.  It turns out that u may generically have two local maxima: 

the interior maximum at l1>0 and the corner maximum at l1=0.  We define an upper-bound as 

the value of l1 at which u attains its global maximum: 

( ) ( )11011 ,maxarg
1

lHuHL
l≤

= . 

If the interior maximum does not exist we define ( ) 011 =HL  as in this case u strictly decreases 

for all l1.  Then, we define a lower-bound as the smallest l1 that yields at least u(H1,0): 

( )
( ) ( )

( ) ( ) ( ){ }





≥≤<

><
=

otherwise,0,,,0min

0allfor0,, if ,0

1111111

1111

11 HulHuHLll

lHulHu
HL  

It is easy to see that the optimal number of low signals *
1l  that selector 1 has to select, which is 

defined as ( ) ( )11011
*
1 ,maxarg,

11

lHuLHl
Ll ≤≤

= , is zero if 11 LL <  and is equal to ( ){ }111,min HLL  if 

11 LL ≥ , i.e., statement (b) of the proposition.  Lastly, we derive the properties (c), (d), (f) and 

(g) of functions ( )11 HL  and ( )11 HL .  In order to prove part (e) we note that if the screening 

accuracy in stage 1 is higher than in stage 2, none of low signals are selected in stage 1 in the 

presence of high signals, that is ( ) ( ) ( ) 0, 111
*
1 === hLhLLhl .  Part (h) is trivial. 

In what follows we use the following notations: 

( ) ( ) LLHLLL qq 2121 11 γγϕ −+−= , ( ) ( ) LHHHHL qq 2121 11 γγϕ −+−= , 

HL

HH
HH q

ϕ
γγ
−

=
1

21 , LL

HL
LH q

ϕ
γγ
−

=
1

21 , ( )
HL

HH
HL q

ϕ
γγ 21 1−= , ( )

LL

HL
LL q

ϕ
γγ 21 1−= . 

Suppose player 1 selects h1 signals Hs1  and l1 signals Ls1 .  For any x and y such that 

10 hx ≤≤  and 10 ly ≤≤  there is a chance that exactly x alternatives out of h1 and exactly y 
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alternatives out of l1 will generate high signals Hs2 .  The probability of this event is given by 

the following bivariate binomial distribution: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ylLLyLLxhHLxHL

l
y

h
x

hyhxlhyx −− −







⋅−








=⋅= 11 11PrPr,,Pr

11
1111 ϕϕϕϕ . 

When this event occurs receiver 2 observes x+y high signals Hs2 .  If x+y>0 the pay-off of the 

receivers is LH
yx

yHH
yx

x γγ ++ + .  If, on the other hand, x=y=0, the pay-off is LH
lh

lHH
lh

h γγ
11

1

11

1
++ + .  

Thus, the team’s pay-off is: 

( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )( ).,0,0Pr,,Pr

,0,0Pr,,Pr,

11

1
1
1

11

1

11

1
1
1

11

0
1

11

11

0
0

1111

LLLHLLHL
lh

h
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hx

y
x

yx
xLHHHLH

LL
lh

lHL
lh

h
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hx

yx
yx
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yx

yHH
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x

lhlhyx

lhlhyxlhu

γγγγγγγ

γγγγ

−−−+−+=

+++=

+

=
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=
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=
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==
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∑

∑
 

Converting the finite sum above into an integral yields: 

( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ).

11,

11

111

11
1

0
11

LLLHLLHL
lh

hlLLhHL

w

w

hHLHLlLLLLLHHHLH wdwlhu

γγγγϕϕ

ϕϕϕϕγγγ

−−−+

+−+−+−+=

+

=

=
∫  

It is a routine to see that ( )11 ,1 lhu +  can be written as: 

( ) ( ) ( )( )

( )( ) ( )( ) ,,0,0Pr,,Pr
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and, then, that ( ) ( ) ( ) 0,,1, 111111 >−+≡∆ lhulhulhuh : 

( ) ( ) ( )( ) ( )
( ) ( ) ( )

( )( ) ( )( )( )
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1
,,Pr1

11
1

1,0,0Pr,

1
1

0
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1
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>
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Thus, ( ) 111
*
1 , HLHh = . 

Let us now fix any 11 ≥h  and define 
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( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )LLHLlLLhHLLLHLlLLhHL

l

h
lhulhu

h
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and 

( ) ( ) ( ) ( )11111111 ,1,,, lhDlhDlhDlhE l −+≡∆≡ , 
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1111111,

111111

1

0

12

11

11









+

+−
++++

+

+






 −+






 −+−−−
−
−−= ∫

=

=

−

lhlhlh

dwwwwwlhE

LL

w

w

h

HL

HLl

LL

LL

LLHL

LLHL

LLHL

LHHH

ϕ

ϕ
ϕ

ϕ
ϕ

ϕϕ
ϕϕ

γγ
γγ

 

It is easily seen that ( ) 0, 11
1

<
∂
∂ lh

l
E  and ( ) −∞=

∞→ 11,lim
1

lhE
l

.  Thus, there are two cases. 

a) ( ) 00,1 <hE .  In this case ( ) ( ) 00,, 111 << hElhE  and, therefore, ( ) ( )1111 ,1, lhDlhD <+  and 

( ) −∞=
∞→ 11,lim

1

lhD
l

.  Thus, ( )0,1hD  determines the behavior of ( )11, lhu .  If ( ) 00,1 <hD  then 

( ) 0, 11 <lhD  and u always decreases.  This happens, e.g., for 5.0=α , 6.011 == LH qq , 

9.022 == LH qq , 61 =h , see Picture 7(a).  If, on the other hand, ( ) 00,1 >hD , then u first 

increases to its interior maximum ( )11 HL  and decreases afterwards.  This happens, e.g., for 

1.0=α , 6.011 == LH qq , 9.022 == LH qq , 61 =h , see Picture 7(b). 

b) ( ) 00,1 >hE .  In this case there exists a number X such that ( ) ( )1,0, 11 −<< XhEXhE , i.e., 

( )11, lhD  has a unique maximum at Xl =1 .  If ( ) 0,1 <XhD  then ( ) 0, 11 <lhD  and u always 

decreases, as in Picture 7(a).  If, on the other hand, ( ) 0,1 >XhD  then u has a unique 
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interior maximum at Xl >1  and decreases afterwards.  In this case, if ( ) 00,1 >hD  u 

increases for all Xl <1 , as in Picture 7(b); if ( ) 00,1 <hD  u has a local minimum for some 

Xl <1 .  This happens, e.g., for 9.0=α , 78.011 == LH qq , 9.022 == LH qq , 11 =h , see 

Picture 7(c). 

For all three types of shapes of u the definitions of the upper-bound and the lower-bound 

are consistent, thus, statement (b) of the proposition is proven. 

In order to show that ( )11 HL  is a decreasing function we consider 3 cases. 

a) Suppose that for both 11 Hh =  and 111 += Hh  ( )11, lhu  attains its global maximum at the 

interior points, ( ) 0111 >= HLl  and ( ) 01111 >+= HLl  respectively.  We will show that 

( ) ( ) 11 1111 −≤+ HLHL .  To this end we note that ( ) 0, 11 <lHD  for all ( )111 HLl ≥ .  Let us 

consider a difference ( ) ( )1111 ,1,1 lHDlHDF −−+≡ : 
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as ( )( ) 012211 >−+−=− LHLHHLLL qqγγϕϕ .  Thus, ( ) 0,1 11 <+ lHD  for all ( ) 1111 −≥ HLl  

and, therefore, ( ) ( ) 11 1111 −≤+ HLHL , i.e., ( )11 HL  strictly decreases. 

b) Suppose that for 111 += Hh  ( )11, lhu  attains its global maximum at the corner 

( ) 01111 =+= HLl .  Then trivially ( ) ( ) 010 1111 ≥≤+= HLHL . 

c) The only possibility left is to assume that for 11 Hh =  ( )11, lhu  attains its global maximum 

at the corner ( ) 0111 == HLl  while for 111 += Hh  it attains its global maximum at the 

interior point ( ) 01111 >+= HLl .  We will show that this can never be true. 

As ( )1111 += HLl  is assumed to be an interior maximum, it must be that 

( ) ( )1,10,1 1111 −+<<+ lHDlHD , i.e., ( ) 01,1 11 <−+ lHE  for ( )1111 += HLl .2  In 

addition, as at 11 Hh =  ( ) 0111 == HLl  is assumed to be a global maximum, it must be that: 

                                                 
2 This inequality is nothing more than the second order condition in the discrete form. 
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for all 01 >l .  But then 
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as ( ) 01,1 11 <−+ lHE  at ( )1111 += HLl .  Therefore, ( ) 0,1 11 >+ lHG  for all 01 >l  as well.  

But this contradicts the assumption we made that for 111 += Hh  ( )11, lhu  attains its global 

maximum at the interior point ( ) 01111 >+= HLl . 

All the three cases prove part (c) of the proposition.  Part (d) follows from 

( ) ( ) ( )( ) ( ) 01,01,0 1

11 >−−=−+ LLlLLLLLHlulu ϕϕγγ . 

Parts (d) and (g) are direct consequences of part (c). ■ 

Proof of Proposition 3.  First, we derive the team’s pay-off function ( )11, lhu  provided selector 

2 plays his unique weakly undominated strategy induced by ( ) 1
*
12 qhq > .  Then, we show that u 

strictly increases with respect to both arguments provided the accuracy in stage 2 is constant 
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that proves Proposition 1 for the case 12 qq > .  When 12 qq < , the utility is given by the same 

function ( )0,1hu , as no low signals will be selected.  This completely proves Proposition 1. 

As in the proof of Proposition 2, ( )11, lhu  turns out to be a rational analytical function of 

the model primitives ( ){ }N
n

LH nqqq 1211 ,,, =α  and, therefore, it takes generically different values for 

different values its arguments ( ) [ ] [ ]1111 ,0,0, LHlh ×∈ .  Hence, there exists a generically unique 

PBNE.  Next, we show that for any strictly decreasing function q2(n), which satisfies 

Assumption 3, ( )11, lhu  asymptotically decreases with respect to both arguments.  This proves 

the existence of upper bounds 1H  and 1L , parts (a) and (b).  Then we define lower-bounds kL1  

as a convenient way of expressing ( )11
*
1 , LHl  that ends the proof of part (b).  Parts (c) and (d) 

are proven by deriving properties of the upper-bounds.  Finally, if ( ) 1
*
12 qhq < , none of low 

signals are selected and the team’s pay-off function ( )11, lhu  becomes ( )0,1hu , part (e). 

In what follows we use the following notations: 

( ) ( )( ) ( ) ( )nqnqn LLLL
2121 11 γγϕ −+−= , ( ) ( )( ) ( ) ( )nqnqn HHHL

2121 11 γγϕ −+−= , 
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nqn HL

H
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ϕ
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=
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( )n
nqn LL

L
LH

ϕ
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=
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H
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ϕ
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nqn LL

L
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ϕ
γγ 21 1−= . 

Having been written without the argument, the above variables are assumed to be evaluated at 

22 qq = , or, alternatively at ∞→n .   Then, the team’s pay-off in case 12 qq >  is: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( )( )( ).

11,

1

111

11

1111

LLHLLLLHlLLLHHHhHLHH

LLHLLLlLLLHlLLhHLHHhHL

hsign

hsignlhu

γγγγϕγγϕγ

γγγϕγϕϕγϕ

−−−+−−=







 −++−+−=

 

It is clearly seen that for constant q2: 0
1

>
∂
∂
h
u  and 0

1

>
∂
∂
l
u .  Thus, 1

*
1 Hh =  and 1

*
1 Ll =  in this 

case, that proves Proposition 1. 

When q2(n) is a strictly decreasing function this is not the case any more.  In order to show 

that we use Assumption 3 that yields: 
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1
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+− ∞→∞→ nqnq

n
nqnq

n nLL

n

nHL
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First, we show that when only high signals are available at stage 1, i.e., L1=0, u 

asymptotically decreases with h1.  Let ( ) ( ) ( )0,10,0, +−= nununMU  for 1≥n  denotes the 

marginal disutility of having an extra high signal.  Then, using (A.1) yields 
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Thus, for L1=0 there exists an upper bound ∞<1H  such that ( ) 11
*
1 0, HHh ≤ . 

Then, it is easy to see that ( ) ( ) 0,1,1 >−−−−+≡∆ hnhuhnhu : 
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Thus, if 1
*
1 Hh < , i.e., some high signals are neglected, then 0*

1 =l , i.e., no low signals will be 

selected, part (d) of the proposition. 

In case 01 >L  and 11
*
1 ≥= Hh , let ( ) ( ) ( )1,,, 111111 +−−−=− HnHuHnHuHnHMU  

denotes the marginal disutility of having an extra low signal.  Then we define: 
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We will show that F(H1)>0.  It is clear that F(H1)>0 for any 2
1

1 ≥Hγ .  On order to show that 

F(H1)>0 also for 2
1

1 <Hγ , we define 
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and consider 2 cases: 

a) Let ( )( )( ) ( ) ( )( )( ) 221211
2

211 12111211 qqqq HLLLHLH −−−+−≥−+− γϕγγγγ .  As G strictly 

increases, ( ) ( )( )( )( ) 012111 221 >−−−−=′ qqhG HLLHL γϕϕ , 

( ) ( ) ( )( )( ) ( ) ( )( )( )( ) 0121112110 221211
2

211 ≥−−−−−−−+−=≥ HLHLLLHLH qqqqGhG ϕγϕγγγγ . 

In this case ( ) 0>hG  for all h>0.  Thus, ( ) ( ) 01 >−+ hFhF .  But then for all H1>0: 

( ) ( ) ( )
( ) ( ) 0
1

10 2
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1 >
−

−=> hHL
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FHF ϕ
ϕ

γγ . 

b) Let ( )( )( ) ( ) ( )( )( ) 221211
2

211 12111211 qqqq HLLLHLH −−−+−<−+− γϕγγγγ .  In this case: 
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Let ( ) ( )( ) ( )( )( ) ( )( )( )hHLHLHLHLHHLLLHH hqqhQ ϕϕϕγγγϕϕγγ −+−−−−−−= 112111 2211111  

such that ( ) ( )
( ) ( ) HLLLHL

hQhF
ϕϕϕ −−

>
11 2 .  Then 

( ) ( )( )( ) ( ) ( )( )( )( )hHLHLHLHLHLHLH hqqhQ ϕϕϕϕϕγγγ ln11121 22111 −++−−−−−=′ . 

Using 1ln −< xx  for x<1 yields: 
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and, therefore, F(h)>0. 

Summarizing both cases yields that F(H1)>0 for all H1>0 and, therefore, ( ) 0, 1 >− HnhMU .  

Thus, for any 11
*
1 ≥= Hh  there exists an upper bound ( ) ∞<11 HL  such that ( )11

*
1 HLl ≤ . 

If there are no high signals available, i.e., 01
*
1 == Hh , the marginal disutility of having an 

extra low signal ( ) ( ) ( )1,0,0,0 +−= nununMU , for large n becomes: 
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ϕ
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That proves the existence of an upper bound ( ) ∞<01L . 

The set of lower-bounds is recursively defined as follows: 
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We stop this process at stage K when 1
11

1
1

−+ >= KKK LLL .  It is easy to see that the optimal 

number of low signals *
1l  that selector 1 has to select, which is defined as 

( ) ( )11011
*
1 ,maxarg,

11

lHuLHl
Ll ≤≤

= , is equal to kL1  when 1
111

+<≤ kk LLL  and is equal to 

( ){ }111,min HLL  when KLL 11 ≥ , that ends the proof of the proposition. ■ 

Proof of Proposition 5.  In what follows we will use the following notations: 

( ) ( )t
L
tttt

L
t nqn ααϕ −≡ 1, , ( ) ( )( )

( )tt
L
t

t
L
tt

tt
L
t n

nqn
,

1,
αϕ

ααγ −≡ . 

Here tα  stands for the prior in the beginning of stage t; L
tγ  stands for the posterior at the end 

of stage t provided a low signal is observed, such that L
tt 1−= γα ; nt stands for the sample size in 

the beginning of stage t, such that nt+1=Ht+1+Lt+1=ht+lt. 

If player t observes some number of high signals H
ts , the strategy 1* =th  weakly 

dominates all the others.  Thus, ( )tt Hh sign* = .  The rest of the proof is based on the induction 

assuming that only low signals were available. 

The ex-ante pay-off function ( )TTT nu ,α  in the last stage T is given by 
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Suppose that in stage t the ex-ante pay-off function ( )ttt nu ,α  is 

( ) ( ) ( )( ) ( ) ( )( )
1

1 11111111,
−
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−
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L
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L
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The corresponding reduced form pay-off function ( )111 , −−− ttt lu α  in stage t-1 is given by: 
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It is easily seen that ( ) 1, 111 <−−− ttt lu α  for all lt-1 and ( ) 1,lim 111
1

=−−−∞→−
tttl

lu
t

α .  Thus, there exist a 

number 1−tN  such that for all 11 −− > tt Nn : 11
11

maxarg −−≤
=

−−
ttnl

nu
tt

.  This implies that 1
*

1 −− = tt nl .  

Taking into account that this happens only when 01 =−tH , this can be written as 

( )( ) ttt LHl sign1* −= . 

Then the ex-ante pay-off function ( )111 , −−− ttt nu α  in stage t-1 becomes: 
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Thus, for any Tt ,...,1=  there exists tN  such that ( )( ) ttt LHl sign1* −=  for all tt Nn > .  Taking 

1NN =  ends the proof. ■ 

Proof of Proposition 7.  In what follows we will use the following notations: 

( ) ( ) ( )t
L
tttt

L
t nqn ααϕ −≡ 1, , ( ) ( )tt

L
t

t
tt

H
t n

n
,1

,
αϕ

ααγ
−

≡ . 

Next, as it is never optimal to mix high and low signals, ( ) ( )1111, −−−− ≡ t
H
tttt hsignh γαα . 

We solve the model using backward induction.  First, we derive the team’s ex-ante pay-off 

function ( )TTT nu ,α  in the last stage, that defines the reduced form pay-off function in stage T-

1, i.e., ( ) ( )( )111111 ,,, −−−−−− = TTTTTTTT hhuhu ααα  for hT-1>0.  Maximizing the latter expression 

w.r.t. hT-1 we show that there exists an *
1−Tα  such that ( )1

*
1 ,2min −− = TT Hh  and 

( )1
*

1 sign1 −− −= TT Hl  for all ( )1,*
11 −− ∈ TT αα . 

Next, we derive the ex-ante pay-off function ( )111 , −−− TTT nu α  in stage T-1.  We generalize it 

to an arbitrary stage t, i.e., ( )ttt nu ,α  using induction arguments, at the same time showing that 

there exists an ( )1,0*
1 ∈−tα  such that the corresponding reduced form pay-off function in stage t-

1 is maximized at ( )1
*

1 ,2min −− = tt Hh  and ( )1
*

1 sign1 −− −= tt Hl  for all ( )1,*
11 −− ∈ tt αα . 
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In stage T, when the sample size is nT>0 and the prior is αT, selector T selects a high signal, 

if there are, and gets a pay-off ( )TT
H
T n,αγ , which happens with probability ( )( ) Tn

TT
L
T n,1 αϕ− .  

With the remaining probability ( )( ) Tn
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L
T n,αϕ  all signals in stage T are low and therefore, he 

selects one of them and gets zero.  Thus 
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Suppose that 21 ≥−TH .  Then, it is easy to see that ( ) ( )1,2, 1111 −−−− > TTTT uu αα : 

( ) ( ) ( ) 02,1,2, 111111 >=− −−−−−−
H
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L
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H
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On the other hand, 
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Thus, there exists an ( )1,0*
1 ∈−Tα  such that ( )1

*
1 ,2min −− = TT Hh  for all ( )1,*

11 −− ∈ TT αα .  If 

01 =−TH  player T-1 has no better option than to take one low signal and to get zero pay-off.  

Thus, ( )1
*

1 sign1 −− −= TT Hl . 

Ex-ante pay-off in period T-1 can now be written as 
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Suppose that at stage t the ex-ante pay-off function is given by 
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where ( )1,0∈tβ .  Suppose also that there exists an ( )1,0* ∈tα  such that ( )tt Hh ,2min* =  and 

( )tt Hl sign1* −=  for all ( )1,*
tt αα ∈ .  The corresponding reduced form pay-off function in stage 

t-1 is given by ( ) ( )1111 ,, −−−− = tttttt huhu αα .  Suppose that 21 ≥−tH .  Then, it is easy to see that 

( ) ( )1,2, 1111 −−−− > tttt uu αα : 

( ) ( ) ( ) ( ) ( )( )( ) 021211,2, 111111 >−+−=− −−−−−− t
L
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L
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H
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H
ttttt qquu βγγαα . 
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On the other hand, 
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Thus, there exists an **
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where ( ) ( )( )( ) ( )( )∏
=
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L
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L
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L
tt qqq 2112121 ββ . 

Hence, by the induction, for any t=1,…,T-1 there exists an ( )1,0* ∈tα  such that for all 

( )1,*
tt αα ∈  and for all t≥τ : ( )ττ Hh ,2min* =  and ( )ττ Hl sign1* −= .  Taking t=1 with *

1
* αα =  

ends the proof. ■ 

Derivation of (2). 

For two-stage filtering selection with 1=H
tq  the residual-form pay-off in stage 1 is given by 
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The marginal disutility of having an extra high signal ( ) ( ) ( )1,, +−= nununMU αα  becomes: 
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Thus, if ( ) ( )( ) ( ) ( )( )nLnLL nqnqnq 111 2
1

22 +−>+− −α  for all nn ≥ , then nh ≤*
1 . ■ 




