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Abstract

In this paper we describe the extreme points of two closely related polytopes that are
assigned to a digraph. The first polytope is the set of all sharing vectors (elements from
the unit simplex) such that each node gets at least as much as each of its successors. The
second one is the set of all fuzzy vectors (elements of the unit cube) with participation
rates of players subordinated to the relationships prescribed by the digraph. We also

discuss some applications in cooperative game theory.
Keywords: polytope, directed graph, unit simplex, unit cube, cooperative game
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1 Introduction

In this paper we describe the extreme points of two closely related polytopes that are
assigned to a given directed graph (digraph) on the set N C N consisting of n = |N| nodes.
We assume N = {1,...,n} unless stated otherwise. In economics and game theory such
digraphs often reflect organizational structures on the set of agents, respectively players,
for instance the hierarchical structure within a firm. Within such an economic or game-
theoretic setting, a value vector is an n-dimensional vector, in which the ¢th component
gives some value to agent or player i, ¢ = 1,...,n, for instance the wage to the ¢th agent
within the firm. In this paper a value vector is called a sharing vector if all components
are nonnegative and the sum of the components is equal to one, i.e. the vector belongs
to the unit simplex. In situations that the coalition of all n agents can distribute some
worth, a sharing vector gives to each agent a nonnegative share of that worth. A value
vector is called a fuzzy vector if all components are nonnegative and every component is
between zero and one. The i¢th component of a fuzzy vector can be interpreted as the
participation rate of an agent in some project, for instance the participation rate of an
agent is the part of his wealth that he invests in some common investment project. Within
this interpretation a fuzzy vector reflects a fuzzy coalition (a well-known concept within
economics and game theory), i.e. the vector yields the participation rates of the agents in
forming a coalition.

The first ‘digraph polytope’ that we consider in this paper - to be called the sharing
polytope - assigns to a given digraph the set of all sharing vectors such that each node has
a share that is at least as high as the share of each of its successors in the digraph. Within
cooperative game theory, this type of polytopes appears to be very important to adapt
the so-called Harsanyi set (see Vasil’ev and van der Laan (2002), Vasil’ev (2003)) to the
case of cooperative games in which a digraph reflects a hierarchical structure between the
players. In this paper we give a complete and rather simple description of the extreme
points of the sharing polytope induced by the digraph. Rather surprisingly, it appears
that the collection of all connected and comprehensive from above sets of nodes of the
digraph play a key role in the description of the extreme points of the sharing polytope
(given in Theorem 3.4 below). Putting differently, the result obtained may be considered as
the linearization of the discrete optimization problems over these type of subgraphs of an
arbitrary finite digraph (some results concerning the linearization of discrete optimization
problems, related to graph theory, can be found in Schrijver (1986); see also the references
therein).

The second digraph polytope - to be called the fuzzy polytope - is the set of all
fuzzy vectors such that each node has a participation rate that is at least as high as

the participation rate of each of its successors in the digraph. Within economics it is



well-known that domination (rejection) of certain outcomes by the fuzzy coalitions plays
a crucial role in the cooperative characterization of the equilibria in pure competitive
economies (see e.g. Aubin (1979)). Like in cooperative game theory, in certain economic
situations it may be reasonable to take into account the hierarchical structure between the
economic agents when considering the collection of all feasible fuzzy coalitions. Hence, it
is of interest to know the structure of the fuzzy polytope, describing the collection of all
feasible fuzzy coalitions for a given digraph on the set of agents, in order to get a more
detailed description of the equilibria in, say, a graph-restricted market (a market with some
elements of hierarchy). The characterization of the extreme points of the fuzzy polytope
appears to be much more easy than for the sharing polytope. Nevertheless, the result (given
in Theorem 4.2 below) is quite interesting. In particular, it turns out that the extreme
points of the fuzzy polytope are generated by the collection of all comprehensive from
above sets of nodes of the given digraph. Since, in contrast with the sharing polytope, for
the fuzzy polytope connectedness of the subgraphs is not required, in general the number
of its extreme points may be much higher than the number of extreme points of the sharing
polytope. Again, like in case of Theorem 3.4, Theorem 4.2 together with the description of
the fuzzy polyhedron itself may be considered as the solution of the linearization problem
for the discrete optimization over the comprehensive from above subgraphs of a given
digraph.

The paper is organized as follows. In Section 2 some graph-theoretic preliminaries
are given. Section 3 is devoted to the main result, concerning the description of the
extreme points of the sharing polytope (Theorem 3.4). Section 4 deals with the analog of
Theorem 3.4 for the fuzzy polytope (Theorem 4.2). Section 5 contains some economic and

game-theoretic applications of the results obtained.

2 Preliminaries

A directed graph or digraph is a pair (N, D) where N C N is a finite set of nodes and
D C N x N is a binary relation on N. As mentioned in the introduction, we assume
N = {1,...,n} unless stated otherwise. For D C N x N and i € N the nodes in {j €
N | (i,j) € D} are called the successors of i in D, and the nodes in {j € N | (j,i) € D}
are called the predecessors of ¢ in D. For i,5 € N a path between ¢ and j in D is a
sequence of nodes (i1, ...,4y,) such that iy = 4, i, = j, and {(ig,ix11), (igr1, i) N D # 0
for k =1,...,m — 1. A set of nodes T C N is connected in digraph (NN, D) if there is a
path between any two nodes in T" that only uses arcs between nodes in T, i.e. if for every
i,j € T there is a path (i1, ...,1,) between ¢ and j such that {i1,...,é,} CT.

For some S C N, the digraph (S, D(S)) with D(S) = {(i,5) € D|{i,j} C S}



is called the subdigraph of S in (N,D). A subset S C N is a component of N if the
subdigraph (S, D(S)) is maximally connected, i.e. (S,D(S)) is connected and for any
Jj € N\ S, the subdigraph (SU{j}, D(SU{j})) is not connected. Clearly, for any digraph
(N, D), the collection of components of N forms a partition of N. We call this partition
the decomposition of N in (N, D).

Finally, the transitive closure of digraph (N, D) is the digraph (N,tr(D)) with
(1,j) € tr(D) if and only if there exists a directed path from i to j in D, i.e. there
exists a sequence of nodes (iy,...,4,) such that iy = 4, i,, = j and (ix, ixy1) € D for all
ke{l,...m-—1}.

3 Extreme points of the sharing polytope

In this section we give a characterization of the extreme points of the sharing polytope
induced by a digraph (/V, D). An element of the sharing polytope is a sharing vector in the
unit simplex such that for every ¢ the share of node 7 is at least as much than the shares of
each of its successors. Let U™ be the n-dimensional unit simplex, i.e. U" = {z € R" |z; >
0, i=1,...,n,and > .  x; =1}.

Definition 3.1 The sharing polytope associated with digraph (N, D), N # 0, is the poly-
tope Pp given by

Pp={peU"|p >pjif(ij) € D}

In applications in economics and game theory it is useful to have an explicit characterization
of the extreme points of Pp. It appears that these extreme points are determined by the
collection of all non-empty subsets S of N satisfying (i) S is connected in the digraph and
(ii) for every node in S it holds that all its predecessors belong to S. To be more precise,

we introduce the following formal definition and notations.

Definition 3.2 A set of nodes S C N is comprehensive from above in digraph (N, D)
if [j €S and (i,7) € D] implies that i € S.

The collection of all comprehensive from above sets of nodes in digraph (N, D) is denoted
by A(D). For ease of simplicity, in the sequel of the paper we shortly call a subset com-
prehensive when it belongs to A(D). Further we denote by C(D) the collection of all
connected sets of nodes in digraph (N, D). Observe that both A(D) and C(D) contain the
empty set. We call a subset of nodes complete when it is non-empty, comprehensive and

connected.



Definition 3.3 A set of nodes S is complete in digraph (N, D) if S is not empty and
belongs to A(D) N C(D).

The collection of all complete sets of nodes in digraph (N, D) is denoted by AC(D). Finally,
for any non-empty S C N we define the vector a® € RY by
5 ﬁ ifiecS
0 ifieN\S.
We are now ready to state the main result of this section, namely that the set Exz(Pp) of

extreme points of the sharing polytope Pp is equal to the set of vectors a® obtained from

complete sets in (N, D).
Theorem 3.4 For every digraph (N, D) it holds that Ex(Pp) = {a®]S € AC(D)}.

We prove this theorem in three steps reflected in the following three lemma’s. First we

show that for every complete set S, the vector a® belongs to Pp.
Lemma 3.5 For every digraph (N, D) and every S € A(D) it holds that a® € Pp.

Proof. By definition of a® we have >, v af =1 and af > 0for all i € N. Take i,j € N
such that (i,j) € D. If {i,j} C S then af = a]S = ‘—é| If i € Sand j € N\ S then
a; = ﬁ >0 = a]S. If i € N\ S then by S being comprehensive from above in (N, D) it
must hold that j € N\ S, and thus a = af = 0. So, af > a7 if (i,j) € D. Thus we have

shown that a® meets all conditions to belong to Pp. O

Next we show that for any complete S, the vector ¢® is an extreme point of Pp.

Lemma 3.6 For every digraph (N, D) and every S € C(D) with a® € Pp it holds that
a® € Ex(Pp).

Proof. Let S € C(D) be a subset of nodes with a® € Pp and let b,c € Pp be such that
a® = 1(b+ ¢). To establish the inclusion that a® € Exz(Pp), it is sufficient to prove that
b= c = a® for any such b and c. To this end, let us mention first, that due to the equalities
af =0 for alli € N\ S we have that $(b; +¢;) =0 for all i € N\ S. Since b,¢ > 0 we

then have
bi=c;=0forallie N\S. (3.1)

Second, suppose that i, j € S are such that (i, j) € D. Since b, ¢ € Pp we have by definition

of Pp that b; > b; and ¢; > ¢;. Suppose that at least one of these two inequalities is strict.



Then af = (b + ¢;) > 3(b; + ¢;) = ai, which contradicts with af = af = i‘ for all
1,J € S. So,

b; =b; and ¢; = ¢; for all 4, j € S with (¢, j) € D. (3.2)
Third, suppose that i,j € S and (i,7) ¢ D. Then, with connectedness of S it follows that
there exists a sequence of nodes (iy, ..., %) such that i1 =i, i, = j, {i1,...,im} € S and
{(ik, ig41)s (gs1,06) D # O for all k € {1,...,m—1}. Repeated application of (3.2) yields
bi = bil = ... = bim = bj and C = Cyy = ... = 6, = Cy. Thus

b; =b; and ¢; = ¢; for all 4, j € S with (4, j) ¢ D. (3.3)
With (3.1), (3.2), (3.3) and the fact that b,c € Pp (and thus >, yb; = > ,.yc = 1) it
then follows that b, = ¢; = ﬁ foralli € S. So, b=c=a’. O

Note that in Lemma 3.5 we do not require connectedness of S, while in Lemma 3.6 we
do not require comprehensiveness of S. Obviously, both lemmas hold for complete S. To
finish the proof of Theorem 3.4 we have to show that every extreme point of Pp can be

obtained as a vector a® for some complete S.

Lemma 3.7 For every digraph (N, D) and every a € Ex(Pp) there ezists an S € AC(D)
s

such that a = a”.
Proof. Let a € Fx(Pp). Denote by S* = {i € N|a; > 0} the support of a. Note that
S % () since ).y a; = 1. We first prove that S* € AC(D).

For i,j € N with (i, j) € D, a € Pp implies that a; > a;. So, [j € S and (4, ) € D]
implies that ¢ € S, i.e. S* is comprehensive from above. To show that S is complete it
then is sufficient to show that S* is connected. On the contrary, suppose that S is not
connected. Then there is a decomposition {SY,...,S%} of S® in subdigraph (S*, D(5%))
with the number m of components at least equal to two. Since S} is maximally connected
in (S% D(S%)), by comprehensiveness from above of S® we have that every component
S¢ in this decomposition is comprehensive from above, as well. So, S§ € AC(D) for all

k € {1,...,m}. Now, consider the vectors a*, k = 1,...,m, given by

E a; leESg
i 0 ifieN\SY

and define A\, = Zz‘es;; afforall k € {1,...,m}. By {S{, ..., 5%} being a decomposition of S®
and non-emptyness of S* it follows by definition that the sets S, k € {1,...,m}, meet the
conditions: (i) S* = U S%, (ii) S¢ # 0 for all k € {1,...,m}, and (iii) S¢ N St = () for all
k,l € {1,...,m} with k # [. But then Ay > O forall k € {1,...,m}, and Y -, A\, = 1. Define



at = = 5 +a* for every k € {1,...,m}, ie. aF = iai if i € S¢ andar =0ifi € N\ S¢ Then
SeN S = for all k,l € {1,...,m} with k # [, implies that a* # @ for all k,1 € {1,...,m}
with k # [, and, moreover, it implies that [{k € {1,...,m}|i € S¢}| =1 for all i € S*. But
then >0 @y = > 1 af = a; for all i € S Thus, a = Y ;" \a® with >0 A\ =1
and A\, >0, k € {1,...,m}.

To get a contradiction with a € Ex(Pp) it is sufficient to prove that @* € Pp for
all k € {1,...,m}. Since, @ > 0 and ) ,_y @ = 1, it is sufficient to prove that (¢, j) € D
implies that @; > @7 for all k € {1,...,m}. To do so, fix some (4, j) € D and k € {1,...,m}.

We distinguish the following two cases.

(i) Suppose that j € S¢. Since S§ € AC(D) we have i € S, and thus with a € Pp it

follows that @t = > ii =a.

(ii) Suppose that j ¢ Si. Since @* > 0 we have @; > 0 =a;.

So, we have shown that the vector a is equal to the convex combination » ", \@* with
m > 2, A\, >0 forall k € {1,...m}, a* € Pp for all k € {1,....,m}, and @* # @ for
all k,1 € {1,...,m} with k # [, which contradicts with a € Ex(Pp). Consequently, S is
connected in (N, D). Since we already proved that S® is comprehensive from above, we
have shown that S* € AC(D).

Next we prove that all components a; of a with i € S® are equal to each other,
i.e. a; = a; for all 4,j € S*. On the contrary, suppose that this is not the case. Defining
a = min{q;|i € S*} and = max{a;|i € S*} we then have a < 5. Consider the vectors o/

and a” given by

, a itie S " a;—a ifie S
a; = iy and a; = iy
0 ifieN\SY 0 ifie N\ S

Since 0 < a < B we have @/,a” > 0 and a = o’ + a”. Defining N = >, . a} and
N = 3. cqaai we obtain from a € Pp that \',\” € (0,1) and X + )" = 1. Moreover,
we have a = Na' + \N'a” with @ = %a’ and @’ = %a”. For ¢ € S* with a; = o we have
@ =sa>0anda@ =0. So, @ #a" and Y,y @ = > ;cn @ = 1. To get a contradiction
with a € Fx(Pp), it is sufficient to show that @', a@” € Pp. Take (i,j) € D. If j ¢ S°,

then due to @,a@” > 0 and @; = @ = 0 we have that @, > @; and @] > @;. If j € 5°

then, by the assumption that a € Pp, we have a; > a; and thus @, = %a = @; and
a = 3 L(a; —a) > /\1,,( —a) = @;. Hence, in both cases @',a” € Pp. This fact, together

with @ # @” and the above-mentioned equality a = Na’ + \'@” with X', \” € (0,1), is in
contradiction with a € Ex(Pp).

Thus, a; = a; for all 7,7 € S®. Since ZieN a; =1 we have a;, =a == ‘Sa for all
i € S® Concluding we have S* € AC(D) and a = a° with § = S°. O

6



The following example shows that both comprehensiveness and connectedness are necessary
for the result of Theorem 3.4.

Example 3.8

Consider the digraph (N, D) with N = {1,2,3} and D = {(1,3),(2,3)}. For this digraph
we have AC(D) = {{1},{2},{1,2,3}} and thus Pp = Conv{(1,0,0)",(0,0,1)7, (5,3,3)"
(see Figure 1).

0
0
1
1
3
1
3
1
3
1 0
0 1
1
0 2 0
1
2
0
Figure 1

The set {2, 3} is connected but is not comprehensive. Clearly, the vector a{*3 = (0, %, %)T
does not belong to Pp since ai[2’3} < a§2’3} although (1,3) € D.

The set {1,2} is comprehensive from above but is not connected. Clearly, the vector
att? = (1,1,0)7 belongs to Pp, but is not an extreme point of Pp. O
We end this section by discussing some special cases and examples. First, we consider a
directed tree (N, D), i.e. (i) N is connected in (N, D), (ii) (i,7) ¢ D for all ¢ € N, (iii)
{j € N|(j,i) € D}| <1 for all i € N, and (iv) there is a unique node (the root) i € N
with {j € N|(j,i) € D} = 0. Denoting Ts = SU{j € N|(j,i) € tr(D) for some i € S}
for all S C N, it then follows that AC(D) = {Ts|S C N}. Theorem 3.4 then yields the

following corollary.

Corollary 3.9 If (N, D) is a directed tree then Ex(Pp) = Ugcy{t°}, with t¥ € R™ given

by 1] = ﬁ if j € Ty, and t§ = 0 otherwise.



Example 3.10
Consider the digraph (N, D) with N = {1,2,3,4} and D = {(1,2),(1,3),(3,4)}. Then

({1} if S ={1}
(1,2} if S e {{2},{1,2})
. (1,3} if S e {{3},{1,3}}
) {1,2,3) if S e {{2,3},{1,2,3}}
(1,3,4) it e [{4),{1,4},{3,4},{1,3,4})
| {1,2,3.4) ifSe{{2,4},{1,2,4),{2,3,4},{1,2,3,4}}.

Hence AC(D) = {{1},{1,2},{1,3},{1,2,3},{1,3,4},{1,2,3,4}}. The corresponding ex-
treme points of the sharing polytope are: (1,0,0,0)7, (%, %, 0,0)", (%, 0, %, 0)", (%, %, %, 0",

(504 DT, (44N -

Next we consider two special cases of directed trees. First, we consider line-graphs. Digraph
(N, D) with N ={1,...,n} is a line-graph if D = {(4,7+ 1)|i € {1,...,n —1}}. (Of course,
the labeling of the nodes can be taken different.) Then AC(D) = {T{yli € N} with
Ty ={1,...,i}. Theorem 3.4 (and Corollary 3.9) yield the following corollary.

Corollary 3.11 If (N, D) is a line-graph then Ex(Pp) = U,cy{t\"}, with t1 € R™ given
byt =L ifj <i, and t1V =0 if j > .

Example 3.12
Consider the line-graph (N, D) with N = {1,2,3} and D = {(1,2),(2,3)}. Then AC(D)
{{1},{1,2},{1,2,3}} and thus Pp = Conv{(1,0,0)", (%, %,O)T, (%, %, %)T} (see Figure 2

~—

O

Wl W= W~

1\ 0
0 1
1
0/ 3 0
1
2
0
Figure 2



Second, we consider star-graphs, i.e. digraphs (N, D) with N = {1,...,n} such that there
is a node ip with D = {(ig,7)|i € N \ {ip}}. Since Ts = S U {ip}, we have AC(D) = {T C
Nlip € T'}. Theorem 3.4 (and Corollary 3.9) yield the following corollary.

Corollary 3.13 If (N, D) is a star-graph with the center ig, then Ex(Pp) = |Jscn {t°},
10ES

with t° € R™ given, as earlier, by tJS = ﬁ if 7 €S, and tJS = 0 otherwise.

Example 3.14

Consider the star graph (N, D) with N = {1,2,3} and D = {(1,2), (1,3)}. Then AC(D) =
{{1},{1,2},{1,3},{1,2,3}}, and thus Pp = Conv{(1,0,0)7,(3,3,0)",(3.0,3) ", (5,5.3) "}
(see Figure 3). O
0
0
1
1 1
0 3
1 1
2 3
1 \ 0
0 - 1
0/ 3 0
1
2
0
Figure 3

4 Extreme points of the fuzzy polytope

In the previous section we associated to every digraph (N, D) the sharing polytope Pp,
being a subset of the unit simplex. Instead of restricting ourselves to the unit simplex, in
this section we restrict ourselves to the unit cube I" = [0,1]" = {p € R"| 0 < p; < 1 for all
i € N}. Doing so, we obtain the fuzzy polytope.

Definition 4.1 The fuzzy polytope associated with digraph (N, D), N # 0, is the polytope
Kp given by

Kp={pelI"|p>p;if(i,j) € D}.
To give a similar characterization of the extreme points of Kp as given in the previous
section for Pp, for any S C N, including the empty set, we define the vector e® € R” by

s J 1 ifies
0 ifiec N\S.



It appears that the set Ex(Kp) of extreme points of Kp are exactly the vectors e® that
correspond to comprehensive subsets S of N in the digraph (N, D) (including the empty
set), i.e. the sets S € A(D). Observe that in contrast with the sharing polytope it is not

required that the comprehensive set is connected.
Theorem 4.2 For every digraph (N, D) it holds that Ex(Kp) = {e°|S € A(D)}.

Proof. We first prove that for any S € A(D) it holds that ¢® € Ex(Kp). Since the vectors
ed are extreme points of the cube I™, and Kp C I™, the only thing we have to check is the
implication S € A(D) = ¢° € Kp. To do so, fix an arbitrary S € A(D), (i,j) € D, and
note that by comprehensiveness from above of S it holds that: 7 € S implies ¢ € .S, and
hence, e > 6]5 . As to the case j ¢ S, the inequality required is trivially valid due to the
nonnegativity of e”.

As to the inverse inclusion Ex(Kp) C {e® | S € A(D)}, let us mention first that
each a € Fx(Kp) is a zero-one vector, i.e. a; € {0,1} for any a € Ez(Kp) and i € N.
Suppose, to the contrary, that N(a) = {i € N | a; € (0,1)} # 0 for some a € Fxz(Kp).

Take 1 = max{a; | a; € N(a)}, Nu(a) ={i € N(a) | a; = p}, and

. { max{a; | i € N(a) \ N,(a)}, if N(a) # N,(a),
0, if N(a) = N,(a).

Fix some 0 € (0, 1) such that both numbers p + § and p — ¢ belong to the interval (v,1),

and define the vectors @’ and a” as follows

y {u+5, ifi € N,(a),

"\ @  ifie N\ N,a),

o p—9, ifie Ny(a),
' a;, ifi € N\ Ny(a).

It is clear that by construction of @’ and a” it holds: a',a"” € I", and a] > a; & a] >
aj & a; > a; for any 4,j € N. Since a € Kp, both vectors a’ and a” belong to Kp.
Since, obviously, a’ # a” and a = %(a’ + a"), we get a contradiction with our assumption
a € Ex(Kp). Thus, for any a € Ex(Kp) it holds N(a) = ) and, consequently, extreme
points of the polytope Kp are zero-one vectors.

Consider an arbitrary a € Exz(Kp) and put S(a) = {i € N | a; = 1}. Since
a = %@ the only thing we have to prove is the inclusion S(a) € A(D). But the latter

follows immediately from the inclusion a € Kp. O

Since the extreme points of the fuzzy polytope correspond to the comprehensive subsets

of N in (N, D) and the extreme points of the sharing polytope correspond to the complete

10



subsets (i.e. non-empty, comprehensive and connected subsets) of N in (N, D), there may
be a considerable difference between the numbers of the extreme points of the digraph

polytopes Pp and Kp. To illustrate this, let us consider the following example.

Example 4.3

Let (N, D) be a reverse star with N = {1,...,n} such that there is a node iy with D =
{(i,i0) | i € N\ {io}}. Due to Theorem 3.4 and Theorem 4.1 we have Ex(Pp) = {al? |
i€ N \{iog}}U{a"}, and Ex(Kp) ={e° | S C N\ {io}} U{eN}. Hence, the cardinality
of Bx(Kp) equals 2"~! + 1, while Ex(Pp) contains only n elements. O

5 Applications to cooperative games

In this section we consider some applications in cooperative game theory of the two poly-
topes induced by a digraph. Therefore we first introduce some concepts from cooperative
game theory.

A cooperative game with transferable utility, or simply a TU-game, is a pair (N, v)
with N = {1,...,n} a finite set of players and v:2Y — R a characteristic function on N
satisfying v() = 0. For any coalition S C N, v(S) is the worth of coalition S, i.e. the
members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate. Many
economic and decision situations can be described as cooperative TU-games, for instance
auction situations, assignment problems, linear production situations, sequencing situa-
tions, water distribution problems, landing fee problems, and joint inventory situations.?
We denote the collection of all characteristic functions on player set N by GV. A special
class of games are the unanimity games. For each nonempty 7' C N, the unanimity game
(N,uT) is given by u”(S) = 1if T C S, and u”(S) = 0 otherwise. It is well-known that

the unanimity games form a basis for GV and that for each v € G we have that
v = Z A (v)u®,
SeQN

where 2V is the collection of all nonempty subsets of N, and the coefficients A®(v) are the
so-called Harsanyi dividends (see Harsanyi, 1959), which can be found recursively from the

system

() =) AT@v), SeqV. (5.4)

TCS

n the sequel we assume without loss of generality that (N,v) is zero-normalised, i.e. v({i}) = 0 for

alli € N.
2More complex economic situations, like exchange economies, can be modelled as cooperative games

without transferable utility.
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A payoff vector of an n-person TU-game is an n-dimensional vector x € R", giving payoff
x; to player 7,7 = 1,...,n. A payoff vector is called an imputation if it is efficient (meaning
that the total payoff is equal to v(N) ?) and individually rational (meaning that each player

i gets at least its own worth v({i}) = 0). So, the set Im(v) of imputations is given by

Z a:i:v(N)}.

1EN

Im(v) = {:1: e R}

A solution F on GV assigns a set F(v) C R" of payoff vectors to every characteristic
function v € GN.* A well-known set-valued solution is the Core, introduced in game
theory by Gillies (1953). The core assigns to every v € GV the (possibly empty) subset of

imputations given by

C(v) = {x € Im(v)

Z miZU(S)foreaCthN},
i€s

i.e. C(v) is the set of undominated (meaning that each coalition gets at least its own
worth) imputations. So, the core is the set of imputations that are stable against any
possible deviation by coalitions. It is well-known that C'(v) is non-empty if and only if the
game (N, v) satisfies the so-called balancedness condition (see e.g. Bondareva (1963) and
Shapley (1967)).

Another well-known solution is the Selectope, see Derks, Haller and Peters (2000),
also called the Harsanyi Set, see Vasil’ev and van der Laan (2002), independently intro-
duced by Hammer, Peled and Sorensen (1977) and Vasil’ev (1978a,b), respectively. This
set is the collection of all payoff vectors obtained by distributing the Harsanyi dividends of
every coalition S over the players in .S in any possible way. To state this precisely, a sharing
system on N is a system ¢ = (¢°)gecqn, where ¢° is an |S|-dimensional vector assigning a
nonnegative share ¢° to every player i € S with Yics ¢ =1,5 € QN. The collection of

all sharing systems on player set IV is given by

QY = {C] = (¢°)sean

g >0, and quzlforeaChSEQN}.
jes
Next, for v € GV and ¢ € QV, let the payoff vector h?(v) € R" be given by
h(Nowv)= > ¢A%v), ‘€N,
{SeQN|ieS}

i.e. the payoff h!(v) to player i € N is the sum over all coalitions S € Q¥ containing

i, of the share ¢° A%(v) of player 7 in the Harsanyi dividend of coalition S. We therefore

3We assume that the total payoff is maximized if all players cooperate together.
4A solution is called single-valued if to every game it assigns exactly one payoff distribution, otherwise

it is a set-valued solution.
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call such a vector h?(v) a Harsanyi payoff vector. Observe that, due to the equality
v(N) = Y geqn A% (v), it holds that >, \ hi(N,v) = v(N) for each ¢ € Q, and thus
each Harsanyi payoff vector is efficient.” Now the Selectope or Harsanyi Set is the set H(v)

assigning to every v € GV the set of all Harsanyi payoff vectors, i.e.
H(v) = {h'(N,v) | ¢ € Q"}.

Clearly, by definition we have that H(v) # () for each v. Note that, for example, the
Shapley value, being the single-valued solution which distributes the Harsanyi dividend
of every coalition S equally over the players in S, always belongs to the Harsanyi set®.
It further holds that C'(v) C H(v) with equality if and only if v is almost positive (i.e.
A% (v) > 0 when |S| > 2), see e.g. Derks et.al. (2000) or Vasil’ev and Van der Laan (2002).

5.1 Harsanyi set for games with ordered players

We are now ready to apply the results of the previous section to T'U-games with ordered
players as studied in van den Brink, van der Laan and Vasil’ev (2004). Here we consider
the modified Harsanyi set for a game with ordered players. The Harsanyi set of the game
with ordered players (N, v, D) is the collection of all Harsanyi payoff vectors such that the
distribution of the dividends takes into account the hierarchical order of the players by
requiring that in any coalition S containing two players ¢ and j, the share of player j in
the dividend of coalition S is not more than the share of player i in AS(v) if (i,5) € D.
To formalize this, for every S € QV, let P be the sharing polytope as defined in Section
3, that is associated to the subdigraph (S, D(9)), i.e. P is the subset of the unit simplex

in the |S|-dimensional space given by

> pi=1,and p; > p; if (i, j) € D(S)},

i€S

Pg:{peRi

where R? is the restriction of R™ to the components with respect to the players in S. The
Harsanyi set H (v, D) of the game with ordered players (IV,v, D) is now defined as follows.

Definition 5.1 The Harsanyi set of the game with ordered players (N,v,D) is the set
H(v, D) given by

H(v,D) = {h%(N,v) | ¢ € Q" such that ¢° € P} for each S € QN}.

SHowever, h?(v) does not need to be an imputation.
6The Shapley value v assigns to any v € G" the payoff vector 9(v) given by (v) =

2 {SeaNies) ﬁAS(v) for all s € N.
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Clearly, since the collection of possible sharing vectors is restricted by the requirement that
for any coalition S the sharing vector ¢° € P53, it follows immediately that H (v, D) C H(v)
for any digraph (NN, D) (with equality when D = (). Further, note that the set H (v, D) is
a polytope. We now apply Theorem 3.4 to find the extreme points of this polytope. To do
so, we use the fact that the Harsanyi set is a disjoint additive solution, see van den Brink
et. al. (2004).” From the disjoint additivity it follows that for any game (N, v, D) it holds
that

H(v,D)= Y  AS)H(u’ D),
SeqlN
i.e. the Harsanyi set of the game (N, v, D) is the weighted sum of the Harsanyi sets of the
unanimity games with ordered players with weights equal to the Harsanyi dividends. From
formula (5.4) it follows that the dividends of a unanimity game u® are given by AT (u%) = 1
if T'= 5 and AT(u%) = 0 otherwise. Now, for p € R", let p° be the restriction to R®, i.e.
p® is the |S|-dimensional vector containing the components p;, i € S, of p. Then it follows

that
Hw®,D)={peU"|p;=0ifi¢ S, and p° € Py}, SeQV,

i.e. H(u®, D) is the set of all vectors p in U" with zero components for the players not in .S
and with the restriction p® in the sharing polytope P35 associated to (S, D(S)) as defined
above. Now, for S € OV, let AC®(D) be the collection of all complete subsets of players
in the subgraph (5, D(S)). Then Theorem 3.4 yields the following corollary.

Corollary 5.2 For S € QY and D € DY, the extreme points of H(u®, D) are given by
a’ € R*, T € ACS(D).

So, the corollary gives the extreme points of the Harsanyi sets of the unanimity games.
By using the disjoint additivity, this may be applied to calculate the extreme points of

H(v, D) in more general situations, as illustrated in the next example.

Example 5.3

Consider the game with ordered players (N,v, D) with N = {1,2,3}, v = u{t2} 4 {13}
and D = {(1,3),(2,3)} as given in Example 3.8. For this game with ordered players we
find ACH2(D) = {{1},{2}} and ACT*3}(D) = {{1},{1,3}}. According to Corollary 5.2
the set of extreme points of H(u{»? D) is {(1,0,0)",(0,1,0)"} and the set of extreme

"For games with ordered players, a solution JF satisfies disjoint additivity if F(N,v + w,D) =
F(N,v,D) + F(N,w, D), whenever A,(T)A(T) = 0 for all T € QN. (When D = (), we obtain dis-

joint additivity for standard TU-games, which is a weak version of additivity.)

14



points of H(u{*3}, D) is {(1,0,0)7,(3,0,1)"}. Summing up H(ut"#, D) and H(ul**}, D)
yields

1 1

(6, 0) = Conv { 2.0,07,(1LO)" (5,1,

see Figure 4. O

S O N
“'HOM’TL

N—

V/11/4BNE

1
0

Figure 4

5.2 Core for fuzzy games with ordered players

In the approach above we adapted the Harsanyi set for standard TU-games to games with
ordered players by taking the hierarchical structure on the set of players to restrict the set
of allowable payoft distributions. When applying the core solution to games with ordered
players it seems to be more reasonable to restrict the set of allowable deviating coalitions.
In particular, in situations that the digraph (N, D) reflects a hierarchical structure, it may
happen that a player needs permission of his predecessors to cooperate with other players,
i.e. a (multiple player) coalition S C N may form if and only if for every player in the
coalition it holds that all its predecessors in the digraph (NN, D) belong to the coalition.
So, the set of feasible deviating coalitions is given by the collection of all singletons and
all comprehensive multiple player coalitions A(D). Since it is still reasonable to assume
that any single player can obtain at least its own worth, the core for a game (N, v, D) with

ordered players now becomes

C(v,D) = {:1: € Im(v) Zaz, > v(S) for each S € A(D) } , (5.5)

€8

i.e. it is the subset of the imputation set that can not be dominated by a comprehensive
coalition. In contrast to H(v,D) C H(v), we now have C(v) C C(v, D), since there are
more inequalities to be satisfied in C'(v) than in C(v, D).
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In the sequel we are going to present an application of Theorem 4.2 by considering
the analog of the set C'(v, D) in case of fuzzy games with ordered players. The class
of cooperative games with fuzzy coalitions (shortly fuzzy games) and the corresponding
concept of the core for such games is introduced in Aubin (1979). A fuzzy coalition on
a player set N = {1,...,n} is a vector s € I"™ = [0,1]", where component s; is the
participation rate of player i. A fuzzy game is a pair (N, f) where the characteristic
function f assigns a value f(s) to any fuzzy coalition s € I"™ with f(s) = 0 when s; = 0 for
all i € N. Observe that s = ¢” denotes the case that the players in S have participation
rate equal to one and the others zero. So, the restriction of f to the vectors e° € I™
induces a standard TU-game (N, v/), also called crisp game, with characteristic function
v/ € GV given by v/(S) = f(e), S C N. Again we assume in the sequel that the game
is zero-normalized, thus f(et}) = v/ ({i}) = 0 for all i € N. The core (Aubin, 1979) of a
fuzzy game (N, f), to be denoted by F(f), is the set of all imputations z € R™ which are

stable against any possible deviation by fuzzy coalitions, i.e.

Zsixi > f(s) for each s € In},

1eEN

F(f) = {xEIm(f)

where the set of imputations is given by Im(f) = {z € R} | Sien @i = f(eV) =0l (N)}.

We now consider a fuzzy game with ordered players (N, f, D), where D is the digraph
on N reflecting the ordering. According to the approach above, in such a situation it may
be reasonable to restrict the set of feasible deviating coalitions (involving multiple players)
by requiring that coalition s € I"™ (with at least two positive components) may only deviate
when s; > s; if (¢,7) € D, i.e. in a feasible coalition with multiple positive participation
rates the participation rate of ¢ is at least as high as the participation rate of j when j is

dominated by i. This yields the core for fuzzy games with ordered players given by

Zsiazi > f(s) for each s € KD},

1EN

F(f,D)Z{ﬂfEIm(f)

where Kp is the fuzzy polytope as defined in Section 4.

To demonstrate an application of Theorem 4.2 to the description of the core F'(f, D),
we introduce first a special class of fuzzy games, which may be of interest in itself. We
say that a fuzzy game (N, f) is proper convez if f(as+ (1 — a)t) < af(s) + (1 — «)f(t)
for all @ € [0,1] and s,t € I"™. Putting differently, a fuzzy game (XV, f) is proper convex if
f:I" — R is a convex function.

Below, an equivalence result, related to the cores of the fuzzy and ordinary games
with ordered players is given. In particular, this result provides a simplified description of

the core F'(f, D) in case (N, f) is a proper convex fuzzy game.
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Corollary 5.4 Let (N, f, D) be a proper convex fuzzy game with ordered players. Then

F(f,D)=C(',D)= {:v € Im(v

Zazzzv ) for each S € A(D )}

€S

Proof. By definition of F(f, D) and C(v/, D), we have F(f, D) C C(v/, D). To prove
the opposite inclusion pick some € C(vf, D) and consider an arbitrary fuzzy coalition

s € Kp. Due to Theorem 4.2 we have a representation

Z Ase® (5.6)

SeA(D

with Ag >0, S € A(D), satisfying equality > g 4py As = 1. Hence, it holds

Zsla:@ Z Z )\Se T = Z Z)\Sml Z AS(in). (5.7)

iEN iEN SeA(D) SeA(D) i€S SeA(D) i€S

From z € C(v/, D) it follows that Y, ¢2; > v/(S) for any S € A(D). Consequently, by
equality (5.7) we have

251%2 Z )\Sv

iEN SeA(D

The latter inequality, together with the convexity of f and representation (5.6) yields

Zszmz > Z /\Sf >f Z >\S€ )
iEN SeA(D SeA(D)

Hence, for any s € Kp it holds » . siz; > f(s), which proves the inclusion = € F(f, D).
Due to the arbitrariness of # € C(v/, D) it follows that C'(v/, D) C F(f, D). O

The corollary says that the core F(f, D) of a proper convex fuzzy game (N, f, D) with
ordered players coincides, in fact, with the (ordinary) core C'(v/, D) of the game (N, v/, D)
with ordered players. Consequently, an imputation is in the core of the proper convex
fuzzy game with ordered players if and only if it is stable against any deviation by a

comprehensive from above crisp coalition.

5.3 Related literature on games with hierarchical structure

To conclude this paper we want to stress the difference between this approach in which the
hierarchical structure restricts the sets of feasible coalitions and the approach as developed
in Gilles, Owen and van den Brink (1992), Gilles and Owen (1994), van den Brink and
Gilles (1996) and van den Brink (1997) for TU-games with a permission structure. In fact,

in the approach above we adapted the solution to the situation of ordered players, while
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in this literature the game is adapted and standard solution concepts are applied to this
adapted game. Both approaches have in common that also in this literature cooperation
is restricted in the sense that players need permission from their predecessors before they
are allowed to cooperate. However, this permission structure is used to obtain a restricted
game in the sense of graph-restricted games as introduced in Myerson (1977) in the context
of (undirected) communication graphs. According to the conjunctive permission approach
it is assumed that each player needs permission from all its predecessors before it is allowed
to cooperate with other players®. So, a coalition S can only realise the worth of the largest
subset of S that contains all its predecessors, i.e. a coalition S can only realise the worth

of its largest comprehensive subcoalition, denoted by op(S), and given by
op(S)=U{T € A(D) | T C S}.

Observe that (i) op(S) is a (possibly) empty subset of S in A(D), (ii) op(S) = S if and
only if S € A(D) and thus (iii) op(N) = N, since N € A(D). The latter property implies
that vP(N) = v(N). For a crisp game with ordered players (N, v, D), the conjunctive

restriction of v on D is the characteristic function v”:2¥ — R given by
vP(S) = v(op(9)) for all S C N.

So, (N, vP) is a (crisp) game obtained from (N, v, D) by taking into account the conjunctive
permission structure restricting the cooperation possibilities.” A subclass of such games is
the class of peer-group games, see Branzei, Fragnelli and Tijs (2002).

Now, all solution concepts for TU-games can be applied to the restricted game
(N,vP) to obtain a solution for the game with ordered players (N, v, D). Applying the

Core as a solution yields the solution given by

C'(v,D) = C(v") = {:1: € Im(v?)

Zazi > v (9) for each S C N} :
ieS
Since vP(N) = v(N) for every digraph D, we have that Im(v”) = Im(v) and thus C’(v, D)
is a subset of the set of imputations of the game (N,v). When (N, v) is monotone'®, we
have that v?(S) = v(op(S)) < v(S) because op(S) C S, and thus C(v) C C'(v, D).
Concerning the difference between C'(v, D) as defined in equation (5.5) and C’(v, D) =
C(vP), observe that the former is obtained by restricting the set of feasible deviating coali-
tions (thus by adapting the solution concept), while the latter applies the standard core
solution to the adapted characteristic function v”. Remarkably, the following proposition

says that both sets are equal.

8 Alternatively, in the disjunctive permission approach it is assumed that each player needs permission
from at least one of its predecessors before it is allowed to cooperate.

9Recall that v() = 0, so that (N, v?) is zero-normalised if (N, v) is zero-normalised.

0A TU-game (N, v) is monotone if v(S) < v(T) whenever S CT C N.
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Proposition 5.5 Let (N,v, D) be a zero-normalised game with ordered players. Then
C(vP) = C(v, D).

Proof. Since op(S) = S if (and only if) S € A(D), any restriction in C(v, D) also ap-
pears in C(v”). Hence C(v”) C C(v,D). To show the reverse, let = € C(v, D), i.e.
> ies i = v(S) for each S € A(D). Therefore 3, o i > v(op(S5)) for all S C N.
Since op(S) C S, it follows with z; > 0 for all i € N that >, o @ > >0, 5) Ti =

v(op(S)) = vP(9) for all S, implying that x € C(vP). O

The proposition shows that an imputation is in the core C(v”) of the restricted game
(N,vP) if and only if z is stable in (N, v) against any deviation by a comprehensive from
above coalition in the graph (N, D). So, this may lead to a substantial reduction of the

number feasibility constraints to be checked whether or not an imputation is in the core of
(N, vP).

References

[1] Aubin, J.P. (1979) Mathematical Methods of Games and Economic Theory,
Amsterdam-New York-Oxford: North-Holland.

[2] Bondareva, O. (1963), Some applications of linear programming methods to the theory
of cooperative games, Problemy Kibernetiki, 10, 119-139 (in Russian).

[3] Branzei, R., D. Dimitrov, and S. Tijs (2002), Convex fuzzy games and participation

monotonic allocation schemes, Fuzzy Sets and Systems, 139, 267-281.

[4] Branzei, R., V. Fragnelli, and S. Tijs (2002), Tree connected peer group situations
and peer group games, Mathematical Methods of Operations Research, 55, 93-106.

[5] Brink, R. van den (1997), An Axiomatization of the Disjunctive Permission Value for
Games with a Permission Structure, Int. J. Game Theory 26, 27-43.

[6] Brink, R. van den, and Gilles, R. P. (1996), Axiomatizations of the Conjunctive Per-
mission Value for Games with Permission Structures, Games and Economic Behav.
12, 113-126.

[7] Brink, R. van den, G.van der Laan and V.A.Vasil'ev (2003), Harsanyi solutions in
line-graph games, Tinbergen Discussion Paper 03-076/1, Tinbergen Institute and Free
University, Amsterdam.

19



8]

[11]

[12]

[13]

[14]

[20]

[21]

Brink, R. van den, G.van der Laan and V.A.Vasil’ev (2004), On the distribution
of dividends in games with ordered players, Mimeo, Tinbergen Institute and Free

University, Amsterdam.

Derks, J., H. Haller, and H. Peters (2000), The Selectope for Cooperative TU-Games,
International Journal of Game Theory, 29, 23-38.

Gilles, R. P., and Owen, G. (1994), Cooperative Games and Disjunctive Permission
Structures, Department of Economics, Virginia Polytechnic Institute and State Uni-

versity, Blacksburg, Virginia.

Gilles, R. P., Owen, G., and Brink, R. van den (1992), Games with Permission Struc-
tures: The Conjunctive Approach, Int. J. Game Theory 20, 277-293.

Gillies D.B. (1953), Some Theorems on n-Person Games, Princeton University Press,
Princeton, NJ.

Hammer, P.L., U.N. Peled, and S. Sorensen (1977), Pseudo-Boolean Functions and
Game Theory. I. Core Elements and Shapley Value, Cahiers du CERO, 19, 159-176.

J.C. Harsanyi (1959), A bargaining model for cooperative n-person games, in: A.W.
Tucker and R.D. Luce (eds.), Contributions to the Theory of Games IV (Princeton
University Press, Princeton NJ, pp. 325-355.

R.B. Myerson (1977), Graphs and cooperation in games, Mathematics of Operations
Research 2, 225-229.

Shapley, L. (1967), On balanced sets and cores, Naval Research Logistics Quarterly,
14, 453-460.

A. Schrijver (1986), Theory of Linear and Integer Programming, Chichester-New York-
Brisbane-Toronto-Singapore: John Wiley & Sons.

Vasil’ev, V.A. (1978a), Polynomial cores for cooperative games, Optimizacija, 21, 5-29

(in Russian).

Vasil’ev, V.A. (1978b), Support function of the core of a convex game, Optimizacija,
21, 30-35 (in Russian).

V.A. Vasil’ev (2003), Extreme points of the Weber polyhedron, Discretnyi Analiz i
Issledovaniye Operatsyi, Ser.1, v.10, no.2, 17-55 (in Russian).

V.A. Vasil’ev and G. van der Laan (2002), The Harsanyi set for cooperative TU-games,
Siberian Advances in Mathematics v.12, no.2, 97-125.

20





