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Abstract

I study a one-way flow connections model in which players are heteroge-
neous with respect to values and the costs of establishing a link. I first show
that values and costs asymmetries are crucial in determining the level of con-
nectedness of a network. Interestingly, unconnected equilibria are asymmetric
and central players may emerge. Second, I show that non-singleton components
have a wheel architecture as far as the costs of linking are not partner specific.
Otherwise also the flower architecture constitutes an equilibrium. I interpret
these results as saying that symmetric connections across players are a peculiar
feature of homogenous environments; by contrast, in heterogeneous settings
players hold asymmetric connections which are accompanied by the emergence
of central players.
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Konovalov and Rob Van der Noll for useful comments. I also acknowledge the participants of the
Nake Day 2003 in Amsterdam.
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1 Introduction

The role of social and economic networks in shaping individual behavior and aggre-
gate phenomena has been widely documented in recent years.1 This provides the
main motivation for developing a theory which aims to understand how networks
form and their architectural properties. The most popular model of network forma-
tion is the connections model.2 Variants of this model have been proposed in order to
analyse different social and economic situations. Nevertheless, much of the work has
explored settings with homogeneous players. However, ex-ante asymmetries across
players arise quite naturally in reality. For instance, in the context of information
networks it is often the case that some individuals are more interested in particular
issues and therefore better informed, which makes them more valuable contacts. Sim-
ilarly, individuals differ in communication and social skills and it seems natural that
forming links is cheaper for some individuals as compared to others.3 In this paper,
I analyse the role played by ex-ante asymmetries across players in shaping network
architectures. To do this, I consider a version of the connections model where indi-
viduals invest in social ties unilaterally (one-sided network) and the flow of benefits
is frictionless and directed only towards the investor (one-way flow network).

Bala and Goyal (2000) analyse this model with homogenous players (costs of forming
links and values of accessing players are homogenous) and they show that if a player’s
payoffs are increasing in the number of other players accessed and decreasing in the
number of links formed, a strict Nash network is either a wheel (a connected network in
which each player creates and receives one link) or the empty network (with no links).
The intuition for this result is as follows. Consider a minimally connected network
where player 1 initiates a link with player 2 and 3, and each of these players has a
link with player 1. Whenever players are homogeneous, this network is not a strict
equilibrium: player 2 is indifferent between maintaining the link with 1 and switching
to player 3, instead. A generalization of this argument implies that a connected strict
equilibrium is symmetric and has a wheel architecture. It is worth noting that this
result depends crucially on the assumption of homogenous values and costs. To see
this, assume that player 1 is just slightly cheaper to be linked with than player 2 and
3, ceteris paribus. This small introduction of heterogeneity implies that the network
described in the example above becomes a strict equilibrium. In the current paper,
I study the role played by heterogeneous players in shaping equilibrium networks.

1There is a large body of work on this subject. See e.g., Burt (1992) on careers of professional
managers, Montgomery (1991) on wage inequality in labour markets, Granovetter (1974) on the flow
of job information, and Coleman (1966) on diffusion of medical drugs.

2This model has been extensively studied in the literature; see e.g., Bala and Goyal (2000a,
2000b), Dutta and Jackson (2000), Goyal (1993), Jackson and Wolinsky (1996), and Watts (2001a,
2001b).

3In other settings players can be classified in term of their cost of being accessed. For example,
on the web the terminology user-friedly web site is used to describe home pages which are easier to
access as compared to others.
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Players are heterogeneous in terms of the costs of linking and the values of accessing
other players.

I start with a setting where values and costs of linking are heterogeneous across players
but the heterogeneity is not partner specific: the cost for player i to invest in a social tie
is ci, and the benefit to player i to access another player is Vi. I show that a connected
equilibrium is a wheel network and that an unconnected equilibrium network is either
a center-sponsored star, a wheel with singletons, a wheel with local center-sponsored
stars or empty (Proposition 3.1). Figure 1 illustrates all strict equilibria in a society
with four players. This result shows that players’ heterogeneity alters the level of
connectedness of equilibrium networks. In any non-empty unconnected equilibrium
there is a set of players sharing a maximum amount of information while the remaining
players are socially isolated (they do not access any information). In sharp contrast
with the homogeneous setting these equilibria are asymmetric and central players
may emerge: (i) the players maximally informed are connected in a wheel component
and the players socially isolated are either (iia) singletons or (iib) spokes of center-
sponsored stars. I finally note that the wheel is robust to asymmetries which are
independent from the potential partner.

I then turn to settings where heterogeneity also depends on the potential partner. I
show that the wheel architecture is still prominent if costs are not partner specific;
otherwise any minimally connected network is a strict equilibrium for some costs
and values (Proposition 3.2). This leads me to conclude that costs heterogeneity is
responsible for shaping the architecture of equilibrium networks.

To investigate the role heterogeneity plays in shaping the architecture of equilibrium
networks I impose some restriction on the cost of forming links. This leads me to
study a targeted-partner model: the cost of forming a link with a player i is symmetric
across players, but each player has a different cost of being accessed. I show that a
connected equilibrium is either a wheel or a flower, in which case the player with
the lowest access cost occupies the central position. Furthermore, an unconnected
strict equilibrium is either a wheel with a local periphery-sponsored star or a flower
with a local periphery-sponsored star (Proposition 4.1).4 Figure 2 illustrates these
architectures in a society composed of 4 players.

I now comment on three aspects of this result. First, the unique asymmetric connected
equilibrium has a flower architecture and the center of the flower is the player with the
lowest access cost. The center is the only player in the network which promotes and
receives more than one link and his function is to connect sets of players which would
be otherwise disconnected. Second, unconnected strict equilibria have well defined
architectures. A set of individuals shares information with each other (the core group),

4The strict equilibria with only singleton components are a limit case of the architectures decribed
in Proposition 4.1 and they are described in the appendix (Proposition 4.2).
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while the remaining players (the periphery group) access the information of the core
group directly from the players with the lowest access cost in the population. I finally
note that the flower (and its variants) is a less efficient equilibrium as compared to
the wheel equilibrium (and its variants). The inefficiency inherent in asymmetric
equilibria arises from the over-investment by the central player.

This paper is a contribution to the theory of network formation. This is a very active
area of research currently (see references in footnote 2). Most of the existing literature
focuses on homogeneous player models. My analysis elaborates on the respective roles
of values and costs of forming links heterogeneity in shaping equilibrium architectures
in a one-way flow connections model. The work that comes closest to mine is Kim and
Wong (2003). They study a one-sided connections model with heterogeneous players
where agents form two-flow connections but basic links are only one-flow. In other
words, this implies that a player i accesses player j only if there exists a sequence of
basic links connecting i to j and vice versa. My work departs from Kim and Wong
(2003) in two directions. First, I analyse different form of players’ asymmetries, while
Kim andWong (2003) focus exclusively on settings where asymmetries are not partner
specific. Second, I do not distinguish between basic links and flow connections, which
implies that in my framework a player can access another individual, without the
reverse being necessarily true.5

Finally, I relate my findings to a recent experimental paper by Falk and Kosfeld
(2003). This paper shows that the predictions based on Nash and Strict Nash equi-
libria for the one-way flow model are consistent with the experimental results, while
they generally fail in the two-way flow model.6 The authors argue that the success
of the one-way flow model relies, among other things, on the strategic symmetry
(symmetric distribution of links) which characterizes equilibrium networks under the
one-way flow assumption. The analysis developed in the current paper shows that
the property of symmetric distribution of links depends on the assumption of homo-
geneous players. An experiment which takes into account ex-ante asymmetries in the
costs of forming links may help to understand the role played by strategic symmetry
in the formation process of a network.

The rest of the paper is organized as follows. Section 2 introduces the model. Section
3 presents the results on equilibrium networks under general cost and value hetero-
geneity. Section 4 analyses the targeted-partner model. Section 5 concludes. Proofs
are provided in the Appendix.

5For example, the web is characterized by one-way link and one-way flow connections.
6Bala and Goyal (2000) shows that with homogeneous players and when information flow is

bidirectional a strict equilibrium is either a center-sponsored star (only one player, the center,
promotes all the links) or empty (no links).
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2 The Model

Let N = {1, ..., n} be a set of players and let i and j be typical members of this
set. We shall assume throughout that the number of players is n ≥ 3. Each player is
assumed to possess some information of value to himself and to other players. He can
augment his information by communicating with other people; this communication
takes resources, time and effort and is made possible via pair-wise links.

A strategy of player i ∈ N is a (row) vector gi = (gi,1, ..., gi,i−1, gi,i+1, ..., gi,n) where
gi,j ∈ {0, 1} for each j ∈ NÂ {i} . We say that player i has a link with j if gi,j = 1.
We assume throughout the paper that a link between i and j allows player i to access
j’s information. The set of strategies of player i is denoted by Gi. Throughout the
paper we restrict our attention to pure strategies. Since player i has the option of
forming or not forming a link with each of the remaining n− 1 players, the number
of strategies of player i is clearly |Gi| = 2n−1. The set G = G1 × ... × Gn is the space
of pure strategies of all the players.

A strategy profile g = (g1, ..., gn) in G can be represented as a directed network. Let
g ∈ G, I say that there is a path in g from i to j if either gi,j = 1 or there exist players
j1, ..., jm distinct from each other and i and j such that {gi,j1 = ... = gjm,j = 1} . We
write i

g→ j to indicate a path from i to j in g. Given two players i and j in g, the
geodesic distance, di,j (g) , is defined as the length of the shortest path from i to j.
Furthermore, we define Nd (i; g) = {k ∈ N |gi,k = 1} as the set of players with whom
i maintains a link while we refer to N (i; g) =

n
k ∈ N

¯̄̄
i

g→ k
o
∪ {i} as the set of

players that i observes in g. Let µdi : G → {1, ..., n} and µi : G → {1, ..., n} be defined
as µdi (g) =

¯̄
Nd (i; g)

¯̄
and µi (g) = |N (i; g)|.

Given a network g, a non-singleton component of g is a non-singleton set C (g) ⊂ N
where ∀i, j ∈ C (g) there exists a path between them and there is not a path between
∀i ∈ C (g) and a player k ∈ NÂC (g) . A component C (g) of a network g is minimal if
C (g) is no longer a component upon replacement of a link gi,j = 1 between two agents
i, j ∈ C (g) by gi,j = 0, ceteris paribus. A network g is minimal if every component
of g is minimal. A network g is connected if it has a unique component containing all
players. If the unique component is minimal the network g is minimally connected.
A network which is not connected is unconnected. Given a network g, a player i is a
singleton player if gi,j = gj,i = 0 for any j ∈ N. Finally, the empty network, denoted
as to ge, is an unconnected network where no links are formed.

To complete the definition of a normal-form game of network formation, we specify
the payoffs. Let Vi,j denote the benefits to player i from accessing player j. Similarly,
let ci,j denote the cost for player i of forming a link with player j. The payoff to player
i in a network g can be written as follows:
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Πi (g) =
X

j∈N(i;g)
Vi,j −

X
j∈Nd(i;g)

ci,j (1)

We shall assume that ci,j > 0 and Vi,j > 0 for all i, j ∈ N.7

Given a network g ∈ G, let g−i denote the network obtained when all of player i’s
links are removed. Note that the network g−i can be regarded as the strategy profile
where i chooses not to form a link with anyone. The network g can be written as
g = gi ⊗ g−i where the ‘⊗’ indicates that g is formed as the union of the links in gi
and g−i. The strategy gi is said to be a best response of player i to g−i if:

Πi (gi ⊗ g−i) > Πi (g
0
i ⊗ g−i) for all g0i ∈ Gi. (2)

The set of all of player i0s best responses to g−i is denoted by BRi (g−i) . Furthermore,
a network g = (g1, ..., gn) is said to be a Nash network if gi ∈ BRi (g−i) for each i,
i.e. players are playing a Nash equilibrium. If a player has multiple best responses
to the equilibrium strategies of the other players then this could make the network
less stable as the player can switch to a payoff equivalent strategy. This switching
possibility in non-strict Nash networks has been exploited and has been shown to be
important in refining the set of equilibrium networks in earlier work (see e.g., Bala
and Goyal (2000)). So we will focus on strict Nash equilibria in the present paper. A
strict Nash equilibrium is a Nash equilibrium where each player gets a strictly higher
payoff from his current strategy than he would with any other alternative strategy.

3 General Heterogeneity

In this section I investigate the effects of values and costs of linking heterogeneity
on the level of connectedness and the architecture of strict equilibria. I shall show
that values and costs heterogeneity are equally important in determining the level
of connectedness of equilibrium networks, while only costs heterogeneity shapes the
architecture of non-singleton components. I shall also show that when players are
heterogeneous, equilibrium networks are asymmetric.

I start with a consideration of a setting in which each player has a distinct cost of
linking as well as a distinct benefit of accessing other players. While these costs and
values vary across players, they are independent from the identity of the partner, i.e.
Vi,j = Vi and ci,j = ci, for any i, j ∈ N. For example, some individuals are more expert
in surfing the web as compared to others; this allows them to access other internet

7The results developed further qualitatively carry on when relaxing the linearity assumption of
the payoffs functions.
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members to a lower cost, ceteris paribus.8 I first introduce some architectures which
will prove useful in the analysis.

A star architecture is an unconnected network where there exists a player i, the center,
such that either gi,j = 1 or gj,i = 1 for any j ∈ N\ {i} , and no other links are formed.
The network g has a center-sponsored star architecture if g is a star and the center
forms all the links. A non-singleton component has a wheel architecture if players
within the component are arranged as {i1, ..., in} with gi2,i1 = ... = gin,in−1 = gi1,in and
there are no other links between players within the component. A wheel architecture
is a connected network with the unique component being a wheel. A wheel network
with local center-sponsored stars is an unconnected network with a unique wheel
component, say C(g), and where ∀j /∈ C(g), ∃!i ∈ C(g) such that gi,j = 1. Finally,
a wheel network with singleton players is an unconnected network with a unique
wheel component composed of at least three players and where gi,j = gj,i = 0 for any
i /∈ C (g) and for any j ∈ N .

The next result shows which networks can be sustained in equilibrium.

Proposition 3.1: Let payoffs satisfy (1) and assume that ci,j = ci and Vi,j = Vi
∀j ∈ N\ {i} . A connected strict equilibrium is a wheel. Otherwise, a strict equilibrium
is either the empty network, the wheel with singletons, the wheel with local center-
sponsored stars or the center-sponsored star. Conversely, any of such network is a
strict equilibrium for some {ci, Vi}i∈N .
Figure 1 illustrates all strict equilibria in a society composed of 4 players. I represent
a link gi,j = 1 as an edge starting at j with the arrowhead pointing at i.

The proof of Proposition 3.1 proceeds as a sequence of Lemmas. I sketch here the main
steps. I first show that a strict Nash network is minimal. This follows from the no-
decay assumption. Secondly, using a standard switching argument I show that each
player receives at most one link (Lemma 3.1). Third, using this equilibrium property
it follows that each non-singleton component has a wheel architecture (Lemma 3.2).
Therefore, a connected strict equilibrium is a wheel. Fourth, I take up the case of
non-empty unconnected equilibria in which each component is composed of a single
player. Using the finiteness of the set of players I show that an equilibrium is a
center-sponsored star network (Lemma 3.3). Finally, an elaboration of the arguments
used in the previous lemmas establishes the result for unconnected equilibria which
have at least a non-singleton component.

Proposition 3.1 provides some interesting insights. As in the homogenous setting,
the unique connected equilibrium is the wheel. Therefore, the wheel architecture is

8Similarly, some individuals may value more information provided on the web as compared to
others. In general, individuals differ in communication and social skills and it seems natural that
the costs of establishing links as well as the values of accessing informations vary across individuals.
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prominent also in settings where costs and values asymmetries are partner indepen-
dent. Next, values and costs heterogeneity alters the level of connectedness of strict
equilibria. In any unconnected (and non-empty) equilibrium there is a set of players
accessing a maximum amount of information while all the other players are socially
isolated (they do not access any information). Furthermore, the maximally informed
players are connected in a wheel, while the isolated players are either singletons or
spokes of center-sponsored stars. Thus, unconnected equilibria are generally asym-
metric and central players may emerge. Finally, I note that the results presented in
Proposition 3.1 carry on in settings with homogenous values (costs of linking) and
heterogeneous costs of linking (values). This implies that as far as heterogeneity is
independent from the partner, costs and values asymmetries have equivalent effects
on strategic interaction.

I now ask under which conditions ex-ante asymmetries across players alter the archi-
tecture of equilibrium networks. The next result establishes that the wheel architec-
ture is prominent as far as the costs of linking are partner independent.

Proposition 3.2: Let payoffs satisfy (1). First, assume ci,j = ci while values vary
freely, then a connected equilibrium is a wheel. Conversely, the wheel is an equilib-
rium for some {ci, Vi,j}i,j∈N . Second, assume Vi,j = Vi while costs vary freely, then a
connected equilibrium is minimal; conversely, any minimally connected network is a
strict equilibrium for some {ci,j, Vi}i,j∈N .

I note that when values vary freely while costs asymmetries are partner independent,
connected equilibria have (still) a wheel architecture. This result also holds with
homogenous costs of linking. Differently, when the costs of linking are allowed to
vary freely across players, the only restriction imposed by the equilibrium notion to
connected network is minimality. This results holds regardless of values asymmetries.

The analysis of this section can be summarized as follows. First, the level of con-
nectivity of a network is equally sensitive both to values and costs heterogeneity.
Interestingly, unconnected equilibria are asymmetric and central players may emerge.
Second, asymmetries in values do not alter the architecture of non-singleton compo-
nents as compared to the homogeneous setting. The same observation applies when
costs heterogeneity is independent from the potential partner. Third, when the costs
of linking are allowed to be partner specific, social interaction leads to a ‘everything
is possible’ type of result. Hence, I can conclude that it is costs of linking heterogene-
ity which is mainly responsible in shaping the architecture of equilibrium networks.
The next section explores the possibilities to set plausible conditions on the cost pa-
rameters in order to obtain further restrictions on the architecture of equilibrium
networks.
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4 Targeted-Partner Model

In this section I consider a setting where values are homogeneous, while the costs of
linking are exclusively partner specific. In particular, each player i has a different
cost of being accessed, which is however homogenous with respect to the players who
initiate a link with i. For example, some web sites are more user-friendly than others
and this feature allows players to access the information provided there more easily.9

Formally, let Vi,j = V, for any i, j ∈ N and assume the following costs structure:

ci,j = cj for any i ∈ N (3)

I shall assume that c1 > 0 and, without loss of generality, that cj < cx whenever
j < x.10

Given a network g and (3) , the payoff to player i can be rewritten as follow:

Πi (g) = µiV −
X

j∈Nd(i;g)

cj (4)

I introduce some additional notation. An unconnected network with a unique wheel
component, sayC(g), and where gj,i = 1 for any j /∈ C(g) and a unique player i ∈ C(g)
is called a wheel with a local periphery-sponsored star with center i. A flower compo-
nent, C (g) , of a network g partitions the set of players belonging to C (g) into a cen-
tral player, say i, and a collection of P = {P1, ..., Pq} , where each P ∈ P is non-empty.
A set P of agents is referred to as a petal. Denote the agents in P as {j1, ..., jn} . A
flower component is then defined by setting

©
gi,j1 = gj1,j2 = .... = gjn,i = 1

ª
for any

P ∈ P and gi,j = 0 otherwise. If g is connected with a flower component and i is
the center, then g is a flower network with center i. An unconnected network with
a unique flower component where player i is the center and where gj,i = 1 for any
j /∈ C(g) is called a flower with a local periphery-sponsored star with center i.

Figure 2 depicts all the aforementioned possible architectures in a society composed
of four players.

9I provide some other examples. Individuals have different opportunity costs. It seems natural to
consider that to access players with higher opportunity costs is more costly as compared to others.
To apply for some jobs is less costly than for others. Different countries have different immigration
policies. Countries which implement more strict immigration policy are more difficult to be accessed
as compared to countries with "soft" immigration policies.
10Further, I shall discuss the implication of allowing groups of players having the same accessability

cost.
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4.1 Strict Equilibrium Networks

I start by introducing some necessary conditions to characterize strict Nash equilibria.
The role of these conditions is to constrain the arrangement of players belonging to
the architectures I have introduced above. I start defining the ordered condition for
a wheel network with a local periphery sponsored star.

Definition 1. A wheel with a local periphery-sponsored star network, say g, where
player h is the center , is ordered if for any gi,j = 1, i, j ∈ C (g) then (i) cj − cy <
dj,y (C (g))V for any y ∈ C (g) and (ii) cj − cy < dj,h (C (g))V for any y /∈ C (g) .

Condition (i) requires that any player i linked with a player j in a wheel component
does not find it profitable to switch to another player belonging to the same wheel.
Condition (ii) takes care of the switching possibilities of a player belonging to a
component with players outside the component. I note that a wheel network is
ordered if condition (i) in Definition 1 is satisfied. I now turn to define the ordered
condition for networks with a flower component.

Definition 2. A flower with a local periphery sponsored star network, say g, where
player h is the center, is ordered if for any P ∈ P and for any gi,j = 1, i, j ∈ P, then
(i) cj − cy < dj,y (P (g))V, ∀ y ∈ P and (ii) cj − cy0 < dj,h (P (g))V, ∀y0 /∈ P.

The interpretation of Definition 2 is analogous to the one of Definition 1. I note that
as cn − c1 < V, the ordered conditions in definition (1) and (2) are always satisfied.

The next proposition provides the set of strict equilibria in this model. I focus on
equilibria in which there exists at least one non-singleton component.11

Proposition 4.1: Let (3)-(4) be satisfied. A connected strict equilibrium is either
an ordered wheel or an ordered flower where player 1 is the center. An unconnected
strict equilibrium with at least a non-singleton component is either an ordered wheel
or an ordered flower with a local periphery sponsored star where player 1 is the center.
Conversely any such network is a strict equilibrium for some {ci, V }i∈N .

The proof of Proposition 4.1 proceeds as a sequence of Lemmas. I sketch here the
main steps. First, the assumption of no-decay in the information flow implies that a
strict equilibrium is minimal. Second, using a standard switching argument I show
that in a non-singleton component only the player with the lowest access cost can
receive more than one link (Lemma 4.1). This implies that a connected equilibrium
is either a wheel or a flower where player 1 is the center (Lemma 4.2). Third, I show
that if a player j /∈ C(g) promotes a link with a player i ∈ C(g), then j does not

11The analysis of equilibria in which each component is composed of a single player is provided
in the appendix (see proposition 4.2). The architecture of these equilibria are a limit case of the
architectures of equilibria with a non-singleton component.
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receive any link. Suppose player j0 forms a link with j, then the player linked with
i in C(g) gains by switching to player j (Lemma 4.3). Finally, using the fact that
the set of players is finite I show that players within a component do not promote
links with players outside that component (Lemma 4.4). Lemma 4.3 and 4.4 together
imply that any two players belonging to two different components access two distinct
sets of agents. A simple switching argument establishes that in a strict equilibrium
at most one non-singleton component exists.

I discuss some aspect of this result. The first remark is about the flower architecture.
When players are heterogenous in terms of their costs of being accessed, asymmetric
connected networks are strategically viable and a coordinator emerges: the player
with the lowest access cost. The coordinator connects sets of players who would
otherwise be disconnected. It is worth noting that the flower network arises also
in homogeneous settings when a small amount of decay in the information flow is
introduced. In particular, Bala and Goyal (2000) show that for a sufficiently small
amount of decay the flower architecture is the only strict Nash network.12 In that
case the role of the center is to decrease the distance between players. Differently,
in this model the flower arises because the center is the more profitable player to be
linked with. It is clear that the result on decay of Bala and Goyal (2000) is reinforced
in our setting because the advantage of linking with the center is not only having
short information channels but also the decrease in investment cost.

The second remark is about unconnected equilibria. In these equilibria players can
be divided in two groups: one, a core group composed of players belonging to a
non-singleton component and two, a periphery group composed of all the remaining
players. Interestingly, players within the core group are accessed by all players in the
society; by contrast, no player accesses the individuals belonging to the periphery
group.

Third, I remark on the assumption that the ranking of players in term of their costs
of being accessed is strictly increasing.13 Suppose that players in the society can be
grouped in m distinct and different groups, N = ∪mi=1Ni and that players belonging
to the same group have the same cost of being accessed. If N1 is composed of a single
player, then an ordered flower network where player 1 is the center can be sustained
as a strict equilibrium. Indeed, in this case the ordered conditions are enough to take
care of switching possibilities. By contrast, when also group N1 is composed of more
than one player the problem becomes more delicate. The following example clarifies
this point. Consider three groups, say 1, 2 and 3, each composed of three players,
say a, b and c. Let g be the network depicted in figure 3 and let c3 < (n− 1)V. The
network g is not strict Nash: player 2a (3a) is indifferent between retaining a link

12See Bala and Goyal (2000) for a detailed discussion on this issue.
13In other words, I discuss the effect of allowing groups of players to have the same accessibility

cost.
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with 1a or switching either to 1b or 1c; differently all other players have a unique
best response. However, it has to be noted that the best responses of every player
are insensitive to such changes by player 2a and 3a. This implies that this network g
along with the possible best responses of player 2a and 3a constitutes a minimal curb
set of the game.14 Using standard results on best response dynamics it follows that
this set is absorbing, meaning that once a best response dynamic enters this set it
will cycle within this set forever.

Finally, I compare the efficiency property of the wheel architecture with respect
to the flower architecture.15 Consider a wheel and a flower network, it is easy to
see that both architectures generate the same amount of network externalities, but
the former requires a lower level of total investment.16 Thus, the flower network is
less efficient as compared to the wheel because the center in the flower over-invest
in social ties. The same argument holds along all the variants of the flower and
wheel architecture. This remark implies that if we move from an homogenous setting
towards an heterogeneous environment in a way that social interaction becomes less
costly, then strategic interaction leads to the emergence of inefficient equilibria. For
example, let’s assume that players are fully homogeneous and V > c. In this case
the unique equilibrium is the wheel architecture; furthermore, the wheel is uniquely
efficient. Assume now that a player becomes slightly cheaper to be linked with as
compared to the others. This small introduction of heterogeneity implies that the
flower architecture is also an equilibrium. However, this equilibrium is inefficient.

5 Discussions

I have studied a connections model where heterogeneous players decide unilaterally
to invest in social ties which leads a direct return only to the investor. The main
results can be summarized as follows. First, the level of connectedness of a network is
equally sensitive to values and costs heterogeneity. Furthermore, non-empty uncon-
nected equilibria have an asymmetric distribution of links and central players may
emerge in equilibrium. Second, the wheel architecture (along with its variants) is
robust to players’ asymmetries as far as costs heterogeneity is independent from the
potential partner. By contrast, when the costs of linking are allowed to vary freely the
only restriction imposed by strategic interaction on the architecture of non-singleton
components is minimality. I explore the role played by costs asymmetries which are
partner specific in the targeted-partner model: each player has a distinct cost of be-

14More precisely the set defined is a supertight curb set, which is a generalization of the strict
Nash notion. For more detail see Basu and Weibull (1991) and Galeotti, Goyal and Kamphorst
(2003).
15I consider the social welfare of a network g as the sum of payoffs of all players.
16It is easy to see that the wheel architecture is the more efficient architeture in the class of

connected architectures.
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ing accessed. Here, non-singleton components are either wheel or flower. The flower
network has an asymmetric architecture where the central player connects sets of
players who would otherwise be disconnected. I finally note that asymmetric archi-
tectures are less efficient than symmetric ones. I interpret these result as saying that
symmetric connections across players is a peculiar feature of homogenous environ-
ments; by contrast, in heterogeneous settings players hold asymmetric connections,
accompanied by the emergence of central players.

Appendix

Proof of Proposition 3.1.

First part. I first note that an equilibrium network is minimal. This follows from
the assumption of no-decay in the information flow. The proof now proceeds as a
sequence of Lemmas. The next result shows that in equilibrium each player receives
at most one link.

Lemma 3.1: Let g be a strict equilibrium. If gi,j = 1 then gk,j = 0 for any
k ∈ N\ {i} .

Proof: Suppose, for a contradiction that gi,j = 1 and gk,j = 1. Since g is minimal, i
does not access player k in g; however, in this case player i strictly prefers to delete
the link with player j and linking up with player k, instead. This is a contradiction.¥

Using this result I show that each non-singleton component part of a strict equilibrium
is a wheel

Lemma 3.2: Let C(g) be a non-singleton component part of a strict equilibrium g.
Then C(g) has a wheel architecture.

Proof: I note that if a player i belongs to a non-singleton component, say C(g),
then gi,j = 1 for at least one player j ∈ C(g) and gk,i = 1 for at least one player
k ∈ C(g). These two observations and Lemma 3.1 imply that each player i ∈ C(g)
receives one and only one link from the players belonging to C(g). I now claim that
for any player i ∈ C(g), then gi,j = 1 for only one player j ∈ C(g). Suppose, for a
contradiction, that for some i ∈ C(g), gi,j = gi,k = 1 for some j, k ∈ C(g) and j 6= k.
Since j, k ∈ C(g) then j and k must access player i; therefore, there exist two paths
{gi,k = gk,k1 = ...gkn−1,kn = gkn,i = 1} and {gi,j = gj,j1 = ...gjn−1,jn = gjn,i = 1}. Since
i receives only one link it must be the case that jn = kn. However, the same argument
applies for player jn(= kn), and therefore it must be the case that jn−1 = kn−1. By
induction, it follows that k1 = j1; since k 6= j, it follows that k1(= j1) must receive
more than one link. This constitutes a contradiction. These observations altogether
implies that C(g) is minimally connected and it has a symmetric architecture. It
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is readily seen that the unique directed graph which satisfies these properties is the
wheel. This proves the Lemma.¥

Lemma 3.1 and 3.2 implies that a connected equilibrium network is a wheel. I now
take up the case of non-empty unconnected strict equilibria in which each component
is a singleton. The next Lemma proves the result.

Lemma 3.3: A non-empty unconnected strict equilibrium where each component is
a singleton has a center-sponsored star architecture.

Proof: Since g is non-empty there exists some gi,j = 1. There are two cases. First,
suppose gj,j0 = 0 for any j0 ∈ N. Since g is strict Nash it must hold that Vi − ci > 0;

this implies that ∃i g→ j0 for any j0 ∈ N. Select player k which is at the maximum
distance from i in g, i.e. k = argmaxj0∈N di,j0(g). If di,k(g) = 1 player i accesses
each other player directly and the proof trivially follows. If di,k(g) > 1, it must be
the case that {gi,j1 = gj1,j2 = ... = gjm,k = 1} and gk,s = 0 for any s ∈ N. Since g is
strict Nash then Vjm − cjm > 0 and therefore player jm accesses any player in g. This
implies that player i and jm belongs to a non-singleton component, which constitutes
a contradiction. Second, suppose gj,j0 = 1 for some j0 ∈ N. Since g has only singleton
components it follows j0 ∈ N\{i}. Therefore, if gj0,k = 0 for any k ∈ N , the previous
argument applies and we end-up with a contradiction. If gj0,k = 1 for some k, then it
must be the case that k ∈ N\{i, j}. Since the number of players is finite, it must exist
a player h which is accessed by player i via the link gi,j = 1 and such that gh,h0 = 1
and gh0,h00 = 0 for any h00 ∈ N. However, also in this case the fact that g is strict
Nash implies that Vh − ch > 0 and therefore player h must access player i in g. This
constitutes a contradiction. Hence the proof follows.¥

I now turn to unconnected strict equilibria where at least a non-singleton component
exists. Let C1 (g) , C2 (g) , ..., Cm (g) be the components of an unconnected strict equi-
librium g. Lemma 3.1 and 3.2 implies that: (a) Cx(g) is a wheel ∀x = 1, ...,m; (b)
gj,i = 0, ∀i ∈ Cx (g) and ∀ j ∈ N\ {Cx (g)} , ∀ x ∈ {1, ...,m} .
Lemma 3.4: Let g be a strict equilibrium and let i ∈ Cx(g). If gi,j = 1 where
j /∈ ∪my=1Cy(g), then gj,k = 0 for any k ∈ N .

Proof: Suppose not, i.e. gi,j = gj,k = 1. Lemma 3.1 implies that k /∈ ∪my=1Cy(g)∪{j};
moreover, it also implies that if gk,h = 1 then h /∈ ∪my=1Cy(g) ∪ {j, k}. Suppose that
gk,h = 0 for any h /∈ ∪my=1Cy(g)∪{j, k}; since g is a strict Nash it follows that Vj > cj.
In this case player j strictly gains by forming a link with player i. This constitutes a
contradiction. If gk,h = 1 for some h /∈ ∪my=1Cy(g)∪{j, k} we can iterate the argument
above and since the number of players is finite the proof follows.¥

Lemma 3.1. 3.3 and 3.4 implies that any pair of players, say i and j, belonging to
two different components, say Cx(g) and Cy(g), access two distinct set of players,
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i.e. if i ∈ Cx (g) and j ∈ Cy (g) , with x 6= y, then Ni(g) ∩ Nj(g) = Φ. The next
Lemma uses this observation to prove that a strict equilibrium network has at most
one non-singleton component.

Lemma 3.5: A strict equilibrium has at most one non-singleton component.

Proof: Suppose not and let, without loss of generality, |Ni(g)| ≥ |Nj(g)| , where
i ∈ Cx (g) and j ∈ Cy (g) , and x 6= y. Since g is strict Nash it follows that |Nj(g)|Vj−
cj > 0; however, if this is the case, player j is weakly better off by deleting his link
in Cy (g) and linking up with player i, i.e. |Ni(g)|Vj − cj ≥ |Nj(g)|Vj − cj > 0. This
contradiction proves the lemma.¥

The next lemma completes the analyses of unconnected strict equilibria which have
a non-singleton component.

Lemma 3.6: Let g an unconnected strict equilibrium with a non-singleton compo-
nents. Then gj,j0 = 0 for any j, j0 /∈ C(g).

Proof: Suppose, for a contradiction, that gj,j0 = 1. Lemma 3.1 implies that each
player outside the component does not access players belonging to the component.
Therefore, Lemma 3.5 applies to the set of players N\{C(g)}, i.e. gj,j0 = 1 for some
j0 /∈ C(g). However, in this case player j strictly gains by creating a link with a player
i ∈ C(g). This constitutes a contradiction. Hence, Lemma 3.5 follows.¥

The combination of Lemma 3.2, 3.4, 3.5 and 3.6 implies that an unconnected strict
equilibrium with some non-singleton components is either a wheel with local center-
sponsored stars, a wheel with singleton players or a wheel with some local center-
sponsored star and some singleton player. It is immediate to see that this last archi-
tecture cannot be sustained as a strict equilibrium. This completes the proof of the
first part of the proposition.¥

Second part. First, let g be the empty network and let ci > Vi for any i ∈ N ; it
follows that g is a strict equilibrium. Second, let g be a wheel and set ci < Vi for any
i ∈ N ; it follows that g is a strict equilibrium. Third, let g be a center-sponsored star
network where player i is the center. For any j ∈ N\ {i} let cj > (n− 1)Vj, while
for the central player i let ci < Vi. It follows that g is a strict equilibrium. Fourth, let
g be a wheel network with singleton players and let C(g) be the wheel component in
g. For any player i ∈ C (g) set Vi and ci such that ci ∈ (Vi, (|C(g)|− 1)Vi) , while for
any other player j /∈ C (g) set Vj and cj such that cj > |C(g)|Vj. It follows that g is a
strict equilibrium. Finally, let g be a wheel network with local center-sponsored stars
and let C(g) be the wheel component. For any player i ∈ C (g) , set ci and Vi such
that ci < Vi and for any other player j /∈ C (g) set cj and Vj such that cj > (n− 1)Vj.
It follows that, g is a strict equilibrium. This completes the proof of the second part.¥
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The proof of Proposition 3.1 is completed.¥

Proof of Proposition 3.2: I start by assuming that ci,j = ci, for any j ∈ N,
while Vi,j varies freely. Let g be a connected strict equilibrium network. The no-
decay assumption implies that g is minimal. Furthermore, Lemma 3.1 and 3.2 of
Proposition 3.1 applies also to this case; hence g has a wheel architecture. I now
prove the converse. Let g be a wheel network and for any link gi,j = 1 let Vi,j > ci.
This implies that each player i finds it optimal to maintain his links and not to form
any other links. Hence, the first part of the proof follows.

I now turn to the second case, i.e. Vi,j = Vi for any j ∈ N and ci,j varies freely. Let g be
a connected network. The no-decay assumption implies that g is minimal. Conversely,
let g be a minimally connected network. For any link gi,j = 1 let ci,j < Ii,jVi, while
for any gi,j = 0 let ci,j > (n − 1)V. These two conditions assure that each player is
playing his unique best response. This completes the proof of the Proposition.¥

Proof of Proposition 4.1.

First part. I first note that the no-decay assumption implies that an equilibrium
network is minimal. The proof now proceeds as a sequence of Lemmas. The first
lemma shows that if a player belonging to a non-singleton component receives more
than one link, then this player has the lowest access cost across players within that
component.

Lemma 4.1: Let C (g) be a non-singleton component of a strict equilibrium and let
j ∈ C (g). If gi,j = 1, for more that one player i ∈ C (g) then cj = minj0∈C(g) cj0 .

Proof: Suppose, for a contradiction, that gi,j = gk,j = 1, for some i, k ∈ C (g) , i 6= k
and ch < cj for some h ∈ C (g) \ {j} . Since g is minimal and i, k, j ∈ C (g) , player i
(or k) accesses h via the link gi,j = 1 (or gk,j = 1). In this case, player i (or k) strictly
gains by deleting the link with j and linking up with h, instead. This contradiction
proves the lemma.¥

Lemma 4.2 A non-singleton component of a strict equilibrium is either a wheel or a
flower.

Proof: We have two possibilities. First, suppose any player i ∈ C(g) receives at
most one link in C(g). I note that Lemma 3.2 in Proposition 3.1 also applies in this
case. Therefore C(g) has a wheel architecture. Second, suppose i ∈ C(g) receives
more than one link, i.e. gj1,i = gj2,i = ... = gjk,i = 1. Lemma 4.1 implies that player
i is the player with lowest access cost in C(g). I now claim that if player i receives k
distinct links, then C(g) is a flower with k petals. Since {i, j1, ..., jk} ∈ C(g), there
exists a path i→ jx, for any x = 1, ..., k. The same argument presented in Lemma 3.2
of Proposition 3.1 implies that if player h belongs to the path i→ jx then h cannot
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belong to another path i → jy, x 6= y and x, y = 1, ..., k. Consider an arbitrary path
i → jx; using Lemma 3.2, it follows that each player belonging to that path forms
one and only one link. It is readily seen that the only possibility left is that C(g)
has a flower architecture with k petals and player i is the center. This completes the
proof.¥

Lemma 4.2 implies that a connected strict equilibrium is either a wheel or a flower
with player j = 1 the center. I now note that if g has wheel architecture and it is
strict Nash then the wheel is ordered. Suppose, for a contradiction, that g is a wheel
but it is not ordered, i.e. for some gi,j = 1, i, j ∈ C (g) ,then cj − cy ≥ dj,y (C (g))V
for some y ∈ C (g) . If this is the case, player i (weakly) gains by deleting the link
with player j and linking up with y, instead. A similar argument shows that a flower
equilibrium network is ordered.

I now turn to consider unconnected networks with some non-singleton components.

Lemma 4.3: Let g be an unconnected network and let C(g) be a non-singleton com-
ponent. If gk,i = 1, for some i ∈ C (g) and k /∈ C (g) then gk0,k = 0 for any k0 ∈ N.

Proof: Assume, for a contradiction, that gk0,k = 1 for some k0. I first note that
k0 /∈ C(g); for otherwise k ∈ C(g). Then, let us assume that k0 /∈ C (g) and let
player i0 ∈ C(g) be linked with player i, i.e. gi0,i = 1. I note that if player i0 deletes
the link with i and creates a new link with player k, he will still observe all the
players he was accessing before the switching (via the new link with player k) and in
addition he accesses all players that k accesses in g and that are not accessed by i in
g, i.e σ̃k =

¯̄̄
{h : @i g→ h ∧ ∃k g→ h}

¯̄̄
. Since g is strict Nash it must be the case that

ck − ci > σ̃k. Next, I note that if player k0 deletes the link with player k and creates
a new link with player i, then he (player k0) will not accessed anymore all players h
that player i does not access in g and that k0 accesses in g exclusively via the link

with the player k, i.e σk =
¯̄̄
{h : @i g→ h ∧ ∃k g→ h ∧ @k0 g0→ h}

¯̄̄
. Since g is strict

Nash it must be the case that ck − ci < σk. It is readily seen that σk ≤ σ̃k; however,
this implies that the two conditions are incompatible. This contradiction completes
the proof of the lemma.¥

Lemma 4.4: Let g be a strict equilibrium and let C1(g), ..., Cm(g) be the non-singleton
components belonging to g. If i ∈ Cx(g), then gi,j = 0, ∀j /∈ Cx(g).

Proof: For a contradiction assume that i ∈ Cx(g) and that gi,j = 1 for some j /∈
Cx(g). Moreover, let player i0 ∈ Cx(g) and such that gi,i0 = 1. Lemma 4.3 implies
that j /∈ ∪my=1Cy(g). Therefore, we have two possibilities. First, assume that ∀k ∈ N,
gj,k = 0. In this case player j does not access any player. Since player i has a link with
player i0 and g is strict Nash then player j strictly gains to initiate a link with player
i0. This is a contradiction. Second, assume that gj,k = 1 for some k ∈ N. Lemma 4.3
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implies that k /∈ ∪my=1Cy(g) ∪ {j}. Iterating the previous argument it follows that if
gk,h = 0 for any h ∈ N, then player k strictly prefers to create a link with player i0.
Therefore, it must be the case that gk,h = 1 for some h, which, using Lemma 4.3,
implies that h /∈ ∪my=1Cy(g) ∪ {j, k} ∀y = 1, ...,m. We can continue to iterate this
argument and since the set of players is finite, it must be the case that there exists
a player, say l, who does not access any player and that is accessed by player i via a
path in g. However, in this case player l strictly prefers to create a link with player
i0. Thus the proof follows.¥

Lemma 4.4 implies that if i ∈ Cx(g) and j ∈ Cy(g), x 6= y ∀x, y = 1, ...,m, then
Ni(g) ∩ Nj(g) = Φ. Using this property we note that only one non-singleton com-
ponent can be part of a strict equilibrium. For otherwise, one player belonging to a
non-singleton component (weakly) gains be switching to another non-singleton com-
ponent. Summarizing, it follows that a strict equilibrium with at least a non-singleton
components must satisfy: (1) there exists a unique non-singleton component, say
C(g), which has a wheel architecture or a flower architecture, and (2) each player
within the non-singleton component does not promote links with player outside the
component (Lemma 4.4). We now note that each player outside the non-singleton
component, say j /∈ C(g), accesses players within the components. This fact and
Lemma 4.4 implies also that each player outside the component is directly linked
with the player who has the lowest access cost within the component. It is now im-
mediate to see that the player with the lowest access cost in the society should belong
to the non-singleton component. Finally, the ordered conditions are easily verified.
This completes the proof of strict equilibria with some non-singleton components.
Hence, the proof of the first part of the proposition follows.¥

Second part: I now prove the converse. Let g be a wheel and set ci < V for any
i ∈ N. I note that given ci < V any wheel is ordered (no player wants to switch)
and that each player is playing his unique best response. Therefore g is a strict
equilibrium. The same set of restrictions in the costs of linking imply that the flower
network with player 1 the center is a strict equilibrium. Finally, suppose that g is
a wheel with a periphery-sponsored star with player 1 the center. Set ci < V for
any i ∈ C (g) , while cj > nV for any j /∈ C (g) . It follows that g is ordered and
it is a strict equilibrium. The same conditions applies to the flower network with a
periphery sponsored star with player 1 the center. This completes the proof of the
second part of the proposition.¥

The proof of the proposition in now completed.¥

I conclude by providing the characterization of strict equilibria in which each compo-
nent is composed of a single player. I first introduce some notations. A generalized
periphery sponsored star with center j is an unconnected architecture where each
component is a singleton and where there exists a player, the center j, such that
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gi,j = 1 for some (or all) i ∈ N and the remaining players, say {j1, j2, ..., jm} ⊆ N,
are arranged in the following way {gj,jm = gjm,jm−1 = ... = gj2,j1 = 1}. Note that
if {j1, ...., jm} = N then g is a line where the information flow from jm to j, from
jm−1 to jm and so on. While if {j1, ..., jm} is empty then g is a periphery-sponsored
star with player j the center. The next definition defines the ordered condition for a
generalized-periphery sponsored star network.

Definition 3. A generalized periphery-sponsored star network g is ordered if ∀
gj0,j00 = 1 then cj00−cy < dj00,y (g)V, ∀ y accessed by j0 via the link gj0,j00 = 1.*********

Proposition 4.2. Let (3)-(4) be satisfied and let g be a strict equilibrium in which
each component is composed of a single player. Then g is either the empty network
or the ordered generalized periphery sponsored-star network where g1,i = 0 for any
i ∈ N. Conversely, any such network is a strict equilibrium for some {ci, V }.

Proof. The first part of Proposition 4.2 is based on two Lemmas.

Lemma 4.5: Let g be an unconnected strict equilibrium. If gi,j = 1 and gk,j = 1
then i and k do not receive any link, i.e. gj0,i = gj0,k = 0 ∀j0 ∈ N.

Proof: For a contradiction, suppose first that gj0,k = 1 for some j0 ∈ N. Since g is
minimal j0 6= i; since g is unconnected j0 6= j and is different from any player k0 such
that there exists j

g→ k0 in g. Since g is strict Nash, the link gi,j = 1 implies that
ck−ci > V, and the link gj0,k = 1 implies that ck−cj < V. This is a contradiction. The
same applies to the case where gj0,i = 1. This completes the proof of the Lemma.¥

Lemma 4.6 Let g be a non-empty unconnected equilibrium where each component is
a singleton. Then each player promotes at most one link .

Proof: Suppose not, i.e. there exists a player j such that gj,i = gj,k = 1 for some
distinct k and i.We first note that if gj,i = 1, then player j accesses via the link with
player i some player, say i0, such that gi0,i00 = 0 for any i00 ∈ N. To see this note that
if gi,i1 = 0 for any i1 ∈ N, the proof trivially follows. Moreover, if gi,i1 = 1, then
i1 6= j; for otherwise i and j would be part of a non-singleton component. Iterating the
argument and noting that set of player is finite, the claim follows. Second, this implies
that if player j is linked with i and k, then there exist {gj,i = gi,i1 = ... = gin,i0 = 1}
and {gj,k = gk,k1 = ... = gkn,k0 = 1} , where gi0,s = gk0,s = 0 for any s ∈ N. It is easy
to see that if k0 = i0 then Lemma 4.5 is violated. Furthermore, if k0 6= i0 since g is a
strict Nash equilibrium, player kn strictly gains by forming a link with player i0. This
constitutes a contradiction. Hence, the proof follows.¥

It is easy to see that Lemma 4.5 and 4.6 implies that a strict equilibrium where each
component is a singleton has a generalized periphery-sponsored star. Moreover, if the
ordered condition does not hold than some player has an incentive to deviate, which
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contradicts the fact that g is a strict Nash equilibrium. Finally, we note that the
agent which does not promote any link is always the player with the lowest access
cost in the whole society, i.e. player 1. Suppose, for a contradiction, that player k
does not promote any link. Since there exists a player, say j, such that gj,k = 1, it
follows that ck < V, but then also c1 < V and therefore player k strictly gains by
creating a new link with player 1. This completes the proof of the first part of the
proposition.¥

Second Part: Let g be the empty network and let ci > V for any i ∈ N ; it is
trivial to see that the empty network is a strict equilibrium. I finally consider the
case where g has a generalized periphery-sponsored star architecture where player 1
is the agent which does not promote any link. Set the following conditions on the
costs of linking: (i) c1 < V, (ii) for any i ∈ N such that gi,j = 1 then ci > nV,
(iii) mV < cj < (m+ 1)V and (iv) (x− 1)V < cjx < xV, for any x = 2, ...,m.
These conditions imply that: one, each agent who promotes a link obtain a strictly
positive utility, two no agent wants to form an additional link. Therefore, given these
conditions, whenever g is ordered g is also a strict equilibrium.17. This completes the
proof of the second part of the proposition.¥

The proof of Proposition 4.2 is complete.¥
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