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Network Formation Under Heterogeneous Costs:
The Multiple Group Model!

Jurjen Kamphorst? and Gerard van der Laan?

Abstract

It is widely recognized that the shape of networks influences both individual
and aggregate behavior. This raises the question which types of networks
are likely to arise. Our paper fits into the literature that addresses this
question.

The paper continues on the work of Galeotti, Goyal and Kamphorst (2003).
In their paper they investigate a model of network formation, where players
are divided into groups. The costs of a link between any pair of players are
increasing in the distance between the groups that these players belong to.
They apply the solution concept of minimal curb sets to the case of two
groups.

In this paper we give a full characterization of the networks induced by a
minimal curb set for any number of groups. To do so, we show that in
our multiple group model each minimal curb set is a so-called super-tight
curb set, that is a minimal curb set satisfying the condition that in each
state of the set every player has the same best reply. From the proof it
follows that every recurrent class of an unperturbed best reply dynamics is
a minimal (super-tight) curb set and reversely. From this result we obtain
the characterization of the types of networks that may arise in a minimal
curb set. We show that such networks may have features that can not
occur in networks with at most two groups. Nevertheless, local centrality
and center-sponsorship are still important characteristics of the networks in
minimal curb sets.
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Making”. We thank Andrea Galeotti, Sanjeev Goyal and Vitaly Pruzhansky.
2Department of Econometrics and Tinbergen Institute, Free University, De Boelelaan
1105, Amsterdam, The Netherlands. E-mail: jkamphorst@econ.vu.nl
3Department of Econometrics and Tinbergen Institute, Free University, De Boelelaan
1105, Amsterdam, The Netherlands. E-mail: glaan@econ.vu.nl
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1. INTRODUCTION

Imagine a world with individuals that would benefit from trade with each
other. Yet the world is divided into several cultures and individuals from
cultures more alien to each other find it more difficult to interact than in-
dividuals from cultures more similar to each other. In our world, we have
seen that some people, often merchants, have invested into making contact
with people from other cultures. And through those contacts information
and goods were exchanged between individuals of those different cultures.
In this paper we examine a world in which the agents are gathered into
groups, according to their characteristics®. In this world, agents exchange
valuable information with everyone that they have contact with, including
the information that they received from others. However, before two agents
have contact, one of the agents has to make the contact. Naturally, the more
similar two players are, the easier contact will be made.

This paper fits into the quickly expanding literature on the formation
of social and economic networks. The structure of networks can signifi-
cantly affect individual and aggregate behavior®. From that perspective it
is worthwhile to investigate which networks are likely to arise in different
circumstances. Many papers have been published on this subject 6.

In this paper we generalize and extend results on network formation ob-
tained by Bala and Goyal (2000) and Galeotti, Goyal and Kamphorst (2003),
to be referred to as BG and GGK respectively. In BG a set of homogeneous
agents is considered. Because the network formation will be analyzed within
a game-theoretic framework, in the sequel the agents are called players. Two
players are said to be linked to each other when one of the players makes
contact with the other player. BG assume that the cost of a link between
two players is completely paid by the player who takes the initiative to make
the contact. Therefore the contacting player is said to be the sponsor: he
sponsors (pays for) the link between the two players. It is assumed that
each link is equally costly. Two players are connected to each other when
there is at least one path of links between them, i.e. two players i and j
are connected if there is a sequence of players 41,42, ... ,%; such that 7 = iy,
J = ix and 4; is linked to 4,11, 7 = 1,2,... , k—1. Players benefit from being
connected with other players. BG assume that the benefits are independent

4For example, according to the organisation, country, culture, social class or geograph-
ical area that they belong to. Another possibility is for instance to group scientists ac-
cording to their field of specialization.

5See for instance Burt (1992), Montgomery (1991), Granovetter (1974), Coleman
(1996), Barabési (2002) and Watts (2003).

5For network formation models with homogeneous agents see for instance Dutta and
Jackson (2000), Falk and Kosfeld (2003), Goyal (1993), Haller and Sarangi (2001), Jackson
and Wolinski (1996), and Watts (2001, 2002). Network formation models with heteroge-
nous agents have been studied by e.g. Johnson and Gilles (2000) and McBride (2002).
Jackson (2003) is an overview paper of the network formation literature that uses coop-
erative game theory (this is at the moment of writing downloadable from his website).
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from the sponsoring players and the length of the path(s) between two con-
nected players. So, while the costs of a link are one-sided, the benefits are
two-sided: when one player sponsors a link to another player, both obtain
the same benefit. Moreover, there is no decay or path dependency, i.e. the
benefit from being connected to another player is independent of the length
of the path(s) and the number of different paths between the two players.
Finally, any connection gives the same benefit. So, the total benefit to a
player is equal to some constant times the number of players with which he
is connected. From this it follows that the payoff to a player is equal Kb— Lc,
where b is the benefit per connection, K the number players to which he is
connected, c the costs of a link and L the number of links sponsored by the
player. Observe that both costs and values (benefits) are homogeneous.

For instance, consider a three player network with one link between Pete
and John, sponsored by John. Then the payoff to Pete is b — ¢, the payoff
to John is b and the payoff to the third player Sarah is 0. Although also
John benefits from the link that Pete sponsors, only Pete incurs the costs
of that link. For example, when Pete makes a phone call to John, only Pete
pays for the call, while both Pete and John may benefit from the exchange
of information. When also Sarah is sponsoring a link to John, then Pete is
connected to her through his link to John and her link to John. The payoffs
are now 2b — ¢ for both Pete and Sarah and 2b for John. When in addition
to the links above Sarah also sponsors a link to Pete, then the payoff to Pete
and John does not change: they still incur the same costs, and neither of
them receives more benefits, because neither the length of the connection to
Sarah nor the number of different paths to other players matter. However,
the additional link decreases Sarah’s payoff to 2b — 2¢, because she now also
incurs the costs of the additional link.

Within this framework a network is called a (strict) Nash network if the
network is a (strict) Nash equilibrium, i.e. if every player plays a (strict)
best reply to this network. A strategy is a strict best reply versus a network,
if it is the unique best reply against that network. A weak Nash network is a
non-strict Nash network. BG show that if the costs of a link are higher than
the benefit per connection, the only strict Nash network is empty (no links at
all). When the costs of a link are lower than the benefit per connection, then
each strict Nash network is non-empty (has at least one link). Moreover,
any strict Nash network is connected (each player is connected to any other
player) and is a so-called center-sponsored star, i.e. there is precisely one
player sponsoring links and this player sponsors a link to any other player.
BG also show that in a dynamic setting where players may revise their
strategies as if they are myopically rational, the dynamics always converges
to a strict Nash network. An example of a center-sponsored star of 4 players
is depicted in Figure 1. Player 1 is there the central player, who sponsors a
link to each other player.



FiGURE 1. Center-Sponsored Star

These results are generalized in GGK (Galeotti, Goyal and Kamphorst,
2003) by relaxing the assumptions of cost homogeneity and value homogene-
ity. GGK find that if either costs of links or the benefit per connection are
heterogeneous, a non-empty strict Nash network may fail to be connected.
So, under heterogeneity of costs or benefits there may exist strict Nash net-
works in which two players are not connected to each other. In particular: if
costs are homogeneous and values are heterogeneous, then strict Nash net-
works may exist consisting of several center-sponsored star components (a
subset of players is a component if it is connected and the subset becomes
unconnected when adding any other player). If costs are heterogeneous, then
any minimal (unconnected) network may arise as a strict Nash network (a
network is minimal if the number of components increases when deleting
any one link). Hence GGK conclude that both homogeneity in costs and
in values are important determinants for the existence of connected strict
Nash networks. Moreover, they conclude that cost heterogeneity is crucial
for the shape (or architecture) of the networks that may arise as strict Nash
networks, as without restrictions on the cost function any network with a
minimal architecture may arise as a strict Nash network.

Since value heterogeneity is relatively unimportant for the architecture
of the network, GGK proceed by assuming homogeneous value functions.
Moreover, they restrict the heterogeneity of costs to be of a specific form.
To do so, they assume that, according to certain characteristics, the players
can be divided into m groups, numbered from 1 to m, each group containing
at least two players. It is further assumed that the numbering reflects the
differences in the characteristics of a group. In particular, for simplicity it is
assumed that the differences between two groups h and j, can be measured
by the distance between the groups being the absolute value |h — j| of the
difference between the numbers of the groups. For each player, the costs
of a link to some other player is given by a cost function that is (weakly)
increasing in the distance between the groups to which both players belong.
Each player is assumed to have the same cost function f, with f(k) the costs
of a link between two players at distance k, k = 0,... ,m—1. GGK call a link
within a group an internal link and a link from a player to a player outside
his own group an external link. Correspondingly they named this model the
Insider-Outsider model. Since the characteristic feature of the model is the
partitioning of the population into multiple groups, where there are many



Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
1 4 1 4 1 4
2 5 2 5 2 5
3 6 3 6 3 6

F1GURE 2. Three connected center-sponsored star with two
groups of three players each.

different types of outsiders (depending on distance) from the point of view
of any player, in this paper we prefer to call this model the Multiple Group
model (MG model), and to refer to this as the Insider-Outsider model in the
specific case of two groups.

For the MG model, GGK show that for high enough values of the costs
f(0) of internal links, the empty network is the unique strict Nash network.
For low enough values of internal links and high enough values of external
links of length one, any strict Nash network is a network in which each group
forms a center-sponsored star component. If both the costs f(0) of internal
links and f(1) of external links of length one are low enough, then any
strict Nash network is a so-called generalized center-sponsored star. Such
a network is minimally connected (i.e. deleting a link makes the network
unconnected) and has a central player ¢ with the property that if we move
along a path with subsequently the players 41, i9, ..., i With i3 = 7, then the
link from ¢; to ;41 is sponsored by i;, j = 1,... , k—1. Moreover, along each
such a path, there is at most one player from each group, ignoring player ¢
himself. So, the group to which the central player ¢ belongs constitutes a
center-sponsored star (i.e. ¢ sponsors a link to any other player in his group)
and all other groups are completely fragmented (i.e. any path between two
members of such a group contains a member of another group). Finally,
GGK find that for low values of f(0) and moderate values of f(1) a strict
Nash network does not exist.

For the case of just two groups, GGK subsequently characterize the net-
works in the recurrent classes of the dynamics with myopically rational play-
ers as specified by BG. It is shown that the dynamics converges to a recurrent
class that may contain multiple Nash networks. If the recurrent class is non-
singleton” then each network of the curb set is a weak Nash network in which
both groups form a center-sponsored star and in which there is one single
player, say i (the same in each of these networks), that sponsors a link to
one of the players in the other group. We call such a network a connected
center-sponsored star network. Consider for example the three networks in
Figure 2. These three networks are a recurrent class of the dynamics for

TA singleton recurrent class in these dynamics consists by definition of a strict Nash
equilibrium.
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f(0) <1, f(0) < f(1) < 3. For the same parameters, they are also Nash
networks. But they are not strict Nash networks, because player 2 doesn’t
care to which player of group 2 he sponsors his link. Moreover, none of the
other player cares which of the three alternatives player 2 chooses. There-
fore player 2 may change this link from one period to the next. However,
all other links are the same in each of these networks.

In the basic model with homogeneous costs and benefits of BG, each
minimal curb set is a singleton strict Nash networks, justifying their focus
on strict Nash networks from a dynamic perspective. However, in the MG
model with heterogeneous costs, strict Nash networks do not exist for mod-
erate values of f(1) together with low values of f(0). Moreover, strict Nash
networks are not the only networks that may be part of a recurrent class.
This raises the question whether focussing on the solution concept of strict
Nash networks is too restrictive.

The obvious alternative, to consider all Nash networks, is also unattrac-
tive. It is a common feature of network formation models, including this one,
that the concept of Nash equilibrium has very little bite. For instance, in
the case of one group, for a range of costs, every minimal connected network
is a Nash network. Moreover, in the dynamic setting that BG studied, all
recurrent classes contain only one network, namely a strict Nash network.
No weak Nash network survives such dynamics. And although some weak
Nash networks survive the dynamics when there are two groups, in general
most weak Nash networks can not survive. Thus the concept of all Nash
networks appears too wide.

GGK therefore introduce the concept of minimal curb sets®. This static
solution concept has considerable bite (excludes most networks) and non-
empty solutions for all positive increasing cost functions. Moreover, in this
model each minimal curb set is identical to one of the recurrent classes and
vice versa. Thus a network is part of a minimal curb set if and only if it is
part of a recurrent class of the best reply dynamics.

GGK also show that, if there are just two groups and the cost function is
strictly increasing, a connected center-sponsored star is efficient, while the
generalized center-sponsored star is not.

In this paper we generalize the analysis of GGK by allowing for an arbi-
trary number of groups. This generalization comes at a small cost, namely
that we assume that the costs of a link are strictly increasing in its length.
We show that in this model any network in a minimal curb sets is either
a generalized center-sponsored star, or a connected center-sponsored star,
or has an architecture given by a hybrid combination of these two types.
On the other hand, many hybrid architectures can’t arise in minimal curb
sets. Therefore generalizing the two-group model to an m-group model is
not straightforward. In fact, it appears to be extremely difficult, if not
impossible, to give a characterization of architectures that may arise in a

8This notion was first introduced by Basu and Weibull (1991). See also section 3 of
this paper.
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minimal curb set, since there is no a priori reason to exclude any network
from the analysis. Fortunately, for the two-group case, GGK has shown that
any minimal curb sets is best reply invariant, i.e. for any player holds that
his best reply set is independent of the network in the curb set. Thus, when
in such a network one player changes his collection of sponsored links to
another collection set of links in his best reply set, the set of best replies of
any other player does not change. So, the set of best replies of a player also
remains unchanged even if all other players get a chance to choose another
optimal collection of sponsored links. GGK call a minimal curb set that is
best-reply invariant a super tight curb set. Since most networks cannot be
part of a super tight curb set, the task of providing a full characterization
of a super tight curb set is relatively light.

This sets the program for the research in this paper. We first prove that
also in the multiple group case every minimal curb set is super tight. We
do this by proving that every recurrent class of the best reply dynamics
contains a super tight curb set. Because any minimal curb set contains
such a recurrent class, any minimal curb set is super tight. Subsequently we
are able to characterize the networks that can arise in minimal curb sets.
Since many minimal curb sets feature a set of hybrid networks, generally
the architectures are not efficient, although they are typically more efficient
than a strict Nash network. Moreover, there are super tight curb sets of
which the networks are connected center-sponsored stars. The networks of
some of these minimal curb sets are efficient. Finally, we show which types
of networks can arise if there are three groups.

Common results in the network formation literature such as (local) cen-
trality and center-sponsorship also hold for the MG model.

The paper is organized as follows. Section 2 presents the model and the
dynamics. Section 3 introduces minimal curb sets and super tight curb
sets. Section 4 contains the main result that in the multiple group model
all recurrent classes of the best reply dynamic are super tight curb sets, and
therefore that all minimal curb sets are super tight. Section 5 then provides
the characterization of the networks in super tight curb sets. Section 6
presents the types of networks in minimal curb sets when there are three
groups, and section 7 concludes. Most of the proofs are relegated to the
Appendices.

2. THE MODEL

In this section we present the game-theoretic model of network formation
under costs heterogeneity. We start by defining the stage game, i.e. the set
of players, the strategy sets and the payoff functions. We then continue by
stating the concept of a Nash network and the dynamics of the model. We
finish this section with some additional terminology and notation that we
need in the sequel of the paper.
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2.1. The stage game. We consider a set N = {1,...,,n} of n players,
which would benefit from having contact with each other, for instance be-
cause they can share private information. A player can contact another
player by establishing a link to that other player. The costs of a link is
fully paid by the player that makes the contact, to be called the sponsor of
a link. However, the benefits of the contact flow both ways: the sponsor
receives all information that the recipient has, and the recipient receives all
information that the sponsor has. So, in the model we have asymmetric
costs and symmetric benefits: only the sponsor pays for the link, but both
players benefit from a link.

Based on some well-specified characteristics the players are divided into
m groups, indexed by £ = 1,... ,m. We assume that, according to their
characteristics, the groups can be seen to be located along a linear city, from
group 1 on the left side to group m on the right side. Hence, the absolute
value of the difference in the numbers of two groups can be seen as a measure
for the heterogeneity in the characteristics between them. With Ny C N
being the set of players in group /, the collection of subsets Vi, ... , N, forms
a partition of N. It is assumed that m > 2 and |[Ny| > 2 forall{ =1,... ,m.
We denote the collection of these groups by N = {Ny, ..., N, }.

To give the strategy sets of the link formation game, we denote a link
between player ¢ and player j sponsored by ¢, shortly a link from ¢ to j, by
the ordered pair (7, 7). The set of all possible links sponsored by player ¢,
i € N, denoted by L;, is given by

Li={(hj)€NxNlh=1i, j#i}.

The set of all feasible links is thus given by £ = U;enyL;. Each player (only)
decides upon which links he actually sponsors. So, a strategy of player ¢ is
a subset g; of £; and the strategy space G; of player 7 is the collection of all
subsets of £;, thus® 1°

Gi={g9i |9 CLi}.

With some abuse of the standard game-theoretical notation, we define the
strategy space G of subsets of £ by

G={glg < L}.
Clearly, any g € G induces for any i € N a strategy g; € G; given by
g9i=A{(h,j) €g | h=1i}.

9Throughout the paper we will denote a subset by C and a strict subset by C.

100Qur notation of a strategy g; differs from the usual notation in the network formation
literature, including GGK. We chose to denote the strategies of players by the set of links
that they sponsor, whereas in the main literature the strategy of a player is denoted by an
n-vector, say h;. Then a strategy g; € G; being a set of links corresponds to the n-vector
h; with components h;; = 1 if (i,5) € g; and h;; = 0 if (4,5) ¢ g;. We made this change
because the usual notation becomes very cumbersome in our proofs.

11 According to the formal approach in game theory, the strategy space is given by
II;en Gi instead of G.
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Ficure 3. ¢ ={(1,2),(1,5),(2,1),(6,3)}

Reversely, when player i decides on strategy ¢g; € G;, ¢ € N, then g =
Uien gi € G. So, without any confusion, any g € G represents a strategy
profile g;, ¢ € N.

It is useful to observe that a strategy profile ¢ € G can be represented
by a network, being a directed graph with the set of players as nodes and
a directed edge between two nodes i and j if and only if (i,j) € g. In the
sequel we therefore often refer to a strategy profile as a network. Figure 3
is an example of a network in a game with n = 6, m = 2, Ny = {1,2,3}
and Ny = {4,5,6}, namely the network induced by the strategy profile
g=1{(1,2),(1,5),(2,1),(6,3)}. In all figures in this paper, we put players
of the same group vertically to each other. So, every column of nodes is a
set of players of the same group.

To complete the description of the normal-form of the network formation
game, we have to specify the payoff functions. Therefore we consider the
costs and benefits of the forming of links. Let c;; denote the costs to player i
of sponsoring a link to player j. We assume that these costs are increasing in
the differences of the characteristics of the groups to which the two players
belong. So, for two players i € Ny and j € N, the cost of forming the link
(1,7) is given by

cij = f (Il — k),

where f (-) is an increasing real-valued function in the length |l — k| of the
link. Observe that this modelling implies heterogeneity in costs due to fact
that the costs of a link depend on its length. In fact, the costs are strictly
increasing in the absolute value of the difference between the numbers of the
(two) groups containing ¢ and j, i.e. links become more costly if the players
are more different in their characteristics. We further assume that f (0) > 0.
To obtain the benefits of the forming of links, it is useful to observe that
any network induces an undirected graph on the set of players. Clearly, for
each network g € G, the set g of undirected pairs of players defined by

g:{{lvj}CN] ‘ (i,j)EgOI‘ (.777') Gg}-
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FiGure 4. g ={{1,2},{1,5},{3,6}}

gives an undirected graph on N with an edge between any two players ¢ and
j if and only if the undirected pair {i,j} € g . For instance the network of
Figure 3 gives the set of undirected pairs g = {{1,2},{1,5},{3,6}} and the
resulting undirected graph is depicted in Figure 4.

Now, as usual in the network formation literature, player ¢ has access to
the information of any player j to which he is connected, including himself.
In a network g, player ¢ is connected to player j if there is at least one path
between them, i.e. there exists a subset of players ji, ..., j» with ¢ = j; and
j = jr such that {jx,jrr1} € g for k = 1,... ,r — 1. Tt is assumed that
player ¢ realizes a benefit equal to 1 from having access to the information
from any player j to which he is connected, including himself. Observe that
the benefits are homogeneous and only depends on the number of players to
which a player is connected.!?

Now, the payoff of player ¢ in network g is equal to the number of players to
which 7 is connected, including himself, minus the costs of the links sponsored
by ¢. To state this formally, we introduce some notation. First, for ¢ € N,
denote the set of players to whom player ¢ sponsors a link in network ¢ as

N* (i;9) ={j € NI (i,5) € g5 -

Further, let N} (4;9) = {j € N®(i;9) |j € Ni} be the set of players in group
k, k=1,...,m, to which player ¢ sponsors a link in network g. Next, for
a network g, let g be the collection of unordered pairs {7, j} such that there
exists a path between ¢ and j, thus

g ={{i,7} C N | there is a path between 7 and j in g} .

For example, in Figure 3 we have that g = {{1,2}, {1,5}, {2,5}, {3,6}}.
Likewise, let N (i; g) denote the set of players to which player i is connected
in g, including i itself. So,

N(i;g) ={j e N [ {i,j} e g} U {i}.

12The normalization to one unit of benefit does not affect the results and simplifies the
statements of our results.
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Now, for i € Ny, the payoff function of player i assigning the payoff to player
i in any network g € G is given by

Li(g) = IN(is 9)| = Y INF (65 9)| f(|1 = k).
k=1

To avoid border problems, we assume that players lexicographically prefer
sponsoring a link to not sponsoring a link. Thus if player ¢ receives the same
payoff in g U {(i,7)} as in g, then ¢ will strictly prefer g U {(¢,7)} above g.
This completes the description of the stage game.

2.2. Nash networks. Given a network g € G, let g_; denote the network
that remains when all of player i’s links are removed, thus g_; = g\ g;- The
network g_; € G can be seen as a strategy profile when ¢ chooses not to form
a link with anyone. Now, a strategy h; € G; is said to be a best reply of
player i to g if for any h} € G; holds that

11, (hi U g_i) > 11, (h; U g_i)
or
1I; (hl U g,i) =1I; (h; U g,i) and ‘hl‘ > ‘h;‘

So, if h; is a best reply, then h is also a best reply if both II; (h; U g_;) >
I1; (ki U g—;) and |h;| > |h}| hold with equality. If there is at least one strict
inequality, then h} is not a best reply. The set of all best replies of player i
to g is denoted by B; (¢) and a specific element of B; (g) will be denoted by
bi (g). Observe that B; (g) = Bj(g—;) for all g. Without any confusion we
will use both notations.

Before we continue, we should emphasize some aspects of the best reply
sets of the players. Consider network g and let the network ¢g_; consist of
k + 1 components', say Cp,...,Cy. Without loss of generality we may
assume that ¢ belongs to Cy. Let b;(g) € Bi(g) be a best reply of player
1 to g—;. Then b;(g) does not contain a link (7,7) to any player j in his
own component Cp, while there is at most one link in b;(g) to any other
component. Further, if ¢ prefers to sponsor a link to some component Cp,
h =1,...,k, then he is indifferent between the players in that component
that are closest to him and he will not sponsor a link to any other player
of that component. Lastly, since the benefits of linking to some component
are independent of the other links of the player, he will make his choice with
respect to which of the players closest to him in this component irrespective
of his links to other components. From this we obtain without further proof
the following lemma'4, which will appear useful later.

13Gee section 2.4 for the definition of a component.

MWith slight abuse of usual notation, for m non-empty sets An, h = 1,...,m, we
define the product set as I Ap = {{a1,... ,am} | an € An, h =1,... ,m}, i.e. the
product set is the collection of all sets of m elements containing precisely one element of
each set Ap.
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Lemma 1. Let g be a network in G and let Cq,... ,Cy be the components
of g—; not containing player i. When i prefers to sponsor a link to Ch, let
Dy, be the subset of players in Cy, that are closest to i; otherwise let Dy, = ().
Then B;(g) = {0} if Dy, =0 for all h and

Bi(g) = np, 20y D, otherwise.

So, the lemma says that the best reply set contains b; = ) C G; as its
unique element when ¢ does not want to sponsor any link. Otherwise, a
strategy b; € G; is in the best reply set B;(g) if and only if b; contains
precisely one link to a player in D, for any component Cj with Dy # (.
For example, let g_; consist of four components: Cy, C1,Co and Cs. with
i € Cp. Further, suppose that i prefers to sponsor a link to C7 and Cs, but
not to C3. Let players 7,5, 7" be the players in C closest to ¢ and k, k' the
players closest to i € Cy. Then

Bi(g) ={bi € Gi | bi ={(i,5"), (i, k")}, j* € {4, 5, 5"} . k" € {k,K'}}.
Definition 1. A network g is a Nash network if and only if g; € B; (g) for

each i. A Nash network is a strict Nash network if Bi(g) = {¢:} for all i,
otherwise, a Nash network is said to be weak.

So, in a Nash network each player plays a best reply. In a strict Nash
network ¢ it holds for any player ¢ that each other strategy h; gives a lower
payoff to i or it gives the same payoff but h; contains less links than g;.

2.3. The Dynamics. To specify the dynamics of the model, we assume
that time is discrete. Moreover, we assume that in every period each player
plays the same strategy as he did the period before with probability 1 — p.
However with positive probability p < 1, a player receives the opportunity
to update (revise) his strategy. The probability p is assumed to be identical
for each player and the probability that player ¢ € N is allowed to update
his strategy does not depend on the fact whether or not player j € N \ {i}
is allowed to update. This means that in each period, the set of players that
is allowed to update, can be any one subset of the population. If a player
updates, he will act according to a pre-specified behavioral rule. We assume
that players are myopically rational, that is, whenever players update their
strategy they play a best reply (because they are rational) to the current
network (because they are myopic). Thus a player does not take into account
that also other players will update their strategies. If a player has several
best replies, then he chooses one according to a random device that assigns
positive probability to each best reply. The resulting dynamics is the so-
called best reply dynamics. Because p is smaller than 1, not every player
receives the chance to update every turn. This feature of the model is called
inertia. Lastly, we do not allow for any perturbations in the dynamics: no
player ever plays a strategy that does not follow from the behavioral rule.
Summarizing, we use an unperturbed best reply dynamics with inertia.
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Formally, the dynamics induces a Markov process on the state space G of
all networks. More precisely, for g € G, let qﬁé be a probability distribution on
G; assigning positive probability to h; € G; if and only if h; € B; (g). So the
behavioral rule of every player is given by these probability distributions in
the set G of all networks. Now, starting from some initial network ¢" at time
t = 0, let the Markov process be given by the sequence of random variables
X, t > 1, on the state space G. Then the time-independent transition
matrix of transition probabilities Py, that at time ¢ + 1 the process moves
to state h € G when it was in state g € G at time ¢ is given by

Py, = Prob{Xi 41 = h| Xy =g} = XiEN‘Pii,hi’

where Pgi,hi is the probability that player ¢ updates to strategy h; when he
played g;, i.e.

p X qﬁz](hi) when h; € B; (9) and h; # g5,

1 —p+px ¢,(hi) when h; € B; (g9) and h; = g,

1 —p when h; = g; and g; ¢ B; (9),

0, otherwise.

(2.1) Pgi,hi =

Starting from some initial state g% at time ¢ = 0, the Markov process gen-
erates a sequence of networks. If at time ¢ the network is g*, then the set of
networks that are possible at time ¢ + 1 is given by

(2.2) gttt = {g€g|g¢€Bi (gt)Ugf, for alliGN}.

It is well-known that the process converges to some recurrent class of states.
To characterize the networks which may appear in a recurrent class of states,
we will use the concept of minimal curb set, to be introduced in the next
section.

2.4. Additional notation and terminology. In this subsection we intro-
duce some more notation and terminology that we will need in the sequel
of this paper. First, we state the well-known concepts of components, min-
imality, connectedness, cycles and empty networks. Second, we introduce
some specific notions that will used in the next sections, such as internal
links and external links. Finally, we define some sets of players in relation
to a link that a player sponsors.

A component of a network ¢ is a maximally connected subset of players,
i.e. the subset is connected and becomes unconnected when adding any other
player to the subset. Let C'(g) = {C’l, e Cy(g)} be the set of components
of a network g, where 7 (g) is the number of components in network g.
Observe that every player belongs to exactly one component, so that the
components form a partition of the set N of players. We denote the number
of components that have at least one member within a certain group, say
group £, by «y, (g). Formally:

Ve (9) = {Cr € C(g) INe N Cr # 0}
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For example, in Figure 3 there are 3 components: {1,2,5}, {3,6} and {4},
while v; (¢g) = 2 and 74 (¢9) = 3. In the network g of Figure 8 there is only
one component and thus 7,(g) = 1 for any group /.

A network g is said to be minimal if and only if v(g9) < v(g\ {(¢,7)})
for all (7,7) € g. Thus a network is minimal if removing any link would
break the connection between some pair of connected players. Clearly, a
network is minimal if and only if there is a unique path between every pair
of connected players (there are no ’cycles’).

We say that a network g is connected if every player is connected to every
other player. Thus a connected network consists of only one component. If
a connected network is minimal then we call it minimal connected. It follows
that any link in a minimal connected network is critical in the way that the
network breaks up into two components when deleting any link. A cycle in a
network ¢ is a path of k£ > 2 different unordered pairs {i1,i2},. .., {ig, ik+1}
in the induced undirected network (graph) g such that all players on the
path are different, except that iy = 4x+1. Thus in a network g on the
players set N = {1,2,3,4,5}, both the set of links {(1,2),(2,3),(1,3)}
and {(4,5),(5,4)} constitute a cycle. Notice that a network contains a
cycle if and only if it is not minimal. A network without links is called an
empty network. By definition such a network is minimal and consists of n
components.

Next we introduce some concepts with respect to the groups in the model.
A link (4, j) is called internal if i and j belong to the same group. Otherwise
we say that the link (7,7) is external. We say that i,j € Ny are internally
connected in g if there exists a path in g between ¢ and j that only contains
internal links. We say that i, € Ny are externally connected if they are
connected but not internally connected. Group £ is called entirely internally
connected in network g if all pairs ¢, j € Ny are internally connected, group
¢ is called entirely externally connected if all pairs i,j € Ny are externally
connected. We denote the set of entirely externally connected groups in g
by N'F (g), and the set of entirely internally connected groups by N7 (g).
Notice that N7 (g) UNF (9) € N ={Ny,..., Ny}, for all g € G. We say
that the set of players Ny € N in group £ is a center-sponsored star if and
only if there is one player in Ny that sponsors a link to each other player
of Ny, and no other player in Ny, sponsors any internal link. An example
of a center-sponsored star is group 3 in the network of Figure 7. Finally,
for g € G, we denote the number of internal links within group ¢ by oy (g)
and the total number of internal links within the network g by o (g), thus
o(g) = > y-y00(g). For example in Figure 3 01 (g) = 2, 02(g) = 0, and
o(g) =2

Next, we introduce some definitions of sets of players that a player ob-
serves via a link that he sponsors. At the end we give an example to clarify
these definitions. First, for a network g € G and i € N, we denote A (g)
by the set of players that ¢ observes exclusively via his link to some player
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i" € N\ {i} by
A (9) ={j €N |j€N(is9) and j ¢ N (539 \ {(,7)}) } -
Thus A;ir (g) is the set of players that i observes in g and that ¢ would not
observe if i deletes his link to i’. Observe that A (g) = 0 if (4,4') ¢ g. We
proceed by defining AZ (g) as the set of players in A;; () that are members

of entirely externally connected groups that are not fully observed by ¢ via
(i,4), i.e.

AL (9) = {j € A (9)|j € Ney N € NF(g) and Ay (9) NNy # Ni} .

Thus Ag, (g) consists of all players that satisfy three conditions: first, each
player must also be part of A;; (g). Second, each player must be part of an
entirely externally connected group. Third, there must be another player in
the same group that is not part of A;» (g). Conversely, let D (g) denote
the set of players in entirely externally connected groups such that other
players of that group are observed by i via (,4'), but they themselves are
not. Thus:

Dfi(9) ={j € N\ A (9)|j € Noy Ne € NF(g) and Ay (9) N Ny # 0}

Observe that if there exists a player j € AE, (g) N Ny, then each player in N,
is either part of AZ, (g) or of DZ, (g). Finally, let N (i;g) denote the set of
players that sponsor a link to player ¢ in network g, i.e.

N (i;9) = {j € N[ (j,9) € g}

and for i € Ny, let N (i; g) be the set of players that sponsor a link to 4,
such that any i € N; observed by 7 will also be observed by ¢ when any
j € N (i; g) deletes his link (j,1), i.e.

N (is9) = {j € N"(i:9) |7e (9) = 7 (9 \ (G D)} -

As an example, consider Figure 8, but with links (2, 1) and (2, 3) replaced
by (5,2) and (6,3). Hence Ny C N'F (g), i.e. group 1 is entirely externally
connected. Player 12 observes players 1 to 6 and player 9 via the link
(12,9). Moreover if we would remove (12,9) from this network, then player
12 observes none of these players. Therefore Aj29(9) = {1,2,3,4,5,6,9}.
Similarly As4 (g) = {4}. If we would add the link (4,5) to the network, then
As4(gU{(4,5)}) = 0, since player 5 would also observe player 4 via (4,5).
Let us now find A%’g (9). In Aj29(g), the players 1, 2, 3 and 9 belong
to entirely externally connected groups. However, all members of group
1 belong to Aj29(g), thus Aj29(g9) N N1 = Ni. On the other hand, the
intersection of Aj29 (g) with group 3 is a strict subset of group 3. Therefore
players in Aj29 (g) that are member of group 3 are part of A%,g (g9), while
members of groups 1 and 2 are not: A4 (g) = {9}. Dfj4 are all players
that are not part of A%’g (g9), but that belong to a group of which some
players are part of A%,g (g9)- In this network ng,g (9) = {7,8,10}. Finally,
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note that N”(9;¢) = {5,12} and that v3(g) = v3(¢g \ {(5,9)}) = 1, while
75 (g\ {(12,9)}) = 2. Therefore N% (9, g) = {5}.

3. SUPER TIGHT CURB SETS

Standard theory shows that strict Nash equilibria are stable in a best
reply dynamic process. A strict Nash equilibrium is characterized by a
strategy profile in which each agent is playing his unique best reply. So,
if the dynamics at some time ¢ reaches such a state and the dynamics is
unperturbed, then it will stay in such a state forever. In other words, a
strict Nash equilibrium is an absorbing state (a state that is not ’left’ once
it is reached) of an unperturbed best reply dynamics.

In general, the unperturbed best reply dynamics converges to a recurrent
class of states. A class of states is recurrent when (i) the dynamics stays
within this class forever as soon as it has reached one of the states of the class,
and (ii) from each state in the class there is a positive probability to reach any
other state in the class within a finite number of steps. For example consider
the bimatrix game of Figure 5. It represents a simultaneous move game of
two players with strategy space S = §1 X Sz, where S1 = {a, b, ¢, d, e} is the
strategy space of player 1 and Sy = {A, B,C, D, E} the strategy space of
player 2. We now suppose that the game is repeated infinitely and that the
players revise their strategies conform the unperturbed best reply dynamics
that we defined in the previous section. The state space of the dynamics
is the strategy space S = &1 X S2. We denote a state, or strategy profile,
by s = (s1,82) € S. There are three recurrent classes of states, namely
X = {(a7A> ) (a7 B) ) (b7 A) ) (b7 B)}v Y = {(Cv C) ) (Ca D) ) (d7 C) ) (d7D>} and
Z ={(e, E)}.

Clearly, the strategy profile s = (e, F') in the singleton recurrent class Z
is a strict Nash equilibrium. Hence when the dynamics reaches this state,
then it will stay there forever. Any state in the class X in a weak Nash
equilibrium. In this class the dynamics can go from one state to any other
state within one step. For instance, consider s = (a,A) € X. In this
state, player 1 is indifferent between playing a and playing b and player 2
is indifferent between A and B. Therefore, when the dynamics is in state
(a, A), it goes to (a, B) or (b, A) when one of the players updates, or to (b, B)
when both players revise their strategies simultaneously.

Within the recurrent class Y the dynamics can go from one state to pre-
cisely one other state. For instance, when the dynamics is in (¢, C), it goes
to (¢, D) when player 2 updates (and stays otherwise in (¢, C)), from (¢, D)
to (d, D) when player 1 updates, from (d, D) to (d, C') when player 2 updates
and then back to (¢, C') when player 1 updates. So, in this case there is a
unique cycle containing all the states of Y along which the dynamics moves.
Observe, that none of these states is a Nash equilibrium. Nevertheless, this
recurrent class will be reached when player 2 updates and player 1 plays ¢
of d, or when player 1 updates and player 2 plays C or D. Apparently, it
may happen quite well that the dynamics will reach this recurrent class of
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players Player 2
strategies A B C D E
. a 3,5 2.5 2.4 2,4 0,0
o b 3,4 2,4 2,3 2,3 0,0
§ c 2.1 1,1 4,2 3,5 0,0
d 2.1 1,1 3,5 4,2 0,0
e 0,0 0,0 0,0 0,0 2,2

FIGURE 5. 2-player 5x5 game

states. This makes that each of the three recurrent classes is a candidate
solution for the best reply dynamics.

To be able to characterize the states which may occur in a recurrent class
of the unperturbed best reply dynamics of the network formation game,
we will consider the static solution of the so-called curb sets, introduced by
Basu and Weibull (1991). A set of strategy profiles is said to be closed under
rational behavior (curb) if it contains all its best replies. Formally, let be
given a game with players set N = {1,... ,n} and strategy space S = X;en
S;, where S; is the strategy set of player i. Then a subset S C S is a curb
set if

B(S) = Xjen Uses Bi(s) € S,

where B;(s) is the i-th player’s best reply set to strategy profile s . Clearly,
any strict Nash equilibrium is a (singleton) curb set. So, the recurrent class
Z in the example of Figure 5 is a curb set. It is easily seen that also the
recurrent classes X and Y are curb sets. However, by definition, for a game
with bounded strategy spaces also the whole strategy space of the game is
a curb set, so that the concept of curb set is not very restrictive. Therefore,
often additional properties are imposed to obtain an appropriate solution
concept.

A curb set S C S is said to be tight if B(S) =S and S C S is said to
be a minimal curb set (MCS) if it does not contain a strict subset S’ C S,
such that B (S") C S’. Notice that if S is an MCS, then B (S) = S, i.e. all
minimal curb sets are tight. Clearly, each strict Nash equilibrium constitutes
a singleton MCS. In the game of Figure 5, all three recurrent classes X , Y
and Z are minimal curb sets. It follows straightforwardly that a recurrent
class is always contained in a minimal curb set. However, in general the
reverse does not hold. For instance, consider the bimatrix game given in
Figure 6.

In this game, there is only one minimal curb set, namely the whole strat-
egy space S = {a,b,c} x {A, B,C} itself. So, the unique minimal curb set
contains all possible nine strategy profiles. However, the unique recurrent
class of the unperturbed best reply dynamics contains only six states and
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players Player 2

. strategies A B C
o a 2,4 1,1 4,2
3 b 4,2 2,4 1,1
o C 1,1 4,2 2,4

FIGURE 6. 2-player 3x3 game

is given by the set {(a, A), (b, 4), (b, B), (¢, B), (¢, C), (a,C)}. Once the dy-
namics reaches one of these states, it will cycle along these states forever.
So, the unique recurrent class is a real subset of the unique minimal curb
set, but is not equal to this MCS. The following theorem states that ev-
ery minimal curb set contains at least one recurrent class of the best reply
dynamic defined in Subsection 2.3.

Theorem 1. Consider a game with population N = {1,...,n}, with strat-
eqy space: S = Xien S;. Then each minimal curb set contains at least one
recurrent class of the dynamic defined by Equation 2.1, with G = S.

Proof Note first that if st is the state at time ¢, then the set of possible
states in time ¢ 4 1 is given by St*! = G*! as given by Equation 2.2, i.e.

Sttt = {s € S8|sie B (s") x s, forallie N}.

Second, observe that if X is some minimal curb set, then B (X) x X C X.
Therefore, if s* € X, then s” € X for all T > t. This implies that X contains
at least one recurrent class of the dynamics. I

Notice that we do not claim that any recurrent class is contained by some
minimal curb set.

To obtain a further refinement of the concept of curb set, observe that
the curb set X in the example of Figure 5 has the special property that the
best reply of player ¢, i = 1,2 to a strategy profile s € X is independent of
s, L.e. for any s € X we have that Bi(s) ={a,b} and By(s) = {A, B}. This
property trivially also holds for Z, but 1t does not hold for Y For the latter
set we have that By (c,C) = Bi1(d,C) = {c} and Bi(¢, D) = By(d, D) = {d}.
According to GGK, an MCS S satisfying the property that for any player
i the best reply set is the same for any strategy profile s € S is called a
Super Tight Curb Set (STCS). Formally, for S C S and i € N, let S; be the
restriction of S to S, i.e.

Si:{SiGSi ‘ 3§€Swith§i:51~}.
Then a curb set S is STCS when S is a minimal curb set and it holds that
Bi(s) = S; for any s € S. So, within a STCS the best reply set of any
player is independent of the strategy chosen by any other player. The STCS

property implies two things. First, if S is STCS, then any strategy profile
s € S is a Nash equilibrium. Clearly, since B;(s) = S; for all s € S it holds
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that s € S = B(s). Second, when S is STCS, then the best reply dynamics
can go from any state in S to any other state in S within one step, since
all players can update simultaneously. So, when the dynamics is in some
state s € S at time ¢, then with positive probability the dynamics can be in
any state s € S at time ¢ + 1. Consequently, when S is a STCS, then S is
a recurrent class of states. Concluding we have that any recurrent class is

contained in an MCS, while on the other hand an MCS is a recurrent class
if it is STCS.

Theorem 2. Consider a game with population N = {1,...,n}, with strat-
eqy space: S = X;en S;. Let the dynamics be defined by Equation 2.1, with
G =S8. Then a minimal curb set that is super tight is identical to the unique
recurrent class of the dynamic it contains.

In the examples given above we have that the recurrent classes X and Z
of Figure 5 are STCS, whereas the recurrent class Y is an MCS, but not
STCS. The unique recurrent class of Figure 6 is a real subset of the unique
MCS and therefore it is not an STCS.

We now return to our Multiple Group network formation game. Notice
that Theorems 1 and 2 apply to this model. For a subset of strategy profiles
X of the space G of all networks, we have that

Xi ={gilg € X},

Bi(X) = Ugex Bi (9),
and

A curb set X is STCS if X is minimal and B;(g) = X; for all g € X and all
i € N. Two examples of minimal curb sets for the network formation game
with four groups are given in the Figures 7 and 8. The network of Figure
7 is a strict Nash equilibrium. The network of Figure 8 however is element
of a minimal curb set that contains 12 networks (states). Observe that in
this figure any player, except player 5, has a unique best reply and that this
best reply is identical to their current strategy. Player 5 has 12 best replies
(3 alternatives to group 1 times 4 alternatives to group 3), including his
current strategy, playing link (5,9), itself. For example, whether 5 links to
7,8,9,10, 11, 12, or 13, he will observe the same set of players. However the
links to the players in group 4 are more expensive than the links to group
3. Therefore there are 3 alternatives for the link (5,9). So, since any player
plays a best reply, the network is a Nash network.

Further observe that the sets of best replies of the other players are un-
affected by the particular best reply chosen by 5. For instance, although
the value of the link (12,9) decreases if 5 switches from 9 to 8, the value
is still higher than the cost of the link, since f (1) < 1 and therefore it is
still optimal for player 12 to play this link. Since the best reply set of any



20

N1 P N3 N
1 4 7 10
0
2 11
3 6 9 12

(@)
C
C
(@)

FIGURE 7. Strict Nash equilibrium for f(2) < 1.

N1 N> N3 Ny
1 4 7 11
8
2 5 9 12
3 6 10 13

FIGURE 8. Network in a non-singleton MCS for f (1) < 1.

player other than 5 is singleton, the best reply set of each player ¢ € N is
not affected by the particular best reply played by j € N\{i}. Therefore
the minimal curb set containing the network of 8 is STCS and thus a recur-
rent class of states. Hence, any network in this curb set is a Nash network
and the best reply dynamics may go from any network in the set to any
other network in the set within one step. In particular in should be noticed
that in an STCS of networks, the set of best replies is unaffected by any
sequence and any timing in which any set of players choose to select any of
their alternative best replies. Also notice that, as proved by Bala and Goyal
(2000), all Nash networks are minimal.

4. SUPER TI1GHT CURB SETS IN THE MG MODEL

In the next two sections we want to characterize the networks that are
likely to arise in the MG model. We focus to the case where f(0) < 1 and
f (1) < maxy |Ny|. The analysis can be extended to all cost functions, and
theorem 5 will continue to hold. The proof for this is not included in the
paper, because it is cumbersome and large, while it adds little additional
insight.

GGK found that the strict Nash equilibrium does not exist for all param-
eters, and that it is not the only type of network that survives the best reply
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dynamics. Hence the focus on strict Nash equilibria appears overly restric-
tive. However, as in most network formation models, the concept of weak
Nash equilibrium has little bite: we cannot say much about such networks.
Moreover, most Nash equilibria do not survive the best reply dynamics.
Hence we use an alternative solution concept: the minimal curb set. As we
show in this section, the minimal curb sets of this model contain only Nash
equilibria, namely those that belong to a recurrent class. Furthermore, all
networks in a recurrent class belong to a minimal curb set. Therefore the
minimal curb set is, in this model, a good refinement of the set of Nash equi-
libria. In Section 5 we give necessary and sufficient conditions for networks
to belong to a minimal curb set.

We prove these results in Theorem 5. There we show that every recurrent
class contains a subset of networks that is, by itself, a super tight curb set.
Together with Theorems 1 and 2 it follows that every minimal curb set is
super tight. This enables us to characterize the minimal curb sets, which
we do in Section 5. Moreover, since the dynamics have at least one recur-
rent class, this also proves the existence of a Nash network in the network
formation game.

To obtain the main results of this section that any MCS is STCS, we first
prove two other theorems. These theorems state that for certain types of
networks at most one cycle can arise if two players update simultaneously.
Recall that for a network g € G of directed pairs of players, g is the corre-
sponding undirected graph on N and g the collection of all pairs connected
to each other in g through a path.

Theorem 3. Let g € G be connected and minimal. If exactly two agents up-

date simultaneously, then there is at most one cycle in the resulting network
/

qg.
Proof Let the two updating players be 7 and j. Because the network is
minimal and connected, neither player will sponsor more links in the network
¢' after updating than in the network g before updating. Otherwise, they
would expect to create a cycle, which contradicts that the players play a
best reply to g when updating. Thus the number of links does not increase.
Suppose that ¢’ contains a cycle. Since the number of links did not increase,
this implies that ¢’ is not connected. Further, since only 7 and j have been
updating, the cycle contains at least one of them. W.l.o.g. assume that ¢
is in the cycle and let N?,, C N be the set of players connected to i in ¢/,
including i itself. We first show that j € N’,,,. Suppose not. Clearly, the
cycle can only contain players in N¢, .. However, if j ¢ N¢ . then all players
in N! = except i itself play in ¢’ the same strategy as in g. Since g did not
contain a cycle, this means that ¢ sponsors at least one link of the cycle,
which contradicts that in ¢’ i plays a best reply to g. Hence j € N, ,,.
Suppose player ¢ and j deleted together x links. Then if no cycles would
have been created there would have been x + 1 components, because the

total number of links in the network is now |N| —z — 1. In each cycle, any
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one link could be deleted without removing the connection (path) between
any two players. Therefore, such a link does not connect any two, otherwise
disconnected players. Therefore, per cycle in ¢’ there is one more component
in ¢’, which does not contain ¢ and j. Let us denote any one such component
by N/, C N. Since g was connected, either i or j or both sponsored a link
to a player of N/, , in g. Without loss of generality, suppose that i spon-
sored a link in g to some player ¢ € N/, ,. Since the players in N/, , did not
update and N/, ; is connected, this implies player ¢ observed all players in
N]_, through his link to ¢, i.e. N/, ; C A;i» (g). Since i played a best reply
to g, player ¢ thought that he would still observe the players N/ , in ¢'.
So, when updating player i replaced his link (7,4") by a link (7,4”) such that
N, C Aiin (9—i U g;). However, it appears that the players in N/, are not
observed anymore, i.e. N/, ; € N\ A;» (¢'). Hence it follows that player j
has a link via which 7 expected to access N/, ;, i.e. there is a player j' such
that N/, ; € Aj; (9). This implies that ¢ € A;js (g9) and j € A (9) and
that both sets contain N/, i.e. in g there is a path from ¢ to j containing
players of N/_,. Now, suppose there is a second component N/ , # N/_ . of
connected players in ¢’ not containing 7. Then ¢ also contains a path from 4
to j containing players of N” ;. However, this contradicts that g is minimal.
So there are at most two components in ¢’, one containing player 7 and one

not. Therefore g’ can contain at most one cycle. I

Theorem 4. Let g € G be minimal and let j € N be such that g; € Bj(g).
Then if i and j simultaneously update, the resulting network g’ will contain
at most one cycle.

Proof Let C be the component of the network g that contains j. Because
j plays a best reply in g, apparently he strictly prefers not to sponsor a link
to any player h ¢ C. Thus if j and a player ¢ # j simultaneously update,
then any cycle involving any player h ¢ C' is created by the best reply of
i. However, this contradicts that ¢ plays a best reply to g. So, any cycle
is created by j and i together and therefore can only include players of C.
Therefore, for the purpose of determining the number of cycles that ¢’ can
contain, we can treat C' as a minimal connected network by itself and apply
theorem 3. This concludes the proof. i

Example 1.

Consider the network g of Figure 9 with two groups with player 1 € N7 and
players 2,3,4,5 € Ny and let the cost of any link be smaller than 1. Then
player 1 is indifferent between any link to one of the players 3, 4 and 5, while
player 4 is indifferent between sponsoring a link to either player 2 or player
3. So, if both players update simultaneously then it may happen that player
4 replaces his link to 3 by a link to 2 and player 1 replaces his link to 3 by a
link to 5. So, in the resulting network ¢’ the players 1 and 4 miscoordinate
and neither player sponsors a link to 3. As a result, in ¢’ player 3 is isolated
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FIGURE 9. Example of miscoordination

and a cycle between 1, 2, 4 and 5 occurs. Observe that in ¢’ the number of
links is not larger than the number of links in g.

We are now ready to state the first of the two main theorems of this
paper, saying that under certain conditions any recurrent class (RC) of the
network formation is also a super tight curb set.

Theorem 5. Let be given a network formation game with m groups of play-
ers Ni,... ,Nm, m > 2 and |Ng| > 2 for all £, and with a strictly increasing
cost function f(-) satisfying f(0) <1 and f(1) <max, |Ng|. If X CG isa
recurrent class from the dynamics specified in Equation 2.1, then X is also

an STCS.

The proof of this theorem follows from a number of lemmas stated below.
The lemmas show that any network in some subset of an RC satisfies certain
properties. At the end it follows that any network of an RC satisfies these
properties, which implies that the RC contains an STCS. It then directly
follows that the MCS is super tight and that each recurrent class is identical
to some MCS. In the reasoning underlying the lemmas, it should be kept
in mind that, first, if a network is in some RC X, any sequence of updates
generates a sequence of networks in X; second, if a network is minimal and
only one player updates, then the resulting network is also minimal; and
third, if a network is minimal and any number of players update simulta-
neously, then the resulting network contains at least the same number of
internal links. As far as needed we refer to Appendix A for the proofs of the
lemmas.

As we have seen any network in a super tight curb set is a Nash network
and thus is a minimal network. We therefore first adapt the result from
Bala and Goyal (2000), saying that any RC contains at least one minimal
network. To see this, let X be an RC, ¢° a network in X, and suppose
that all players update subsequently, i.e. each player ¢ plays subsequently
a best reply to network ¢g*~!, where ¢ is the network that occurs after the
update of player ¢, i = 1,... ,n. Clearly, the resulting network ¢g" has to be
minimal. If not, then there must be a cycle in the network. But then the
last player ¢ contained in this cycle that sponsors a link in the cycle, did not

play a best reply to ¢": a contradiction. Since by definition each network
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¢' is in X, we obtain that X must contain a minimal network. So, without
further proof we can state the following lemma.

Lemma 2. Let X be an RC. Then there exists a network g € X that is
minimal.

Next we define for an MCS X the non-empty subset of minimal networks
obtained by maximizing lexicographically the number of links from length
zero to length m — 1. More precisely, for X C G a recurrent class, define

X™in — {4 € X|g is minimal }.

From Lemma 2 we know that X™ is not empty. Further, let 6 (g) be the
number of links of length k in network g. Then we define successively for
k=0,..., m—1,

XPin — fg e XM | §,(g) > 6x(g) for all ¢ € X™n}

where X™n = X™in_ By construction we have that X" C Xmin k =
0,...,m—1 and that X™™ is not empty. In the following lemmas we show
that any network in Xgi_nl satisfies a number of properties.

First, observe that in any g € X™ each group is connected. If not,
then there is a group, say group ¥, of which two players belong to a different
component in g. Since f(0) < 1 and in case of ties sponsoring a link is
preferred to not sponsoring, any best reply of a player in Ny contains an
internal link to a player in Ny that he does not observe in g. Moreover,
since the network is minimal, if an updating player deletes an internal link,
then this link will be replaced by an alternative internal link. Therefore, any
update of a player in Ny leads to a network ¢’ with more links of length zero
than in g, which contradicts that g € X™ . So, any group is connected.
Now, the next lemma states that in a network g € Xgi_nl not only each group
is connected, but also that each group is either entirely internally connected

or entirely externally connected.

Lemma 3. For each g € X it holds that N* (9) UNE (g) = N, i.e. any

group 1s either entirely internally, or entirely externally connected.

Since the proof is given in Appendix A, here we only illustrate the lemma
by an example.

Example 2.

Consider Figure 7 but with link (6, 2) replaced by link (2, 3) and suppose that
this modified network g belongs to X™1 for some RC X. In the network
g group Nj is neither entirely internally connected nor entirely externally.
Supposing that f(1) < 2 any of the players 1, 2, 3 and 6 plays a best reply
to g. However, when players 2 and 6 update simultaneously, it may happen
that player 2 replaces his link to player 3 by a link to player 1 and that at
the same time player 6 replaces his link to player 3 by a link to player 2.
For both players this is a best reply to g. Let ¢’ be the resulting network.
Clearly, because of the miscoordination in the previous step, player 3 is now
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isolated of the other players in his group and thus in ¢’ neither of the players
of group N; plays an optimal reply. Now, let player 3 update. Then this
player will sponsor a link to (one of) of the other players in Ny, say player 1.
When successively player 6 gets the turn to update, this player will delete
his link to player 2, because he is connected already to 2 through the path
via 9, 8 and 1. Now, the resulting network is minimal again, but contains
one more links of length zero than the original network g, which contradicts
that g € X™min

m—1*

The next lemma excludes that in a network g € X™ a player observes
an other player in his own group through an external link.

Lemma 4. Let g € X™% and let i € Ny and j € Ny for some k # (. If
{i,j} € g, Ny, € NF(g) and there is a player h € Ny, h # j, that is observed
by j via i, then (i,7) € g.

Example 3.

Consider Figure 8 but with link (12,8) replaced by link (8,12) and suppose
that this modified network g € X for some RC X. In this network g we
then have that player 8 observes player 7 in his group N3 through his link
to player 12in Ny, ie. i =12, j =8, h=T7,k=3and / =4 and (8,12) € g.
The lemma says that this excludes that g is in Xnn;‘ifl. Indeed, when player
8 has the possibility to update, he will replace his link to 12 by a link to 7,
increasing the number of links of length zero. Observe that in the original
network in Figure 8 it holds that (12,8) € g and thus satisfies the property
stated in the lemma.

We have observed already that any group is connected. The previous
lemma implies that when g € gi_nl, each player of an entirely externally
connected group observes the other members of his group via links he re-
ceives. Thus if every player belongs to an entirely externally connected
group, there are at least as many links as players, which is impossible in a
minimal network. So, at least one group is not entirely externally connected.
Together with Lemma 3 we obtain without further proof the following result.

Lemma 5. For any g € X it holds that NT (g) # 0, i.e. there is at least
one group that is entirely internally connected.

The next lemma says that any player on a path in g between two players j
and j’ of an entirely externally connected group does not have any best reply
in which j and j' become disconnected. Recall that there are no internal
links in an entirely externally connected group.

Lemma 6. Let g € X™% and let players j and j' be two distinct players
in some group N; € N¥(g). Then if i is on the path between j and j',
then there is a path between j and j' in any network ¢ = g—; Ub;(g) for all

bi(g) € Bi(g).



26

N4 Ns
14 17
15 |18
16 /19

FI1GURE 10. Network in an STCS for f (1) < 3.

Example 4.

Suppose that the network g given in Figure 7 belongs to X for some RC
X and assume that f(2) > 1. Then the players 1 and 2 of the entirely
externally connected group N1 become unconnected when player 8 updates.
Indeed this player will delete his link to player 1. Next, let player 2 update.
Then this player will sponsor an additional link to 1. The resulting network
is minimal and contains more internal links then g, excluding that g € XX, .

The next lemma states that in any g € X1 each pair of players observes
each other.

Lemma 7. Any network g in X2, is connected.

Example 5.

Suppose that the network given in Figure 10 belongs to X1, for some RC
X and assume that 3 < f(1) < 7 =max, |Ng| = |N3|. Denote the network
by ¢'. When player 5 updates the network becomes g' = ¢°\ {(5,2)},
in which player 5 has deleted the link (5,2) because f(1) > 3. Next, let
player 10 update. Then this player deletes the link (10,5) and we obtain
g> = ¢+ \ {(10,5)}. However, next let player 5 update again. Then this
player will add the link (5,10) since f(1) < 7 and we obtain the network
g® = g*U{(5,10)}. Finally, let some player i € N1 update. Then this player
will add a link (¢,7) to some player j € Ny and we obtain the network
g* = 3 U{(i,j)}. Since ¢° € X and it is supposed that X is RC, all
networks ¢' € X, i =1,...,4. Moreover all networks have the same number
of internal links, but only the connected networks ¢° and ¢g* contain four
links of length one. The other three unconnected networks have only two or
three links of lengths one and therefore they do not belong to X1, .

The next lemma shows that for any g € X™% all links of length two or
more are stable, i.e. each player i has a best reply b;(g) € B;(g) such that
bi(g) contains all links (7, j) in g; of length two or longer.
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Lemma 8. Suppose g € X™1 . Then for any i it holds that
for some b;(g) € Bi(g).

Example 6.

We show two examples contradicting that g € X fflnfl when a player prefers to
delete or replace a link of length two. First, consider Figure 10 but with link
(15, 18) replaced by (9,18) and suppose that this modified network ¢ € X
for some RC X. Further assume that 3 < f(1) < 7. In this case, player 9
strictly prefers to delete the link (9, 18) of length 2. So, when 9 updates, we
get gt = ¢\ {(9,18)}. However, when succeedingly player 18 updates, we
obtain the network g% = ¢° U {(18, )} for some j € Ny. Since this network
contains one more link of length one than network ¢°, it follows that ¢° is
not in X™min, .

Next, consider Figure 10 but with link (10, 15) replaced by (10,17) and
suppose that this modified network ¢g° € X for some RC X. Clearly, when
player 10 updates, he prefers to replace (10,17) by a link to group 4. Again,
the resulting network is minimal and has one more link of length one than
g%, contradicting that ¢° € Xﬁi_nl.

We are now ready to show that each RC X contains a non-empty subset
of Nash networks. Therefore we define the subset of networks of X',

denoted by )?nn;‘i_nl, satisfying that all links of length one stable, i.e.

XM — fg e X™0 | for any i there exists b;(g)
such that {(4,7) € g; | length (¢,7) =1} C b;i(g)}-

From Lemma 8 we already know that in any g € X2 any link of at least
length two is stable. Moreover, all internal links (of length zero) are stable,
since any g € X™7 is minimal and f (0) < 1. So, for a network g € )?{3511 it
holds that all links are stable, i.e. for any ¢ it holds that there is a best reply
bi(g) such that (i, 7) € b;(g) for any link (7, 7) € g;. So, for some given player
i, referring to the notation used in Lemma 1, we have that any player j to
which player ¢ sponsors a link in the network g belongs to the set Dy, of some
component Cj, (not containing i) in g_;, and moreover that in g any player
i sponsors a link to at most one player in any component Cj. Moreover,
it should be observed that Dy # () for any C}, not containing 7, because g
is connected. So, without further proof, it follows now immediately from
Lemma 1 that each network in X2 is a Nash network.

Lemma 9. Any network g € Xﬁ{‘l is a Nash network, i.e.
mi={9€ XpMlg e B(g)}
The next lemma is crucial for the proof of Theorem 5 and states that

)?E;‘Tl is not empty, implying that any MCS contains at least one Nash
network.
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Lemma 10. Let X be an RC. Then the set )A(nn;‘E‘l of Nash networks is not
empty.

Example 7.

Suppose that the network g given in Figure 10 belongs to Xgi_nl for some
RC X and assume that 6 < f(1) < 7. Clearly, g is not Nash. When player
10 updates, he deletes both (10,5) and (10, 15) because he only observes 6
players through each of these links. Next, when player 5 updates, he deletes
(5,2), but he will add a link to group 3. Then let any one player of group
1 update: he creates a link to group 2. Similarly, let respectively player 15
and a player from group 5 update. This process leads to a Nash network ¢'.
Since 61 (g') = 6x(g) for any length k and it is supposed that g € XX, it

m

follows that ¢’ € Xmin showing that the latter set is not empty.

m—1»
We now continue with some properties for networks ¢ in )A(nn;‘ﬂ The first

property says that when g € )?{3511 each player ¢ sponsors in any ¢’ € B(g)
the same number of links as in g to each group.

Lemma 11. Let g be a network in )AQSE‘I and g a network in B(g). Then
for each i and each £ it holds that

{G@.7)€glieNH =G 1) €g |jeN}

Example 8.

Consider Figure 8, but with link (5,9) replaced by (1,7) and suppose that
the modified network g is in Xﬁﬂ for some RC X. In this network player 5
is indifferent between the link (5, 1) and a link to any one member of group 3
(or to any other member of group 1). So, the lemma does not hold, because
player 5 can replace the link (5,1) by for instance the link (5,8). However,
when player 5 is doing so, then player 1 strictly prefers to replace (1,7) by
a link to group 2. This violates Lemma 8, showing that g is not in Xgi_nl

and thus also not in )?n“ﬁ‘l
Lemma 11 implies the following corollary:

Corollary 1. Let g be a network in )?}35‘1 and (i,7) € g, 1 € Ny, j € Ni
where k # £. Then i is not indifferent between a link to j and a link to some
J' ¢ Ni.

Proof We prove this by contradiction. Let ¢ update. Because g is a Nash
network, by Lemma 1 ¢ may select b; (¢) = (¢:\ {(¢,7)})U{(7,75)} . However,
since j' ¢ Ny player i then sponsors less links to group k then before. This
is a contradiction with Lemma 11. §

The next property says that when in a Nash network of an RC a player in
an entirely externally connected group observes another player in his group
through a link sponsored to him by a player ¢, then he observes all players
in his group through the same link. Observe that player ¢ does not belong
to the same group, otherwise the group is not entirely externally connected.
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Lemma 12. Let g € )A(%_nl and j and j' two distinct players in some group
Ny € NE(g). When (i,7) € g and i is on the path between j to j', then i is
on the path between j and h for all h € Ny \ {j}.

Example 9. Consider Figure 8 but with link (12, 8) replaced by link (5, 8)
and suppose that this modified network g € X for some RC X. Now, player
9 in the entirely externally connected group N3 observes player 8 through
the link sponsored by player 5, but he observes player 10 through the link
sponsored by 12. Hence the lemma is not satisfied. Indeed, observe that in
g player 12 is indifferent between a link to 8 and a link to 9, while player 5
is indifferent between a link to 9 and a link to 10. Let these players update
simultaneously, such that 5 switched to 10 and 12 switched to 8. Then 9
becomes isolated. Next, when 9 updates, he will sponsor an internal link,
for instance to 10. Finally, when 5 updates again, he will delete one of his
links to 8 and 10. The resulting network is minimal, but has more internal
links than g. Hence g is not in Xgi_nl and thus also not in anﬁli_nl.

Next, we define a subset of the set of Nash networks )/fn“;‘i_nl, to be denoted
by )?nn;‘i_nl, satisfying that players within a entirely internally connected group
in the network are organized in a center-sponsored star (CSS), i.e.

(4.1)Xmin, — {g e X | for all Ny € N7 (g), there exists i € Ny

such that (i,i") € g for each i' € Ny \ {i}}.

Bala and Goyal (2000) showed that in a model without cost heterogeneity
players are organized in a CSS. Because in our model there is no cost hetero-
geneity within groups and all paths connecting players of entirely internally
connected groups consist only of internal links, we expect that their result
extends to entirely internally connected groups. Indeed we will show in Sec-
tion 5 that in any g in a STCS each entirely internally connected group is
CSS. As a preliminary result, the next lemma says that for any MCS X, the
subset X™" wherein the architectural structure of any internally connected
group is a central-sponsored star (CSS) is not empty. For the proof we refer
again to Appendix A.

Lemma 13. Let X be an RC. Then )N(ngl s not empty.

The final lemma shows that within an RC X the set of best replies is the
same for any g € X by showing that for any g € X the best reply set is the
same as the best reply set for a given network g* € Xmin, .

Lemma 14. Let g* € X™" . Then then B(g) = B (g*) for any g € X.

m—1-

Again, the proof of the lemma is given in Appendix A. Without further
ado we can present the final lemma.

Lemma 15. Let X C G be an RC, and let g € X. Then B(g) = X.
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Proof By lemma 14 it is sufficient to show that every network in an RC is
a Nash network. Suppose that g € X is not a Nash network, and consider
some ¢g° € X™n  Because both networks belong to the same RC, there is
a path of networks from ¢° to g. The dynamics imply (see Equation 2.2)
that for each player either g; = g2 or g; € B; (¢) for some ¢’ on the path of
networks from ¢° to g. Because ¢° is a Nash network, ¢¥ € B; (go) for all
i € N. Hence for all i € N, there is a network ¢’ € X such that g; € B; (¢').
By lemma 14, it follows that g; € B; (g) for all ¢ € N. Therefore g € B (g)
forallge X. 11

Thus we find that any RC X has the feature that B (g) = X. Hence X
super tight curb set, as is stated in Theorem 5.

Proof Theorem 5 The proof follows from the Lemmas 2-14. I

Because an STCS is an MCS, it implies that every RC is an MCS. More-
over, because any MCS contains an RC, the Lemma implies that any MCS is
an RC. Without further proof we can therefore state the following corollary.

Corollary 2. Let be given a network formation game with m groups of
players Ni,... ,Np, m > 2 and |Ny| > 2 for all ¢, and with a strictly
increasing cost function f(-) satisfying f(0) < 1 and f(1) < max, |Ng|. If
X C G is an MCS, then X is also an STCS and an RC of the dynamics
specified in Equation 2.1.

With this corollary, we can characterize the networks in an MCS of the
MG model.

5. CHARACTERIZATION OF NETWORKS IN MINIMAL CURB SETS

In the previous section we have seen that in the Multiple Group network
formation game any RC contains an STCS, and therefore that every MCS
is super tight. Note that the characterization of the MCS networks in this
model is possible only because of Theorem 5. Without that result we can not
establish any non-trivial a priori requirement on the networks in the game
that holds to be true for all networks contained in an MCS. For example,
we can not even exclude that non-Nash networks are part of some MCS (for
example in the MCS Y of the game in Figure 5). The same problems apply
to a subset of the networks in an MCS: the recurrent class.

In contrast, the concept of an STCS is much more restrictive. It demands
for instance that all networks in that set are Nash equilibria. Therefore the
result that every MCS is super tight is crucial in the characterization of the
MCS networks.

In this section we assume again that f(0) < 1, and f(1) < m?x|Ng\.

The characterization follows in three steps. First we show in the Theorems
7, 8 and 9 that any network in an MCS satisfies seven properties. In our
proofs we use the result that any MCS is also an RC from the dynamics
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specified in Equation 2.1. The five properties given in Theorem 7 follow
straightforwardly from the next theorem below, that states that any MCS
X is equal to its subset X™i% as specified in Equation ??. The Theorems 8
and 9 state two additional properties. Finally Theorem 10 shows that these
seven properties are also sufficient to guarantee that a network is part of an
MCS.

Theorem 6. Let X C G be an MCS. Then X = Xmin

m—1-

Proof By Lemma 13 we have that )?{3511 # (. Let g* be a network in
Xﬁ;‘ﬂ‘l From Lemma 14 we know that B (g) = B(¢*) = X for all g € X.
From this it follows that X = X@&  Suppose not. Then there exists a
network g € B (g*) \ X2 . So, there must exist a player j who in g either
sponsors more links than he does in ¢g*, or has deleted a link, or has replaced
a link by a longer one. However, each of these possibilities contradicts that
95 € Bj(g").

Since g € X = B(g) for any g € X, it also follows that any g € X is a Nash
network, thus X = )?;3511 Finally from g € B(g*) and Lemma 11 it follows
that the set of internal links in g is equal to the set of internal links in g*.
So a group in g is in N (g) and CSS if and only if it is in N/ (g*) and CSS.
Hence g € )2;25‘1 |

Theorem 7. Let X C G be an MCS. Then each network g € X satisfies
the following properties:
A. g is a Nash network and is minimal connected,

B. NT(9) UNF (9) =N and N (g) # 0,
C. if Np € N1 (g) then N, is a CSS,

D. Let (i,7) € g, where j € Ny. Then for each g’ € B; (g)
{G.5) €g1jeN} =NG,5) €g | je N},

E. Let (i,j) € g, i € Ny, j € Ny, € NE(g). If j observes any player
j' € Np \{j} via i, then all j € Ny \ {j} are observed by j via i.

Proof By Theorem 6 we have that any g € X is in )N(n“;‘ifl, which shows the
properties A and C. Further, any g satisfies all the properties given in the
lemmas of Section 4. So, property B follows from Lemma 3 and Lemma 5,

property D from Lemma 11 and property E from Lemma 12. I

The five properties of Theorem 7 do not by themselves prevent the three
causes of changes in best reply sets: (¢) miscoordination, (ii) a too large
decrease of the number of people exclusively observed by some player ¢
through some link (4,4") and (éi7) the entrance of some player j in the set of
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people exclusively observed by some player i through some link (7,’), where
i is not further from j than from #/. In Theorems 8 and 9 below we show
that any network in an MCS satisfies two additional properties that prevent
these three things to happen. To do so, recall from Section 2.3 that for a
network g € G, player i € N and link (4,4'), A; (g) is the set of players that
i observes in g and that ¢ would not observe if 7 deletes his link to 4’; that
AL (g) is the subset of players in A;; (¢g) that belong to entirely externally
connected group containing another player in the same group who is not in
Ay (9); and that DE (g) is the set of players in entirely externally connected
groups such that other players of that group are observed by ¢ via (7,i’) but
they themselves are not.

Theorem 8. Let X C G be an MCS. Then each network g € X satisfies
the following property:

F. Let (i,1"),(j,7") € g be two links, i € Ny and i’ € Ny with £ # (', j € Ny
and j' € Ny with k # k', such that i € Ajji (g) and j € Ay (9). Then: if
j € AL (g) then i ¢ AF, (g).

Proof Suppose F is violated. Then it is easy to see that by letting ¢ and j
update simultaneously we can get the following network

g =\ {@7), (7)) u{E"), (5"}

with " € ij, (9) N Ny and j” € DE (g) N Ny. Obviously ¢’ is not con-
nected, which implies by property A that ¢’ ¢ X which contradicts that X
is MCS. 1

Property F says that miscoordination can not occur when two players
update simultaneously their strategy in a network g that belongs to an MCS
X. For an example violating this property, see Figure 11. For this graph
we have that A2,5(g) = {4, ey 14, 16, 17, 18}, A17714(g) = {1, 2, 3, 5, ey 15}
with Agﬁ(g) = {13, 14}, Af7,14(9) = {5,6} and D£5(9) = {15}, D{Ezm(g) =
{4}, so that property F is violated. Now, players 2 and 17 miscoordinate
when 2 replaces his link to 5 by a link to 4 and when 17 replaces his link to
14 by a link to 15, resulting in a unconnected network. Property F prevents
from such a miscoordination.

To state the next theorem, we define for an MCS X and for each link
(,7'), ¢ and 7' in different groups, contained in at least one g € X the set

Agl’in (X> = ﬁ{gEX\(i,i’)Eg} Aii’ (9)

as the set of players that i observes exclusively through his link to 7’ in each
network in X containing this link and the set

Agl’ax (X) = U{g€X|(i,i’)€g} Agir (g)

as the set of players that i observes exclusively through his link to ¢’ in at
least one network containing this link. In Appendix B we prove the next
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FicURE 11. Miscoordination possible between players 2 and 17.

lemma, in which we define A% (X) = A% (X) = () if there does not exist

14
a network g € X containing the link (i,14’).

Lemma 16. Let X C G be an MCS. Then for any pair of players i and i
in different groups there exist networks g™ and ¢g"™** in X such that

min (X) — Aii’ (gmin)

and

173
According to this lemma there exist networks such that the set of players
exclusively observed by i through his link to an ¢/ in some other group is
precisely equal to the set of players that he observes exclusively through
this link in each network that contains the link, respectively in at least one
network that contains the link. This implies the next corollary.

Corollary 3. Let X C G be an MCS and i and i' two players in different
groups. Then for any g € X such that (i,i") € g it holds that

A (g™™) € Agir (9) € A (9™) .
We are now ready to state the next theorem.

Theorem 9. Let X C G be an MCS. Then for each network g € X and
link (i,") in g with i € Ny and i’ € Ny, £ # ', it holds that:
G.1. A (X)| = f(|¢ —1]).

G.2. for all 0" # ' such that 0" — €| < |0/ — (|, there does not exist
j” € ALpx (X) M Ny .

1%

G.3. AT (X)N Ny = AP (X) N Ny

4

Proof Suppose that G.1 is violated, i.e. |AZ™ (X)| < f(|¢' —¢[) (see for
example see Figure 12). By Lemma 16 there exists a network g™ € X such
that Ay (¢™") = AB™ (X). However, this contradicts that ¢™™ is a Nash
equilibrium.
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N1 N> N3 Ny
1 4 7 11
8
2 5 9 12
3 6 10 13

FIGURE 12. Nash network for f(2) < 4. It belongs to an
MCS only if f(2) < 1.

Next, suppose that G.2 is violated. Again, by Lemma 16 there is a network
g™ € X such that Ay (¢™m*) = AP (X). If there exist Ny # Ny and
J" e A% (X) N Nyp» such that [¢7 — £] < |¢/ —{|, property D is violated.
Finally, suppose that G.3. is violated. Note that in any network ¢ € X,
player i is indifferent between any pair of players in A (¢') N Np. However,
he is not indifferent between such a player and a player in Ny\AZ™ (X).
Therefore A% (X) N Ny # AB™(X) N Ny implies B (g™) # B (g™).
This constitutes a contradiction with g € X. I

The three properties of G deal with the set of players that a sponsor of
a link observes through that link. Clearly this is relevant for the set of best
replies of the sponsor. And the set of players observed through that link
may depend on the strategies of other players, even within an MCS. One of
the things that may happen is that the size of this set becomes smaller. If
it becomes too small, the sponsor, who previously preferred to sponsor this
link, now prefers to delete it. Look for instance at the network in figure 12.
It is a Nash network if f (2) < 4. However, unless f (2) < 1, the network is
not part of an MCS because player 2 might replace his link to 6 by a link to
5. G.1. says that this cannot occur within an MCS.

Similarly, the set of players observed through a link by its sponsor may
grow. It may be the case that a player enters this set that is not further
from the sponsor than the current recipient of the link. For example consider
Figure 11 but with (17,14) replaced by (14,17)), In this network, player 4
is the closest player to 16 in the set A6 4 (g) . However, if player 2 replaces
(2,5) by (2,4), then player 16 will also observe player 15 through his link
(16,4), and player 16 will now have a best reply in which he sponsors a
link to 15. More generally: the set of players observed through a link by its
sponsor that are closest to the sponsor is not allowed to change within an
MCS. This is ensured by G.2. and G.3.

Above we have shown that any network in an MCS satisfies the properties
A-G, i.e. the properties A-G are necessarily satisfied by any network in an
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MCS. The next theorem says that these properties are also sufficient to be
a network in an MCS.

Theorem 10. If a network g satisfies properties A-E and G'°, and all
networks g’ € B (g) satisfy property F, then there is an MCS X containing

g.

Proof The theorem holds when (i) g is a Nash network, (ii) there is no
sequence of best replies possible such that the set of best replies for any
player, say i, is changed, and (iii) each network that is the result of the
union of best replies of the players against the current network g can be
reached by a series of best replies.

The first condition follows because of property A. Also the third condition
follows immediately. Just, let every player update at the same time and let
them select the corresponding best reply. It remains to consider the the
second condition.

Suppose that g satisfies the properties A-G but is not element of an
MCS. Then there are three ways in which a series of best replies can lead
to a change in the set of best replies of some player. The first way is that
the set of players observed through a link becomes too small for the spon-
sor compared to the cost of that link. This is impossible without violating
G.1. The second possibility is that the set of players observed through a
link expands in such a way that a 'new’ player in that set is at least as close
to the sponsor as the recipient of the link. This would violate either G.2.
or G.3. Alternatively a player in this set that is one of the players that are
closest to the sponsor of the link may leave the set. In that case the sponsor
would have one alternative less for his link. This however would violate G.3.
The third way is that two or more players update simultaneously so that
one or more cycles are created. This would violate F. To see why, consider
a minimal subset of these players denoted by Neyere = {i1, ..., %} such that
one cycle is created. Denote the strategies for which this cycle is created by
bi; for player ij, j € {1,...,k}. Let players i3 to iz update simultaneously
with strategies b;, to b;, respectively. Call the resulting network ¢’. Network
¢’ is minimal by construction (minimality of Neyce) and connected, because
g was a Nash network (therefore the number of links has not decreased). By
construction, if 71 and 7 now select b;, respectively b;,, then miscoordination
occurs. Therefore there exist some external links (i1, 71), (i2,j2) € ¢, such
that i, € AE j, and iy € AE j,- This is a contradiction because ¢’ € B (g)
and ¢’ does not satisfy property F. Hence B (¢') = B(g) for all ¢’ € B(g),
and thus g is part of an STCS. &

15With in property G A%, (X) defined to be equal to A% (g), h € {min, max} (see
appendix B for the definition of A%, (g)).
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6. TYPES OF NETWORKS IN AN MCS

In the previous section we have fully characterized the networks that may
arise in an MCS of the multiple group network formation game. A network
g is in an MCS if and only if ¢ satisfies the properties A-G. Moreover, we
also have that any MCS is an STCS. So, in particular we have that any g
in an MCS X is a Nash network and that B(g) = X for any g € X. In this
section we want to consider several types of networks that may arise in an
MCS.

When f(k) <1 for all k, then any network ¢ is which one of the players
sponsors a link to each other player is a strict Nash equilibrium. Hence,
when the costs are small enough, we obtain again the result of Bala and
Goyal (2000): any CSS is a strict Nash network and therefore also an MCS
with this CSS as its single element. Clearly, in the model with multiple
groups a CSS is not Nash anymore when f(1) > 1. In the sequel we assume
again that f(0) < 1, f(1) < max,|Ny|, that f is strictly increasing. We
consider which types of networks may arise under these assumption. For
clarifying reasons, we mainly restrict ourselves to the case m = 3. For this
case we distinguish three types of MCS-networks.

With the description of each type, a figure is depicted with schematic
drawings of the different possible MCSs within that type. These schematic
illustrations abstract from the players. Therefore, internal links are not rep-
resented. Instead an entirely internally connected group is represented by
an '’ and an entirely externally connected group is represented by an ’E’.
An arrow between two groups, means that there is at least one link between
the players in these groups. The arrow will be dashed if the recipient group
is partitioned into more than one component when any of these links are
deleted.

Type I networks: these are networks ¢ in which any group is entirely
internally connected, i.e. [N'(g)| = m = 3. According to property C, any
entirely internally connected group is a CSS. So, in a type I network any
group is organized in a CSS and there are just two external links, either both
of length 1 or one link of length 1 and one link of length 2. Therefore we will
call networks of this type connected CSS networks. If both external links are
of length 1 it follows that there is a link between group 1 and group 2 and a
link between group 2 and group 3. If f(1) is small enough, each of these two
links may go in either direction, i.e. from group 1 (respectively 3) to group
2 or from group 2 to group 1 (3). So, this gives three possible structures,
namely (i) both links go to group 2, (ii) both links go from group 2 to the
two other groups and (iii) one link goes from group 1 (or 3) to group 2 and
the other from group 2 to 3 (respectively 1). For high values of f(1), some
of these cases can not occur. For instance, when f(1) > |NV;|, then the link
between group 1 and 2 must go from 1 to 2 and when f(1) > |Ny| + |Na|,
then also the link between groups 2 and 3 must go from 2 to 3. Further,
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FiGure 13. Type I networks

let iy be the central player in group ¢, £ = 1,2,3, and let 7,j be the two
players sponsoring the external links, i.e. ¢ € Ny and j € Ny sponsor links
to group k # (, respectively k' # ¢ (of course i = j and £ = ¢ or k =k is
possible). Then the unique MCS X containing this network is given by the
set of connected CSSs in which i, is the central player in group ¢, £ = 1,2, 3,
1 sponsors a link to a player in N and j sponsors a link to a player in Ng.

In case of a connected CSS with one external link of length 1 and one
external link of length 2, w.l.o.g. we may assume that the links are between
group 1 and 2 and between group 1 and 3. Then the link of length 1 goes
from group 1 to group 2. Otherwise, the player in group 2 sponsoring the
link is indifferent between sponsoring a link to group 1 or to group 3, con-
tradicting property D. Further, the link of length 2 goes from group 1 to
group 3. Otherwise, the sponsor in group 3 would strictly prefer to replace
his link to group 1 by a link to group 2, which contradicts that the network
is Nash (property A). So, in this case both links are sponsored by players
i1 and i9 (with possibly i; = i2) in group 1, so that this case contains only
one structure. Further, let iy be the central player in group ¢, £ = 1,2, 3,
and let j; and j2 be the two players in N7 sponsoring the external links of
length 1, respectively length 2 (j; = ja is possible). Then the unique MCS
X containing this network is given by the set of connected CSSs in which 4,
is the central player in group ¢, { = 1,2,3 and j; (j2) sponsors a link to a
player in Ny (N3).

Summing up we have that in case a network is of type I, there are four
possibilities, three in which both links have length 1 and one with one link
of length 1 and the other of length 2. Of course, it follows that this latter
subcase can only occur when f(1) < |Nz| and f(2) < |N3|. Further, any
other network in the same MCS has the same structure and each player
sponsors the same number of links to each group. Finally observe that a
connected CSS network with two links of length 1 is efficient. In Figure
13 examples of these four networks are given. Every arrow representing the
external links is solid, because none of the groups receiving an external link
becomes is partitioned into more than one component if that link is removed.

Type II networks: these are networks g in which only one group is en-
tirely internally connected, i.e. |[N7(g)] = 1. According to property C,
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again this unique entirely internally connected group is a CSS. A player in
an entirely externally connected group can not sponsor a link to the entirely
internally connected group, since then he would strictly prefer to replace
this link by an internal link, see also Lemma 4. So, any link between the
internally connected group and an externally connected group is sponsored
by the player in the internally connected group. Now, we consider two sub-
types, namely either group 2 in the middle is the unique entirely internally
connected group, or group 1 or 3 is. In case it is group 2, then it follows that
there can not be a link between a player in group 1 and a player in group 3,
because then the player sponsoring the link would strictly prefer to replace
this link to a player in his own group. So, all external links are of length 1
and are sponsored by players in group 2. Hence in this case there are links
from group 2 to any single player in the groups 1 and 3. Observe that any
player in group 2 can sponsor links to one or more players in the other two
groups.

In case group 1 or 3 is entirely internally connected, w.l.o.g. we may
assume that it is group 1. Now, there are three possibilities, namely (i) all
links are sponsored by players in Ny, (ii) all links to the players in group 2
are sponsored by players in N7 and all links to the players in group 3 are
sponsored by players in Ny and (iii) intermediate cases in which all links to
the players in group 2 are sponsored by players in N1, while both players in
Np and in N3 sponsor links to group 3. Clearly, the last two cases can not
occur when f(2) > 1.

Observe that in all the four possibilities of a network of type II, see Figure
14, there is one central player, as defined in the introduction, i.e. a player
i with the property that if we move along a path with subsequently the
players 41,12, ..., with i1 = 4, then the link from 4; to i;41 is sponsored
by i;, 7 =1,... ,k —1. So, as also stated in the introduction, any network
of this type is a generalized CSS: from the central player there is a directed
path to any other player in the network. Each path contains at most one
player of each group, not counting the central player himself. Clearly, such
a network is the single element of an MCS. Of course, a CSS can only arise if
f(1) < 1. Clearly, when f(1) > f(0) (and/or f(2) > f(0) in case f(2) < 1),
then a CSS is not efficient. Since the recipient group of each external link
becomes partitioned into more than one component if that link is removed,
all arrows are dashed.
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Type III networks: These networks g are a hybrid of type 1 and type 2
networks with 1 < [N (g)| < m, i.e. with m = 3 we have that [N (g)| = 2
for any type III network. According to property C, again the two entirely
internally connected groups are CSSs. Clearly players in the entirely ex-
ternally connected group can not sponsor links to the entirely internally
connected group containing players on these paths, because then these play-
ers strictly prefer to replace such external links by internal links. Again, we
consider two subtypes, namely either group 2 in the middle is the unique
entirely externally connected group, or group 1 or 3 is. In case it is group 2,
then all players on any path between two players in group 2 either belong
to group 1 or to group 3. Suppose not, then it follows from property E
than there is a player in group 2, say ¢, that observes all others in group
2 by a link sponsored by some player in group 1, and a player in group 2
that observes all others in group 2 by a link sponsored by some player in
group 3. However, this implies that there is a link between group 1 and 3.
W.l.o.g. we suppose that this is a player in group 3, say player k. However,
then player k would strictly prefer to replace his link to group 1 by a link to
player ¢ in group 2, contradicting that the network is Nash. W.l.og. suppose
that all players on any path between two players in group 2 are in group 1,
so there is a link to any player in group 2 sponsored by some player in group
1. Since N1 € N1(g), it follows that by these links all players in group 1
and 2 are connected to each other. Since also group 3 is entirely internally
connected, there will be precisely one link between the players in N3 U Ny
and the players in N3. For this link there are three possibilities, namely (i)
the link is sponsored by player of group 1 (and thus of length 2), (ii), the
link is sponsored by a player in group 2 and (iii) the link is sponsored by a
player in group 3 to a player in group 2.

Finally, if group 2 is not entirely externally connected, w.l.o.g. we may
assume that group 3 is the entirely externally connected group. Now, there
are four possibilities, namely (i) all links to the players in group 3 are spon-
sored by players in group 2 and there is one link from group 1 to group 2,
(ii) all links to the players in group 3 are sponsored by players in group 2
and there is one link from group 2 to group 1, (iii) all links to the players in
group 3 are sponsored by players in group 1 and there is one link from group
1 to group 2, and (iv) some links to the players in group 3 are sponsored
by players in group 1 and some by players in group 1, while there is a link
from group 1 to group 2. Observe that in the last two cases the link between
group 1 and group 2 can not go from group 2 to group 1, because then this
player in group 2 is indifferent to this link to group 1 and a link to a player in
group 3 receiving a link from a player in group 1, which contradicts property
D.

In all these seven possibilities of type III networks, depicted in Figure
15, both entirely internally connected groups contain a player, say j; and
j2 that sponsors all links in his own group. The two entirely internally con-
nected groups are CSSs connected to each other, and from j; or jo there is
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Ficure 15. Type III networks

a directed path to ¢ for any player ¢ in the externally connected group. We
call such a network a hybrid CSS network. So, any network of type III is
a hybrid CSS network. Again we have that any other network in the same
MCS has the same structure and each player sponsors the same number of
links to each group.

The typology given above for m = 3 also holds when the number of groups
is bigger than three. Type I networks are connected CSSs in which any group
is organized as a central sponsored star, i.e. |[N1(g)| = m. Such a network is
efficient if all external links are of length 1. However, for low costs of longer
links, also external links of length two or more may appear. For instance,
when f(k— 1) < |Ng| for k£ = 2,... ,m, then there is an MCS containing
type I networks with a link from group 1 to any other group k, k = 2,... ,m.
Observe that in such a network all external links are sponsored by a player
from group 1.

For low enough values of the external links also networks of type II may
appear, for example for m = 4 see Figure 7 with f(1) < 1. In such a
generalized CSS we have that [N(g)] = 1 and there is one central player
in the unique entirely internally connected group. From this central player
there is a (unique) directed path to any other player. A generalized CSS is
the unique element of an MCS. A generalized CSS is never efficient in the
MG-model.

In case that 1 < |[N(g)] < m we have a hybrid network of type III,
for example in case m = 6 see Figure 11 with (2,15) replaced by (11,15)
and f (4) < 1, which contains four entirely internally connected groups. For
m = 6, two examples with [N?(g)| = m—1 are given in Figure 16 and Figure
17. Figure 16 illustrates that a network that is a Nash equilibrium can be
connected even if f (1) > 1. Figure 17 shows that links in opposite directions
can 'pass’ each other: here for instance (13,1) and the links (11,13) and
(8,11). However, if (8,5) were to be replaced by (5,8), then this network
would not have been in an MCS, because then 5 would have been indifferent
between a link to group 1 and to group 3. If indeed (8,5) is replaced by
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FIGURE 16. Network in an STCS for 1 < f(1) < f(2) <
3< f(3)<6.

FIGURE 17. Network in an STCS for f(4) < 3.

N1 N2 N3 N4 N5 Ne
1 4 13 16

70 10

2 j j 11 14 \17
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3 ei QJ; 12 A5 V18

F1cURrE 18. Example of network in STCS for f (1) < 1.

(5, 8), then it is easy to construct a path of updates leading to the network
in Figure 18. Figure 18 is, by the way, part of an MCS if f (1) < 1.

7. CONCLUSIONS

In this paper we provided a full characterization of the MG model intro-
duced in GGK (they call it the IO model). This model is a one-sided costs,
symmetric flow of information model of network formation with a heteroge-
neous cost functions. We continued the analysis in GGK for a more general
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version of the MG model for one illustrative range of cost functions. We
found that if players act as if they are myopically rational, in the long-run
it is likely that the system will cycle among a relatively small set of similar
networks: a recurrent class. We proved that the static solution concept of
minimal curb sets corresponds to the dynamic solution concept of the re-
current class. This result was obtained by proving that each recurrent class
contains a super tight curb set (STCS). For these results we focused on an
illustrative range of increasing positive cost functions. However, the analysis
can be extended to all cost functions, and theorem 5 will continue to hold.
The proof for this is not included in the paper, because it is cumbersome
and large, while it adds little additional insight.

We found that within a STCS the architecture of the networks is qual-
itatively identical, although the architectures of different STCSs can be
quite different. Nonetheless, also the total variation of architectures over
all STCSs is relatively small, because networks all satisfy quite some strict
conditions on their architecture if they are part of an STCS. What all STCSs
have in common, is that the best reply dynamics can go from any one net-
work in that set to any other network in that set within one period. The
set of best responses of players are invariant to the chosen strategies of
other players within that set. Moreover, the typical results of centrality
and center-sponsorship that is often found in network formation games with
homogeneous cost and value functions holds to some extent within these
networks. There are generally as many ’centers’ as there are groups that are
entirely internally connected. For instance: in a situation with 100 groups
where half of the groups are entirely internally connected, there are only 50
centers, while the number of players can be arbitrarily large. On a local
level we often see the generalized center-sponsored star of GGK (center-
sponsorship) which is a generalization for cost-heterogeneous models of the
center-sponsored star of Bala and Goyal (2000). In fact, all networks that
survive in the long run are combinations of generalized center-sponsored
stars and connected center-sponsored stars. However not every Nash net-
work that is a combination of generalized center-sponsored stars can survive
in the long run, because not all such networks satisfy properties D, F and
G. In terms of social welfare, the typical STCS network is not efficient, al-
though generally networks from non-singleton STCSs are more efficient that
strict Nash networks. The more centers a network has, the higher its level
of efficiency.

We further observed that focussing the analysis to strict Nash networks
is too restrictive from a dynamic perspective, while studying all Nash net-
works doesn’t exclude some unlikely networks. For models with only few
groups, the figures in this paper show some of the richness of architectures
that can survive in the long run. The examples give some insight in which
architectures may and may not survive under what circumstances.

In terms of our analysis, we were greatly helped by the result of GGK
in the two-group MG model, namely that all MCSs are in fact STCSs. By
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proving that this result also holds for the general case the characterization
of all MCSs in the m-group MG model became much more feasible.

1]
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APPENDIX A. REMAINING PROOFS OF LEMMAS OF SECTION 4

Proof Lemma 3. First we prove that every group is connected, thus
v¢(g) = 1 for each Ny € N (see Section 2.3 for notation). Suppose not:
then there exists a network g € X™% and ¢ € {1,... ,m} such that v, (g) >
1. Let some player ¢ € Ny update his strategy. By minimality of g and
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f(0) <1, player i has a best reply in which he adds at least one internal link
towards a player that is within another component. When only this player
updates no cycles will be created. Thus there exists a network ¢’ € X™i»
such that g (g') > 6o (g), which contradicts that g € X",

Second we prove that every group is either entirely internally or entirely
externally connected, thus for any ¢ the number oy (g) of internal links within
group Ny is either zero or |Ny| — 1. Suppose not, then there exists some ¢
with o (g) € {1,...,(|Ng| — 2)}. Thus there exist i,4',i" € N;, such that
{i,i'} € g (recall from Section 2.3 that g is the collection of (undirected)
pairs of players connected by a link) and a path of at least two links between
7 and 7" such that on the path all players between ¢ and ¢’ do not belong
to Ny, i.e. there is a path of undirected pairs {i,j1}, ..., {jn,?"} in g with
h > 1and jp ¢ Ny for all k = 1,...,h. If (i,71) € g then player i strictly
prefers to replace the link to j; by a link to ¢’. Let b;(g) be a best response
of i to ¢ in which he indeed replaces this link. Since g € X™® it follows
that ¢ = g_; Ubi(g) € X™®. Further, it follows that o (¢') > 6o (g), which
contradicts that X € Xn“;ij‘l. Analogously we get an contradiction when
(i",jn) € 9.

It remains to consider the case that both (j1,4) and (jp,i") are in g. Here
we need to distinguish two cases. First, suppose that j; has a best reply
bj, (9) to g containing (ji,4). Clearly, j; is indifferent between a link to ¢ or
to i" and thus there also exists a best reply b (g) such that (j1,i) € b} (9),
Because of this indifference, w.l.o.g. we may assume that (i',7) € g. How-
ever, 7' is indifferent between a link to 7 and a link to i”. Now, suppose
that j; switches his link from 4 to ¢/, while simultaneously ¢ switches his
link from i to i”. The resulting network, say ¢', is not minimal, satisfies
NT(g) € N (gl) and v, (gl) > 1 since in g' player i belongs to another
component than 7" and i”. Suppose that subsequently player ¢ updates. Then
1 strictly prefers to create an internal link to some player in the component
containing ¢ and i”. Letting player ¢ update, in the resulting network. say
g?, we have that 6g (9%) > 60 (¢g). Further, in any best reply of player ji,
he prefers to delete an external link that he sponsors in the cycle involving
i’ and i"”. Let him do so. Then the resulting network, say g3 € X™" and
do (g3) = dp (g2) > 8o (g), which contradicts that g € XX . Finally, we
consider the case that j; does not have a best reply to g containing (ji,7).
Then, for any best reply b;, (g), consider the network ¢’ = g—; Ubj;, (g). By
minimality of g and the updating of one single player, also ¢’ is minimal and
j1 will sponsor at least as many internal links in ¢’ as he did in g. Then there
are two possibilities. First, in ¢’ player j; belongs to a different component
thani. Then v, (¢g') > 1, and thus there exists a network ¢g* € X™" such that
80 (%) > 60 (¢') = 60 (g), which again contradicts that g € X™ . Second, j;
is connected to ¢ through some player j' ¢ N, with {4, j'} € g’. By arguments
already used above it then must hold that j” sponsors the link to 7. Moreover
notice that N"(i;¢') = {h € N|(h,i) € ¢'} = N"(4;9) \ {j1}. Now, repeat all
arguments above with j’ instead of 71. Then the only case that did not lead
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to a contradiction until now is that there exists a network ¢” = g’ ., Ubjr (¢')
with (j',4) ¢ bjs (¢’) and such that j" is connected to i through some player
j" in some other group than j itself, from which we can start all arguments
again. However, since N"(i;¢") = N"(i;9') \ {7’} = N"(4;9) \ {j1,7'} and
NT(i; g) is of finite size, the potential number of iterations is finite, which
leads again to a contradiction. R

Proof Lemma 4. Suppose the lemma is not true. Then (j,7) € g and j
strictly prefers to replace this external link by an internal link, which con-
tradicts that g € X" 11

Proof Lemma 5. Suppose not. Then any group is entirely externally con-
nected and thus there are no internal links within the network. Now, let C
be some component of network g. Since any group is connected, C consists
of a number of groups, say C' = UpegNy with S C {1,...,m}. Since any
group is entirely externally connected, for each group ¢ € S and each player
i € C'N Ny, there must exist a player j € C'\ Ny such that {j,i} € g. If
(i,7) € g then i prefers to switch this link to another player i’ € Ny, which
creates an internal link and contradicts that ¢ € X2 . Hence (j,i) € g.
That means that the number of links within C' is at least equal to |C|, which
contradicts the minimality of g. I

Proof Lemma 6. Suppose not. Then there exists a best reply b; (g) such
that v, (¢') > 1in ¢’ = g_;Ub; (g). Notice that ¢ will not delete any internal
link. Letting j € Ny update next, we get a minimal network g” = g’ ;Ub; (¢')
for some best reply b; (¢') of j to ¢’. Clearly, 60 (¢9") > 0 (¢') = 60 (g), be-
cause j will create a link towards a player j” € Ny \ {j} who in ¢’ belongs
to another component. This contradicts that g € X™=i» . g

Proof Lemma 7. Again we show the lemma by contradiction. Suppose
that g € X is not connected. Since we know already from Lemma 3
that each group is connected and thus each component consists of a number
of groups, there exists a component, say C, such that |C| > maxy,cn | Nel.
Since ¢ is not connected there also exists numbers ¢ and k € {¢ —1,¢ + 1}
such that Ny C N\ C and N C C. Then each player i € N, has at least
one best reply to g in which he sponsors a link to a player in group Ny,
because by assumption f (1) < maxy,en |V¢| < |C|. Let one of these play-
ers update by playing this best reply and let ¢’ be the resulting network.
Clearly, ¢ will not delete any internal link when updating his strategy. So,
if ¢ does not delete a link of length one in his best reply, then we have that
61 (¢") > 61 (g) and 8o (¢') = 60 (g), contradicting that g € X1, . If i deletes
a link of length one in his best reply to g, then this deleted link must be
to the other neighboring group in {¢ — 1,¢+ 1} not equal to k. Denote the
resulting network g' and notice that ¢' € X and satisfies 61 (gl) = 61(9)
and &g (gl) = 80 (g). Moreover, g is not connected. On the other hand
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group Nj is now connected with Ny. Now repeat the procedure with C' the
component of g' containing there two groups. This leads either to a contra-
diction as above when the updating player does not delete a link of length 1,
or to a next network ¢? with &; (92) =6 (gl) and 6g (92) =g (gl) and in
which the next group is connected to the component. Since there are only
a finite number of groups to any side of group ¢, within a finite number of
steps this iterative procedure will reach a network in which the updating
player will not delete a link of length 1, which leads to a contradiction as
above. Hence g must be connected. I

Proof Lemma 8. Suppose not. Let any one sponsor of such link update,
and call the resulting graph ¢’. Then there are two cases. Either ¢ is discon-
nected, in which case by earlier arguments a link of length 1 can be created
such that the resulting network ¢” has 61 (¢”) > 61 (g) and 8¢ (¢”) = 60 (9)-
Or ¢’ is connected, but then the only change is that a longer link is replaced
by a shorter link. Both possibilities contradict that g € X™mi, . g

Proof Lemma 10. The proof follows from an iterative procedure very
similar to that of Lemma 7. Consider any network g € X1 \ An“;i_nl, thus
g contains at least one unstable link of length 1 and let K be the number
of these unstable links. So, there exists a link (7,7) and numbers ¢ and
k€ {¢—1,0+ 1} such that i € Ny and j € Ny, such that (i,7) ¢ b; (g) for
any best reply b;(g) € B; (g). Now, suppose player i sponsors two or more
links to group k. Then Ni must be entirely externally connected, otherwise
there is a cycle which contradicts the minimality of g. Since any group
belongs to the same component, it follows that the players in N to which
1 sponsors links are connected via those links. Then it follows from Lemma
6 that all these links must be stable. So, if (i, ) is unstable, then j is the
unique player in Nj to which ¢ sponsors a link. Hence, player ¢ € Ny can
sponsor at most two unstable links, one to group /—1 and one to £+ 1. First
consider the case that ¢ sponsors only one unstable link. W.l.o.g. we assume
that £ > 1 and k = ¢— 1. Let player i update and call the resulting graph ¢’
Since g is connected and (7, j) is unstable, we must have that f(1) is larger
than the component of ¢’ not containing 7, and thus by the assumption
that f(1) < maxpy,en |Ne|, it must hold that f(1) is at most equal to the
component in ¢’ containing player 7. Hence, each player in group £—1 has an
incentive to create a link to 7. Let i1 € Ny_; do so and let g' be the resulting
network. Then either g' € ;’;‘E‘l and has one unstable link less than g, or 7;
has deleted an unstable link to a player in group Ny_o. In the first case we
have that the number of unstable links in g' is K — 1. Otherwise, any player
in Ny_9 has an incentive to create a link to ¢;. Let some player io € Ny_o
do so and let g? be the resulting network. Then again, either g? € Xgi_nl
and has one unstable link less than g, or io has deleted an unstable link to
a player in group Ny_3. Since / is finite, continuing this iterative procedure
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when latter case occurs, we obtain within a finite number of steps a network
in X™in and having at most K — 1 unstable links.

Finally we consider the case that ¢ sponsors two unstable links, i.e. one
to group ¢ — 1 and one to group ¢ + 1, say to player j; € Ny_1 and to
jo € Ngy1. Let player i update and call the resulting graph ¢’. Since g is
connected and both (7, j1) and (4, j2) are unstable, we must have that f(1) is
larger than the component of ¢’ not containing 7, and thus by the assumption
that f(1) < maxy,en |Ne|, it must hold that f(1) is at most equal to the
component in ¢’ containing player i. Hence, each player in group £—1 has an
incentive to create a link to ¢ and each player in group £+ 1 has an incentive
to create a link to player i. Moreover, since f (xz) > f (1) for all z > 2, no
player in any group ¢ — y (¢ 4+ y) will sponsor a link to any player in group
C+1 (respectively £ —1, for all y > 0. Therefore we can apply the procedure
for the case of one unstable link to both sides of group N, in case of two
unstable links, which will lead in a finite number of steps to a network in
Xmin with K — 2 unstable links.

Consequently, for any network in X% \Xﬁf‘l the procedure leads to a

", with a smaller number of unstable links. Since the num-

ber of unstable links is finite, starting with some network in X™in Afgi}l,
iteration of the procedure will lead within a finite number of iterations to a

network without any unstable link of length one. I

network in X

Proof Lemma 11. Since any network g € )A(nn;‘E‘l is a Nash network, it
follows from Lemma 1 that any player i sponsors precisely one link to any
component of the network ¢g_; in all his best replies to g. Moreover, when
k is the number of components, the link to a component Cy, h =1,... ,k,
of g; is to one of the players in Dy, the set of players in Cj, that are closest
to 7. So, when in g, player ¢ sponsors an internal link to a player in some
component Cy, of g_;, he will sponsor precisely one internal link to C, in any
best reply to g. Hence in any best reply player ¢ sponsors the same number
of internal links.

We now consider the number of links that some player ¢ in some group
Ny sponsors a link (7,7) to some group Ny, ¢! # . W.lo.g. we assume
that h < . Suppose that the lemma does not hold. Since the network g
is Nash, it follows again from Lemma 1 that for any component C} player
i sponsors precisely one link to the subset of players Dy of Cj in any best
reply of i to g—;. Let b;(g) be a best reply of i. Since any player in Dy, is on
equal distance of 4, it must hold that when (¢, j) is not in b;(g), then either
(1,7) is replaced by either a link to another player in group ¢, or by a link
to a player in group ¢’ = 2¢ — ¢’ > (. In the first case the number of links
sponsored by i to group ¢ is equal as in g.

It remains to consider the second case. Let j' be the player in Ny to
which ¢ sponsors a link in b;(g) instead of his link (7,j) in g. Since j and
j' are both in the same component C}, of g_;, there is a path between j
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and j' in g_;. Moreover, this path does not contain players closer to i. So,
this path contains a link (ji,j2) with j; € N, for some r < ¢’ and js € N;
for some s > ¢”. Now, suppose i updates his strategy and replaces his link
(i,7) by (i,5"). Next, let j; update his strategy. Clearly, this player now
strictly prefers to replace his link to js by the shorter link to ¢. However,
this contradicts that g € X2, g

Proof Lemma 12. Suppose the lemma is not true. Then there must exist
three distinct players j, 5/, j” € Ny, Ny € N'F (g), and two different players i
and ¢’ not in Ny, such that j observes j’ through the link (i, j) and j” through
(¢',7). Since g € Aﬁi_nl, player ¢ has a best reply to g containing (7, j). Since
j and 7" are in the same component of g_; and have equal distance to i, it fol-
lows from Lemma 1 that there is also a best reply b;(g) of ¢ containing (7, j"),
thus (i,5") € b} (g) *¢. Likewise player i has a best reply by (g) such that
(i',7") € by (g). Now consider the network ¢' = (g \ (g; U gi))Ub; (9)Uby (g).
Then ¢’ is not minimal, since ¢ and i’ are connected via exactly two paths
and j is isolated. Now let j" update. Then j’ creates one internal link to j in
the resulting network ¢”. Consequently, player i has a best reply b; (¢”) to
g" such that b; (¢”) = g/ \ {(4,5”)}. When ¢ updates according to this best
reply, the resulting graph is minimal, connected and contains more internal
links than g, which contradicts that g € X2, g

Proof Lemma 13. Consider g € Agi_nl. Let g_n, be the network g minus
all the internal links of group £. Notice that since g is a Nash network, for all
¢ € G such that ¢" N, = 9-N,, no player ¢ € Ny will strictly prefer to change
his strategy with respect to any player outside group £. That is: he does not
strictly prefer to add, delete or replace a link to any player but players in
group £ itself. Therefore in this proof we may and do assume that, as long as
g—n, remains unchanged, none of the players in /Ny will change his strategy
with respect to any player outside group ¢. Similarly, given any minimal
connected network ¢’ such that ¢g" N, = 9-N,, then the sets of best replies
of any player i ¢ Ny stays unchanged, because Ny is internally connected in
g. Now consider any one group N; € N (g) that is not a CSS. Let only
players inside group ¢ update. Then, by Bala and Goyal (2000) there exist
a sequence of best replies that leads to Ny being a CSS. Name the result-
ing graph g'. Since g_ ~, remained unchanged, and because Ny € N I (gl),
gt € )?;};511 By iteration there exists ¢’ € N,,“;‘i,nl, and thus )Afn“;‘fl #0.1

Proof Lemma 14. Let ¢g* be a network in )N(fgﬂll Now, suppose the
lemma is not true. Then there must be a network g € B(g*), such that
B(g) # B(g*). So, let Y C B(g*) be the nonempty subset of networks

16Note that (i,7) ¢ b} (g), since sponsoring both (i, 5) and (i, ") would create a cycle
given g_;.
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given by:

Y'={g9€B(g")|B(g9) #B(g")}-
By definition, in any network g € Y there is at least one player ¢ that plays
an other strategy than in ¢g*, otherwise ¢ = ¢* and so B(g) = B(g*). For
g € Y, denote the number of players that play a different strategy in network
g than in g* by

¢(9) = {i € Nlgi # g7}
and define Y* C Y as the subset of networks in Y such that the number of
players that play a strategy different from their strategy in ¢* is minimal,
ie.
Y*={geY | ¢(g) = mine(g)}
g'ey

Clearly ¢(g) > 1 for any g € Y*. Let g* be some network in Y*, i a player
such that g} # g7 and define ¢° = g%, U gf. We now proceed in two steps.
First we show that g € X™" and ¢° € )/fn“;‘fl Next, we show that these
properties contradict that B(g') # B(g*).

To show the first step, recall that ¢g* € Xnn;“_nl and thus g* is Nash. Hence
g; € Bi(g*). Moreover, g* € Y C B(g*) and thus gjl € Bj(g*) for all j # i.
Hence, g;-) € Bj(g*) for all j and thus ¢° € B (g*). Since ¢? = g; and i plays
different from g; in g!, by construction it holds that ¢(g") = ¢(g') — 1.
However, since g' € Y* this implies that ¢° ¢ Y and thus B(¢°) = B(g*).
So, ¢° € B(g*) = B(¢") and thus ¢" is a Nash network. Further, since
g € )N({STI - )?{3511 C X™n by definition of X™" we have that g* is
minimal connected. Since both ¢°, ¢! € B(g*), it follows from Lemma
11, that each player sponsors in both ¢° and g' the same number of links
as in g* to each group. Hence, the total number of links is the same in
each of the three networks. Hence ¢° is minimal connected, since otherwise
there is at least once cycle which contradicts that ¢° is Nash. To show
that also ¢! is minimal connected, suppose not. Then g' contains at least
one cycle. Hence, there is at least one player, say player j, that sponsor
a link within a cycle. For this player j, let ¢’ be the network given by
g = glj U gj. Then, analogous to the reasoning for ¢°, it follows that
B(g') = B(g*) and thus g} € Bj(g*) = Bj(¢'). So, 9]1 is a best reply to ¢/,
which contradicts that j sponsors a link in a cycle. Hence, also ¢° and g' are
minimal connected and thus belong to X™". Again, it follows from Lemma
11 that 6x(g') = 61(g°) = 6x(g*) for all k and thus both ¢°, g' € Xmin
Since gY is Nash, we also have that ¢° € )/fn‘?ifl, which completes the first
step.

To show the second step, consider ¢° = g%, U gF and let player i update
to g € Bi(g*). Clearly, Bi(g") = Bi(¢°) = Bi(g*). Since B(g") # B(g*) =
B(g°), there must be a player j # i such that B;(¢g') # B;(¢°). Now,
let C1(g°),...,Ck(¢g°) be the components of g;-) not containing player j and
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Ci(gl),. .., Cn(g) the components of 9]1 not containing player j. Since both
g% and g' are minimally connected and g? = g} it follows that £k = m =
{7, )10,7) € g;-)}| and that for any h = 1,..., k there exists precisely one
player jn € Cr(g°) N Ch(g') such that (j,jn) € g? = gjl-. Referring to the
notation of Lemma 1 we have that j, € Dp(¢°) for any h = 1,... ,k and
that

Bj(¢°) = I} Du(g").

Now, let Dy (g') be the sets as defined in Lemma 1 with respect to g'. Given
the independency of whether or not it is a best reply to sponsor a link to
any of the components of Cy(g'), it suffices to consider any component
separately. Since B;(g') # Bj(g°), there is at least one h with Dp(g°) #
Dy,(g"). Then, for such an index h, there are three possibilities.

1. Dh (gl) = @

2. Dp(g") # 0 and ju & Da(g").

3. Dp(g') # 0 and j, € Dp(g').

We first consider Case 1. In this case player j does not want to sponsor a
link to Cj,(g'). Since ¢° is a Nash network, it then must be that j observes
less players via the link (4, j;) in g* than in ¢°. Since g' is obtained from ¢°
because player ¢ revised his strategy, it must be that player ¢ has removed
himself from the set of players that j observes via jj by replacing some link,
say (i,i') by another link (z,7”). This can only be the case when i’ and i”
belong to an entirely externally connected group, and the path from i’ to
i" contains (j,jn). Consider g' and let player j update. In the resulting
network g2 player i’ does not observe i”. So, when i’ gets the opportunity
to update, he creates an internal link so that he observes ¢’ again. The
resulting network is minimal, and has more internal links than g* € ﬁnni_nlr
a contradiction. So, we conclude that Dy # () for any component h and
therefore it holds that for any best reply of j to ¢g', the resulting network is
minimal.

In case 2 it must hold that any player in Dy (g!) is closer to player j than
jn. Now, when player j plays a best reply to g', he replaces his link to jj
by a shorter link. So, for any best the resulting network is minimal and has
at least one link shorter than g!. This contradicts that g* € X0,

Case 3 contains 2 subcases, namely

3a. Dp(g") \ Da(g°) # 0.

3b. Da(g') C Da(g):

In Case 3a, let 5 € Dp(g') \ Dn(g°) be a new alternative for the link of
player j to j,. Let £ and ¢, be the groups of the players j, respectively jp.
Without loss of generality we assume that £, < £. Since j, € Dy(g") and
any player in Dj(g') has the same distance to j, it follows that j' € Ny
with either ¢/ = ¢, or ¢/ — ¢ = ¢ — £, > 0. We first consider the latter
case (thus ¢ > ¢ > {;). Since j, and j' are both in Cj(g'), there exists
a path in ¢g' between j;, and j’ that does not include the link (j, jn). This
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path includes a link between two players k € Ny, and k' € Ny, with £ <
and {; > (. Now again there are two subcases. (a) £ = £. In this case j
prefers an internal link to k& above an external link to j, or j/, contradicting
that jn, j' € Di(gt). (b) €y < ¢. Since €, < £ and { > ¢, we have that
U — 0y, > 2. Now, either (k,k") € g' or (K, k) € g'. Since in g' player k
is connected to j via j, and thus k£ and j belong to the same component in
gl_k, the link (K’,k) can not be in g', because the player k' would strictly
prefer to replace this link &’ by the shorter link to j, contradicting that
gt € X  To apply the same reasoning to exclude (k, k'), let ¢’ be the
network obtained by replacing the link from j to j, by a link to j'. Clearly,
in ¢’ player k strictly prefers to replace his link to &’ to the shorter link to
j.

We now consider Case 3a with ¢/ = ¢,. If Ny, € N1(g°), then it follows
that Ny, C Dp(g°), which excludes that 5 € Dp(g') \ Dr(g%). The same
holds when Ny, € - E(g") and j;, does not observe his group members via
J (see Lemma 12). So, it remains to consider the possibility that N, €
NE(g%) and jj, observes in g° all other players in Ny, via j. So, in g" player
j has no alternatives for his link to j,. Consider g' and let the players i
and j update simultaneously to respectively his best reply g? = g; to gt
and player ;7 to a best reply in which he switches his link from j;, to j'. In
the resulting network, say g2, there is a cycle containing player 7, while jp,
and j' do not observe each other. Now, let 7, update. Then he creates an
internal link to observe j'. Finally when j updates he will delete a link in
the cycle of the network. The resulting network, say ¢>, is therefore minimal
and it has more internal links than g*, contradiction that ¢* € %E‘l This
concludes Case 3a.

Finally, we consider Case 3b, where some of the alternatives in Dy, (g°) do
not belong to Dj(g'). Arguments here are similar to Case 3a. First notice
that in ¢°, player j cannot be indifferent between two players in different
groups. Hence, in ¢°, player j is indifferent between a link to j; and a link
to any other k € Ny,. Let k € Ny, \Dy, (gl) .In ¢', j is not indifferent. By
Lemma 6 there is still a path between jj, and k. Since in ¢g' player j strictly
prefers not to replace his link to j’ by a link to &k the link (j, j,) must be
part of the path between j;, and k in g'. Consider ¢°, and let both i and j
update. Let i choose g} and let j replace (4,7n) by (j, k). In the resulting
network, say h°, a cycle is created, and as a result j5 and k do not observe
each other. Let k update, he will sponsor an additional internal link so that
he will observe j;, again. Finally let j update: he will remove a link from the
cycle. The resulting network, say k', is minimal, and contains more internal
links that ¢g*: a contradiction with g* € X™min g

APPENDIX B. PROOF LEMMA 16

In this appendix we will show Lemma 16 by proving two additional lem-
mas, from which it follows immediately. First, recall from Section 2.3 that
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for i € Ny, N®(i;g) is the set of players that sponsor a link to player 4,
satisfying that any other player i € Ny observed by ¢ will also be observed
by ¢ when any player j € N (i;g) cancels his link to 7, i.e. the links of
the players in N% (i; g) are not essential for player i to be whether or not
connected to the other players in his group. Notice that this implies that
in a minimal network the set N (i; g) can not contain any player of the set
Ny itself. Further, let N (Ny;g) = Uijen, N (i;g). Then the next lemma
states that when g € )NfﬁTl and Ny is entirely externally connected, this set
contains at most one player. We first give an example, showing that the
assumption that g € Xgi_nl is violated when N (N;;g) contains multiple
players.

Example 10. Consider Figure 8 but with link (5,1) replaced by link (1,7)
and suppose that this modified network g € X for some MCS X. Observe
that any entirely internally connected set is a CSS, which is needed for the
network to be in X™1 and that N® (N3;g) = {1, 5} and thus contains two
players. However, in this network player 1, who is further away from group
3 than player 5, prefers to replace his link to group 3 by a link to player 5.
So, the link (1,7) of length two is unstable and hence by Lemma 8 ¢ is not
min

in X™in and thus also not in XX . This is a contradiction.

Lemma 17. Let g € )?;25‘1 and Ny € NF. Then ‘NR (Nl;g)} <1.

Proof. Suppose that ‘N R (N g)} > 1. Then there exist two distinct players
i,i' ¢ N, and two players j,j' € Ny, such that i € N®(j;¢), and i’ €
N (5': g). Notice that either j = j/ or j # j'.

We first consider the latter case. Then j and j’ are connected via a unique
path that does neither include (7,j), nor (i’,j"). Thus there exist players
i1,i2 ¢ Ny, i1 ¢ NE(j;9) and ig ¢ NE (5 ) such that (i1,5), (i2,j') € g
and {i,i/} N {il,ig} = 0. Let i € N, Ve Ny, 11 € Nkl and iy € Nkz-
W.l.o.g we assume that ky > ¢. Suppose ko < £. Since the path connecting
j and j’ contains both 7; and iz, it then must also contain a link {j1,j2} € g
with j; € Ny, and jo € Ny, for some ¢ < ¢ < {1, such that j; observes
j' via jo. Notice that ¢ # ¢, otherwise Lemma 12 is violated. However,
then ¢ is not Nash, because if (j1,72) € g (respectively (jo2,j1) € g, then j;
(j2) would strictly prefer to replace his link to jo (j1) by a link to j" (5).
Hence ko > ¢ if k1 > £. Next suppose that k > £. If k = ¢, then o4(g) > 0,
which contradicts that N, is entirely externally connected. Further, when
¢ < k < ky (respectively ¢ < k1 < k, then g is not a Nash network, since
i1 (i) would then be strictly better of by switching his link from j to 4
(11). Hence, it follows that k& < ¢ must hold. Analogously, £’ < ¢, since
ko > £. So, it follows both k and k' are smaller than ¢. However, when
k < k' < ¢ (respectively k' < k < {), then ¢ (i) would be better of by
switching his link from j to ¢’ (i), contradicting that ¢ is a Nash network.
Hence, }N R (N g)‘ > 1 contradicts that g is a Nash network.
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To state the second lemma of this appendix, we introduce some further
notation. For j € Ny, Ny € N'E| we define k; (9) = rn, (9) = j/, where j'
is the unique player in N (Ny; g) if this set is not empty. For any player
i € N, we define the set of links {(k;,7)} to be empty if N (N g) = 0.
For example, consider Figure 8. In that network player 5 = k1 = K9 =
KN, = KNs, however Kp,, Ky, and k; for all i € N\ {1,9} are not defined.
Thus {(k1,4)} = {(5,4)}, but {(ke,4)} = 0. By Lemma 11, connectedness
of g and the fact that all links in g are stable, we know that sy, sponsors
precisely one link to Ny in all his best replies to g.

Now, for some link (i,i') € g with i € Ny and i’ € Ny, ¢/ # £, let j be
a player in Ag, (g9), i.e. j is a player in some entirely externally connected
group N} that is observed by 7 via his link to 7 and there is at least one
other player in IV, not observed via this link. When &; exists, let x; update
his strategy by replacing his link to j by a link to a player j' in Ny N DZ, (g),
thus to a player in Nj not observed by ¢ through his link to i’. Clearly, x;
plays a best reply, so also the new network belongs to X. However, A;; has
be decreased, since all players that 7 and thus also ¢ observed via the link
(k;,J) are not observed by ¢ though (7,7') in the new network. Now, set
go = g and define iteratively for h =1,2,...,

an = (901 (Uear ) 1065:901) ) U (Ujea, g {053.30})

where for each j € Ag, (9) it holds that j’ is an arbitrarily chosen player
in N N DiEi, (g) if j € Ng. Within a finite number of steps this iterative
procedure leads to a network gp,, say g, such that AZ (g,) = 0 or NE(j; g.) =
0 for any j € AZ(g.), so that ¢" = g. = ¢" for all B’ > h. Denoting
AN (g) = Ayir(g«), by construction we have that

min(g) C Ayir(gn), for all h.

173

Analogously, for some link (i,") € g with i € Ny and ¢/ € Ny, ell’ # ¢,
let j be a player in DZ, (g), i.e. j is a player in some entirely externally
connected group Nj that is not observed by 7 via his link to ¢ and there
is at least one other player in IV that is observed via this link. When &;
exists, let x; update his strategy by replacing his link to j by a link to a
player j’ in N, N A% (g), thus to a player in Ny, observed by i through his
link to ¢’. Again k; plays a best reply and this also the new network belongs
to X. However, now A;y increases with all players that j' now observes
via the link (kj,j"). Setting ¢° = g and proceeding iteratively we obtain
h=1,2,... the sequence of networks

g" = (9" (Yenz {00 )}) ) U (Useps gyl 05: 1)

where for each j € Dgl (9) it holds that j' is an arbitrarily chosen player
in Ny N AE (g) if j € N. Again, within a finite number of steps this
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iterative procedure leads to a network ¢”, say g*, such that Dg, (¢*) =0 or
NE(j;9%) = 0 for any j € DE(g*), so that g" = g* = g" for all b’ > h.
Denoting AX?*(g) = A;i7(g*), by construction we have that

Agir(g") C AB(g*), for all h.
We now have the following lemma.

Lemma 18. Let X C G be an MCS and let i and i’ be two players in
different groups Ny and Ng. Then for any two networks g and f in X
containing the link (i,4") it holds that AZ™ (g)) = AR™ (f) and AR (g)) =
A ()

Proof. Let us suppose for sake of contradiction that AT® (g) # AmD (f),
where (i,i7) € gN f. This implies that there is a player, say j, that is a
member of one of these two sets, but not of both. W.l.o.g. we suppose
that j € Ay (¢') = A%P(g) and j ¢ A (f') = AZP(f). Thus there
must exist a sequence of best replies starting from ¢’ such that a player
leaves the set Ag‘,in. However, by the construction of Ag‘,in (g9), all players
that j wants to link to are within the set Ag‘,in (9). Hence, player j can-
not leave the set unless another player, say j' € Ag‘,in (g9), leaves this set
first. This is true for all j € A% (g). Thus any arbitrary j € A% (g)
can only leave the set Ag‘,in (g) if another player leaves it first or simulta-
neously. Clearly, the former is impossible, whereas leaving simultaneously
requires that the leaving players form a cycle, for they all sponsor a link
to one of the other leaving players. Therefore the resulting network is not
minimal and, by property A, not part of an MCS. Therefore this also forms
a contradiction. Hence, if j € AT (g) then j € A%M (f) Vj € ABM (g) and
Vg, f € {9 € X| (i,4') € g}, which contradicts AT (g) # AT® (f). A similar
argument shows that A (g) = A% (f). Otherwise, w.l.o.g. there would
exist j ¢ AZ(g), j € AP (f). But no player can enter AX™ (g) without
another player entering that set first. Therefore it must be the case that
Al (g) = AL, (¢) for all g, f € {g € X|(i,7") € §}, where h € {min, max}. §

The proof of Lemma 16 follows now immediately.

Proof Lemma 16. Since by construction A;i(g«) C A (gn) for all
h=1,2,..., and Ay (g«) = Ajir(f«) for any f,g € X containing (7,7'), it
follows that for any g € X with (4,4") € g holds that

Agir(g+) = Utg'ex|(i,i)eg’} Ay (9’)
Hence for any ¢ containing (i,4") it holds that
ATX) = A (94)-
Analogously we have for any g € X containing (4,4") that
A (X) = Aii (g7)-
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