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On Finding Curb Sets in Extensive
Games∗

Vitaly Pruzhansky
FEWEB, Vrije Universiteit Amsterdam, De Boelelaan
1105, 1081 HV Amsterdam, the Netherlands

Abstract

We characterize strategy sets that are closed under rational
behavior (curb) in extensive games of perfect information and
finite horizon. It is shown that any such game possesses only
one minimal curb set, which necessarily includes all its subgame
perfect Nash equilibria. Applications of this result are twofold.
First, it lessens computational burden while computing minimal
curb sets. Second, it implies that the profile of subgame perfect
equilibrium strategies is always stochastically stable in a certain
class of games.
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1 Introduction

The concept of strategy sets that are closed under rational behavior
(curb) was developed by Basu and Weibull [1] as a set-valued general-
ization of strict Nash equilibria. However, the practical application of
these sets as solution concept faced a few significant difficulties. First,
even relatively simple games tended to possess many such sets. Secondly,
the latter could include non-equilibrium strategies. With the purpose of
further narrowing down these sets, a concept of minimal curb (i.e. curb
set that does not include any other curb as a proper subset of itself) was
developed. Unfortunately, this did not solve the problem completely as
non-equilibrium strategies could appear even in the minimal curb sets
(for an intriguing example see the original paper [1]). Moreover, the

∗I am grateful to J. Kamphorst, G. van der Laan and X. Tieman, who commented
on the earlier versions of the paper. I also thank an anonymous referee and an
associate editor for their helpful remarks. The usual disclaimer applies.
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computation of (minimal) curb sets remained quite a complex matter in
games where the space of pure strategies was big or even infinite.
Originally Basu and Weibull developed this concept and provided

examples only for games in normal from. In this paper we characterize
curb sets in extensive form games of perfect information and finite hori-
zon. Our main result is that for any game of an arbitrary complexity
in this class minimal curb sets are easily computable, and necessarily
contain all subgame perfect Nash equilibria. Apart from pure computa-
tional benefits associated with this finding, the result sheds some light on
the process of equilibrium selection and stochastic stability of subgame
perfect equilibria.
The remainder of the paper is organized as follows. Section 2 provides

formal definitions and also states the results. Section 3 presents some
applications.

2 Computation of curb sets

Our terminology on extensive games and subgame perfect equilibria is
standard and follows Osborne and Rubinstein [5]. Throughout, the
term extensive game applies to a game of perfect information and finite
horizon, which is given by Γ = hN,H, P, (ºi)i, where
• N = {1, ..., n} is a set of players.
• H is a set of finite histories

H := {h|∃L ∈ N s.t. h = {al}Ll=1},
i.e. an element h ∈ H is a sequence {al}Ll=1 for some positive
integer L. Each element of such a sequence is an action taken
by a player. An empty sequence ∅ is also a member of H. A
history {al}Ll=1 is called terminal if @ {eal}L+1l=1 ∈ H with eal = al for
l = 1, ..., L. The set of terminal histories is denoted by Z. To save
space, we will write histories of length L as {a}L.

• P is a player function, assigning a member of N to each non-
terminal history h ∈ H\Z.

• ºi is a preference relation of player i over the set of terminal his-
tories Z.

For h = {a1, ..., aL} ∈ H\Z we denote the history {a1, ..., aL, a} by
(h, a) . After each h ∈ H\Z player P (h) chooses an action from the set

A(h) = {a : (h, a) ∈ H}.
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A strategy si (h) of player i in such a game is a function assigning
to each h ∈ H\Z an action from the set A(h), if and only if P (h) = i.
The set of possible strategies for player i will be denoted by Si, and the
strategy space of the game by the product

S =
nY
i=1

Si.

For each profile of strategies s = (s1, ..., sn) ∈ S define the outcome O(s)
to be the terminal history that results after each i plays si.
The definition of a subgame following the history h, Γ (h) = hN,H|h, P |h, (ºi |h)i,

is similar to that of Γ, with the only difference that the empty (initial)
history ∅ is replaced by h. Correspondingly, H|h is a set of sequences
h0, such that (h, h0) ∈ H; P |h is defined for each h0 ∈ H|h. Preference
relations (ºi |h) , strategies si|h and outcomes Oh are accordingly rede-
fined. A subgame perfect equilibrium of Γ = hN,H,P, (ºi)i is a strategy
profile bs=(bs1, ..., bsn), such that

Oh (bsi|h, bs−i|h) ºi |h Oh (si|h, bs−i|h) ,
for any i ∈ N, h ∈ H\Z and any strategy si of player i in the subgame
Γ (h) . Typically this equilibrium is found by the procedure termed back-
wards induction, which determines a subgame perfect equilibrium actionbai|h for each player i after every history h ∈ H\Z such that P (h) = i.
One genericity assumption that is commonly made in extensive games

of perfect information is that no player is indifferent between any two
terminal histories. This ensures that the subgame perfect equilibrium
is unique. We do not employ this assumption here because it turns out
that minimal curb sets have the most interesting configuration not when
there is a unique subgame perfect equilibrium bs, but when it is strict
(i.e. when for each player i, bsi is the unique best reply to bs−i). Example
in Section 3 clarifies this point.
The set of player i’s best replies to the strategy profile s0 is given by

all s1i ∈ Si enjoying the following property

O
¡
s1i , s

0
−i
¢ ºi O

¡
si, s

0
−i
¢
,

for all si ∈ Si. If for some s1i ∈ Si this property holds for all s0 ∈ X ⊂ S,
then we will say that such s1i is a best reply of i to X. We denote this
set by βi (X) . Similarly,

β (X) =
nY
i=1

βi (X) ,
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is a set of all players’ best replies to X. Such best reply operation can
also be applied iteratively. For instance

β (β (X)) = β2 (X) .

We will say that bβk
(X) is a set of iterative best replies of order k to X,

and for k ≥ 2 define bβk
(X) =

k[
l=1

βl (X) .

By convention, β1 (X) ≡ β (X) .
The standard definition for X to be a curb set is

β (X) ⊂ X.

In words, the set of strategy profiles X is said to be closed under rational
behavior if and only if it contains its own best replies. However, for the
purposes of this paper we will use an alternative definition. We will say
that s1 is a best reply to s0, and write s1 ∈ β (s0) , if for each i ∈ N we
have

O
¡
s1i , s

0
−i
¢ ºi O

¡
si, s

0
−i
¢
,

for all si ∈ Si. If X is curb, then for any s0 ∈ X and s1 ∈ β (s0) one
must have s1 ∈ X.
The curb set X is said to be minimal if there is no other curb set X 0,

such that X 0 ⊂ X. With this background we can derive the first result.

Proposition 1 A subgame perfect equilibrium profile of strategies bs is
a member of all curb sets of Γ = hN,H, P, (ºi)i.
Proof. We prove the proposition by showing that given any initial profile
of strategies s0, it is possible to construct a set of iterative best repliesbβk
(s0) , that necessarily includes bs.
For a terminal history h = {a}L ∈ Z take the history of length

L − 1. Denote the set of all such ’shortened’ histories by HZ−1. For
each h ∈ HZ−1 consider s1 which is different from s0 only in the fact
that i = P (h) plays bai|h, i.e. the subgame perfect equilibrium action
induced by bsi, following the history h. Clearly, such s1 ∈ β (s0) , since no
player can hurt himself by playing a subgame perfect equilibrium action
immediately before the terminal history. In case s0 turns out to be equal
to s1, redefine s1 := s0.
Now for each h ∈ HZ−1 of length L−1 take the history of length L−2

and denote their set by HZ−2. As an initial vector consider s1. Another
vector s2, that is different from s1 only in the fact that all i = P (h) play
in s2 their backward induction action bai|h after each history h ∈ HZ−2,
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is clearly a best response to s1, i.e. s2 ∈ β (s1) . If s1 is equal to s2,
redefine s2 := s1.
Continuing in this fashion, taking histories of shorter length at each

step, in finite time (since the longest history is finite) we will end up in
a state where subgame perfect equilibrium actions are played after every
history. This is identical to saying that all players i ∈ N are playing
their subgame perfect equilibrium strategies bsi.
This logic is correct for any initial vector s0 and any vector of sub-

game perfect equilibrium strategies bs. Thus is it also correct for any
member of any curb set. As long as at least one curb set always exists,
as was proven by Basu and Weibull [1], the desired result follows.

The next result is on the number of minimal curb sets in Γ =
hN,H,P, (ºi)i.

Proposition 2 There exist only one unique minimal curb set bX in any
extensive game of perfect information.
Proof. Let us construct a minimal curb set bX in Γ. By Proposition 1,bX must contain all subgame perfect equilibrium profiles of strategies bs.
By the definition of curb set, however, it also should include all sets of
iterative best replies to bs. Suppose we have found minimal k ∈ N, such
that bβk

(bs) is curb. By construction this curb set is minimal. Its unique-
ness follows from the fact that any other curb set X 0 must also include

the same set of best replies bβk
(bs) , plus some other strategy vectors that

belong to ∪∞l=kβl (bs). However, as long as bβk
(bs) is curb, it will follow

that X 0 contains a curb set as a subset of itself. Thus such X 0 cannot be
minimal.

Throughout the proofs we maintain that the game is finite (has finite
number of histories). It is clear that games of this type possess subgame
perfect equilibria, thus the existence ofbs was taken for granted. However,
the results are also valid for infinite games of finite horizon, provided
their subgame perfect equilibria can be found by backwards induction.

3 Applications

One application of this result is the computational simplicity of finding
minimal curb sets. As was stressed at the beginning, in normal form
games (minimal) curb sets may include even non-equilibrium strategies.
Therefore for arbitrary games with many pure strategies, finding curb
sets may turn out to be a quite complex exercise. This is no longer the
case once extensive games of perfect information are concerned. One
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just has to check if the profile of subgame perfect equilibrium strategiesbs is strict. If it is so, then {bs} is a unique minimal curb set, because it
already contains its own best replies, and any other curb set will contain
{bs} as a subset of itself. If, however, bs is not strict, one needs to solve

min
k∈N

k, such that bβk
(bs) is curb.

By Proposition 2, bβk
(bs) will be a unique minimal curb set.

Below we show how to compute a minimal curb set in the two period
version of the centipede game Γ, taken from Reny [7].

1 12 2

2, 0 0, 1 1, 0 0, 2

3, 0

1d 2d

1a

1D 2D

1A 2A2a

Fig.1: game Γ

The unique subgame perfect equilibrium of Γ is given by the following
profile bs=({d1d2}, {D1D2}). This equilibrium is not strict, as none of
player 2’s information sets is reached. Thus any strategy yields him the
same payoff, and is a best reply to player 1’s equilibrium strategy d1d2.
Furthermore, given D1D2, player 1 has two best replies: d1d2 and d1a2.
Hence, β1 (bs) = {d1d2, d1a2} × {D1D2,D1A2, A1D2, A1A2}. Obviously
β1 (bs) is not curb, because there are strategies of player 1, that are
best replies to some members of {D1D2,D1A2, A1D2, A1A2}, but are
not in {d1d2, d1a2}. It is easy to check that at the next iteration we
will have β2 (bs) = {d1d2, d1a2, a1a2} × {D1D2, D1A2, A1D2, A1A2}. The
union of β1 (bs) and β2 (bs) gives us a complete strategy space, excluding
the strategy a1d2 of player 1, which is dominated by either d1d2 or d1a2.
This set bβ2 (bs) is already curb, both maximal and minimal.
The way we have found the minimal curb set in the above game may

appear similar to the procedure of finding rationalizable strategy profiles
in the reduced strategic form of Γ. However, this similarity is deceptive.
Although in this example indeed the minimal curb set and the set of
rationalizable strategies are the same, in general this is not the case,
and typically the former would be a subset of the latter. It is also worth
stating that curb sets have even looser relation to rationalizability in
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extensive form, as defined in the sense of Pearce [6] and Battigalli [2].
There not every curb strategy can even be rationalizable. For instance,
in Γ the set of rationalizable strategies is just {d1d2, d1a2} × {A1D2},
(see [7]).
Another application of Propositions 1 and 2 is that they sharpen

the selection of equilibria in games played by boundedly rational indi-
viduals, who possess limited information about each other’s actions and
myopically choose best replies, occasionally making random mistakes.
One variant of this behavioral procedure is termed adaptive play, and
was introduced by Young in his seminal Econometrica paper [8]. To
determine which strategies emerge or not wiped out in the long run (i.e.
stochastically stable), one needs to focus on the convergence of adaptive
play without mistakes. There is a general result in Young [9], (Theo-
rem 7.2) that adaptive play without mistakes converges to minimal curb
sets of a given game. It is also proven that only minimal curb sets can
potentially be stochastically stable.
The fact that there is only one minimal curb set in a certain class of

games is then of crucial importance and asserts two things. First, this
minimal curb set is the only candidate for stochastic stability. Com-
bining this with the existence theorem in [8], stating that a stochasti-
cally stable set always exists, makes the whole process of equilibrium
selection a trivial exercise. Moreover, this holds true not only for adap-
tive play in the sense of Young, but for any other behavior or learning
process, whose unperturbed dynamics converges to minimal curb sets.
Secondly, the profile of subgame perfect equilibrium strategies bs belongs
to this curb set, and hence is always stochastically stable. This is in ac-
cordance with other equilibrium selection literature on extensive games
of perfect information, where it was shown that for somewhat differ-
ent learning processes bs always belongs to the evolutionary stable set
(Nöldeke, Samuelson [4], Hart [3] ). A somewhat disappointing result,
though, is that despite the fact that subgame perfect equilibria are al-
ways stochastically stable, other strategies contained in the minimal curb
set also are. The whole prediction of the game may therefore be quite
loose. For instance, in the centipede game described above any strategy
of player 1 except the dominated a1d2 and all player 2’s strategies are in
the minimal curb set, and, therefore, are stochastically stable.
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