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Abstract

This paper considers second-best pricing as it arises through incomplete coverage of full
networks. The main principles are first reviewed by considering the classic two-route problem
and some extensions that have been studied more recently. In most of these studies the
competing routes are assumed to be perfect substitutes, which is probably not the case for
most parallel roads in reality, and even less likely for the case where competing connections
represent different transport modes. In this paper a modelling framework in which the
alternatives are imperfect substitutes is developed and numerical results for two roads and two
modes are presented. In the model, trip generation and trip distribution are distinguished in a
way that is consistent with economic theory. The model is used to consider situations in
which one route or mode cannot be tolled. Simulation results show that, for the chosen
parameter values, there is a substantial difference between the effectiveness of policies in
which the capacities have to be taken as given, and those in which capacity of at least one
mode can be changed. A striking feature of the policy in which the capacities of both
modes/routes and the railway fare/toll on one road can be used as policy instruments is the
existence of two equilibria for a range of values of f. In one equilibrium there are substantial
numbers of users of both modes, whereas in the other use of one mode is negligible.

! Also at Wageningen University. Economics Of Consumers and Households, Hollandseweg 1, 6706
KN Wageningen.
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INTRODUCTION

The basic economic intuition behind marginal cost pricing is deceptively simple.
When prices are equal to marginal social costs, consumers would expand
consumption (be it road trips or any other good) up to the point where the benefits of
the last unit consumed have become equal to these marginal social costs. The implied
equality of marginal benefits and marginal social costs secures that the social surplus,
defined as the difference between total benefits and total costs, is maximised. This
social surplus is often considered as an appropriate indicator for social welfare, and its
maximisation is a condition for economic efficiency to prevail.

As explained in Chapter 1 of this volume, the “price’ for the use of a road would
in the first place include the costs borne directly by the road user, such as fuel
expenses and the value of the travel time spent on the road — the marginal private
costs. Besides, a toll may be charged for the use of the road, which also adds to the
price. Marginal cost pricing in road transport therefore means that the toll should
reflect the marginal external costs: the marginal costs of road use other than the
marginal private cost. For a congested road, this includes the value of time losses (and
travel time uncertainty) imposed on other road users, as well as the value of
emissions, noise, and accident risks created. Such a tax, equal to marginal external
costs, is often referred to as a ‘Pigouvian tax’, after its spiritual father Arthur Pigou
(1920).

Based on this intuition, transport economists and engineers alike have for long
advocated the use of road pricing schemes for the management of road traffic
congestion (e.g. Pigou, 1920; Knight, 1924; Walters, 1961; Vickrey, 1963; etc.). Even
if road capacities can be adjusted to cope with congestion, capacity policies alone will

typically not be sufficient to reach an optimal outcome, and the use of congestion



pricing remains warranted.! As pricing not only succeeds in reducing demand per se,
but in doing so also in maintaining exactly those trips for which the benefits, as
reflected by the willingness to pay, are highest, it will typically lead to higher welfare
gains than what could be realised by alternative, non-price-based demand
management schemes, such as number plate policies as currently in operation in
Athens and Mexico City. This explains much of the analysts’ preference for this type
of policy. Moreover, the principle of marginal cost pricing securing efficiency carries
over to more complex situations, including congestion pricing on full networks (rather
than a single road), heterogeneous users, and time-varying congestion. This suggests
that the practical application of the principle of optimal congestion pricing in reality,
although yielding additional practical complications, would not create additional
conceptual difficulties, compared to the basic mechanisms as identified in textbook
models. However, this would — unfortunately — be true only under rather stringent and
often unrealistic assumptions. Two of these unrealistic assumptions are discussed
next.

A first one concerns optimality of the pricing instrument, which should allow the
road regulator to differentiate prices such that every individual road user indeed faces
a toll exactly equal to the marginal external costs he or she causes. This requires tolls
to be differentiated, at least, by time of day, route followed and hence the length of
the trip, type of vehicle (e.g., small versus large cars or passenger cars versus trucks)
and its state of maintenance (for pollution), driving style (for pollution, noise and
accident risks), efc. It also requires that these issues can be monitored perfectly by the

regulator. Although emerging technologies for electronic charging are likely to allow

' Note, however, that the reverse is also true: when capacity can be chosen, pricing alone will
typically not result in an optimal outcome unless initial capacities ‘happen’ to be optimal.



for a more sophisticated toll differentiation in the near future, it remains to be seen to
which extent such complex pricing will indeed be put into practice.

A second assumption concerns efficiency in all markets related to the transport
market under consideration, where a market is ‘related’ to the transport market if its
equilibrium is indirectly affected by transport policies, and its equilibrium is
inefficient if, again, prices are not equal to marginal social costs. The existence of
such related markets is the rule rather than the exception because transport demand is
often a derived demand, where the ‘consumption’ of transport is often no goal in itself
but serves to enable a market transaction between spatially separated suppliers and
demanders of a certain good or service. For example, commuting typically does not
yield any benefit in itself, but serves to allow people to supply labour services at a
different location, the work place, than their residences. Likewise, freight traffic
enables a transaction between a supplier of goods and demanders, final consumers or
firms demanding intermediates, who are separated in space. Whenever these related
markets do not function properly, the simple policy rule of setting taxes equal to
marginal external costs will no longer be a truly optimal choice. Instead, transport
taxes should optimally deviate from this rule, so as to correct for the inefficiency in
the related market without of course sacrificing too much efficiency in the transport
market itself. Important reasons why prices in related markets may deviate from
marginal social costs include, amongst others, the existence of market power,
unpriced externalities (such as environmental pollution), or distortionary taxes (for
instance on the labour market in the case of commuter traffic). Inefficiencies are
therefore likely to be the rule rather than the exception.

Despite the attention that first-best pricing has traditionally received in most of the

literature on transport pricing, it will be clear from the above that second-best pricing



is in fact often the most relevant case from a practical perspective. In recent years,
there has consequently been an upsurge of studies in second-best congestion pricing.
Lindsey and Verhoef (2001) provide a recent review of this literature, and discuss
second-best pricing resulting from network issues, heterogeneity of users, dynamic
constraints on toll flexibility (‘step tolls’), uncertainty in travel times (in relation with
real time information provision), relations with other sectors (notably labour markets),
the simultaneous existence of multiple externalities (e.g. congestion and pollution),
congestion pricing by private road operators, and through interactions with sub-
optimal capacity choice.

Second-best congestion pricing through network effects will be especially
important in urban contexts, where dense networks will often prevent the application
of optimally differentiated tolls on each and every link of the network. This chapter
considers these issues. A first aim is to provide an overview of the basic economic ins
and outs of second-best congestion pricing in networks by reviewing the classic two-
route problem in Section 2 below. Most of the underlying literature conveniently, but
somewhat unrealistically, treats different routes between two points (‘nodes’) in a
network as pure substitutes, and therefore applies so-called Wardropian equilibrium
principles (Wardrop, 1952) in the determination of network equilibria (with and
without prices). This means that even the smallest equilibrium price difference would
make a user choose the cheapest route. In reality, people may have so-called
idiosyncratic preferences over different routes, meaning that they would have
different preferences for competing routes when these would have equal trip prices. It
is therefore of interest to study how this would affect the optimal design and welfare
properties of second-best congestion pricing. Moreover, by allowing different routes

to be imperfect substitutes, a framework is developed that can also be used to study



second-best congestion pricing from a multi-modal perspective. Addressing these
issues is the second aim of the paper. A theoretical model is developed for the study
of second-best congestion pricing in networks where parallel roads are imperfect

substitute routes, and its properties are illustrated with the help of a simulation model.

2.1 SECOND-BEST CONGESTION PRICING IN TRANSPORT

NETWORKS

One of the most widely studied instances of second-best congestion pricing concerns
the case where not all links in a uni-modal transport network can be priced. This case
has great practical relevance for actual policy making. For instance, pay-lanes as
currently in operation at various places in the USA belong to this category of second-
best pricing policies, since unpriced lanes are available as a direct substitute for the
pay-lanes. In other (planned) road pricing schemes, be it based on marginal cost
pricing principles or motivated by the desire to generate revenues, prices will often be
charged on a limited number of links in a network only (e.g. toll roads, or toll
cordons). Furthermore, the case is of interest as it can be used to illustrate some more
general principles of second-best pricing that will be relevant for other types of
second-best pricing too. These principles include the fact that in second-best pricing,
the naive use of Pigouvian taxes, set equal to the direct marginal external costs, will
generally not be optimal, and the fact that second-best pricing itself creates

distortions, which affect the optimal second-best price itself.

2.1 The classic two-route problem

The simplest version of the problem at hand concerns the two-route problem, where
an untolled alternative road is available parallel to a toll road. This problem has for

instance been studied by Lévy-Lambert (1968), Marchand (1968), and more recently



also by Braid (1996), Verhoef et al (1996), and Liu and McDonald (1999). Figure 1
illustrates the basic set-up of the problem. Two parallel, congested roads of given
capacities connect an origin (4) and a destination (B). On one of these (road 7), a
congestion toll can be set, whereas the other road (U) remains untolled. The roads are
pure substitutes, meaning that equilibrium ‘generalised prices’ p (the sum of
monetised travel costs, ¢, plus a toll, 7, if levied) should be equal for both roads when
both are used (this is the “Wardropian’ equilibrium principle mentioned earlier).
Drivers are nearly identical (they have the same value of time, drive the same type of
cars, etc.), with the exception of their willingness to pay for a trip, which varies over
drivers whenever demand is not perfectly elastic. The two central questions are then:
at what level should the second-best toll be set, and what are the welfare effects

compared to the first-best option of tolling both roads?

Toll road
A L
‘Free’ road
Figure 1 The classic two-route problem

An important result from the studies looking at these problems is that the second-
best tax, set so as to maximise social welfare given the persistence of the second-best
distortion of leaving the other road untolled, is typically below the optimal Pigouvian
tax that would be set on the same road under first-best pricing, but also below the
marginal external costs on the toll road in the second-best optimum. In addition, the
second-best toll yields considerably smaller welfare gains than first-best pricing.

It is important to understand why the second-best toll should ideally be below the
marginal external congestion costs on the tolled road. The reason is that the

congestion charge on the toll road brings both good and bad news from the



perspective of efficiency. The good news is that initially excessive free-market
congestion on the toll road is reduced through the toll. The bad news is that some
people who are priced off this road will be diverted to the already congested untolled
road, thus aggravating the congestion there. The second-best toll trades off the good
news against the bad news. The good news alone would ask for a tax equal to
marginal external costs for the reasons given in the introduction, but as soon as the
bad news is relevant (i.e., when there is congestion on the untolled road, and when a
by-product of the toll is indeed to divert traffic to this untolled road), a downward
adjustment of the toll is optimal. As a corollary, a policy of simply ignoring the
second-best distortion, and setting the toll equal to the marginal external congestion
costs on the tolled road, would lead to a social surplus below that in the second-best
optimum, exactly because the policy is ‘naive’ and ignores the spill-overs on the free
lane. Indeed, such ‘quasi first-best pricing” may even lead to a welfare loss compared
to the no-toll outcome, which would certainly occur when the second-best optimal tax
is negative, as in some examples in Verhoef et al (1996).

The second-best optimal tax rule for this classic two-route problem reflects the
above mentioned trade-off between the good and the bad news from the toll. Verhoef
et al (1996) express it as:

_D'
¢, —D'

T =mec, —mecy -

where mecy (mecy) denotes the marginal external costs on the tolled (untolled) road,
D’ the slope of the inverse demand function, and ¢/ that of the cost function on the
untolled road; all evaluated at the second-best equilibrium. The tax rule clearly shows

how the second-best toll is equal to the what will be called the ‘direct marginal



external costs’ of drivers road 7 (mecy),” minus a fraction of those on the untolled
road U (mecy) (because D' <0 and ¢/ >0, the weight for mecy 1s always between 0
and 1).

Further intuition can be obtained by considering a few instances where the
fraction mentioned would approach its possible extreme values of 0 (meaning that 7=
mecy) or 1 (meaning that 7= mecy— mecy). Intuitively, the fraction should approach
zero when there is no diverting of traffic to the untolled road in the second-best
optimum due to marginal changes in 7. This is the case when either D" — 0
(regardless of 7, the untolled road will in equilibrium be filled with drivers up to that
level Ny that equates cy(Ny) to the given value of D), or when ¢, — oo (the cost
function for road U is perfectly inelastic, and Ny is given). In these cases, the
regulator can ignore spill-overs of tolling on road 7 upon road U, simply because
these will not occur. The fraction, in contrast, approaches unity when either D' — —
or when ¢;, — 0. In these cases, the second-best toll only tries to optimise route split,
by internalizing the difference between marginal external costs for the two routes, and
fully ignores the effects on overall demand. This makes sense when demand is
perfectly inelastic (D' — —o0 ), in which case overall demand would not respond to
marginal changes in 7. It also makes sense if every user priced off road 7 immediately

switches to road U, in the situation where ¢;, — 0 implies that private costs of using

road U are independent of the route split, so that the overall demand is given and

defined by the equality of D and cy. It should be noted, however, that ¢;, — 0 at the

? The imperfection of the tax instrument causes the term ‘marginal external costs’ to become
ambiguous, as a distinction between ‘full” and ‘direct’ marginal external costs can be made.
The full marginal external costs for drivers on the tolled road in this example are given by the
tax rule. These include the second term, which is non-zero because of the imperfection of the
tax instrument. Direct marginal external costs are thus defined here as all marginal external
costs that are not caused by inefficient behaviour induced by the tax instrument itself.



same time implies that mecy = 0, so that the tax rule in this case effectively becomes 7
= mecr. Second-best pricing then becomes identical to first-best pricing because spill-
overs do not result in additional welfare losses.

The relative size of the welfare losses from second-best pricing compared to first-
best pricing depends on various elasticities. Verhoef et al. (1996) for example
demonstrate that if route U is particularly congested, the optimal second-best toll can
be negative, which typically implies relatively low efficiency gains due to pricing
(even zero when the optimal second-best congestion toll happens to be zero). More
generally they show that the efficiency gains depend on the relative free-flow travel
times and capacities of the two routes, and increase if the tolled road becomes
relatively more attractive. Furthermore, the gains depend on the price elasticity of
travel demand, in combination with the cost parameters. Specifically, if demand
approaches perfect inelasticity, the efficiency gains from second-best pricing may
approach those from first-best pricing if the roads differ in free-flow travel times. The
only factor determining efficiency in that case would be the route split, which can be
optimised with one toll only. However, if the roads have identical free-flow travel
times, as would often be the case for pay-lanes, the efficiency gains from second-best
pricing may nevertheless fall to zero, as the free-market route split (without tolling)
may then already be optimal. Equalisation of private costs then implies the optimal
equalisation of marginal costs. The second-best optimal toll approaches zero and
therefore induces no welfare effects whatsoever. These findings illustrate that for
second-best pricing often ‘anything goes’, in the sense that the relative efficiency of
second-best policies is often impossible to predict without prior detailed knowledge of
the case at hand. Liu and McDonald (1998) constructed a model descriptive of one of

the California road pricing demonstration projects (State Route 91 in Orange County),
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and found that the efficiency gains from second-best congestion pricing are in the
order of 10 per cent of the potential gains from first-best pricing. Bearing in mind the
exposition above, this should in fact not be too disappointing, given the similarity of

the pay-lanes and the free lanes, and the inelasticity of demand.

2.2 Beyond the classic two-route problem

The classic two-route problem has received considerable attention for at least two
reasons. Firstly, it is probably the simplest possible and most transparent setting for
illustrating some of the main economic insights into the ins and outs of second-best
pricing policies, which often also carry over to other, more complicated settings.’
Secondly, it appears to be a reasonable approximation for many congestion pricing
demonstration projects that are currently in operation. The basic model is certainly
rather restrictive, and a number of extensions have been made to investigate some
further properties of the problem and its solution. For example, static models, as
discussed above, may underestimate the efficiency gains from second-best one-route
tolling because they ignore some alternative ways in which second-best pricing can
affect driver behaviour. Braid (1996) and De Palma and Lindsey (2000) allow for trip-
timing adjustments by considering time-varying tolls in the Vickrey (1969) bottleneck
model, applied to the same two-parallel-routes network. They find that second-best
tolling yields higher absolute efficiency gains than in the static model, and a greater
fraction of the first-best efficiency gains. This is because the toll not only curbs

excessive total usage, but also eliminates queuing on the tolled route.

3 Under second-best pricing, it is no longer optimal to equate taxes to the direct marginal
external costs, but instead more complicated tax rules apply, which aim to partly correct for
the relevant distortions, and naive Pigouvian taxation is therefore no longer optimal. In
addition to that, the relative efficiency of a given type of second-best pricing often depends
rather strongly on case-specific circumstances.
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The efficiency of second-best tolling may also be improved when drivers have
different values of travel time. Users with a high value of time would then choose the
tolled connection and benefit relatively strongly from the reduced travel time, while
those with a low value of time would not suffer too much from the increased travel on
the untolled connection that they prefer. Small and Yan (1999) and Verhoef and Small
(1999) find that the efficiency of pay-lanes relative to the first-best optimum is indeed
higher than in the equivalent model with no heterogeneity in the value of time.

Finally, optimal second-best tolls and the associated welfare gains have also been
investigated for larger networks on which not all links can be tolled. Verhoef (1998)
derives optimal static tolls on any subset of links (including parking spaces) in an
arbitrary network. The toll formulae, which are quite complicated, include terms
reflecting marginal external costs on other links, and weights that depend on various
demand and cost elasticities. The solution for the classic two-route problem presented

above is a special — but transparent — illustrative case of these general formulae.

2.2 THE TWO-ROUTE PROBLEM WITH IMPERFECT SUBSTITUTES

In this section the network of Figure 1 is further discussed. As announced, this
network will be reconsidered for the case where the two routes are imperfect
substitutes. There are, as before, two nodes, A and B, connected by two links, which
are now denoted 1 and 2. Besides tolls, cases where capacities on these links can vary
will also be considered, and second-best issues arise if at least one of these four policy
variables is restricted.

The links may refer to roads, as in the classic two-route problem, and second-best
problems emerge, for instance, if only one link is unpriced or if it is priced sub-

optimally. The links may also represent different modes, which is what will be
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considered in Section 4. For competing modes it is common to regard these as
imperfect substitutes. In addition, the type of cost functions for users, as well as the
cost of providing capacity for operators, may then be different between the two links.
Arnott and Yan (2000) have recently provided a review of the problems that arise if
travel with one mode is subsidised, while the policy maker can choose the price of
travelling on the other mode and capacity on both links. This ‘two-mode problem’
appears to be hard to solve in general terms.

If two roads are perfect substitutes, any price difference implies that one route will
not be used. However, if they are imperfect substitutes, price differences do not
necessarily imply that demand for the most expensive route falls to 0. In reality, two
roads that connect the same pair of towns need not necessarily be considered as
perfect substitutes. For instance, consumers may prefer one route to the other because
their residential location in A is closer to the point where route 1 starts, because their
destination in B is closer to where route 2 ends, or because they have a preference
over highways (easier driving) or secondary roads (nicer scenery) per se. The random
term in the logit model presented below may be interpreted as reflecting such

idiosyncratic differences.

3.1 The general model

In what follows a model that can cover all the aforementioned cases is constructed. In

the general model the social planner attempts to maximise the social surplus, which is

defined as consumer surplus plus toll revenues minus cost of infrastructure capacity:
SS=CS+TR-K (1

The Marshallian notion of consumer surplus is used. For a single good, it is the area

under the inverse demand curve and above the prevailing price, between the origin

and the equilibrium quantity. If two (or more) goods are involved, the total consumer
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surplus is not usually the sum of the consumer surpluses for the individual goods as
they could be calculated on the basis of the two (or more) demand functions. The
reason is that the demand curves are interrelated, and when the price of one good is
increased, the demand curves for the other good(s) and the associated consumer
surplus(es) change(s). However, total surplus can still be defined unambiguously if
the demand functions are independent of income, and that is what will be assumed
here. The situation with two goods, indicated by suffixes 1 and 2, is considered. The
quantities ¢ demanded can be derived from the consumer surplus by taking the first
derivatives and putting a minus sign in front:

_acs

, i=12. 2
» 2)

q; =

Tolls are denoted 7, and have to be multiplied by the number of trips in order to find

toll revenues:

TR =TR, + TR, 3)
=049, T 1,9,
Cost depends on capacity:
K =K, (cap,)+ K, (cap,) 4)

Constant returns to scale are not imposed. Capacity is allowed to be vector valued
(e.g. the frequency of trains and the number of seats per train may be relevant
dimensions of capacity), but it will usually be assumed to be a scalar (e.g. road
width).

Only cases in which a user equilibrium is obtained will be considered. User
equilibrium is found where the inverse demand, as represented by the full price p for
both routes, is equal to the sum of private travel cost ¢, which depends on capacity

and number of trips, and toll z:
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p, =c,(cap,,q,)+7,, i=L2. (5)
The first-best problem is the maximisation of social surplus by choosing the two tolls
and capacities under the side condition that a user equilibrium should be obtained.
The Lagrangian is:

L= SS+/11(p1 - —rl)+ /Iz(p2 -c, —12)

< 6
=3 Ja,(dv + 7,0,(p)~ K, (cap) + 4, (p, ~e, (g, () cap) ~7,)

Lopi

The first order conditions with respect to p1, p», 71, » and cap; and cap, are:

_qlﬂlgiﬂzgﬁwl( _%%j%(_%%j:o

P P a4, Ip, 99, Op )
_qﬁ,l%w%%(_%%j%( _5&%):0
P, P> g, 0p, 94, 0p,
g, =4, i=12. (8)
K. .
5‘ il :—/Il. acz , i:1,2. (9)
Ocap, Ocap,

In the first-best optimum, all conditions (5) and (7)-(9) are satisfied. In second-best
situations one or more of the four equations (8) and (9) are not satisfied. Equations (5)
and (7) are always valid, since they are the consequence of the basic requirement that
there should be a user equilibrium.

Equations (8) are the requirements for optimal tolling. They state that under
optimal tolling the Lagrange multipliers will be equal to the associated numbers of

trips.* If equations (8) are valid, the Lagrange multipliers can easily be eliminated

* In transportation economics often an alternative (but equivalent) formulation of consumer
surplus is used, based on the inverse demand function. In that case, partial derivatives of the
Lagrange function with respect to the volumes of trips have to be used, and the Lagrange
multipliers are then equal to zero under optimal tolling. In the present context, with possibly
imperfect substitutability between the two routes/modes, the formulation based on the
‘ordinary’ demand function is more convenient.
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from the system of equations. This implies a substantial simplification. Equations (7)

can then be written as:
Oc, |0q Oc, | 0q
(71 —4q _1]_1+(72 —4q> _2]_2 =0
oq, ) op, 0q, ) op,

(T, . %j%{fz_qzaﬁ]%zo
0q, ) Op, 0q, ) Op,

This implies that both tolls should be equal to the external congestion effect.’

(10)

Equations (9) become:

oK, g oc,
ocap, : ocap, (an
oK, oc,

ocap, b Ocap,
Equation (11) states that the marginal cost of capacity should be equal to the marginal
benefit in the form of reduced travel costs.
It is standard to assume that private travel costs are homogeneous of degree zero

in capacity and number of users. This implies:

g, ——+cap,——=0, i=12. (12)

Using Equation (12) the first order conditions with respect to capacity can be

rewritten as:

oK, oc,
cap, : :/”tl.qii, i=12. (13)
)

If there are constant returns to scale, 0K, /Ocap, is a constant, k;, and the left hand

side of Equation (10) is equal to the total cost of capacity of link i. The right hand side

is equal to /; times the external (congestion) effect of traffic on link i. In the first-best

> If the matrix of partial derivatives 0q,/Op; has an inverse this is the unique solution. The
matrix has no inverse if total demand is fixed or if the shares of the two routes/modes are
fixed.
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equilibrium the Lagrange multiplier equals the number of users and the cost of
capacity is therefore equal to optimal toll revenues. This self-financing result was first
obtained by Mohring and Harwitz (1962) for a single link. Yang and Meng (2002)
recently showed that it also holds in a general network. Homogeneity of degree 0 of
the user cost function will not always be imposed: the function used for public

transport in the two mode model does not satisfy this requirement.

3.2 Trip generation and trip distribution

A distinction between trip generation and trip distribution is often made in
transportation planning models. It is convenient because it allows for a decomposition
of the total planning problem in parts that can be treated relatively independent of
each other and it is therefore useful to introduce it in economic models as well. In
order to introduce this distinction in a way that is consistent with economic theory,
assume that consumer’s surplus can be written as a function of a composite price P of
the prices of the two transport services:

CS(p,,p,)=CS"(P) (14)
with

P=P(p,,p,) (15)
P can be interpreted as a composite price for transport services and equation (14)
states that the consumer surplus derived from both transport services can be written as
the consumer’s surplus of a single transport service.
It can then be easily verified, using Equation (2), that for the sum of the demand for

both links, O = ¢, + ¢,

0=

_acs (6P+6_Pj 16)

oP a op,
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whereas the distribution shares s of the trips over the two modes are:

_&_W’(W+“j,h¢z (17)

"0 o/ \ap b,
Considerable simplification of the latter two equations is possible if it is assumed that

the partial derivatives of P add up to 1:

oP  oP (18)
op, p,
According to Equation (18) a small change dp in the prices of trips on the two roads
leads to an identical change in the composite price of transport on both routes, which
is intuitive.

Equation (16) refers to trip generation, and Equation (17), to modal split or route

choice. These equations show that, when both assumptions are made, trip generation

does not depend on the specification of P, whereas trip distribution does not depend

on the specification of CS". Specification (14) with P satisfying (18) is therefore
consistent with the use of different sub-models for these two aspects of travel demand,
which are relatively independent of each other.

The effect of an increase in the price of one route or mode can be decomposed

into a trip generation effect and a trip distribution effect as follows:

0, (_2©s))_ 20,0

p,; p, " op, p,
(19)

=sis<a—Q+Q&

7 oP "~ 0p,

This equation holds for i,j=1,2.
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The logit model, which is a standard specification for mode choice, results if the

following P is chosen:®

o Y2 i

+

p=ln 8T (20)
a, +O!2

with <0 and a,, a;>0. The shares can be determined using Equation (17) as:

i
ae
S =——%" y (21)
a,e™” +a,e™

a; can be rewritten as exp(a,;*) with o;*=In(e;) and it is possible that o;* depends on
mode or route characteristics, as is usual in empirical logit models used to study trip
distribution.”

In the limiting case in which =0, link choice is independent of the prices. It can
be verified from Equation (20) that if p;=p,=p, P is also equal to p, that P is
increasing in both prices, and that P always takes on a value in-between that of the
two prices. This motivates the interpretation of P as a composite price for transport on
the two modes or routes. P is homogeneous of degree 1 in the prices of all goods if p;
and p, are interpreted as relative prices.

The two links of the network are perfect substitutes if the users always choose the
one with the lowest cost. In this situation the share of link 1 should be equal to zero if
p1>p2, and equal to 1 in the opposite case, whereas the shares are indeterminate when
both prices are equal. If the logit specification for the shares is used, this situation can

be approximated arbitrarily closely by choosing taking the limit for f — —oo of (21).

This is easily verified by rewriting Equation (21) for =1 as:

% Equation (21) is not the only possible specification of P that satisfies (18). Any function
P=In[g(exp(p;).,exp(p2))] with g homogeneous of degree 1 in its two arguments does.

7 The function P is equal to the sum of a constant (-In(a,+a,)) and the logsum measure that
can be used for welfare economic analyses (Small and Rosen, 1981).
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aleﬂ(l’ﬁpz)

S = (22)

- aleﬂ(Pl_Pz) +a2
and taking the limit for f — —oo. When S equals 0 there is no price sensitivity at all.

The model developed in the present subsection seems attractive as the basis of a
simulation model. In particular, it offers the possibility to compare how second-best

problems change if the two links become closer substitutes.

2.3.3 A simulation model with two routes

The previous two subsections provide the main ingredients for a simulation model for
the two route and two mode situations that will be used in the remainder of this
section. The two-route case is discussed here and the model is completed by
introducing specific forms for the (total) demand and travel time functions.
A quadratic specification for consumer’s surplus is adopted as a function of the

transport price index P:

CS" =—-aP-.5bP. (23)
with a>0 and »<(. Total demand for trips is therefore a linear function of the price of
transport:

O=a+bP (24)
The logit formulation (20) is used for P. User cost is given by the commonly used

Bureau of Public Roads formulation:®

¢, =vot ffit 1+ci,(i] (25)

cap,

where vot denotes the value of time and ffit free-flow travel time. This function is

homogeneous of degree zero in the number of trips and capacity.

¥ See e.g. Small (1992), p. 70.
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For the cost of capacity in the two-route problem the following specification is
used:
K (cap,) = k.ap, (26)

This cost function has constant returns to scale.

Table 1 Parameter values for the two-route problem

Parameter Route/mode 1 Route/mode 2
Demand

a 7500

b -100

p -0.1

o 1 1
User cost

vot 7.5

ftt 0.75 0.5
¢ 0.15 0.15
c, 4 4
Cost of capacity

k 6 6

The parameter values used for the two-route problem (see Table 1) refer to a
situation in which two cities are connected by roads that differ in capacity and free-
flow travel time. The route with the highest free-flow travel time has the lowest cost
of capacity per road kilometre. Preferences with respect to the use of the two routes
are symmetric, which means that consumers do not systematically prefer one road
over the other.

Link 1 has a free-flow travel time of half an hour and link 2 has a free-flow travel
time of three-quarters of an hour, and the value of time is set at the Dutch average of
€7.5. The BPR parameters ¢; and ¢, have their conventional values.

The unit price of capacity was determined as follows. A value of cap equal to

1,750 for the BPR cost function implies a doubling of travel times at a flow of around
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2,800 vehicles per hour. This is roughly the flow at which, empirically, travel times
double for a single highway lane. The hourly unit price of capacity of €6 for link 2,
the fast connection, was determined by dividing the estimated average annual capital
cost of one highway lane kilometre in The Netherlands (€0.2 million) by 1,100 (220
working days multiplied by 5 peak hours per working day, assuming two peaks) and
then by 1,750 (the number of units of capacity of a standard highway lane), and
finally by multiplying that result by 60 (the number of kilometres that can be travelled
at free-flow speed in half an hour). The price of capacity at link 1 was set at the same
value in order to facilitate comparability. Although the road is longer, which might

call for a higher £, construction may be cheaper, which may call for a lower £.

2.3.4 Base case

The base case refers to a user equilibrium without tolls and with capacities as shown
in Table 2, with a higher capacity for link 2. The main characteristics of the base case

are given in Table 2.
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Table 2 The base case of the two-route problem

Variable Route/mode 1 Route/mode 2
cap 1,250 1,750
q 2,413 3,566
0 5,925

c(=p) 17.35 13.45
P 15.21

Elasticity of g with respect -1.15 0.67
to pi

Elasticity of ¢ with respect 0.58 -0.68
to p»

Elasticity of O with -0.25

respect to P

CcS 178,752

K 7,500 10,500
SS 160,752

Note: cap, g and Q are measured as numbers of trips per hour, ¢, p, P, CS, K and SS in

euros. Source: own calculations.

It is interesting to see what happens when the two routes become closer substitutes or
in other words, when the absolute value of f is increased. Figure 2 shows the
equilibrium values of prices and demand for travel on both links for successively
higher values of . The prices (user costs) for the two links in Figure 2 approach each
other closely. Since capacity is fixed, this implies that the link that had the lower user
cost in the base case is used more intensively. Its lower price attracts more users when
price sensitivity increases, and for this reason user cost increases and the price
difference disappears. Convergence to the case of perfect substitutes for f—oo has
been confirmed by means of a separate model that uses the Wardrop equilibrium

conditions.’

? This check has also been carried out in other uni-modal cases considered below.
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Figure 2 Effect of increasing substitutability on user cost (upper panel) and

route choice (lower panel) in the base case of the two-route model
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2.3.5 First-best

Finding the first-best solution is facilitated by the assumptions of constant returns to
scale of the capacity cost function and homogeneity of degree 0 of the travel cost

function. Equations (9) imply:
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Cjptl
k, =vot ffitc,c,, (Lj (27)
c

and this determines the ratio between number of users and capacity. The optimal toll

is a function of this ratio only:

T, =vot ffttc,c, (Lj (28)
cap,
as is the user cost of travel given in Equation (25). Together they determine the values
of the prices p; by Equation (5). The prices p; in turn allow total demand and route

choice to be computed. Consumer surplus, toll revenues, capacities and associated

costs are presented in Table 3.

Table 3 First-best situation of the two-route problem

Variable Route/mode 1 Route/mode 2
cap 2,511 2,942
q 2,817 3,579
0 6,396

c 6.96 4.98
T 5.35 4.93
P 12.31 9.91
P 11.04

Elasticity of ¢ w.r.t. p; -0.77 0.47
Elasticity of g w.r.t. p, 0.46 -0.52
Elasticity of Q w.r.t. P -0.17

CcS 204,542

TR 15,063 17,650
K 15,063 17,650
SS 204,542

Source: own calculations.
Note: cap, g and Q are measured as numbers of trips per hour, ¢, 7, p, P, CS, K and SS
in euros.

For the first-best case, it is also interesting to see what happens if the price

sensitivity of route choice increases. The first thing to observe is that in this case the

25



prices (user costs) on the two routes cannot become equal. As explained above, these
prices are determined by the ratio between number of users and capacity, and this
ratio is fixed by the first order condition for capacity choice. The constant price
difference between the two routes will have a larger effect on demand when price
sensitivity increases. Since capacity is adjusted to the number of users because of the
constant ratio between the two, this implies that the most expensive road will
gradually disappear with enough substitutability. Figure 3 shows that demand shifts
towards the first route when the absolute value of § increases. For values larger than

2.5 demand for trips on route 1 is virtually equal to 0.

Figure 3 Effect of increasing substitutability on route choice in the first-best

situation of the two-route model
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2.3.6 Second-best: the two route problem

In order to solve second-best problems an iterative procedure was used. As a starting
point a user equilibrium for given values of the policy variables was taken. Then a
linearised version of the first order conditions was solved for the second-best

optimum. In the following step a weighted average of the original values and those
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suggested by the linearised first order conditions for the policy variables that can be
freely chosen was used. This procedure was repeated until convergence occurred.

A sequence of second best situations, where in each step an additional policy
instrument is added, will be discussed. In the base case no instruments are used, a toll
on road two is then introduced and the capacities of roads 2 and 1 are subsequenlty
added. If, finally, a toll on road 1 comes available as a policy instrument, the first-best

situation results.

One toll, fixed capacities

First, the situation in which the toll on route 1 is equal to zero, capacities on both
routes are fixed and the policy maker’s single instrument is the toll on route 2 is
analysed. This implies that of the first order conditions (7)-(9), only (7) and (8) for
i=2 are satisfied. In that situation only a modest welfare gain in comparison to the
base case can be achieved: social surplus rises to € 166,654. The index of relative
welfare improvement, w,'® is equal to 0.13. The optimal toll is equal to 8.53, and
severe congestion remains on both routes. When price sensitivity increases, user costs
on both routes converge, whereas the numbers of trips diverge somewhat, just as in
the base case.

These results are surprisingly close to the results from the model with perfect
substitutability (7,=8.39 and @ =0.15, with S§=€161,579 in the base case,
SS$S=€169,029 in the second-best case, and SS=€211,809 in the first-best case, where
road 1 is in fact eliminated). This suggests that, although the assumption of imperfect

substitutability between routes makes the model richer and allows for mode choice, it

' The index of relative welfare improvement is the increase in social surplus compared to the
base equilibrium as a fraction of the increase in the first-best optimum. Note that the value of
this index is dependent on the parameter values chosen in the base case. For instance, the
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does not strongly affect the policy conclusions on the design and desirability of

second-best pricing.

One toll, one capacity

The second phase concentrated on the analysis of the situation in which the toll and
capacity of route 2 can be determined by the policy maker. First-order conditions (7)
are both satisfied, but conditions (8) and (9) are only valid for i=2. In the second-best
optimum, the capacity of route 2 is extended substantially to 4,048 trips per hour,
whereas the toll is negative: € —2.79. Congestion on route 1 remains significant, with
the number of trips at 2,003. The welfare gain is substantial: social surplus is now
equal to €194,510, with w=0.77. When price sensitivity increases, the optimal toll
increases. It becomes positive for values of f higher than 0.25. At that level o is still
positive (and equal to .91), which reflects the welfare gain from optimizing route 2’s
capacity, even when the second best optimal toll is zero. When £ increases, the
optimal capacity of route 2 increases, but congestion on route 2 also grows. In the
limiting case of perfect substitutability, the second-best toll is equal to €1.71, the
capacity, to 4,525.25 trips per hour, and o increases to 0.92. These results suggest that
when capacity choice is a policy variable, the impact of allowing imperfect

substitutability upon policy design and evaluation increases.

One toll, two capacities

Finally, the case in which route 1 cannot be tolled, whereas the toll on route 2 and the

capacities on both routes can be freely chosen was considered. In this situation all

value of this index for the present case “one toll, fixed capacities” would have been larger if
the capacities in the base case had been closer to their first best optimal levels.
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first-order conditions, except (8) for /=1 are satisfied. The optimal values of these

policy variables are presented in Table 4.

Table 4 Second-best: the two route problem with one toll and two capacities
Variable Route/mode 1 Route/mode 2
cap 2,806 2,955
q 3,244 3,596
0 6840

c 7.13 4.98
T 0 1.11
P 7.13 6.10
P 6.60

Elasticity of ¢ w.r.t. p; -0.42 0.27
Elasticity of ¢ w.r.t. p, 0.29 -0.34
Elasticity of Q w.r.t. P -0.10

CcS 233,916

TR 0 4,016
K 16,841 17,732
SS 203,359

Source: own calculations.
Note: cap, g and Q are measured as numbers of trips per hour, ¢,7,p,P, CS,K and SS in

curos.

In comparison to the first-best situation, the capacity of route 1 is increased, whereas
the toll on route 2 is decreased. The price of transport is lower, which increases
consumer surplus. The costs of capacity are no longer covered by toll revenues, and
the deficit decreases social surplus. These two changes result in a social surplus that is
almost as high as in the first-best situation (©=0.97).

When looking at the sensitivity of these results to changes in the price sensitivity
of mode choice it was found during the simulations that the number of trips on route 1

in the second-best optimum suddenly falls to (a value very close to) zero when the
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absolute value of Bincreases from 0.97 to 0.98."' Further investigation revealed that
for the interval [-0.97,-0.37] there exist two equilibria: (a) one in which both routes

have a substantial number of users and another (b) in which road 1 is virtually unused.

Figure 4 Effect of increasing substitutability on user cost (upper panel) and

route choice (lower panel) in the two-route problem with one toll and two capacities
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" The number of trips on route 1 falls from 635 to 0, the number of trips on route 2 increases
from 6,192 to 6,438.
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For values of £ smaller than 0.37 (in absolute value) the equilibrium in which
route 1 is virtually unused disappears. Figure 4 shows the effects on user costs and
quantities. The prices and quantities ending with ‘a’ refer to the equilibrium in which
both routes are used, and those ending with ‘b’, to the equilibrium in which only route
2 is used.

The price for trips on route 1 in equilibrium ‘b’ is only indicated for values of B
lower than 0.42, since it increases rapidly to values higher than 100. Use of route 1 is
always close to 0. Only for values of § smaller than 0.42 is the number of trips on
road 1 in equilibrium ‘b’ larger than 0.01. The equilibrium user costs on the two
routes in equilibrium ‘a’ do not converge and in fact the difference between them
increases. As a result, the numbers of users on the two routes diverge. Eventually, it
becomes inefficient to maintain route 1. With perfect substitutability, the o for this
policy is equal to 1. This implies that eliminating a road in the first-best optimum is
not harmful to efficiency if its toll is restricted to be equal to zero. When the two
equilibria exist simultaneously, the more balance equilibrium ‘a’ always has the
highest social surplus. When £ increases, the difference between social surpluses
decreases.

The findings just reported show that there may be two solutions of the relevant
subset of first-order conditions in the two-mode problem with one toll and two
capacities as policy instruments. The two solutions correspond with different values
of the policy instruments. When there are two equilibria, both are stable in two senses.

First, the two solutions correspond with different values of the policy instruments, but
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for both configurations the user equilibrium in the network is table. Second, both
second best equilibria represent local welfare maxima, not minima.'

What has been found is that a policy maker who starts from an arbitrary use
equilibrium and adjusts the values of the instruments so as to reach a second best
optimum may end up in two different situations if the parameter £ lies in a particular
interval. The initial values of the policy instruments determine in which equilibrium
he ends up. Although no extensive mathematical or numerical analysis was
undertaken, previous experience indicates that when there exist two equilibria, both

can be reached with substantially different initial values of the policy instruments."

2.3 A SIMULATION MODEL FOR THE TWO-MODE PROBLEM

2.4.1 Set-up of the two-mode problem

There are two main differences between the two-route and the two-mode problems.
The first is that studies of the two route problem usually assume perfect
substitutability. This was an important motivation for considering the alternative case
of imperfect substitutes in the previous section. The second difference involves the
transport technology. In the two route problem, constant returns to scale in capacity
cost and homogeneity of degree zero in capacity and demand are usually assumed,
whereas public transport is often produced under increasing returns to scale and with

a technology that is not homogeneous. In the present section a simulation model for

"2 This is confirmed, for instance, if social surplus is maximised by choosing capacity and toll
for road 2 with various exogenously determined values of the capacity of road 1. For £=0.75
there exists a local interior maximum when the capacity of road 1 is chosen at the level of
equilibrium (a) and another one at the boundary, when the capacity of road 1 equals zero.
When f is close to (but larger than) .37 the second maximum also becomes an interior
maximum.
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the two-mode problem that incorporates a different transportation technology for the
second mode is developed. It is otherwise comparable to the two-route problem of the
previous section.

For this two-mode model, demand, user cost of roads (mode 1) and cost of road
capacity are all specified as in the two-route model. For rail (mode 2), two aspects of
capacity are distinguished: frequency and number of seats per train. A peak period of
one hour is considered, during which the arrival flow of commuters at the train
platform is assumed to be constant. The average waiting time is therefore equal to
0.5/N, where N denotes the frequency of train departures. Passengers dislike waiting
and the cost of waiting time is equal to (1+w) vot, where vot denotes the value of time
and w gives the extra weight given to the value of waiting time (Mohring, 1972).

The discomfort associated with travelling by train is assumed to be (a)
proportional to travel time (#f) and (b) increasing in the ratio between the number of
passengers and the number of seats. The total number of passengers is ¢, and the total
number of seats available is Ns, where s denotes the number of seats per train. The

cost function for travelling by train is defined as:
¢, = vo{j(l +w)/ N+, tt (q—zj } (29)
Ns

This function is homogeneous of degree 0 in the number of trips and the number of

seats. It is not homogeneous of degree 0 in the number of trips and trip frequency.
The cost of providing rail transport is determined by the number of train

departures and by the product of the number of departures and the number of seats per

train:

" The case in which the two capacities are the only policy instruments (both tolls are equal to
zero) has also been considered and found no indications of multiple policy equil ibria. When 3
gets large (in absolute value) route 1 gradually disappears.
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K, =k, N +k,Ns (30)
The first order conditions for the optimum are analogous to conditions (7) - (9). The
only difference is that there are now two first order conditions for the capacity of the

second mode.

Table 5 Parameter values for the two-mode problem

Parameter Route/mode 1 Route/mode 2

Demand

a 7,500

b -100

p -0.1

a 1 1
User cost

vot 7.5

fftt /et 0.5 0.5

w 2
c 0.15 1.0

c 4 4

Cost of capacity
k 6 k, =365

ky, =4.5

The parameter values for the simulation model are listed in Table 5. The demand
parameters are left unchanged. Travel time by rail is assumed to be equal to free-flow
travel time by car. The additional cost of waiting is assumed to be 100 per cent of the
reference value of time, as is conventional. The exponent c,. has a value of 4. The
cost parameters are based on MuConsult (1999), where the total costs of passenger
transport of Dutch Railways are approximated with a linear function of seat
kilometres, train kilometres and passenger kilometres.'” The passenger kilometres

component is relatively small and is ignored here. The marginal cost of train

'* A thorough discussion on the value of time, including the value of waiting time for
commuters, is presented in Chapter 2 of this volume.
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kilometres was found to be much higher than that of seat kilometres. The distance

between A and B is assumed to be 60 kilometres.

Table 6 The base case of the two-mode problem

Variable Route/mode 1 Route/mode 2

cap 1,250 s:300
N: 6

q 2,887 2,582

0 5,469

c 1,976 17.13

T 0 3.75

)4 19.76 20.88

P 20.31

Elasticity of ¢ w.r.t. p; -1.12 0.81

Elasticity of ¢ w.r.t. p, 0.85 -1.28

Elasticity of Q w.r.t. P -0.37

CS 149,574

TR 0 9,683

K 7,500 9,390

SS 142,367

Source: own calculations.
Note: cap for the road , N, g and Q are measured as numbers of trips per hour, ¢, 7, p,

P, CS, K and SS in euros.

In the base case it is assumed that trains with a capacity of 300 seats depart every
10 minutes. In the Netherlands the fare for a return trip of 60 kilometres is around
€15. Given that for peak hours most of the trips are return trips, it seems appropriate
to use half the value of a return ticket. Many of these trips, however, are made by
season ticket holders, who pay a lower price per trip. For this reason 25 per cent

(instead of 50 per cent) was used as the appropriate price for a one-way trip of 60 km.

' These are only operating costs, not capital costs. Moreover, fixed cost and costs directly
related to the number of passengers, which turned out to be relatively small, are ignored here.
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Results for this base case are presented in Table 6. The price of transport is higher
than in the case of the two-route problem. The main reason for this difference is that
the cost function for passenger transport is more sensitive to congestion than that for
road transport. For the latter, the ratio between the number of users and capacity can
be made equal to two. For passenger transport, at least in the Netherlands, it is
virtually impossible to carry twice as many passengers as there are seats. This
difference is reflected in the specifications of the cost functions for rail and road
transport as discussed above. In the base case the ratio between use and capacity is 1.4
for trains. This figure seems reasonable for commuter trains in the Randstad area
during peak hours. Revenues from train tickets are sufficient to cover all costs of rail
passenger transport, as seems realistic for peak traffic in the Randstad area.

In order to study the effect of changes in the substitutability between the modes, the
same range of values of the coefficient £ that was used for road transport in the two-
mode version simulation model were simulated. Only minor differences with the two-
route situation were found. Again, the prices for the two modes, which are already
close to each other in the base case, become virtually identical. The price elasticities
of demand for the separate modes become very large (in absolute values) but the
overall price of transport and its price elasticity remain almost identical. It must
therefore be concluded that, at least in this base-case version of the two-mode model,
the differences between the situations of imperfect and perfect substitutes are minor

and comparable to the differences in the two-route case.

4.2 The first-best situation and the two-mode problem

Determining the first-best equilibrium is more complicated than in the two-route case.
The ratio ¢»/Ns is determined by the first order condition for s, but this does not

determine N. This means that the cost of railway transport cannot be computed from
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the first order condition with respect to capacity alone, and an iterative procedure is
therefore needed in order to compute the first-best equilibrium. The equilibrium was
first computed conditional upon a given value of N, the value of N suggested by the
relevant first order condition in this equilibrium was then computed, and N adjusted

towards this optimal value. This procedure was repeated until convergence occurred.

Table 7 First-best situation of the two-mode model

Variable Route/mode 1 Route/mode 2

cap 2385 s 556
N: 8.77

q 2,901 3,743

0 6,644

c 4.98 2.16

T 4.93 5.21

)4 9.91 7.37

P 8.56

Elasticity of ¢ w.r.t. p; -0.62 0.35

Elasticity of ¢ w.r.t. p, 0.37 -0.38

Elasticity of Q w.r.t. P -0.13

CcS 220,712

TR 14,307 19,500

K 14,307 22,701

SS 217,511

Source: own calculations.
Note: cap for the road, N, g and Q are measured as numbers of trips per hour, ¢, 7, p,

P, CS, K and SS in euros.

The simulation results are presented in Table 7. In comparison with the base case,
the number of rail passengers increases substantially. The quality of rail transport is
improved substantially: the number of departures per hour increases from 6 to 8.77,
and the number of seats per train almost doubles, and becomes equal to 556. The ratio

between passengers and seats drops to 0.76. These improvements result in a much

37



lower user cost of travel time for rail transport (€1.96 instead of €16.99). Even though
the railway fare increases considerably to €5.21 per (one way) trip, the generalized
price of train transport falls considerably because of the lower travel time, and is now
lower than that of car travel.

Road capacity is also expanded substantially and the price of road transport is
halved in comparison with the base case. Toll revenues are exactly equal to the cost of
road capacity. Fare revenues from rail transport are now insufficient to cover all costs.
These revenues exactly cover the cost of seat kilometres (i.e. they are equal to kyNs
in Equation (2.30)). There are economies of scale associated with increasing the
number of seats per train and marginal cost pricing is therefore unable to cover total
exploitation costs.

When train and road become closer substitutes, demand shifts towards the
cheapest mode. With the assumed parameter values, the cheapest mode is the train.
With economies of scale in the railways, this demand shift causes a further drop in the

cost of rail transport and road as a mode of transport eventually disappears.

Railway fare, fixed capacities

When the capacities of both modes are fixed and the only policy instrument is the
train fare, possible welfare gains are small when compared to the base case
(SS=€151,737, ®=0.11). The optimal railway fare turns out to be considerably higher
than in the first-best situation (€16,15). There is substantial congestion on the road
(¢1=2,980). User costs are equal to €21.92 for the road and €25.03 for the railway.
When substitutability between the two modes is increased, user costs converge to

€22.68. The optimal toll decreases somewhat.
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Railway fare, frequency and seat capacity

When the railway fare, number of seats and frequency of departure can all be chosen
by the policy maker, welfare gains are considerably higher than when only capacity
can be used as a policy instrument. Social surplus is equal to €208,063 (©=0.88),
which is close to the first-best value. The optimal railway fare now turns out to be
negative (-€2.09). User cost is equal to €8.45 for road and €1.87 for railway transport,
implying that the price of the latter mode is also negative (-€0.22). When f is
increased the railway fare becomes positive, while user costs of the two modes

converge gradually.

Table 8 Second-best: the two mode problem

Variable Route/mode 1 Route/mode 2

cap 2,639 s 556
N: 8.79

q 3,298 3,757

0 7,055

c 5.12 2.16

T 0 1.66

P 5.12 3.82

P 4.45

Elasticity of ¢ w.r.t. p; -0.31 0.17

Elasticity of ¢ w.r.t. p, 0.21 -0.21

Elasticity of Q w.r.t. to P -0.06

CcS 248,870

TR 0 6,247

K 15,833 22,783

SS 216,501

Railway fare, frequency and seat capacity, and road capacity

The results for the two-mode problem, where capacity of the road can also be chosen
optimally, are presented in Table 8. As can be seen in the table, the share of potential

welfare gains is even larger than in the case where only the capacity of rail could be
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used as a policy instrument. The social surplus equals €215,889 (©=0.98). Both road

and railway capacities are considerably higher than in the first-best situation. The

revenues from railway fares are less than one third of the costs of railway transport.
When substitutability between the two modes increases, results similar to those

from the two-route problem are obtained. Figure 5 illustrates this.

Figure 5 Effect of increasing substitutability on user cost (upper panel) and

route choice (lower panel) in the two-mode problem
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For the interval [-0.92,-0.41] there are again two equilibria. In one of these the
road remains virtually unused. For absolute values of § higher than 0.92 there is only
one equilibrium, in which there is no road. For absolute values of f lower than 0.41
there is only one equilibrium in which both road and railway attract a substantial
number of trips. For small values of § the equilibrium in which two modes are used
has the highest social surplus, for larger values the equilibrium in which only one

mode is used has the highest social surplus.

2.4.3 Summary

The main purpose of this paragraph was to provide a comparison of the results of two-
mode situations with those of the two-route situations discussed in the previous
section. The most important conclusion is that these results appear to be so similar.
Introduction of imperfect substitutability into the two-road model makes it behave
much like the analogous two-mode model, despite the substantial difference in the
cost structure.

The similarity between the two models is nicely illustrated by the development of
the index of relative welfare improvement as a function of the price substitutability
parameter 3, which is shown in Figure 6.'® In both cases only modest improvements
in welfare are possible when one road or mode has to remain untolled and capacity
has to be taken as given. If capacity of the road or mode that can be tolled can also be
used as a policy instrument, a much larger share (typically more than three quarters)
of the potential (first best) welfare gains can be realized. If the capacities of both
roads or modes can be used as policy instruments, 100 per cent of the potential

welfare gains is realised for large values of £. The reason is that in these

'® When there are two equilibria, the one yielding the highest social surplus was used in
Figure 6.
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circumstances the unpriced road or mode disappear, which implies that its price

becomes irrelevant.

Figure 6 Effect of increasing substitutability on user cost and route/mode choice

in the two-route (upper panel) and two-mode (lower panel) models
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The simulation results clearly suggest that there is a qualitative difference between
situations in which substitution between roads or modes is difficult (with the absolute

value of £ less than 1) and situations in which it is easier, but that there is not a
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qualitative difference between perfect substitutability and imperfect but relatively
easy substitutability (a large absolute value of £). Two important reasons or this
conclusion are that one road or mode disappears completely in the first best case for
finite values of § and that in the case with two capacities and one toll the transition
from an equilibrium in which both roads/modes are used to one in which only one is

used takes place for relatively small values of S.

24  CONCLUSIONS

This paper considers second-best pricing as it arises through incomplete coverage of
full networks. The main principles were first reviewed by considering the classic two-
route problem and some extensions that have been studied more recently. In most of
these studies the competing routes are assumed to be perfect substitutes, which is
probably not the case for most parallel roads in reality, and even less likely for the
case where competing connections represent different transport modes.

A modelling framework in which the alternatives are imperfect substitutes was
developed and numerical results for two roads and two modes were presented. In the
model, trip generation and trip distribution are distinguished in a way that is
consistent with economic theory. A linear demand equation was used for trip
generation, and the logit model for trip distribution. The model offers the possibility
to study the effect of changes in the substitutability between the two routes or modes.
Perfect substitutability is a limiting case, in which the absolute value of one parameter
becomes infinitely large.

The model was used to consider situations in which one route or mode cannot be
tolled. Simulation results show that, for the chosen parameter values, there is a

substantial difference between the effectiveness of policies in which the capacities
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have to be taken as given, and those in which capacity of at least one mode can be
changed. If only a toll on route or mode two can be used typically less than a quarter
of the total possible welfare gains is realised. When the capacity of at least one route
or mode can be determined by the policy maker, typically more than three quarters of
the maximum possible welfare gains are realised. These figures are not very
dependent on the substitutability between the two routes or modes.

A striking feature of the policy in which the capacities of both modes and the
railway fare can be used as policy instruments is the existence of two equilibria for a
range of values of f. In one equilibrium there are substantial numbers of users of both
modes, whereas in the other use of one mode is negligible. In this case there is a
regime shift that is related to the possibility to substitute use of one mode for another,
but it does not coincide with the difference between perfect and imperfect
substitutability, interpreted as a finite and an infinite value of S respectively.

For the first-best case there is no regime shift that coincides with the difference
between perfect and imperfect substitutability either. The situation in which only one
mode is used is now approached in a continuous way, and it is reached for a finite and
relatively small value of .

The results for the classic two-route problem with imperfect substitutes, in which
only a toll can be charged on one of two parallel roads, are surprisingly close to the
results for the model with perfect substitutes. This suggests that although the
assumption of imperfect substitutability between routes makes the model richer and
allows for mode choice, it does not strongly affect the policy conclusions on the
design and desirability of second-best pricing. This makes the results of prior studies

appear robust to the assumption of perfect substitutability.
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This picture changes when capacity choice is also included as a policy instrument.
When only the capacity of the priced road can be chosen, the choice may make the
difference between a negative second-best toll (for imperfect substitutes) and a
positive one (for closer or perfect substitutes), as illustrated by the results. When both
capacities can be chosen, the choice may make the difference between keeping a road
(for imperfect substitutes) and eliminating it in the long run (for closer or perfect

substitutes).
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